N

sl
- Testing

Managing
-7 May 22-25, 1989 * Washing

Sixth International Confersnige 57— —

Computer Software
‘the- Testing Process
ton, D.c.

- Plenary ang Track Sessions
_ 'Wednesday—-M

S

Assoclatlon f

1734 Elton Road

’

America n

or COmputlng Machlnery
Internationa; Test

Program
Software Qual

Seminar Managemen; by

u.s. Professional pevelo I

301/445-4400 .

ay 24, 1989 - & Thurs)
y Lisrary British T s
. ‘ ' Martiashom Heath, lgswich IPS 7RE
1 e :
A PEvTYy
. 1_ACCESSION g, g
© | acaession DATE | 5/ q
CATALOGUE g, L

In Ccopgratioh With
Society for Quality Controi

SIGBDP and siGsoF |

and Evaluaﬂon Assoclatlon

Managers =
ity Englneerlng

..

Sio S4§ |

000610

- Ay

s Silver ‘Spring, MD 2090_3
Users 202/445-4400 '

Copyright © U.s, Profes
| rights reserved.

sional Development Institute, 1989,

1

7

" no e9
a1switoc 1aiugmod gnigﬂaeT'
ne ‘

- aiatnod lenotamietnt AL

q gnijesT off ‘pnigs

. 229901
e 2.0 niotgnistasW - 8887 ,as.58 M
- IMuU IOV
. < gnole2sd dos1T bns yisnald
) AT & eser M st—-qabz.enbeW'
e el S] '
v S 24l : .

"ot MOI22300A |
3TAG WOIREIIA i

0¥t JUDOIATAD ‘ '
. yd pawoinoqe | RES
noltslaogsA m.moosmﬂ nnuaoemﬂ .gisd

' dnw noits1egeod i
(nined yiisud 08 yietood

yzp2zdie bas 08013 renirioabt gatugr
£34 molteuisvd pac 139 ‘lanolmﬁ‘mm

aulrnbnuoﬁ noligoubd

neslemA ‘
mod 0ot noitaiocseA

ptawitod

o 7
nnhoanmna yiiiaud

ya JRGEpenail Bmes

atusitenl tnemgoisved
aiiu2 [DbsoR nofid BEXT

_ £0e0s OM .gnhad’ tevii@ 85
; o T TN avg2l ©

e N -
——

esal e ol 2U0 sedniryqod

al iasmqoisvad [sriotzast
_bsvisast aldpit A

ENHANCING TESTABILITY WITH SCENARiOéORIENTED ENGINEERING 3

“Michael S. Deutsch
Hughe_? Alrcraft Company

g S

1. INTRODUCTION

Scenario-oriented engineering is an approachto -

full lifecycle software engineering that centers upon the
working concept of system operations that is expressed

in what | call scenarios. A scenario defines a continuous

path from an external stimulus into a system through a
response back into the external environment, a behavior
pattern that would be visible to a system user. This paper
explains the notion that the scenario is a powerful

macro-object that can be used to conceive, define, :

design, validate, iest, and maintain a system.’ The use of
a common object in all phases of the engineering
lifecycle is a major step in maximizing the resemblance
petween the problem solution and the problem
statement.
software technology (e.g., see [1, 2, 3]), including Ada,
allow this scenario oriented paradigm to be more readily
realized in a large-scale software domain. However, the
ultimate value of this approach is for full system
engineering of combined software/nardware systems. -

Scenario-oriented engineering is empirically
derived from a fundamental lesson learned in the overall
system engineering of large, complex systems
consisting of interacting hardware/ software elements
(e.g., satelite communications, weapons control,
process control, sensor control/reporting, local -area
network applications): these muiti-mode, multi-state
systems are most successful, testable, and maintainable
when operational usage pattemns are . visibly
incorporated into their design and validation. ~This
incorporation is a direct refiection of an. in-depth
understanding of the applications problem.

In my experience, the human mindset seems to
conceive systems serially in a linear-like
scenario-based style of thinking. System engineers can
comfortably describe how they would like a system to
respond to an external stimulus, such as redirecting a
sensor when a target drifts ‘to the edge of the

field-of-view. Harel [4] has expressed this same viewin

his experiences with embedded software applications
for aircraft avionics. | believe it is now possible to usethe
scenario not only as the object for system conception

896052

o

Recent advances. in object-oriented

““"and requirements, but aiso as the physical design
- partition; as the semi-autonomous unit for testing, and
‘as the basis' for operationally visible maintenance .

-modifications. The basic approach does not distinguish

_between software, hardware,.or manual domains; its

main leverage, however, is with complex software
intensive problems. % -

" “A language-such-as'Ada gives us a facility for
-expressing a scenario as a Structural element The
package allows the physical consolidation of all
resources - that are necessary, to implement the

-stimulus/response behavior-of a scenario which may

include procedures, abstract data, functions, and tasks.
Mills [5) makes a similar reference to such an object

_ calling it a data abstraction. The scenario thus becomes

a physical object that can be directly manipulated in the
design domain; the package can be tested with relative
autonomy one-to-one against the original
stimulus/response . specification. -of the scenario.
Maintenance modifications and retesting are more
easily done by originating .changes ‘in the
stimulus/response scenario specification and altering
the directly corresponding package. Furthermore, the
change is more likely to be localized to an individual
scenario package. - ;

Scenario-oriented engineering is a related but
more global approach than object-oriented methods,
the former method filling significant gaps in the latter. As
Booch observes “object-oriented development is a
partial-lifecycle method; it focuses upon the design and
implementation stages of software development” [1]. It
is also generally claimed that object oriented solutions
are inherently easier to test, modify, and debug. The
scenario-oriented “method ~offers - further concrete
‘assurance of these attributes by providing:

L Direct one-to-one linkage between the user’s view
of system operations and implementing structural
elements; : T

. Dire& one-to-one correspondence between the
test procedure (the scenario) and the structural
element being tested (e.g., an Ada package);

i

. Ease of traceability of maintenance changes from

user observable behavior, to changed structural
elements, to localized retesting. N

Scenario-orientation thus

i

2. EXAMPLE

Let us consider the cruise-control system-that

maintains the speed of a car to demonstrate a scenario
analysis. “This is the same example system [6] used by
Booch [1] to demonstrate object-oriented advantages
over functional decomposition. - o

Figure 1 shows the basic inputs and outputsforthe
cruise-control system. An informal statement of the
problem is shown in the table below. »

We wodld approabh the scenano banatyréi.s by

mentally rehearsing the working profile of this systemin_

our minds by keying on the stimuli originating in the
external environment and asserting the necessary

responses.back into that external environment. Data

events, control events, and conditions of the system and
environment objects should be considered in each

stimulus and response. One way to get started is to

proceed chronologically focusing first on a single
physical object in the extemal environment. Nothing
happens until the driver tums-on the engine. Thus, the

stimulus for the first scenario is that the driver

approaches « ‘@
full-lifecycle software engineering methodology. ~, ..

Al

7 L Ly T

T e @

System oﬁloﬂ

i e
‘ Engine on/o i
Puise
s from wheel
Accelerator
__.

successfully tums-on the engine and the response is
that the engine is now in an “on” condition. This and
subsequent scenarios are delineated on Table 1. Some
scenarios key on changes of conditions and are roughly
analogous to abstract state machines, but other
scenarios do not. . Temporal performance needs can, at
this point, be assigned to each stimulus/response
scenario. e SO S >

4"‘5 - :V_ —sd

) i 2

Increase/decrease speed

[

. N
Resume speed

Clock

FIGURE 1. CRUISE-CONTROL SYSTEM BLOCK
'DIAGRAM

omis -
System on/off
Engine on/off

if on, denotes that the cruise-control system should maintain the car speed.
It on, denotes that the car engine is turned on; the cruise-control system

is only active if the engine is on-

Pulses from wheel
Accelerator
Brake -

A pulse is sent for every revolution of the wheel.
Indication of how far the accelerator has been pressed.
On when the brake is pressed; the cruise-control system temporarily reverts

to manual control if the brake is pressed.

« Increase/Decrease Speed

Increase or decrease the maintained speed; only applicable if the

cruise-control system is on.

Resume the last maintained speed; only applicable if the cruise-control

+ Resume
system is on.
» Clock Timing pulse every millisecond.
Qutout
« Throttle

Digital value for the engine throttie setting.

TABLE 1.

CRUISE-CONTROL SYSTEM STIMULUS/RESPONSE SCENARIOS

Stimulus N Response
. ' ¥ =i
« Driver starts engine . e « Activate monitoring engine condition,
» Engine in “off” condition ———> driver actions
« System in “off” condition e Engine in “on” condmon
« Driver turns off engine 2 « Deactivate control system, monitoring
« Engine in “on” condition —> -« Engine, system in "off' condition -

« Driver turns system on . X e
« Engine in "on” condition
« System in “off” condition

......................................

« Driver turns system off 2 4
« System in “maintain” condition

« System in “maintain” condition -
« Receive clock, wheel pulses

« System in “maintain” condition B
« Receive clock, wheel pulses
« Driver increases or decreases maintained speed

« System in “maintain” condition -
« Driver presses brake

« System in “manual control® condition 8
« Driver requests resume speed

« Engine in “on" condition 9
« System in any condition
« Driver adjusts accelerator

System in:“maintain " oondmon
- Activate monitoring of clock,
wheel pulses

ce s emencesceeeetessssscsssEssssaseseseq

_» Deactivate control system
« System in “off" condition

« Calculate throttie setting
« lIssue throttie setting

~» Caiculate new throttle setting
« Issue throttle setting

« Deactivate control system'
» System in “manual control” condition
o Deactrvate auto throttie setting

+ System in mamtam condition
« Monitor clock, wheel pulses

« Deactivate auto throttle setting
« Issue throttie setting

« Calculate new throttie setting
« Issue throttle setting

896052-6

The scenarios are interconnected in Figure 2 to
show, in a simplified fashion, the essential control flow
relationships among scenarios. Only the scenario
. numbers referring back to Table 1 are indicated for

| illustration convenience. The multiple paths epitomize

the asynchronous nature of event driven systems. This
single diagram provides three fundamental views of this
system:

1) - A_top-level requirements specification in
the user's coordinate system from which more detail can
be specified regarding the essential functions and
interfaces.

2) Atop-level design architecture where each
scenario becomes a major physical component of the

system.

b\ L/

FROM ANY SCENARIO

2 - TURN OFR ENGINE

s - STARTENGINE| — .

oR

3 = TURN ON SYSTEM| <z <

~7 - PRESS BRAKE | -

6 - CHANGE MAINTAINED SPEED

OR

9 - ACCELERATE

|4 - TURN OFF SYSTEM

8 - RESUME SPEED

9 - ACCELERATE|

2:4 §5-

‘3) The top-level system test plan where the
stimuli roughly define inputtest cases and the responses

approximate the expected system behavior to the test
cases.

The use of Ada packages permits us to avoid many
aspects of the “semantic gap” between requirements
and design notations by providing a one-to-one
correspondence.

896052 -4

6 77

FIGURE.2. CRUISE-CONTROL 'SYSTEM SﬂM}JLUSIRESPONSE SCENARIO DIAGRAM

Suppose the cruise-control system includes two /
microcomputers (as Booch postulates), one for !
managing the current and desired speeds and the |
second to manage the throttle. Several scenarios | ;
receive their stimuli in the first-machine and respond in;

the second.-Ada packaging for these scenarios would
mask this inter-machine interface from the concermn of
the software designer assuming that .a network

-operating system were available to support the Ada

environment. With a traditional operating system, the

(s

Cas

T
§

packaging would have to be partitioned but would
identify a thread that is a candidate for early mtegratlon
My practical experience on large systems,_ using
non-Ada languages has concentrated on usmg
scenarios for integration threads. This background
strongly suggests that the full scenario-oriented method

scales up to large systems. A recent event-driven -

communications system consisting of 500,000 source
lines of code and large amounts of diverse hardware was

originally _specified in thirty—five stlmulus/response _

scenarios.

3. PROCESS OF SCENARIO-ORIENTED
SOFTWARE ENGINEERING ~

The process of scenario-oriented engineering is
_ now looked at more closely and synthesized .into a
paradigm. In this section | explain the overall process
with occasional reference .to our
implementing mechanism, Ada. A specific
scenario-oriented design approach keyed to Ada
expands on the design philosophy in Section 5. A more
precise exploration of the properties of scenarios is in
Section-4. : :

The scenano models the combined automated and
manually impiemented behavior sequences thus

expressing the fundamental needs and reasons for .

existence of the system. Scenarios then represent a
high fidelity model of reality, and we would like to
implement them with minimal distortion. The major
steps of the scenario-oriented paradigm are as follows:

. identify objects in system environment that will
participate in stimulus/response behaviors;

° Form scenarios
responses;

. Define details of functional and performance
requirements;

connecting stimuli with

o Validate requirements against scenarios;

o Define system design componems around
scenarios;

. Validate system design against scenarios forming
threads;

o incrementally implement, test, and integrate
"~ system in units of threads; and

. Maimain and modify system.

sterectype

The whole intent of the method is to retain the
scenario intact across this sequence of events so that
the eventual system s the model of reality. We would
expect feedback and iteration among these steps
although the net movement is forward. As | will explain in
a moment, the .scenario-oriented approach supports
experimentation, early prototypmg. and evolutionary
development.

The first step, _identﬁy objects in the system
environment, entails recognizing the elements that
provide stimuli into the processing system and which
may require responses. These elements may include
sensors, people, or other devices that participate in

‘stimulus/response behaviors. At this time, these objects

are treated as interfacing directly with the processing
system without regard to physical interface media. Inthe
cruise control example these objects would include the
driver, the wheel rate sensor, brake, accelerator. and

- resume control.

The next step, fonn-scenarlos, first concentrates
on one of the objects in the environment to identify
stimuli in the form of data, events, and existing
conditions. The response back into the envirenment is
postulated consisting of resulting-data, events,. and
conditions. The response may be directed back to the
originating object, other objects, or some combination.
Empirically, it appears that it is best to stan Healing with
the most dominant of the objects in the environment and
then sequentially proceed to the other objects; this is

~usually a multi-pass procedure with each iteration

around the objects contributing to a more complete and
consistent depiction of the application domain. In the
cruise control example, we would begin with the driver
as the dominant object. As shown in Figure 2, the
scenarios are interconnected -with sequential and
Boolean “and/or” connectors to provide an overall view
of how the system works in an informal notation that can
be conveyed and reviewed by a non-technical client.
Davis [7] notes how more formal state-oriented
notations such as finite state machines, statecharts, or
Petri nets are not intuitive to most non-computer trained
persons; most users are applications experts but not
likely to be computer trained.

The scenario approach inflicts early consideration

. of control flow. _Lavi [8] discusses the fallacies of

partitioning embedded systems into subsystems
without early consideration of the control flow that
determines the joint logic behavior of the entire system.
The early emphasis on control behavior illuminates

certain non-functional derived requirements such asthe
need for -a system controller.
requirements like the need for device drive(s and
interrupt handlers are brought out as the external
interfaces are identified through the stimulus/response

analysis. The stimulus/response scenarios aiso proyide .. .

a basaline for postulating scenario mutations that could
result from safety critical failures and the need for fault
tolerant or fail safe responses.

In the third step, define
performance requirements, we characterize the
details in these areas. It is at this time that we assign

performance - properties, such -as_a response time

requirement, to each scenario. "The scenarios can.-be-
simulated, singly and in aggregate, to determine if
predicted system dynamic _properties conform - with
‘requirements. The scenario definitions inherently
~entify functions and data inputs/outputs that piay a role
in each stimulus to response transformation. In the
. cruise control system, for example, we note required

functions such as “calculate throttie setting” and “issue
throttie setting” in scenarios 5, 6, 8, and 9. Asonewayof

proceeding, we could simply expand into detail - the

processing required of each function identified in the -

scenarios along with their inputs and outputs. Another
more powerful option is to use the scenarios in
combination with an established specification method
like structured analysis to expand the functional details

progressively in a data flow analysis as explained in [9]).

The requirements are validated against the
scenarios as soon as the details of the processing
-.~etions and their inputs/outputs are available in draft

You trace each scenario through the detailed

jurements text by correlating each requirements

paragraph number (or other identifier) with the
stimulus/response behavior pattem. You can now
correct any omissions, contradictions, or redundancies
revealed in either the requirements or the scenarios by
this paper execution of the scenarios.

Design components are defined around
scenarios by either encapsulation or allocation.
Encapsulation of the required procedures, tasks, and
abstract data within a single structural element, such as
an Ada package, is the most visible and preferred
implementation of the scenario. Traditional design
methods, such as structured design, and programming
languages, such as FORTRAN, do not directly support
visible encapsulation. Instead, the scenario behavior

Other derived ..

_must be allocated to individual design components that
will be involved with the . stimulus-to-response
transformation. . Consideration ~ of . each
stimulus-to-response thread during the design stage
will contribute heavily to-a testable design and
IMPIEMENtAtON. o ..\ A bt s o

SR ks S o s N NSRRI ST

N

. fter identifying each scenario design object, such
as an Ada package, the _design must be further !

Xy " developed to consider level control. In a simple
functional _and -~ Wi ' .

situation, one ~Or more —scenarios may operate
- asynchronously without hierarchical control perhaps
engaging i rendezvous to exchange messages. -An
explicit.control function may-be-present to guide overall

- - gystem” - operational _behavior. ; ~Representative

configurations are shown in Figure 3; the downward
arrows denote the scenario resources that are inherited
by each controller. The controller may be implemented
as a centralized software procedure, may bea hardware
element, may be muttilevel implementing hierarchies of
_decisions, or may be conceptual and distributed among
scenarios [8). - We would normally expect intimate
-coupling between the controliers and-human/machine
interface of the system, thus, pointing to the need for
defining human and automated activities in the original
_scenarios. In general, the scenario packaging resultsin
a flatter control hierarchy in comparison with modular
- decomposition techniques.

You validate the -system design by testing, on
paper, the design with the stimulus/response scenarios
-as test cases. You form a thread of components, both
software and hardware, that provides the external
pehavior demanded by each scenario. ~For an Ada
packaging implementation, “this “threading™ should be
without complication. The formation of threads through
other implementations commonly yields less than a
clear correlation between scenarios and design
components; further design iteration is in order should
this occur. The validated threads and scenarios are the
initial step in planning system integration and the final
acceptance test. You can also simulate each thread to
verify response-time requirements.

'Each scenario thread -is incrementally
_implemented and integrated into an evolving baseline
of previous threads. The thread scenario is the basis for
the test procedure. Each incremental integration testis
a partial dress renearsal for the final acceptance test.
The use of a common object,.based upon external

Hardware
Controlier

Controller

Antenna

Human
Operato .
packages

Controlier : Controller

l . scenario pickagu ; _ ‘ : . ‘

Single Level Hardware Control

Controllor

scenario packages

Controlier
| _ scenario packages céntfol ; -
S ——— : data base » : ‘
Distributed Control Single Level Software Control Multiple Level Hierarchical Control
FIGURE 3. REPRESENTATIVE CONTROL CONFIGURATIONS e v

behavior, allows simpler and more visible management
planning and feedback.

There is as yet no significant field experience in
maintaining and modifying systems using this full
paradigm with Ada. Yet, we can extrapolate from
non-Ada systems. it appears that by maintaining a crisp
equivalence of system physical structure with changing
operational usage patterns while performing
modifications, the system will maintain clarity with a
more visible level of correctness. Much of the “blurring”
that occurs in long-lived and frequently-modified
~ software systems has resulted from the absence of clear
correspondence between software architecture and
usage scenarios; this indefinity tends to erode further
. with time when the correspondence s initially weak. The
overall maintenance sequence is to change the scenario
| specification and existing test cases, modify the directly
corresponding package, and test the package against
the scenario. Because the scenario is relatively
autonomous, encapsulating a full path through the
extermnal interfaces, retesting should usually be localized
requiring a lesser degree of regression testing of other
scenarios. The overall thesis is that modifications can be
made as simple and obviously correct as possible, with

minimum unpredlctable behavior, when this clear
correspondence between arehrtecture and operatlona! i

B scenarios is present.

A further value of the scenario approach is to
enable experimentation - and evolutionary system -
development. = This value is derived from the
characteristic that a scenario contains &
semi-autonomous working subset of system behavior.
Early “fuzzy” conceptual thinking can be documented in
representative scenarios. Mental rehearsal of these

- initial scenarios, while postulating differing underlying
conditions, suggest less ' typical, atypical, and
pathological mutations that require different responses
to the same basic stimulus. Risky or uncertain scenarios
become candidates for early prototypes or further
in-depth analysis. The major typical scenarios can be
implemented first to form a system skeleton or
operational prototype. Additional scenarios are added
to evolve this baseline in an incremental integration
sequence. -As a surgical mechanism for isolating
5 working subsets of system behavior from concepts t0
¥ ' implementation, scenarios would appear to be an
enabling mechanism for a practical realization of the
spiral lifecycle model concept.

4. PROPERTIES OF SCENARIOS -

The scenario idea s hardly a new one. A mber of
researchers have used this object or various aliases in
partial lifecycle contexts. For example, ‘Harel [4]+and

Deutsch [9] have Suggeﬁw -the .scenario .»qsy'ia e

conception mechanism; Mills [5) mentionsitasa design

model: Dannenberg [10] has prototyped a language :

compiler that centers:-on .a cause/effect scenaro

construct; -and Carey/Bendick [11] -employ =a .
mﬁo—likeobpctasanmremmtaiunitfortestand :

integration. “This work strongly suggests a common
value -of “the scenario object is - its . usefuiness in

describing system behavior in application.terms aCr0SS....

muitiple lifecycle phases. -~ .
The dominating property of the scenario is its user

" understandable jnformality, i.e., its semantic properties
are in communicative application language terms. lam,

biased :in favoring methods that - will enhance
communications between non-computer applications
experts, such as users and customers, and the software
engineers who aredeveloping the system. Both my own
project experience and a key field study by Curtis,
Krasner, and lIscoe [12]
management problems in large sofiware system
development (in terms of additional effort or mistakes
attributed to them): 1) the thin spread of application
domain - knowledge, 2) fluctuating and conflicting
requirements, and 3) communication and coordination
breakdowns. “Thus, we are seeing emerging concem
over the underlying behavioral aspects of those who
sponsor.and create software as well as the technical
~rocess ‘models of software development. The
..»mmunicative properties of the user oriented scenario
~oject has appeal to both the behavioral and technical
process issues of large scale software engineering.

A scenario schema can be converted into a formal

'mmmobiectmasaPeu'inet,wnhminor

effort if formal analysis and/or execution is required. In
the case of a Petri net, each scenario roughly represents

a transition and contains enough information to define -

the enabling and firing conditions. .

More concisely, we can sa\} that a scenario is an
object that: ‘

« Connects an extemal stimulus with an external
response to depict a user perceivable behavior
path;

ilumingte three key

o Contains data eventg __control _events, and
conditions; =~ .
~s |s both a specification and an implementation;
-« Can be implemented in either hardware, software,
by manual actions, or a combination.
... Regarding the first point, the scenario is frequently
_acomposite object that performs an operation on behalf
-of -one ~or more “concrete objects-in the external
environment and then operates back upon one or more
of those concrete objects in the external environment.
“The response may be an overt data or control operation
as in cruise.control scenario 6,.0r.may.be reflected as a
- changetothercondition ofthe environment objects asin
‘cruise control scenario 8. ‘ ‘ '

'Both a stimulus and response contain data events,
control events, and conditions or a subset as shown in
Figure 4. Data events are simply traditional inputs and

" outputs. ‘A control event can be either a signal, suchas
“driver starts engine,” or the initiation/cessation of.a
‘process such as “monitor brake status”.or “deactivate
monitoring.”- A condition represents a *snapshot” ofthe
temporal status of each external object and; perhaps,
internal objects, that play a role in the scenario. Thus, -
the parallel conditions of muitiple relevant objects are
represented. The composite of the conditions represent
the state of the system atthe moment of the stimulusand
the changed state at the moment:of the response;
“state” is used here as an informal term and not inany
hard mathematical sense. The “relationship ‘of the
response in a predecessor scenario with the stimulus in
successor -scenarios influences “the -concurrency.
structure of event driven systems. For example in the
cruise control system, ~scenario <6 -is -a possible
.successor to scenario 3 (see Figure 2). “The control
system must have achieved a “maintain™ condition for
scenario 6 to operate (see Table 1) which could occurin
the response in -scenario -3 indicating “a serial
dependency. However, scenario 3 has initiated several

* “monitoring” processes which continue to operate

concurrently with scenario 6.

A one-to-one correspondence is preferred
between the specification {(a ~scenario) and an
implementing structural element such as an Ada
package; we can at this level hide further lower level
implementing details and deal with them only when
necessary. |f hardware or non-Ada software modules
are involved, then the modules of the thread should bea

Stimulus ID Response
DATA EVENTS DATA EVENTS

. CONTROL EVENTS CONTROL EVENTS
CONDITION A Title CONDITION A

+ CONDITION B CONDITION B

FIGURE 4. CONTENTS OF SCENARIO

member of a single scenario whenever possible. The

guiding system engineering principle is to attain a direct
compondence between system archrtecmre and
operational usage scenarios.

e,

A scenario may be wholly or partially implemented
by manual actions. An allocation of functional behavior
to the manual domain may yield derived requirements
for software or hardware support. The interaction of all
three domains must be factored into system validation.
The scenario object provides significant support to
these system engineering considerations.

5. ADA AND
ENGINEERING

SCENARIO ORIENTED

The benefits of Ada to the. process of
scenario-oriented software engineering (Section 3) are
illuminated here by proceeding further with the design of
the example Cruise Control system. The Ada package
permits the incorporation of all design resources
required to depict a scenario, ie, abstract data,
procedures, tasks, and functions. Thus, each high level
design element directly represents a behavior pattern in
the user's perspective. Further, each package can also
be reviewed as representing a {est scenario.

The heuristics for creating a scenario-oriented
design in Ada are somewhat intuitive and relate to a
natural problem solving sequence:

1) Define a package specification for each
scenario including inter-scenario communication plus
identification of serial procedures. parallel tasks, and
abstract data.

2) Definea paekage specification for asystem
controller, or set of controllers, that provides procedural
control between scenarios and within scenarios; the
major control configuration opnons were shown on
Figure 3.

3] validate this architecture design by
“threading” the stimulus/response scenario
specifications into the Ada design components.

4) Define package bodies that detail .the
design of each package specification and repeat
5) Develop lower levels of design down to the
executable code level and validate by testing according

10 the original scenarios.

T A AT

Trus approach inherently provides early attenttion to
system control, both within scenarios and across
scenarios; this attribute is especially important to the
architecture design of embedded event-driven systems.

The design of lower levels of organization below
the package scenario level does require a different
strategy. One possibility is to decompose each scenario
package into interacting objects, each represented by a
package. The lower level objects thus “inherit” the
properties of one or more higher level scenarios.
Another possibility is to further decompose the

scenarios using a combined modular decorriposition. -

object oriented approach such as the Layered Virtual
Machine/Object Oriented Design method [13]N -

A _schematic diagram showing the 'SCeN@rio . - —through-maintenance by a single universal object, the

package architecture of the Cruise Control System’in_

Booch's notation [14] is displayed on Figure 5 (the nbtes -
at the bottom ofthe Figure describe the Booch notation). :*
This organization differs from both a traditional top down .
design and the more recent object oriented approaches.

This design is initiated at an intermediate level, below the
top level supervisory module in a top down modular
decomposition but above the individual object level that
is the usual starting point in object oriented methods.

This intermediate scenario lével appears to be at about.

the level of abstraction where humans conceive system
behavior thus becoming a more natural fit to the way

people soive problems. The design from the scenario

packages then proceed upward to the controller level
and then downward to either individua! object packages
or to more granular procedure subprograms whose

details are hidden within the higher level ‘procedures -

embedded in the scenario packages. An interesting
aspect of the design diagram on Figure 5 is that scenario
packages 6 and 9 “use” package 5. This is because all
three have identical responses. Tt

This section constitutes an embryonic description
of a scenario oriented engineering approach as

implemented by Ada. Considerable further conceptual

work is required particularly in the non-trivial area of
lower level design organization methods. Ada thus
offers a design component, the package, that can
-aturally -encapsulate a stimulus/response scenario
_~=m, a feature not easily available in other operational
-=- ievel languages. The overall benefit is easier
valigation -and testing because of the one-to-one
correspondence between user perceived stimulus/
response behavior scenarios, the top level .design
components, and test SCenarios. ‘

~

! ‘,) & ‘,“_,x ."\‘ ’
Ak’ o ke PUR peks

<6. CONCLUSION AND FUTURE WORK

As-cen.ardid;orientﬁed _ engineering represents
software systems across the life cycle from concepts

~scenario. The use of a single object better allows the
~ designand implementation to more closely relate to the
‘problem _definition. ~Each scenario, - containing an
end-to-end - stimulus/response ‘behavior pattern,,
-simplifies - validation - and testing because of the
_one-to-one correspondence between design elements
and test scenarios. | believe that | have further shown -
“that these properties represent the user's perspective of
- gystem operations thus.enhancing the .probability of a
system that futfilis-user needs.” ~
' Significant additional work, including some in the
research’ domain, -is needed before the concepts
promulgated in this paper can be realized in a practical
dimension. Use of scenarios as the design elements
within distributed system architectures would hold

-particular promise if it were possible to hide from the -

des‘gnermedetailsqurocessmallocation.~
~ Significantly more intelligent distributed operating
systems and support software are needed before the
- preceding advantage can be achieved. Barbacci [15] is
presently developing a task description language tool
for heterogeneous distributed machines that would be
contributory to the scenario concept. Algorithms for
automating - selection of . parallelism within loosely
-distributed .and closely coupled distributed
_architectures, such as supercomputers, are a major
component of this overall issue. Furthermore, it is
possible to envision design:semantics more powerful
that those provided by Ada-that are a better fit to the
scenario orientation. Dannenberg [10). as an example,
in this area through the
language whose basic
on a cause/effect

tum-off engine (2) 896052-5

procedure

f
task

An arrow from a package to another package
indicatas that the package at the origin point

FIGURE 5. CRUISE CONTROL SYSTEM ADA ARCHFFECTURE _

896052 ' 11

’ nersnsnces

1. G Booch. *Object-Oriented Developmen{:UEEE

Vol SE-—12 NO 2.

Iransactions Software Engineerng,
February 1986, pp. 211-221 T - =

"3 *‘7“"‘"";‘» v A A.":T}-(s-éa:n 5;."' e

SIGPLAN Notices, Vol. 17, No. 9, September 1982~

3. K Nygaard . *Basic Concepts in Object-Onemed
Programming,” .S.IﬁELAN.Nmm Vol. 21, No. 10
October 1956. _ .

- 4, D. Harel ‘StataChans AVnsuaJ Formahsmfor

Complex:Systems,” Science of Comouter- «- * -
gmg:ammmg_ﬂ, North-Holland, Amsterdam 1987.

5 H. Mills.“Box Strucmred lnfonnat:on Systams.

Wmal.vm 26, No. 4, 1987, pp i)

305413, -

6. Aaaptaafroman exercsepmvded byP Wardat
the Rocky:Mountain Institute for Soﬁware Engmaenng.
Aspen, C CO, 1984.

7. A.M.Davis, *A Comparison.of Techniques for the
Specification of External System Behavior,”

September 1988, Vol. -

31, No. 9, pp. 10%—1115

78 JZlavi"A Systems Enguneanng Approach o
. Software Engineering,” |EEE Proceedings Software
| Process Workshop, Egham. UK, February 1984, pp.
« 49-57. .

[2 "‘5*\;44, 3
2. T.Rentsch, 'Obgect—Onemed Programmmg, g

Programmmg for Real-‘ﬁme Systems. Emsgedmns '

Fasires

9. M S Deutéch “Focusmg Real—'ﬁme Systems
Analysis on User Operations,” [EEE Software,
SHprStw 1 1gaa. oe- 39-50. - rhm

10,_ RB.1 Dannenbarg. .Arct:c. Funétional = -

11 RCareyandM Bendlck. 'The COntrol ofa
- Software Test | Process

v12. W. C‘urns. H. Krasner, lecoe "AlFueld Study of

. the Software Design Process for large Systems,” -

'Emmummtms.ﬂ.ma.m November 1988, Vol. 31,
No 11 Pp. 1268-1287 '

‘13 ‘K Nlelsen and K. Shumate ang_l.amﬂ
Wmm (New York McGraw-Hil

_BookCo 1988).

14 Q. Booeh smmmjnmnsanmmm
second addition, (Menio Park, CA:. *:
Benjamin/Cummings Pubhshmg CO 1987),

15. M. Barbacci and D. wing, m,_‘[aw

Description Language, preliminary reference manual,
_Software Engineering Institute Techmcal Repon
CMUISE!—BS-TR—:! :

12

