SEMINAR
RESOURCES
FOR 54
EDITIONS 1 + 2

PRINCIPLES
OF
OSSERVATION
EXPERIMENT

The "Good Experiment" Paradox

What is a Good Experiment?

1) A "Good Experiment" is one where we always get the result we expect

These are the experiments every physics student does:

BUT of course

in principle such an experiment might fail!

2) A "Good Experiment" is one where we don't know what to expect

This is what is ordinarily meant by an experiment:

BUT of course

there has to be some preconception about what to observe and expect

In 1) reliable activity is the key:
emphasis on the "computational object"

In 2) interesting interpretation is the key:

emphasis on the "requirements analysis"

Paradox arises because the two kinds of experiment on two different sides of an act-of-faith

Relating observation and experiment to system models

Any pattern of state change in a complex system however initiated can be modelled by recording observations and synchronised change

 In engineering terms, use to relate the behaviour o a complex system to experiments on its components

[Given the materials

could the Wright brothers have built an Airbus?]

2) Observation / experimentation of / on state gives more than synchronisation (cf parallel assignment state-transition model) : provides means to disentangle indivisibly linked state-change from independent state-change.

Observation / experiment identifies agents

[Bertrand Russell quote]

3) Can simulate multi-agent interaction by multiple-action single agent: link from design to system simulation

Designer plays the role of the agents: analysis by observation leads to intelligibility and convenient redesign

STRING EXTENSION IS PROPORTIONAL TO LOAD.

Hookes Law

 λ = Young's Modulus

K = string constraint

Expectation of observation

Expressed as correlation between observations

Functional relationship between one observation and another

can compute one observation from another: "that is" can model the expected result by some other reliable expt

Mathematical perspective

- functional abstraction as "relation between observations made in the same context"
- "genuine" variables needed to represent observations
 i.e. can be evaluated in different contexts, have identity

Historically primary notions of function and variable

Bird and Wadler: Introduction to Functional Programming

".... every mathematician understands that variables do not vary"

< Russian historian >

"In this mechanical picture of the world the essential, one might even say **definitive**, event was the concept of a law as a **dependence** between variable quantities."

Fyodor A Medvedev - a Russian historian

Scenes from the History of Real Functions, Science Networks - Historical Studies Vol. 7, Birhauser-Verlag 1991 VISUACISATION IN SCIENTIFIC COMPUTING

cf. paper #025

Analogies

between physics

and

declarative

mathematical theories of system behaviour equational description

external world correlated to state-based +

> interpretation of eqns heuristic models to aid

and inexact nature of

unmathematical, imprecise

Feynman: "completely

modelling

describe state-transitions physical understanding"

in physical systems

computer science

functional / logic program abstract computation mathematical specification

meaning of program the real world how is connected to

cf traditional PL semantics relations aren't computed computation: content non-logicist view of Brian-Cantwell Smith:

cf Simula philosophy programming = modelling

Issues for modelling in

	(
physics	
and	
computer	
science	

orthogonal views preconceptions modelling all aspects mechanical model inconsistent with single of physical phenomena (classical physics) mechanical models respecting locality of state-change problematic revision of requirements may => object redesign object-oriented modelling (current CS)

interpretation process? how far is mechanism how elaborate is the interpretable? how much of the object model changes synchronise across object boundaries? refers to application? how does model describe how

NEED A CANCERT OF INTERPRETABLE PROPERMY STATE

SUMMARY

modern CS and classical physics have common themes and problems

- mathematically abstract aspect
- complementary interpretative state-based heuristics
- models that have similar qualities and limitations

how is a physical phenomena correlated to the heuristic model?

physics

and

computer science

	by experimentor: "what if?" e.g. Hooke's law e.g. Hooke's law	How is state changed?	experimental context for the model	model environment and definition What is observable?
change involving autonomous activity e.g. observation of planetary motion		ACCURACY OF OSSERVATION change solely driven	experimental context decide conventions accompanded for simultaneous grants.	define observations identify variables whose values are monitored in describing behaviour
program state is altered under program control and / or by independent agents cf reactive system	e.g. database, spreadsheet AGENTS TO CHANGE STATE.	ACCURACY OF OSSERVATION, HOW ACTIONS AFFECT OBSERVATIONS Change solely driven program state changed	accuracy of observation granularity, how	

7

physics and

How is state changed?

change solely driven by experimentor: "what if?" e.g. Hooke's law

change involving autonomous activity e.g. observation of planetary motion

correlation between simultaneous observation in change correctly predicted

experiment

confirmation of

validation of model

computer science

program state changed solely by user e.g. database, spreadsheet

program state is altered under program control and / or by independent agents cf reactive system

program manipulates relevant parameters appropriately in relation to state of system

CHARACTERISTICS OF DEFINITIVE SERIPTS

Features of use of definitions

definitive script = set of definitions

- order of definitions in text is immaterial
- · each variable corresponds to a physical observation
- if a value of a variable is changed the values of other variables are automatically updated (cf spreadsheet)
- possible changes via redefinition might be: change mass of vehicle, adjust sampling speed on speed transducer, redesign speedometer, reconfigure dashboard display
- developing or embellishing design is also definition

Observations and Experiments in relation to Modelling

Indivisibly linked observations important in relation to many aspects of a model (e.g. speedometer model):

- a) "semantics of the semantics" transformations of object
- b) designer decides where to display, how to take account of negative speed
- c) modes of propagation: mechanical linkage vs sampling
- d) idealisation: speedo could be deemed to show actual speed
- e) views / privileges : driver can't move / redesign speedo
- f) non-computable content relations: exceeding speed limit? red warning light if cruise control has throttle at 0% and car is accelerating down a hill

Characteristic features of a definitive script 1

Script has a state-based aspect

- a variable in the script has a "procedural" nature: it has an identity and can assume different values
- a variable in the script designates a value that can be readily interpreted as an observation
- state interpretation of script defined wrt potential sequences of redefinitions and observations

In the state described by this script:

we observe the following values

+ subject to performing such and such
redefinitions we shall be able to observe the
following values

Characteristic features of a definitive script 2

Declarative perspective on scripts:

- the script has a declarative aspect: it expresses constraints on latent changes of state
- in computational terms, each defn represents computation that is taken for granted
- y = f(x) in the script S means:

 It is a feature of my computer that in the state defined by the script S when you change the value of x the value of y also changes simultaneously according to the formula y=f(x)

Interpret script
ia instantaneous observation of state
The processes that maintain consistency are hidden

Characteristic features of a definitive script 3

 a script is good for describing a statetransition correlated with observation in experiment

You can confirm that my script does / doesn't accurately respresent observed rels between values in change

Corollary: there is an objective criterion for evaluating a script as a representation of observed external rels

 until we specify the permissible redefins a script does not define a state-transition model at all

If there's no restriction on what can be redefined I can transform any script into any other script

Actually need to specify restrictions to establish exact correspondence between script and expt'l observation

 a script plus a protocol for redefn is required to specify a behaviour

Typical role for definitive scripts

Use of the scripts oriented towards activities:
requirements analysis -> specification
experiment -> theory
conceptual design -> specification for
manufacture

Requirements / experiment involves knowledge of specific properties in isolation

These restrict redefns on scripts we use to model

Only when we've decided what full range of permissible state-changes that's appropriate do we formally specify

At this stage first have a concept of gloabl behaviour about which we'd like to reason, prove properties etc

The greatest common divisor folk-dance routine

To calculate GCD(m,n), take m woman and n men NB m and n must be positive

Match up men and women in pairs
until no more pairs can be formed

If everybody has a partner
stop the dance and count the number of pairs
[This'll be GCD(m,n)]

Otherwise

there's either a spare man or a spare woman NB of course there may be more than one!

If there's a spare man:

send the men with partners out of the room NB without their partners

If there's a spare woman:

send the women with partners out of the room NB without their partners

Repeat the dance, forming new pairs etc

Moral

Computation does not require computers
Computer Science is not fundamentally about
machines / machine code

Definitive scripts good for reactive systems requirement

- program model is defined by observations of reliable state-changing devices
- observations determine the communication of state-changes between agents
- the process of interpretation involves matching of experimental observations

Spreadsheet principles enable us to specify observations e.g. represent objects in way faithful to observation

Express indivisibility: cf OOP

18- 2 2 FACTOR

B.C. SMITH

LESSONS OF LOGIC

2 LESSONS

Spreadsheet principles good wrt Smith's thesis

Can express behaviour of the content relation e.g. doodling vs signing away my house

This is not a part of the computation to be carried out by devices: no execution aspect

context dependence of definitions

observation (= identity + change)

not a mathematical variable

more prescriptive modelling

Semantics of a geometric object reflected in its defn of MacDraw picture and script definition

```
STATE
  openshape cabinet
  within cabinet (
     int
              width, length
     point
              NW, NE, SW, SE
     line
             N, S, E, W
     N = [NW, NE]
    S = [SW, SE]
    E = [NE, SE]
    W = [NW, SW]
    width, length = 300, 300
    SW = \{100, 200\}
    SE = SW + {width, 0}
    NW = SW + \{0, length\}
    NE = NW + \{width. 0\}
    openshape drawer
    within drawer |
      bool
                  open
      int
                 length
      line
                 N, S, E, W
      length = if open then ~/length else 0
      open = true
      N = [ \sim /NW + \{0, length\}, \sim /NE + \{0, length\} ]
      S = [~/NW, ~/NE]
      W = [\sim/NW + \{0, length\}, \sim/NW]
      E = [\sim /NE + \{0, length\}, \sim /NE]
   }
}
                                     POSTIBLE TRANSPER
protocol {
   open -> open = false
   ! open \ ! locked -> open = true
  locked -> locked = false
  ! open ^! locked -> locked = true
```

OF STATE IN CONVENITIONAL

FROM THEREL GRAFFILE PACKEDS.

}

```
STATE
 openshape led
 within led {
    int
              digit
              p1, p2, p3, p4, p5, p6
L1, L2, L3, L4, L5, L6, L7
    point
    line
              on1, on2, on3, on4, on5, on6, on7
    bool
    digit = 8
   p1 = {100, 800}
p2 = {100, 500}
    p3 = ...
   on1 = digit != 1 \( \text{digit != 4} \)
   on2 = digit != 0 \land digit != 1 \land digit != 7
   on3 = ...
   11 = if on1 then [p1, p4] else [p1, p1]
   12 = if on2 then [p2, p5] else [p2, p2]
   3 = ...
protocol
                                           POSSIBLE TRANSFORMATIONS
   true -> digit = | digit | + 1
   true -> digit = 0
```

WHAT DOES THIS DEPICT?

