Wh/y We Can’t
the Way We’re Trying to Do It Now

Program Multiprocessors

Douglas Baldwin

Technical Report 224

August 1987

CRSITY OF

UNIV.

ROCHESTER

COMPUTER SCIENCE

o e i S 3T

A s 04> X R

Why We Can’t
Program Multiprocessors
the Way We're Trying to Do It Now

Doug Baldwin
Department of Computer Science
The University of Rochester
Rochester, NY 14627

TR 224
August 1987

Abstract

It is now rather easy to build the hardware of a multiprocessor computer, but
still quite difficult to program it to do useful work. I argue that a key cause of
this problem is that the models of computation on which current programming
languages are based are inadequate for describing parallelism. Programming

. languages are classified according to their underlying models of computation.

The two major classifications are imperative languages, based on machine-
oriented models, and declarative languages, based on mathematical
abstractions. Imperative languages rely on side-effects to advance
computations, and so are inherently sequential. Declarative languages lack
general ways of describing data parallelism, and so can only express a fraction of
the potential parallelism in a program. The paper closes with a brief description
of current work on constraint languages, which might help to reduce the
problems of programming multiprocessors.

The research described in this paper was funded by the National Science
Foundation under Grants DMC-8613489 and DCR-8320136 and by the U.S.
Army Engineering Topographic Laboratories under Contract DACAT 6-85-C-
0001. The opinions expressed in this paper are those of the author, and are not
necessarily endorsed by the above agencies.

Contents

 IRtrOQUCEION « vt e e e 1
1.1 Parallel Computingcveeviinmmnernneaannenrermenes 1
1.2 Programming Languagesocoeeeeeceernres 55080555 4

. How Current Languages Limit Parallelismovviviieeneenann. 7
9.1 Data Dependenciescocereaeneeernrarererrarerenssy 7
9.2 DataParallelismoooveiviiireeniimreerranreerees 11
0.3 Granularity ...ooveeeerrrmmeernnnnsereaaneee s 15
9.4 Generality ..o.veeneenrroneenrann e - 16

. A Step Towards a Solution?oourinrrnenrarmmrrrnees 17

. Summary and Conclusionsceeeerrrrerr e 18

Implementations of s P L I 19

1 Introduction

Parallel computation is an area in which software technology lags consider-
ably behind hardware technology. The need for parallel computing in a number
of applications (e.g., scientific computing, machine vision, artificial intelligence) is
unquestioned, and computers with hundreds of processors are now readily avail-
able (for instance, the ButterflyT™ [3] or the many derivatives of the Cosmic Cube
[37]). However, these machines are programmed in essentially the same way as ex-
isting sequential machines. The best available parallel programming languages are
variants of standard sequential languages, with extensions to let the programmer
explicitly divide a program into tasks and pass information between those tasks.
Although designers of these languages claim that they are no harder to use than
conventional sequential ones [16, 18}, programmers still face the problem of figuring
out how to partition their application into tasks in addition to the usual problem
of translating it into a program. An appealing alternative is to leave partition-
ing of programs to compilers. By hiding partitioning problems from programmers,
this approach should make multi-processor computers easier to program than they
are now. Unfortunately efforts to develop parallelizing compilers have so far been
rather unsuccessful. Few have been used outside of laboratory settings, and most
are restricted to specific programming styles or target architectures. In this paper I
argue that the models of computation on which current programming languages are
based are inadequate for expressing significant amounts of parallelism. This means
that extending existing languages so that programiners can partition programs will
be an awkward job at best, and that source languages are an important factor lim-
iting the success of parallelizing compilers. Research to identify more appropriate
languages for parallel programming is needed before multiprocessors will be widely
useful.

1.1 Parallel Computing

For the purposes of this paper “parallel computing” means general purpose
parallel computing. In other words, I do not view parallelism as a tool for only
the areas that have traditionally exploited it, but rather as one that can be useful
in arbitrary programs. I therefore adopt a MIMD (multiple instruction stream,
multiple data stream) model of parallel computing, i.e., a model in which a single
job is distributed over a number of processors, each able to execute its own code on
arbitrary data independent of what the others are doing. Since it imposes no restric-
tions on how a job can be partitioned into concurrent parts, this model supports
the widest possible variety of styles and uses of parallel programming. Communica-
tion between processors may be through shared memory, networking, or any other
mechanism. The only requirement is that interprocessor communication be cheap
enough that some jobs are worth partitioning into multiple cooperating processes.
Throughout this paper I use the term multiprocessor to denote a computer system
that implements this MIMD model.

“Butterfly” is a trademark of BBN Laboratories, Inc.-

1

1) Record Format:

2 Type: An integer between 1 and 5 indicating the record’s type.

3 Val: A real number representing the principal value of the record.
4 Aux: An array of real-valued fields containing auxiliary information.
5) Algorithm “Totals”:

6 Get initial values for each total from user.

7 Initialize each count to O.

8; Process each record as follows:

9 Increment the counter for this record’s type by 1.

10 If the record is of type 1:

11 Add the record’s val field to the typel total.

12 If the record is of type 2:

13 1f the record’s val field is an integer multiple of 3

14 Apply function f to the record’s val field,

15 Otherwise

16 Apply function ¢ to the record’s val field. ’

17 Add the result of the chosen {function application to the type 2 total.
18 If the record is of type 3:

19 Add each odd-indexed auz field to the type 3 total.

20 Set each even-indexed auz field to the succeeding even-indexed
21 auz field divided by 2.

22 If the record is of type 4:

23 Add the natural logarithm of the record’s val field to the type 4 total.
24 If the record is of type 5:

25 Add the sum of f applied to the record’s val field and

26 g applied to the record’s val field to the type 5 total.

Figure 1. “Totals”: A Demonstration of Parallelism

The process of breaking a program into processes that can run concurrently ona
multiprocessor is called parallelization. Parallelization can (in principle) be done by
programiners, by compilers, or by both working together. It is sometimes convenient
to think of the result of parallelization as a schedule that indicates the order in
which parts of a program are executed. Parallelization is assumed to produce a
schedule in which some operations really do execute simultaneously (in other words,
the trivial schedule in which everything is done sequentially is not parallelized).
Parallelization can be done at many different levels of granularity, determining
the size of the resulting processes. For example, very fine granularity might yield
processes corresponding to single machine instructions, whereas a coarser (and more
realistic) granularity might yield processes corresponding to procedures or other
large blocks of source code. The most appropriate granularity depends on who or
what is doing the parallelization and on the target machine’s architecture.

As an example of some of the ways parallelism may appear in an algorithm,
consider “Totals”, the algorithm shown in Figure 1. The actual computation done
by this algorithm is nonsense; its only purpose is to demonstrate parallelism in a
number of settings. “Totals” works on a set of records, with each record having
one of five types. The purpose of the algorithm is to count the number of records

of each type and total up the records within each type. Unfortunately the total for

each type must be computed in an idiosyncratic way. Furthermore, each total starts

at a user-defined value rather than at 0. The functions f and g called by “Totals”

are assumed to be real-valued, but are otherwise left to the reader’s imagination.
The most significant kind of parallelism in «Totals” is data parallelism, the

possibility of processing a number of different data items concurrently. The entire

%

algorithm can be expressed in two different data parallel forms: In the first, each
input record is assigned to a distinct process, which checks the record’s type and
updates the appropriate total and count. In the second, each total or count is
computed by a distinct process, which extracts from the input those records whose
type corresponds to the result it is computing. In other words, the parallelism can
be either over inputs to “Totals” or over outputs. If the data parallelism 1s over
inputs, then there will probably be a large number of processes acting at once, but
they will need to synchronize their accesses to the totals and counts. Parallelism
over outputs avoids the need for this synchronization, but involves fewer processes
(and so possibly more time to complete the overall computation). Needless to say,
other algorithms would exhibit different trade-offs between parallelism over inputs
and parallelism over outputs. Note that general data parallelism does not require
all items to be processed in the same way. Adding such a restriction yields a form
of data parallelism often called vector parallelism. An example can be seen in lines
20 and 21 of Figure 1, where with suitable synchronization of reads and updates,
the new values of all even-indexed auz fields can be computed at once.

«Totals” demonstrates a number of forms of parallelism other than data par-
allelism, including the following:

e The initializations in lines 6 and 7 can be done in parallel, i.e., the counts can
be set to zero while initial totals are being read from the user. Similarly, the
count and total for each record’s type could be updated in parallel (i.e., line 9
could be done in parallel with lines 10 through 26). This sort of statement- or
block-level parallelism is typical of that sought by most parallelizing compilers.

e The conditional in lines 13 through 16 could be parallelized by having one
process decide whether the current record’s val field is a multiple of 3 while
two others apply f and g to that field, saving results in distinct temporaries.
One of these results can then be added to the type 2 total, depending on the
result of the test. The same idea could be applied to dispatching on record
types (lines 10, 12, 18, 22, and 24). This kind of parallelism is related to the
“or parallelism” that certain compilers for logic languages try to exploit.

e Lines 25 and 26 apply f and g and then add the results together. Assuming
that f and g do not interfere with each other (for instance by changing shared
data), the two applications can be done in parallel. This is an example of
argument parallelism (the arguments to the addition are evaluated in parallel),
exploited by parallelizing compilers for functional languages.

o Line 19 involves summing a (possibly) large number of auz fields. Since ad-
dition is associative, this summation can be broken into a number of smaller
partial sums that can be done in parallel.

o Line 23 demonstrates a case in which a complex operation (taking a natural
logarithm) is treated as primitive, in the sense that no further description is
given of how the operation is to be carried out. Nonetheless, one can imagine
exploiting parallelism within such operations, perhaps by providing parallelized
library functions to implement them.

Programming

Languages
|
Voo
Imperative Declarative
Languages Langluages
!
L [I |
von Neumanhn Ob)ect-Onented Functional Data-Flow Logic
Languages Languages Languages, Languages Languages
Equational
Languages,

etc.

Figure 2: A Taxonomy of Programming Languages

Implementations of «Totals” in a number of real programming languages are
given in Appendix L. These implementations will be used throughout this paper
as illustrations of the ways in which different kinds of language help or hinder the

expression of parallelism.

1.2 Programming Languages

The basic thesis of this paper is that the models of programming embodied in
currently used programming languages are inadequate for writing parallel programs.
Defending such a sweeping statement requires some organized way of characteriz-
ing and discussing programming languages. The language classification used in this
paper is shown in Figure 2. The most important distinction in this taxonomy is
the one between imperative and declarative languages. A program in an impera-
tive language explicitly describes how some (possibly abstract) computer changes
its own state to produce a desired result; a declarative program is a mathemat-
ical description of the result itself (rather than of the process that produces it).
Imperative languages are further sub-divided into the “von Neumann’ languages
and the object-oriented languages. The von Neumann languages closely reflect the
von Neumann computer architecture, specifically by representing program state as
a single, relatively unstructured set of variables (corresponding to the single, un-
structured memory of the von Neumann architecture). Ob ject-oriented languages
compartmentalize program state and the operations that change it, but still reflect
a very mechanical view of computation. Different sub-divisions of the declarative
languages represent different mathematical formalisms, for example functional lan-
guages, logic languages, et cetera. The leaf classes from Figure 2 are described
more carefully in the following paragraphs. Every class includes languages in which
parallelism can be described explicitly (referred to later as “explicitly parallel” lan-
guages), as well as languages 1n which parallelism is at best implicit (sequential
languages). As will be shown, even explicitly parallel languages impose the same
barriers to parallel programming as do the sequential members of the same class.

von Neumann Languages. Most programming languages are von Neumann lan
guages. As an example, Figure 4 (in Appendix I) shows “Totals” written in Pasca
[24], a typical von Neumann language. Von Neumann languages are fundamentall;
sequential, since the order in which program states are entered influences the resul:
produced. Nonetheless, it is possible to extend the von Neumann model to allov

4

explicit parallelism, and this has been done. For example, Hoare’s Commumcating
Sequential Processes [23] models parallel computation as a number of von Neumann
processes passing data between themselves over special connections. The assump-
tion is that the only thing that von Neumann languages need in order to express
parallelism is the ability to describe communication between processes. Another
way of extending the von Neumann model to parallel computation is reflected in
Linda [19]. Linda tries to avoid commitment-to a particular computational model
for individual processes, but does assume that all communication between processes
is done by depositing information into and extracting it from a global, unstructured,
“tuple space”. In other words, Linda is based on the assumption that the von Neu-
mann approach to maintaining state can be applied to the global state of a parallel
program.’

Object-oriented languages. Object-oriented languages are imperative languages in
which the set of variables defining a program’s state is partitioned into small sub-
sets. Fach subset of variables is encapsulated along with the procedures that access
its members in an object. Objects interact by sending messages to each other. A
message causes one of its recipient’s procedures (also called a method for the mes-
sage) to be executed, presumably changing or reporting the values of some of the
recipient’s state variables. A typical object-oriented program uses many instances
of each type (or class) of object, i.e., has many objects with the same procedures but
distinct state variables. The best current example of an ob ject-oriented language 1s
Smalltalk [20). An implementation of “Totals” in Smalltalk appears in Figures Sa,
5b, and 5¢ (in Appendix I).

There is an obvious correspondence between objects passing messages between
themselves and processes passing messages between themselves, and so object-
oriented programming seems to be a natural way to explicitly describe parallelism.
Emerald [7] is a recent example of an ob ject-oriented® language designed for parallel
programming. Much more common than the use of fully object-oriented languages
for parallel programming is the use of an ob ject-like model of processes in an other-
wise von Neumann language. Processes in these languages act like objects in that
they contain private state information that they manipulate in response to messages
from other processes. These languages do not, however, extend the object model
to data and procedures within individual processes. Examples of object-like pro-
cesses include guardians in Argus [27] and processes in SR [2] or Lynx [36]. Figures
6a through 6g in Appendix I show an implementation of “Totals” in Lynx as an
example of this kind of language.

1 Linda’s tuple space differs from traditional von Neumann memories by being
associatively addressed. For the purposes of this paper however, the crucial simi-
larity is that in both cases communication between parts of a program is achieved
by making long-lived changes to the state of tuple space or memory.

2 Purists might prefer “object-based”, since Emerald lacks features that are
sometimes considered important for object-oriented programming.

Functional languages. Functional languages, also known as applicative languages,
are declarative languages that use functions as the underlying mathematical ab-
straction [4]. In other words, programs are viewed as pure functions, generally
composed out of simpler functions. Functional languages have an important im-
plicit source of parallelism, namely that all the arguments of a function application
can be evaluated concurrently (argument parallelism). Most existing functional lan-
" guages are still laboratory prototypes, so there are'no widely used examples of the
class. The best example is probably Lisp, which has an applicative subset (“pure
Lisp”), although all Lisp dialects also include non-applicative features. Figure 8
(see Appendix I) gives an implementation of “Totals” in an applicative subset of
Common Lisp [40].

Data-flow languages. Data-flow languages [1] were deliberately developed to de-
scribe parallelism in computation. A data-flow program is essentially a description
of a directed graph, in which nodes represent functions and an edge from node
o to node b means that the output of the function represented by a is an input
to the function represented by b. The edges of this graph describe the serializing
dependencies between functions: no function application can be evaluated before
all of its inputs have been computed, but any applications not thus dependent on
one another may be simultaneous. Data-flow languages are very closely related to
functional languages, in that both view computation as function application and
composition. However, data-flow languages generally provide a richer set of con-
structs for describing the structure of the dependency graph than do functional
languages, and so may support more ways of describing parallelism. This point
is discussed in more detail later. Like functional languages, data-flow languages
are still mainly experimental — the description of VAL [29] is probably the most
accessible example of the class.

Logic languages. Logic languages are declarative languages in which programs are
sets of relations between objects. These relations are stated either as facts (“r
holds between a and b”), or as if-then proof rules (“r holds if s holds and ¢ holds
and ...”). The best examples of logic languages are Prolog [12] and its variants.
Execution of a logic program can be viewed as an attempt to prove that some
specific relation holds between certain objects. In principle, correct execution does
not depend on either the order in which sub-goals arising in the proof are proved
or the order in which alternative proofs are tried. Thus there is potentially a great
deal of parallelism implicit in a logic program. Unfortunately, Prolog 1s defined
in ways that make this parallelism very hard to detect automatically. A number
of parallel variants of Prolog have been proposed in which parallelism is easier to
detect [11, 38]. These variants are semi-explicitly parallel, in that programmers
must make certain aspects of parallel execution explicit in their programs, whereas
other aspects can be determined automatically.

9 How Current Languages Limit Parallelism

From the preceding survey of programming languages it might seem that paral-
lelism is supported in many ways by virtually every language. However, it turns out
that this apparent support 1s insufficient for general-purpose parallel programming.
The reason is that there are several important sources of and limits to parallelism
that cannot be expressed clearly in any existing language. This problem is obviously
serious for sequential languages, since they must be translated into parallel form
explicitly. Without clear guidance from the source text as to what parallelizations
are legal, and more importantly what ones are not legal, it will be very hard to
produce correct and efficient parallelizations of sequential code. These comments
apply equally to automatic and manual translation. The symptom of the problem
for explicitly parallel languages is cimilar: it is hard to tell whether or not the
parallelization given explicitly in a program is actually correct, i.e., whether it is
consistent with the basic computation desired of the program. What is missing 1s a
clear statement of the parallelism potentially allowed by this basic computation —
essentially the same thing as was missing from sequential languages. Thus, although
explicitly parallel languages may encourage the problem to show up during debug-
ging rather than during coding, both they and sequential languages suffer from the
same thing: inability to clearly express potential parallelism. The rest of this sec-
tion discusses the basic reasons why parallelism is hard to express, independent of
whether that parallelism is implicit or explicit.

2.1 Data Dependencies

The key problem in writing parallel programs 1s that of describing data depen-
dencies, i.e., indicating when two operations must be done sequentially because one
produces or destroys a value that the other needs. Generally, any operations that are
not explicitly serialized by data dependencies can be done in parallel. Conversely,
any operations between which there is a data dependency must be done sequentially.
The ultimate goal in designing a parallel programming language should be to allow
those data dependencies that are essential to the algorithm being programmed to
be stated clearly, while eliminating any need for extraneous dependencies.

Data dependencies are an intimate part of imperative languages. Recall that
imperative languages are characterized by a model of programming in which each
statement contributes to solving a problem by making some change to the state
of an abstract computing machine. These changes in state are called side effects.
Side effects are relatively permanent, in that they can be visible arbitrarily long
after the statement that caused them finishes executing. In fact, since statement
execution is a transient activity, side effects are the only way an imperative program
makes permanent progress towards completion. Note that the result of executing a
statement in an imperative language generally depends on the machine state (i.e.,
previously caused side effects) immediately prior to its execution. Thus the relative
order in which any pair of statements is executed can be crucial to the outcome
of a program. Some of the resulting data dependencies are fairly easy to see, for

Object X

Object 2
Handle Mp:

Handle My:
Object Z

1d Mgt - -+ -

send Vs Handle M,: \
Ve ...

Object 3 Object Y ' Handle M.

Hondle Ma: -ea Handle M, : e

: : use V

ser}d M,y soo sen_d M, \ :use 5

: ‘_\:_‘_/// \\\ ./

Figure 3. Indirect Data Dependencies in Object-Oriented Languages

example because they involve the same variables appearing in different statements.
Others are much less obvious, for example because they involve an implicit “program
counter” or other control mechanism (such dependencies are often called control
dependencies). In short, imperative languages are inherently sequential, being very
deeply founded on the assumption that any two statements will be executed in
some definite order relative to one another. Violations of this assumption can only
be justified by proving that none of the dependencies between the statements in
question can influence the result of the computation. One of the consequences
for parallel programming is that more effort is often devoted to properly starting
processes, synchronizing them, and passing data between them than is devoted to
coding the basic algorithm underlying a program. Compare the lengths of the Lynx
and Pascal versions of “Totals” in Appendix I for an example of this effect.

Data dependencies are very difficult to detect in imperative languages. One of
the reasons is that side effects do not necessarily have any locality. In other words, a
side effect can be observed arbitrarily long after it is caused, by code arbitrarily far
removed from the causer. Object-oriented languages and von Neumann languages
that support modular programs might seem to alleviate this problem by grouping
data and the procedures that manipulate them together, but this alleviation 1s
largely illusory. The problem is that a message might have side effects that affect
the way the receiving object handles later messages. Similarly, calling a subprogram
located in some module may have side effects that influence the behavior of later
calls to other subprograms in the same module. Because an object’s handling of a
message may involve sending other messages to other objects, and a subprogram
may call other subprograms in other modules, identifying the final side effects of a
message or call can require the same global analysis in highly modular languages
as in languages with no support for modularity. If anything, the analysis may be
harder in object-oriented or modular languages because it has to cross supposedly
inviolable object or module boundaries. Figure 3 illustrates the problem for object-
oriented languages.

The worst problems with data dependencies in imperative languages stem from
aliasing. Aliasing occurs whenever a single datum may have several different names.
- Common examples include array references (a[f] and a[j] name the same object if
¢ = 7) and references through pointers. A good “real life” example appears on line

8

36 of Figure 4 in the Appendix, where “auz[j — 1]” on one iteration of the loop
refers to the item named by “cuz{j + 1]” on the previous iteration, even though
the two names are distinct. Notice how understanding this example requires un-
derstanding the behavior of the loop in which it is embedded. The need for this
kind of fairly deep understanding of the context in which aliases occur is typical of
the problems of alias detection. Aliasing means that.data dependencies cannot be
detected simply by looking for occurrences of common variable names in different
statements — a data dependency may exist between two statements even if they
have no names in common if the shared data are named by different aliases in each
statement. Techniques have been developed for recognizing aliases involving some
forms of array reference [6, 31], but they do not generalize to other sources of alias-
ing. In fact, the general problem of deciding whether two names are aliases for each
other is undecidable.? Unfortunately, recognizing aliases is very important for ex-
tracting parallelism from imperative programs. The situations in which aliasing is
most likely to occur are precisely those in which vast amounts of parallelism are also
likely to occur — for example, large arrays or structures linked together by point-
ers, where it might be possible to process all elements simultaneously. However,
it is generally impossible to prove that this concurrency respects data dependen-
cies without being able to tell whether apparently distinct references to the same
structure are aliases for each other. The impossibility of general alias recognition
means that the quality of automatic parallelizations of imperative programs will
always be limited. Furthermore, the restricted domains of existing alias recognizers
suggest that these limits will be quite severe, at least for the foreseeable future.
The problem is less severe for manual parallelization, since programmers can be
expected to understand aliasing in their programs better than a compiler would.
Nonetheless, even programmers seldom understand their programs perfectly. Bugs
in parallel programs can be extremely difficult to detect and fix, and the problem is
compounded if the bug is disguised by aliasing. Thus aliasing not only makes par-
allelization of sequential imperative programs impossible, it is also a strong reason
to suspect that explicitly parallel imperative programs will be harder to write and
less reliable than traditional sequential ones.

Despite the problems described above, there has been a considerable amount of
work on automatically finding parallelism in sequential imperative languages. This
work has met with a certain amount of success, for example the Bulldog compiler
[14] or any of a number of vectorizing compilers for array processors and super-
computers [10, 33]. A large catalogue of techniques for detecting and exploiting
parallelism in imperative languages is given in [32]. All of these systems, how-
ever, are successful only for restricted kinds of program and target machine. For
example, none can handle parallelism involving dynamic data structures, and even

3 For example, if an alias detector existed then a program of the form “if a[t] and
a[j] are aliases at the end of this program, then make 1 and j unequal, otherwise
make them equal” could be written to achieve the paradox of having two names be
aliases if and only if they weren’t aliases.

array accesses can only be parallelized when subscript expressions take simple forms
that allow aliases to be recognized. Many common constructs, for example “while”
loops or subprogram calls, cannot be parallelized by these systems. Some compilers
(Bulldog for instance) are based on assumptions about the target machine that sim-
plify or even eliminate problems of synchronizing concurrent tasks. Often the kinds
of parallelism detected are also very limited. For example, vectorizing compilers
usually ignore all sources of parallelism except vector parallelism arising from very
simple loops (typically only inner-most loops, loops not containing subprogram calls
or conditionals, et cetera). Although it 1s true-that programs from some large and
important classes (notably computation-intensive numeric programs) have a suffi-
ciently regular structure that these techniques can find substantial parallelism, the
techniques are clearly not general purpose. Furthermore, many of the limitations
are deep consequences of the fundamental problems discussed above (especially alias
detection), and so will not be easy to remove. Thus, while it is true that paral-
lelism in imperative languages can sometimes be exploited automatically, doing 1t

in general is still impossible.

Data dependency detection is a problem mainly for imperative languages. The
fact that these languages are built on a side-effect based model of computation
makes data dependency detection both extremely important for parallelization and
extremely hard to do. The stuation is much better in declarative languages. The
mathematical formalisms on which these languages are based generally disallow
side-effects. Thus a variable’s value is defined in exactly one place, and is never
changed after being defined. This “single assignment” property means that the
only dependencies that can arise are between an object’s definition and its uses.
Thus the reason for analyzing data dependencies in declarative languages is to
answer the question “does this object have a value yet?”, whereas with imperative
languages the question is “of all the values that this object has at various times,
does it now have the right one for this use?” This difference in emphasis means
that adequate dependency analysis can be done with much less information than in
imperative languages. For example, if it is known that the array a is fully defined
at some point in a program, then operations referencing alt] and a[j] can always be
done in parallel, regardless of whether ali] and a[j] may be aliases for each other.
It is still impossible to do a perfect analysis at compile time (for instance, if a
were only partially defined in the above example, possible aliasing might prevent
parallelization), but dependency detection can also be deferred until run time. A
simple way of doing this is simply to reserve a special “not yet defined” value or
flag for each data object, with users of an object suspending themselves until the
object has been defined. One can imagine similar run time dependency detection
for imperative languages, and at least one multiprocessor has been designed with
hardware support for some of the necessary synchronization of data accesses [39].
.- However, the greater amount of information required means that recognizing data
dependencies for imperative programs involves more overhead than doing it for
declarative programs. Even with hardware assistance, this overhead is generally

unacceptable if incurred on every run of a program.

10

2.2 Data Parallelism

Intuitively, data parallelism is an important factor in truly massive paralleliza-
tions because programs commonly process data sets consisting of hundreds or thou-
sands of items. If these items can be processed independently of one another,
then speed-up factors of hundreds or thousands can be obtained (under ideal cir-
cumstances, of course). Another argument for the importance of data parallelism,
paraphrased from [22], is as follows: A given program contains only a fixed number
of instructions, which necessarily limits the benefit to be gained from simply rear-
ranging those instructions into some parallel schedule. On the other hand, the same
program can typically be applied to arbitrarily large data sets, meaning that the
benefit to be gained from data parallelism is potentially unbounded. Finally, data
parallelism has a multiplicative effect on other sources of parallelism. For example,
if the body of a loop can be sped up by a factor of 5 due to various forms of control
parallelism, and the loop iterates over 20 items, then replicating the parallelized
loop to exploit data parallelism ideally gives a net speed-up of 100. Suggestive ex-
perimental evidence for the importance of data parallelism can be found in Ellis’s
measurements of speed-ups produced by the Bulldog compiler [14]. One of the fac-
tors considered in these experiments was the extent to which replicating loop bodies
(loop unrolling) affected the amount of parallelism detected by the compiler. It was
quite common for programs in which loop bodies had been replicated 16 times to
exhibit 10 times more parallelism on the largest data sets tested than the same
programs without unrolling.* Although Ellis was not specifically looking for data
parallelism, the fact that typical loops process a distinct datum on each iteration
makes it a safe guess that most of the differences he observed were due to changes
in the amount of data parallelism that was exploited. This guess is supported by
the fact that the amount of parallelism that was detected in programs with large
amounts of loop unrolling was much more sensitive to data set size than was the
case with the same programs without unrolling. All in all, easy expression and
detection of data parallelism appears to be a very important feature for a parallel
programming language.

In imperative languages, potentially data parallel computations are usually
written as a loop over the appropriate data structures. This is one of the hardest
forms in which to detect parallelism automatically. First, whether parallelization
is possible or not depends very much on how independent each iteration is of the
others, determining which can require very precise information about aliasing. Even
with accurate information about aliasing, analysis of data dependencies in poten-
tially data parallel loops necessarily crosses basic block® boundaries — even in the
best case the body of a loop is a single basic block, and the analysis must cross
the boundaries of this block when considering dependencies between two iterations,

"4 One might expect a factor of 16 improvement; the difference is presumably due
to iterations not being perfectly independent of each other.
5 A basic block is a straight-line sequence of code with one entry point and one
exit point.

11

dependencies between the first iteration and initialization code, et cetera. Data de-
pendency analysis across basic block boundaries is not impossible (for instance, see
[15]), but it is much harder than analysis within basic blocks. For example, when
basic block boundaries are crossed uses of variables can be dependent on multiple
definitions and vice versa, it is impossible to tell whether some of these dependen-
cies only arise in special situations that can be avoided by using various run-time
tricks, et cetera.

Looping in imperative languages generally corresponds to recursion in declar-
ative ones. Thus the most general way of expressing a data parallel computation in
a declarative language is through a recursive definition of some sort. For example,
note how the main loop in “Totals” is implemented in Lisp or Prolog (function “To-
tal” in Figure 8 and predicate “totals” in Figure 7 from Appendix I). Unfortunately,
in all current declarative languages, these recursive definitions introduce apparent
data dependencies involving parameters to or results from the recursion. Often the
dependencies are spurious, 1n that the order they impose on the computation is irrel-
evant to its correctness. Distinguishing spurious data dependencies from vital ones,
however, requires deep knowledge of the algorithm in which they appear, and 1t is
unrealistic to expect a compiler to have such knowledge. Implementations of current
declarative languages must therefore carry out recursive computations sequentially,
even those that actually contain substantial data parallelism. Declarative languages
thus give up a very important source of parallelism, meaning that they can only
express a fraction of the parallelism present in a program in a practically usable
form.

There are a number of ways of reducing the problems associated with data
parallelism in declarative languages. Some are specific to certain kinds of declarative
language, others are more general. The most obvious general approach is to organize
programs in ways that make data parallelism appear as some more easily recognized
kind of parallelism (typically argument parallelism). For example, consider the
problem of initializing a set of n data items. In theory, each item can be initialized
in parallel with all others, achieving an n-fold speed-up. In a naive declarative
implementation the set might be represented as a list, and the initialization done
somewhat as follows (using pseudo-Lisp as a paradigmatic declarative language):

(define Init ()
(if (enough-initialized)
nil
(cons (One-Initialized-Datum) (Init))))
Essentially no parallelization 1s possible here, because data are produced one at a
time and there is a data dependency between the result returned by each invocation
of “Init” and the result returned by its caller. Alternatively, the set could be
organized as a binary tree, in which case initialization could be done as
(define Init ()
(if (deep-enough)
(One—Im'tialized-Datum)
(make-tree-node (Init) (Init))))

12

Here each invocation of “Init” causes two more recursive invocations, apparently
as parallel arguments to «make-tree-node”. It is fairly simple to exploit this paral-
lelism in order to get an % speed-up. This improvement can be quite dramatic,
even if not as good as full data parallelism. Thus careful coding can allow some data
parallelism to be exploited, but it is not a complete solution to the problem for sev-
eral reasons. First, it does not always make the maximum possible amount of data
parallelism visible; second, it requires programmers to be aware of both the paral-
lelism in their applications and the ways in which their language implementation
can exploit it.

Functional languages provide another partial solution to the data parallelism
problem with mapping functions. A mapping function is a function that explicitly
applies a second function to all elements of a list or other data structure. Any use
of a mapping function can obviously be compiled into data parallel object code, as
Jong as the mapping function is not defined as processing the elements of the data
structure in some fixed order. However, mapping functions are only available for
data structures that are primitives of a language, not for structures defined by users.
Thus there are likely to be many cases in which data parallelism is available, but
not in a form that can easily be expressed using a language’s mapping functions.
Another problem with mapping functions is that data parallelism is sometimes over
the outputs of a computation rather than over its inputs (see the discussion of
«Totals” in the introduction for an example). Because functions are directional
(i.e., have distinct inputs and outputs), mapping functions cannot be used to map
a data parallel computation over an as-yet-unknown set of output values. Finally,
many data parallel computations produce some aggregate of their inputs as a result
(for example the sum of the elements in an array). Because of the single assignment
property, instances of a mapped function cannot share and jointly update such
ageregates. Thus mapping functions do not address this kind of data parallelism
at all. It is also worth noting that the idea of mapping an operation over a data
structure has been used to make data parallelism more or less explicit in several
nondeclarative languages. Examples include Hillis’s proposals for programming the
Connection Machine [21], FORTRAN 8X [30], and APL [34]. All of these languages
incorporate the disadvantages of mapping functions as well as the advantages.

Data flow languages are much like functional languages, since the basic compu-
tational elements of each are functions. However, data flow languages also include
the idea of a directed “data flow graph” that describes how values are passed be-
tween outputs and inputs of functions. Data flow languages can include statements
that define the structure of this graph in addition to statements that define the
functions that make up its nodes. VAL’s “forall” [29] can be viewed as an exam-
ple of such a structure-defining statement. Although VAL does not seem to have
aggressively pursued the idea of structure-defining statements, it should be easy
. to devise data flow languages that do. Explicit descriptions of data flow structure
can support many forms of data parallelism, including parallelism over the outputs
of a computation. However, it is not clear whether structure-defining statements
that are applicable to arbitrary user-defined data structures can be devised, and

13

o o] B e

such statements do not really address the problem of aggregating the results of a
data parallel computation (VAL provides for limited kinds of aggregation, but not
in a general way). Thus, although data flow languages can express data paral-

- lelism better than functional languages, their potential in this area has not yet been

fully developed and they do not appear able to handle all common forms of data -
parallelism.

Of all declarative languages, logic languages are best suited to describing data
parallelism. One reason is that the main elements of a logic program are relations,
not functions. Since relations do not distinguish inputs from outputs, it is no harder
to describe data parallelism over “outputs” than over “inputs”, simply because these
terms have no real meaning to the language itself.

Another reason logic languages are relatively well-suited to expressing data par-
allelism is that they allow programmers to avoid unnecessary precision in programs.
As discussed earlier, recursion is often used in declarative languages to describe data
parallel computations. This recursion introduces data dependencies that seem to
require the computation to be done in a specific order. The reason these dependen-
cies induce a single order on the computation is that they imply that specific values
are needed as inputs to specific operations. Often this specificity is misleading, in
that any one of many values is equally permissible. For example, in totalling a
set of numbers, the individual elements must be added to the total in some order,
but the exact order is irrelevant. In such cases, needless precision in describing the
order in which values are computed obscures possible parallelism (and not just data
parallelism). Logic-languages can reduce this problem by allowing programmers to
write relations that can be satisfied by whole families of values. For example, here
is a pseudo-Prolog program to total the numbers in a set:

total(S,0) :— empty(S).
total(S,T) :— member(X,S), remove(X,S,52), total(S2,X2), T is X + X2.

Essentially this program says that the total of an empty set 1s 0; the total of a
non-empty set is computed by removing one element from the set and then adding
that element to the total of the resulting subset. Note that there is a chain of data
dependencies that seems to imply that X must be identified and removed from S to
yield S2 before the recursive totalling can be done. However, because the program
does not specify whick member of S is removed, just that some member is, there are
n! different orders in which an n element set can be totalled. A programmer could
use this fact to prove various parallelizations of the totalling operation correct, and
it is even conceivable that a sophisticated compiler could recognize that this cal-
culation is largely order-independent and parallelize it accordingly. Unfortunately
however, these uses of under-specification to support parallelism are tantalizing the-
oretical possibilities for which the technology that would allow automatic, or even
semi-automatic, exploitation does not yet exist.

Note that in discussing data parallelism in logic languages, no mention was
made of mapping operations or other explicit ways of indicating a potentially data
parallel computation. Logic languages do not require such mechanisms, because

14

data parallelism is often an implicit consequence of the search strategies used to
deduce conclusions from the rules and facts making up a program. Specifically,
consider a typical data-parallel calculation in a logic program, which might have
the form “for all elements of set A, prove that relation r holds”. This expression
is logically equivalent to “prove that there is no element of A for which r does not
hold”, which in turn is equivalent to “prove that the statement ‘r does not hold
of A, or r does not hold of Az or..." s false”, where A;, A2, et cetera represent
the specific elements of A. This last form is just a large “or”, the elements of
which can in principle be checked in parallel. This kind of parallelism is called
or-parallelism in the logic programming literature. Unfortunately, or-parallelism
is hard to implement efficiently, mainly because the alternatives in an “or’ may
share global variables. Serious synchronization problems arise when the proofs
of different alternatives involve binding different values to a shared variable. To
summarize, logic languages provide several features that can be used to express
data parallelism, but distinguishing parallel uses of these features from other, non-

parallel, ones is very difficult.

2.3 Granularity

On most multiprocessors, passing data between processes and starting new ones
are fairly expensive operations. Thus effectively using multiprocessors requires fairly
coarse-grained parallelism in programs. In many parallel programming systems the
“natural” granularity is too fine for use on multiprocessors. For example, data flow
and functional languages are often accused of being unsuitable for multiprocessor
parallelism because of this problem. In some cases granularity can be coarsened
by collecting several fine-grained processes into a single aggregate process. This
approach necessarily serializes the fine-grained operations within each aggregate,
but if it also reduces the number of processes that need to be controlled and the total
amount of interprocess communication it may still improve system performance.
However, reducing interprocess communication requires that fine-grained processes
be grouped into aggregates in such a way that most of the original communication
ends up being between operations in the same aggregate. Reducing communication
while retaining enough processes to provide significant parallelism requires that
communication patterns in the original program be sparse (i.e., each original process
communicates with only a few other processes). Unfortunately, fine-grained parallel
programming systems do not always lead to sparse communication patterns.

One computational model that provides fine-grained parallelism but does not
have sparse communication patterns is connectionism [35). Connectionist models
of computing are inspired by the brains of living organisms, in which sophisticated
computations are carried out by networks of extremely simple neurons. Thus the
basic computational element in a connectionist computing system is a cell whose
output is determined by totalling and thresholding of inputs — different connec-
tionist models differ in the set of values allowed as inputs and outputs, the ways
in which inputs can be weighted within a cell, et cetera, but the key point 1s that

15

each cell performs a simple and fixed computation. The fine granularity of connec-
tionist systems is a consequence of the simplicity of individual cells. Also because
of the simplicity of cells, much of the power of connectionist systems comes from
having very large numbers of cells with non-sparse interconnections between cells.
Parallelism in connectionist systems cOmes from the large number of cells involved
and the fact that all cells are active simultaneously. Because of the density of con-

. pections, efficient parallel execution of connectionist programs will probably require ..
- the development of specialized connectionist architectures rather than the use of

general-purpose multiprocessors. It is also worth noting that only a very small
amount of work has been done on designing programming languages based on con-
nectionist models. AFL-1 (8] is probably the best example, and even this language
is closer in spirit to a powerful macro assembler than to a high-level programming

language.
2.4 Generality

A final requirement for languages that will support general-purpose program-
ming is that they really be general purpose. This requirement is an obvious one,
but it occasionally happens that generality is achieved at the expense of easy paral-
lelization. Logic languages are a casc in point. The problem is that many common
operations cannot be implemented efficiently as logic programs. Examples include
arithmetic, input and output, et cetera. The consequence of this fact is that all
practical logic languages provide these features through extra-logical devices. For
example, arithmetic in Prolog is implemented by interpreting certain symbols (e.g-, .
“17) as denoting functions for which the run-time system has special evaluation
rules (in contrast to most function symbols, which are wholly unevaluated). Input
and output are generally implemented as predicates with side-effects, in violation
of the usual view of predicates as side-efect free functions. The result of these
deviations from pure logic programming is that parallelism that may be available
based on the mathematical properties of pure logic is not always available 1n prac-
tical languages. For example, In a pure logic language the order in which terms
in a conjunction are solved is irrelevant to the final solution — this property can
be exploited as and parallelism. However, allowing predicates to have side-effects
can make the order in which they are executed very important to the final meaning
of a program. Similarly, expressions using evaluable function symbols can only be
evaluated after the values of their inputs are known, again imposing an order on
the computation. Needless to say, these and.similar special cases make the exploita-
tion of parallelism in real logic programs more difficult than it appears in theory:
Note that the problem is not due as much to weaknesses in the basic ideas under-
lying logic programming as it is to severe limits on how thoroughly those ideas can
be implemented at present. For example, arithmetic is treated specially in Prolog
not because it is hard to imagine predicates that describe it, but because existing
theorem proving algorithms cannot efficiently manipulate those predicates.

16

3 A Step Towards a Solution?

Of all the linguistic styles suggested for parallel programming, I find logic pro-
gramming to be the most promising. Being declarative, logic languages can avoid
the hard problems of data dependency analysis that plague imperative languages.
As discussed above, logic languages also offer some intriguing possibilities for solv-
ing the problems that other declarative languages have with data parallelism. The
one serious drawback with existing logic languages is the need to add extra-logical
features in order to support really general-purpose programming. There is, however,
a closely related class of languages called constraint languages that addresses this
drawback. Like logic languages, constraint languages treat programs as systems
of relations, and the goal of “executing” a program is to find values for unbound
variables that make the relations hold. All of the advantages of logic languages for
parallel programming appear to apply to constraint languages. Furthermore, where
a logic language assumes no knowledge of what specific relations mean, a constraint
language provides a set of primitive relations and data types about which compilers
and interpreters do have considerable knowledge. More precisely, implementations
of a constraint language must understand the algebraic properties of the primitives
well enough to solve equations that use them. This extra knowledge means that
one does not need to step outside the underlying mathematical formalisms of a
constraint language in order to do general-purpose programming (at least in prin-
ciple). Constraint satisfaction has been widely used as a programming technique
(Sketchpad [42] and ThingLab [9] beirig two well-known examples), but only a few
attempts have been made to base full programming languages on it (28, 41]. The
authors of these languages did note that constraint languages seem appropriate for
parallel programming, but did not seriously pursue the possibility.

The big problem with constraint languages is that it is very hard to find solu-
tions to general constraints automatically. Like query evaluation for logic languages,
constraint satisfaction can be viewed as theorem proving (prove that certain values
for certain variables are a consequence of a system of constraints). However, the
proofs that arise in constraint satisfaction are less structured than those that are en-
countered in logic languages. Thus the theorem provers that are used to implement
logic languages are not powerful enough to implement constraint languages. The
logic programming community is doing a great deal of promising research on more
powerful theorem proving mechanisms [17, 25], but it remains unclear whether this
work will be applicable to constraint languages. For now it appears that constraint
language implementors will have to forego the elegant algorithmic implementations
of logic languages in favor of more ad hoc heuristic ones. In return, one hopes, we
will get languages that are both parallelizable and flexible.

I am testing the use of constraint languages for parallel programming at the
University of Rochester. A prototype language called CONSUL has been developed,
which I believe provides the flexibility necessary for general purpose programiming
and the sound formal foundations needed for automatic parallelism detection [5].
Current work on CONSUL involves writing a number of programs in it for a variety

17

of applications. These programs test the generality of the language (and point
the way to extensions to make it more general), but more importantly will serve as
inputs for a series of experiments aimed at estimating the parallelism that CONSUL
really makes available. If these experiments bear out the expectation that CONSUL
programs do exhibit substantial parallelism, later work will attempt to develop a
- parallelizing CONSUL compiler. A model for the parallel execution of CONSUL
- programs on which this compiler can be based has already been developed.

4 Summary and Conclusions

It has been noted before that software technology for parallel programming is in
sad shape [26]. This paper extends beyond the earlier remarks by placing the blame
squarely on the languages in which we are trying to write parallel programs, and
even more fundamentally on the models of computation on which those languages
are based. Two deep flaws in modern programming languages have been identified:
One is the use of a side-effect based model of computation. This model is inherently
sequential, and so anyone trying to find or express parallelism under it is seriously
handicapped before they even begin. For this reason, imperative languages are ill
suited for parallel programming. The second problem is an inability to express
data parallelism without using iteration or recursion, both of which very effectively
disguise parallelism as sequential computation. This problem is particularly severe
in declarative languages, suggesting that only a small fraction of the parallelism in
declarative programs will actually be recognizable.

The inadequacy of current programming languages is not the only reason why
multiprocessors are hard to program. Parallel programming is also hindered by a
dearth (at least relative to sequential programming) of highly parallel algorithms to
be programmed. The importance of parallel algorithms cannot be ignored, and there
are indeed many problems for which parallel algorithms are presently unknown.
However, progress is being made on classifying problems that can be practically
solved on parallel computers and in identifying algorithms for doing so [13, 22].
Much less progress is being made on devising practical languages for expressing
these algorithms. Even the best parallel algorithms will not make multiprocessors
or other parallel computers easy to use without languages in which those algorithms
can be conveniently expressed.

One of the conclusions to be drawn from this work is that a number of common
practices should be avoided by designers of languages for parallel programming.

Among these are

e Reliance on side-effects.

e Use of sequential forms to describe data parallel computations.

e Partitioning into fine-grained processes with dense communication patterns.

e Sacrificing generality for parallelizability.

e Sharing of data between parts of a program. _
The first three of these have already been discussed in detail. The fourth point
was mentioned in connection with logic programming, where 1t was shown that

18

formalisms that are amenable to parallelization may need to be supplemented with
other features that are not so easy to parallelize in order to make them suitable
for general programming. The last point has not been discussed explicitly in this
paper, but examples of problems stemming from it have been given. Among these
are the need for global data dependency analysis (since data may be shared between
widely separated parts of a program) and the difficulty of exploiting or-parallelism
in logic languages (because the processes implementing different arms of an “or”
may all try to bind the same shared variable).

A more important (and more positive) conclusion is that we must change the
ways in which we think about programming in order to exploit the coming genera-
tions of massively parallel multiprocessors. Constraint languages and the CONSUL
project represent a tentative step in this direction. Other steps are necessary, and
the field is wide open for imaginative research. It is now easy to build parallel
hardware; the next challenge is to develop programming models and languages that
make this hardware easy to use.

Acknowledgements

Many thanks are due to Jerry Feldman, who encouraged me to write this
paper in the first place and made many helpful comments on various drafts of it.
Michael Scott and other colleagues at the University of Rochester also made helpful
comments on early versions. Several members of the USENET Prolog community
pointed out the translation of “forall’ (and hence data parallelism) into or-parallel
form.

Appendix I Implementations of “Totals”

This appendix presents implementations of “Totals” in several different pro-
gramming languages. The languages include representatives of four of the linguistic
classes discussed above — Pascal as a von Neumann language, Smalltalk for the
object-oriented languages, an applicative subset of Lisp for the functional languages,
and Prolog as a logic language. In addition to these, Lynx is used as an example of
an explicitly parallel language.

Figure 4 shows a Pascal implementation of “Totals” Each input record is an
instance of record type “DataRec”, and the full set of records is represented by the
array “Data”. The totals and counts for each record type are also stored in arrays
(“Totals” and “Counts”). The totals are computed by iterating over the Data array
(lines 21—43), dispatching on the type of each record to a block of code that carries
out the appropriate update to Totals (lines 23—42). The loop for computing totals
also updates Counts as each record is encountered. Details of initializing the data
records and printing the results have been left out, as have the exact sizes of arrays
and the definitions of functions f and g. A complete program, from which Figure

19

4 is extracted, was tested under UNIX® 4.2 BSD on a VAXTM 11/750, using the
“pc” compiler.

UNIX is a registered trademark of AT&T Bell Laboratories
VAX is a trademark of Digital Equipment Corporation '

20

program Totals(input,output);
const
AuzMaz = ... iNumber of auz fields in a record}
SetSize = ... Number of records to process}
type
DataRec= record
RType : integer;
Val : real;
Auz - array [l.AuzMaz] of real

end;
var
Date : array
Totals : array
Counts: array
i, j: integer;
begin
for i :=1 to 5 do begin
Count.s l = 0;
writeln Enter initial total for type’, i); readin(Totals[i])
end;
for i := 1 to SetSize do begin
counts Data[}]{RTypr] .= Counts[Data[i]. RType] + 1;
case Datali]
1: Toiafs[l] Totals[1] + Deata[i]. Val;
2: begin
if trunc Data[ql VaI/3 0) = Datali]. Val/3.0 then
Totals{2 otals[2] + f(Datals .Val

1..SetSize] of DataRec;
1..5) of real;
1..5] of integer;

else
Totals[2] := Totals[2] + g(Data[i]. Val)
end;
3: begin
j:=1
whlle] <= AuzMax do b
Totals[3] := Totals 3] + Data[il. Auzi};
if (J < uxMa:z — 1) and (j > 1) then
Data[). Auzj — 1] == Data[i). Auz(j + 1]/2.0;
ji=3+2
end
end;
4: Totals[4]:
5: Tota.l.s[S}
end
end
end.

= Tota.ls{]-i—ln(Data[z] Val);
‘= Totals{5] + f(Datali] Val) + g(Data[i]. Val)

Figure 4. Algorithm «Totals” Implemented in Pascal

21

Figures 5a, 5b, and 5c show a Smalltalk implementation of “Totals”. In keeping
with the object-oriented paradigm, each of the major data items of the algorithm
is implemented as a distinct object. Figure 5a describes the objects that represent
individual data records, Figure 5b describes objects (only one of which is needed)
that represent sets of records, and Figure 5c describes objects (again only one
is needed) that represent records containing the counts and totals produced by
the algorithm. The actual computations required by “Totals” are implemented as
message-handling methods in the various object classes. Each data record (Figure
5a) has methods for accessing its various fields (lines 13-21), computing the sum
of the odd-indexed “aux” elements (lines 22-27), and modifying the even-indexed
“aux” elements (lines 29-32). Sets of records (Figure 5b) have a single method that
serves as a driver for the totalling algorithm (lines 5-27). Result records (Figure 5c)
have methods for initialization (lines 6-8 and 18-22) and for updating specific counts
and totals (lines 11-16). As with all other presentations of “Totals”, unspecified
details like the sizes of sets or the exact nature of functions f and g have been left
out of Figures 5a, 5b, and 5¢c. The actual program from which these figures are
extracted was developed and run on a Sun™ workstation using Berkeley’s “bs”

Smalltalk system.

1) class name DataRec
2) superclass Object
3) instance variable names type

4 val

5 aux

6) class variable names AuxMax

8 initialize
9 “Define size of ‘aux’ array in instances”
10) AuxMax « ...

(11) instance methods

§7§ class initialization

(12) Accessing

13 auxAt: i
14 “Return the i-th ‘aux’ field of receiver”
15 T aux at: i

16 type
17 “Return the type field of receiver”
18 T type

19 val
20 “Return the value field of receiver”

21 1 val

22 oddAuxes

23 “Returns the sum of odd-indexed ‘aux’ fields of receiver”
24 | sum |

25 sum « 0.0. : :

26 (1 to: AuxMax by: 2) do: [:i | sum « sum + (aux at: i)].
27 1 sum

(28) Modifying

29 updateEvenAuxes

30 «Sets each even-indexed ‘aux’ element of receiver to

31 - 1/2 the value of the next even-indexed ‘aux’ field”

32 (2 to: AuxMax—2 by: 2) do: [:i | aux at: i put: (aux at: i+2) / 2.0]

Figure 5a. Smalltalk Implementation of Data Records for “Totals”

Sun is a trademark of Sun Microsystems, Inc.

7

class name RecordBag
superclass Bag

instance methods
Totalling

summarize: initialTotals
“Computes counts and totals by type for the records in the receiver.”
| results |
results «— ResultRecord startingFrom: initialTotals.
self do: [:datum |
results updateCountFor: datum type.
datum type =1
ifTrue: [results updateTotalFor: 1 by: datum val B
datum type = 2
ifTrue: | (datum type roundTo: 3) = datum type
ifTrue: | results updateTotalFor: 2
by:datum val {]
ifFalse: [results updateTotalFor: 2
by:datum val g] .
datum type =3
ifTrue: [results updateTotalFor: 3 by: datum oddAuxes.
datum updateEvenAuxes].
datum type = 4
ifTrue: [results updateTotalFor: 4 by: datum val In].
datum type =5
ifTrue: [results updateTotalFor: 5
by:datum val { + datum val g 11-
1 results

Figure 5b. Smalltalk Set of Records for “Totals”

1 class name ResultRecord
2) superclass Object

3y instance variable names counts

4 totals

(5) instance creation

6 startingFrom: initialTotals

7 “Creates a new ‘ResultRecord’ with initial totals ‘initialTotals’ ”
8 1 super new initialize: initialTotals

(9) instance methods

(10) updating

%11% updateCountFor: type

12 «Ipcrements the count for type ‘type’ records by 1”
13 counts at: type put: (counts at: type) + 1

14 updateTotalFor: type by: amount
15 «Increments the total for type ‘type’ records by ‘amount’”
16 totals at: type put: (totals at: type) + amount

(17) private
18 initialize: initialTotals

19 «Clears ‘counts’ field of receiver and sets ‘totals’ to ¢initialTotals’”
20 counts — #(0 0000) shallowCopy.

21 totals «— initialTotals shallowCopy.

22 1 self

Figure 5c. Smalltalk Representation of Results from “Totals”

23

Figures 6a through 6g show “Totals” implemented in Lynx. This program
consists of distinct processes to maintain the totals for each type of record, and a
master process that distributes records to the totallers. This organization of the
program was felt to be the best match between the parallelism in “Totals” and the
process granularity for which Lynx was designed. Note that the even-indexed “aux”
elements of type 3 records are updated by the master process (lines 18-27 and 4446
- of Figure 6b), even though one might expect this update to be part of the type 3
totalling process. This feature is a consequence of the message-passing model on
which Lynx is based. Because processes do not share actual data structures, the
only way a totalling process could return an updated record to the master would
be to send it in a message. Keeping the update in the master process avoids the
overhead of these additional messages for type 3 records. After the master process
has distributed all of the data records to totalling processes, it collects the final
totals by polling the totallers. There is a synchronization problem here, in that
totallers must not report totals to the master until they have finished processing all
the records sent to them. This synchronization is achieved by having each totaller
count (in “pending”) the number of records that it has received but not yet finished
processing. Totals are reported to the master only when this count is zero. Figure 6¢c
shows the complete implementation of this mechanism for Type 1 records. Enough
synchronization of message senders with receivers and of entries within processes
is built into Lynx that this simple approach works correctly. The other totalling
processes are identical to the Type 1 totaller except for the new_record entries that
perform the actual totalling. Because of the length of the complete Lynx program
(over 200 lines), only these type-specific entries are shown for the other processes
(Figures 6d, 6e, 6f, and 6g). The program from which these figures were extracted
was developed and tested on a Butterfly multiprocessor, using the University of
Rochester’s Sun-based Lynx compiler.

header total._types;
const
AvzMaz = .. — — Number of aux fields in record
type
data_rec = record
rtype : integer;
val : real; »
auz : array{l..AuzMaz] of real;
end;
end total_types.
library totaltypes;
end total_types.

W 00 =1 Ut WK

=t
N O

Figure 6a. Common Declarations for Lynx Version of “Totals”

24

process master;
use tolal_types;

B
N’

const
SetSize = .. — — Number of records to process

= ..

type
link_table = array{l..5] of link;
count_table = array[1..5] of integer;
date_table = arrayll..SetSize] of data_rec;

e N e I
O 00~ U bW

P e D SN

[N

W 09 B 1 O e e
N e e

var
links : link_table;
data : data _table;
counis : count_table;
initial _total : real;
cur_type : integer;

15) entry init_total(total : real); remote;
16) entry new_recordgdata : data_rec); remote;
17

entry return_tota : real; remote;

J : integer;
begin
e
while j < AuzMaz — 2 do
data[i].auz[j] := date[i].auz[j + 2]/2.0;
=1t
end;
end update_auzes;

18) procedure update_auzes(i: integer);
19 var

27

28) begin

29 startprocess(“typel_total”, newlink links[1]));
30 startprocess(“type2_total”, newlink links{2}));
31 startprocess “type3_total”, mewlink(links|3})});
32 startprocess “typed_total”, newlink(links|4]));
33 :

startprocess{“type5_total”, newlink links|5

34 foreach i in [1..5] do

35 counts[i] := 0;

36 write(“Initial total for type %d =7, 1);

37 read(“%{”, initial total);

38 connect init_total(initial total]) on links[i];
39 end;

40{ foreach i in [1..SetSize] do
41 cur_type := data[i].rtype;
42 countscur _type] := counts[cur _type] + 1;

43 connect new.record(dataft]]) on links[cur _type];
44 if cur_type = 3 then

45 update _auzes(i);

46 end;

47 end;

48) end master.

Figure 6b. Master Process for Lynx Version of “Totals”

25

(1 process typel total(master : link);
use total_types;

3 var
4 pending : integer;
total : real;

(6) entry init _total(init : real); remote;
(7% entry new._record(data : data _rec);

8 begin

9 pending := pending + 15
10 reply;

11 total := total + data.val;

12 pending := pending — 1;
513 end new._record;

14) entry return_fotal : real;
15) begin

16 await pending = 0;
17 reply(total);

18} end return_total;

19) begin

20 pending := 0;
21 accept init_total(total) on master;
22 reply;

23 bind master to new_record, return_total;
24) end typeltotal

Figure 6c. Totaller for Type 1 Records from Lynx Version of “Totals”

26

O 00 ~1 O Ut OB 4

—
o

ng

Figure 6d.

O 00 ~1 O UL WK

Figure 6e.

1O UL WD

Figure 6f.

1
2
3
4
5
6
7

Figure 6g.

entry new._record(data : data _rec);
begin
pending := pending + 13
reply;
if divisible by _$(data.vael) then
total := total + f(data.val);
else
total := total + g{data.val);
end;
pending := pending — 15
end new_record;

Core of Lynx Type 2 Record Totaller

entry new._record(data : data _rec);
var
1 : integer;
begin
pending := pending + 1;
reply;
1= 1
while i <= AuzMaz do
total := total + data.auz[i];
i =1+ 2;
end; g
pending := pending — 13
end new_record;

Core of Lynx Type 3 Record Totaller

entry new_record(data : data_rec);
begin
pending := pending + 1;
reply;
total := total + In(data.val);
pending := pending — 1;
end new_record;

Core of Lynx Type 4 Record Totaller

entry new_record(data : data.rec);
begin

pending := pending + kA

reply;

total := total + f(data.val) + g(data.val);
pending := pending — 1;

; end new_record;

Core of Lynx Type 5 Record Totaller

27

Figure 7 shows “Totals” implemented in Prolog. The main predicate in this
program is “totals/5"° (lines 1-6). This predicate is intended to be invoked by users
with its last two arguments bound to the set of records to be totalled and the initial
totals, respectively. Upon return, the first three arguments will be bound to the
totals, the counts, and an updated set of records (to reflect the changes to the “aux”
elements in type 3 records). Note how “totals /5” recursively steps through the set of -
records, removing one record on each pass for processing by “one.rec/4”. This is a
good example of recursion replacing iteration in a declarative language. “One.rec/4”
(lines 7-25) is the heart of the program, being the predicate that dispatches on
record type to do the actual totalling. Prolog’s unification mechanism is used to
do the actual testing of record types, an approach to conditionals that is typical
of logic programming. Predicates “sum/2” (lines 26-28) and “halve/2” (lines 29—
33) perform the summation of odd-indexed “aux” elements and the modification of
even-indexed ones. This code is taken from a program that was written and tested
using C-Prolog under UNIX 4.3 BSD on a VAX 11/750.

1 totals(Ts, Cs, [NewR]Nesz],H[.RiRs], InitTs) :-

2 one_rec(Tsl, Csl, NewR, R),

3 totals(Ts2, Cs2, NewRs, Rs, InitTs),

4 }.ist_sumE Ts, Tsl, Ts2 ;,

5 list_sum(Cs, Csl, Cs2).

6 totals(InitTs, [0,0,0,0,0], [J, [}, InitTs)-

(7 one_recE v,0,0,0,0}, [1,0,0,0,0], [1,V,Aux], 1,V,Aux g
(8 one_rec([0,X,0,0,0}, [0,1,0,0,0}, 2,V,Aux], [2,V,Aux]) :-
(9 D1 is V/3.0,

(10) D2 is floor(D1),

(11) D1 == D2,

(12 (X, V).

(13) one_rec([0,X,0,0,0], [0,1,0,0,0], [2,V,Aux], [2,V,Aux]) :-
(14) D1 is V/3.0, :
15) D2 is floor(D1),)

16) D1\ == D2,

179 g(X,V).

18) onerec(0,0,X,0,0}, [0,0,1,0,0], [3,V,Aux2], [3,V,Aux]) :-
19) sum(X,Aux),

20) halve(Aunx2,Aux).

21) one_recE 0,0,0,X,0}, {0,0,0,1,0], [4,V,Aux], 4,V ,Aux 3 - X is log(V).
22) omnerec 0,0,0,0,X], [0,0,0,0,1}, 5,V,Aux), {5,V,Aux]) :-
23} f(X1,V),

24) i(xz,V),

25) { is X1+X2.

26) sum(X, [N1,N2[Ns]) :- sum(Y, Ns), X is Y+NI1.

27y sum(N, [N]).

28 sum(O,

halve([X,Y],

halve([X], (X

halve(], [J])-

list_sum([L|Ls], [L1|Ls1], [L2|Ls2]) :-
L is L1+L2

list sum Ls’, Lsl, Ls2).
listsum{ [}, {1,)

halve X,Y,Z{, [X,Y,Z])

29) halve X,H]NewAuxes]], [X,Y,Z,D|Auxes]) :- His D/2, halve(New Auxes,[Z,D|Auxes]).
>§,Y])-

Figure 7. “Totals” Implemented in Prolog

6 Tt ;s common when discussing Prolog programs to identify predicates by name

and number of arguments

28

Figure 8 shows an implementation of “Totals” in an applicative subset of Com-
mon Lisp. The main function in this program is “Total” (lines 3-9), which takes as
arguments a list of records and a list of initial totals, and returns a record (of type
“Stats”, see line 1) containing the summary statistics (totals, counts, and modi-
fied records) required by “Totals”. Returning a record in this manner 1s one way
of implementing operations that logically produce several results as functions with
only a single return value.” “Total” is organized as a recursive traversal of the list
of records, with one record being removed for processing at each step. Note that
the recursive call returns a base result which is then extended to include the cur-
rent record by function “Process-Record” (lines 10-38). “Process-Record” is just a
big “case” statement that dispatches to the appropriate processing based on record
type. Logically «Process-Record” receives a set of summary statistics in “Base-
Stats”, which it updates to include “Record”. Because functional languages do
not allow side-effects however, “Base-Stats” cannot be updated directly — instead,
«process-Record” must build a new “Stats” record, derived from “Base-Stats”, each
time it is called. The key function for building these new records is “Incr-Element”
(lines 49-58), which adds a specified increment to a specified element of a list, re-
turning a new list that is identical to the original in all positions except the one
incremented. The program from which this code is taken was written in Common
Lisp and run on a Texas Instruments Explorer T workstation.

7 Many functional languages, including Common Lisp, allow functions to have
multiple return values, but the mechanisms for doing so are awkward.
Explorer is a trademark of Texas Instruments, Inc.

A

1 defstruct Stats Totals Counts Records)

2 defstruct Datum Type Val Aux)

3) (defun Total (Records Initial-Totals)

4 (cond

5 ((null Records) (Make-Stats :Totals Initial-Totals

6 :Counts (list 0 0 0 0 0)

7 :Records ’()))

8 (t (Process-Record gcar Records)

9 Total (cdr Records) Initial-Totals)))))

10) (defun Process-Record (Rec Base-Stats)
11 (case EDatum-Type Rec)

12 (1) (Make-Stats :Totals (Incr-Element ESt,a.zs-Totals Base-Stats) 1

13 Datum-Val Rec))

14 :Counts (Incr-Element (Stats-Counts Base-Stats) 1 1)
15 :Records (cons Rec (Stats-Records Base-Stats))))

16 ((2) (Make-Stats :Totals (Incr-Element éStats—Tota.ls Base-Stats) 2

17 if (= (* (truncate (Datum-Val Rec) 3) 3)
18 Datum-Val Rec))

19 { (Datum-Val Rec)

20 g (Datum-Val Rec))))

21 :Counts (Incr-Element (Stats-Counts Base-Stats) 2 1)
22 :Records (cons Rec (Stats-Records Base-Stats))))

23 ((3) (Make-Stats :Totals (Incr-Element §Sta.ts-Tota.ls Base-Stats) 3

24 Sum-Odds (Datum-Aux Rec)))
25 :Counts (Incr-Element (Stats-Counts Base-Stats) 3 1)
26 :Records (cons (Make-Datum :Type (Datum-Type Rec)
27 :Val (Datum-Val Rec)

28 :Aux (Halve-Evens (Datum-Aux Rec))) ¢
29 (Stats-Records Base-Stats)))) H
30 ((4) (Make-Stats :Totals (Incr-Element ES&ats—Totals Base-Stats) 4

31 log (Datum-Val Rec)))

32 :Counts (Incr-Element (Stats-Counts Base-S ta.ts% 4 1)
33 :Records (cons Rec (Stats-Records Base-Stats)})

34 ((5) (Make-Stats :Totals (Incr-Element EStazs—Tota.ls Base-Stats) 5

35 + sf (Datum-Val Rec))

36 g (Datum-Val Rec))))

37 :Counts (Incr-Element (Stats-Counts Base-Stats) 5 1)
38 :Records (cons Rec (Stats-Records Base-Stats))))))

39) (defun Sum-Odds (L)

40 (case (length L)

41 0)" 0)

42 1) (car L)

43 otherwise (+ (car L) (Sum-Odds (cddr Lynn

44) (defun Halve-Evens (L)

45 (cond

46 §(< (length L) 4) L)

47 t (cons (nth0 L)

48 cons (/ (nth 3 L) 2) (Halve-Evens {cddr L))

(49) (defun Incr-Element (Base-List I Incr)
(50} (labels ((Make-Copy (L Pos)

1:51i (cond

(52) ﬁ(null L) *0))

(53) v (if E: Pos I) _

}54) cons (+ (car L) Incr)

55) Make-Copy (cdr L) (+ Pos 1)))

(56 g (cons (ecar L)
Make-Copy (cdr L) (+ Pos 1))))))))

(58) (Make-Copy Base-List 1)))

Figure 8. “Totals” Implemented in Lisp

30

References

[1] W. Ackerman. “Data Flow Languages”. Computer, Feb. 1982. pp. 15-23.

[2] G. Andrews. “The Distributed Programming Language SR — Mechanisms,
Design, and Implementation”. Software — Practice and Ezperience, Aug. 1982
(12:8). pp. 719-753.

(3] “Butterfly™ Parallel Processor Overview”. BBN Laboratories Inc., June 1985.

[4] J. Backus. “Can Programming be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs”. Communications of the ACM,
Aug. 1978 (21:8). pp. 613-641.

(5] D. Baldwin and C. Quiroz. “Parallel Programming and the CONSUL Lan-
guage”. Proceedings of the 1987 International Conference on Parallel Process-
ing.

[6] U. Banerjee. “Speedup of Ordinary Programs”. Technical Report number
UIUCDCS-R-79-989, Department of Computer Science, University of Illinois
at Urbana-Champaign, Oct. 1979.

[7] A. Black et al. “Distribution and Abstract Types in Emerald”. IEEE Trans-
actions on Software Engineering, Jan. 1987 (SE-13:1). pp. 65-76.

[8] G. Blelloch. AFL-1: A Programming Language for Massively Concurrent
Computers. M.S. Dissertation, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, June 1986.

(9] A.Borning. “The Programming Language Aspects of ThingLab, A Constraint-
Opented Simulation Laboratory”. ACM Transactions on Programming Lan-
guages and Systems, Oct. 1981 (3:4). pp 353-387.

[10] B. Brode. “Precompilation of FORTRAN Programs to Facilitate Array Pro-
cessing”. Computer, Sept. 1981 (14:9). pp. 46-51.

[11] K. Clark and.S. Gregory. “PARLOG: Parallel Programming in Logic”. ACM
Transactions on Programming Languages and Systems, Jan. 1986 (8:1). pp.
1-49.

[12] W. Clocksin and C. Mellish. Programming in Prolog. Berlin: Springer-Verlag,
1981.

[13] S. Cook. “A Taxonomy of Problems with Fast Parallel Algorithms”. Infor-
mation and Control, 1985 (Vol. 64). pp. 2-22.

[14] J. Ellis. Bulldog: A Compiler for VLIW Architectures. Ph. D. Dissertation,
Department of Computer Science, Yale University, Feb. 1985.

[15] J. Fisher. “Trace Scheduling: A Technique for Global Microcode Com-
paction”. IEEE Transactions on Computers, July 1981 (C—30:7). pp. 478~
490. .

31

16] K. Frenkel. “Evaluating Two Massively Parallel Machines”. Communications Al
of the ACM, Aug. 1986 (29:8). pp. 752-758.
17] J. Gallier and S. Raatz. “SLD-Resolution Methods for Horn Clauses with i

Equality Based on E-Unification”. Proceedings of the 1986 Symposium on
Logic Programming, Salt Lake City, Utah (IEEE). pp. 168-179.

18] D. Gelernter. “Domesticating Parallelism” (Guest Editor’s Introduction).
Computer, Aug. 1986 (19:8). pp. 12-16.

19] D. Gelernter. “Generative Communication in Linda”. ACM Transactions on
Programming Languages and Systems, Jan. 1985 (7:1). pp. 80-112.

20] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implemen-
tation. Reading, Ma.: Addison-Wesley, 1983.

21] W. Hillis. The Connection Machine. Cambridge, Ma: MIT Press, 1985.

22] W. Hillis and G. Steele. “Data Parallel Algorithms”. Communications of the
ACM, Déc. 1986 (29:12). pp. 1170-1183.

23] C. Hoare. “Communicating Sequential Processes”. Communications of the
ACM, Aug. 1978 (21:8). pp. 666-677.

24] K. Jensen and N. Wirth. Pascal User Manual and Report. Berlin: Springer-
Verlag, 1974.

25] A. Josephson and N. Dershowitz. - “An Implementation of Narrowing: The
RITE Way”. Proceedings of the 1986 Symposium on Logic Programming, Salt
Lake City, Utah (IEEE). pp. 187-197.

26] A. Karp. “Programming for Parallelism”. Computer, bMay 1987 (20:5). pp-
43-57.

27] B. Liskov and R. Scheifler. “Guardians and Actions: Support for Robust,
Distributed Programs”. ACM Transactions on Programming Languages and
Systems, July 1983 (5:3). pp. 381—404.-

28] J. Maleki. ICONStraint, A Dependency Directed Constraint Maintenance
System. Licentiate Thesis number 71, Dept. of Computer and Information

Science, Linkoping University, 1987.

29] J. McGraw. “The VAL Language: Description and Analysis”. ACM Trans-
actions on Programming Languages and Systems, Jan. 1982 (4:1). pp. 44-32.

'30] M. Metcalfe. “FORTRAN 8X — The Emerging Standard”. FORTRAN Fo-
rum, April 1987 (6:1). pp. 28—47.

'31] A. Nicolau. Parallelism, Memory Anti-Aliasing and Correctness for Trace-
Scheduling Compilers. Ph. D. Dissertation, Department of Computer Science,
Yale University, Mar. 1983.

[32] D. Padua and M. Wolfe. « A dvanced Compiler Optimizations for Supercom-
puters”. Communications of the ACM, Dec. 1986 (29:12). pp- 1184-1201.

[33] R. Perrott and A. Zarea-Aliabadi. “Supercomputer Languages’. ACM Com-
puting Surveys, Mar. 1986 (18:1). PP 5-22.

[34] R. Polivka and S. Pakin. APL: The Language and Its Usage. Englewood
Cliffs, N.J: Prentice-Hall, 1975. \

[35] D. Rumelhart and J. McClelland eds. Parallel Distributed Processing: Ez-
plorations in the Microsiructure of Cognition, vol. 1 Foundations. Cambridge,
Ma: MIT Press, 1986.

[36] M. Scott. «Language Support for Loosely-Coupled Distributed Programs”.
IEEE Transactions on Software Engineering, Jan. 1987 (SE-13:1). pp. 88—
103.

[37] C. Seitz. «The Cosmic Cube”. Communications of the ACM, Jan. 1985
(28:1). pp- 22-33.

[38] E. Shapiro. “Concurrent Prolog: A Progress Report”. Computer, Aug. 1986
(19:8). pp. 44-58.

[39] B. Smith. «A Pipelined, Shared Resource MIMD Computer”. Proceedings
of the 1978 International Conference on Parallel Programming, Aug. 1978.
pp. 6-8.

[40] G. Steele. Common Lisp: The Language. Digital Press, 1984.

RN R S SR e SR

[41] G. Steele. The Definition and Implementation of @ Computer Programming
Language Based on Constraints. Ph. D. Dissertation, Department of Electri-
cal Engineering and Computer Science, Massachusetts Institute of Technology,

Aug. 1980.

f42] L Sutherland. “SKETCHPAD: A Man-Machine Graphical Communication
System”. Technical Report number 296, Massachusetts Institute of Technology

Lincoln Laboratory, Jan. 1963.

Qi T

e R PEVT T
A ERNELCH 7 1L TR

33

