This section describes the principal features of am, the implemented abstract definitive machine.

Familiarity with Chapters 2 and 3 of "Definitive Parallel Programming" is assumed.

PROGRAM SPECIFICATION

An adm program is specified by a set of entity descriptions, each of which consists of a header and a

body. The entity descriptions describe the sets of variables and actions which can be instantiated.

» entity description
An entity description is of the form

entity name (parameter 1list)

{ body }
The name of the entity is an alphanumeric identifier, and must start with a letter. The parameter list is
a possibly empty list of comma-separated parameter names, where each parameter name starts with an
underscore ("_"), e.g. (_bank,_number). A set of entity descriptions gives a program specification.

Any occurrence of "/ /" is the start of a comment, which is terminated by a newline.

 entity body
An entity body is of the form
definition variable list
action action_ 1list
where variable 1ist is a list of variables, each of which can be optionally initialised with a

definition (e.g.2a = b * ¢ * d). The action_ list is a comma-separated list of actions.

+ action
An action is of the form
guard procedural action -> command

where a guard is an arithmetic or boolean expression involving constants and other variables. It is

Addendum

[

false if it evaluates to £alse or zero, and true otherwise. A procedural action is of the form
print (message)

where message is a comma-separated list of quoted strings (e.g. "Number: "), parameters and

parametric variables. The value of supplied parameters or variables is printed. A command is a

semicolon-separated list of dynamic actions and definitions, or the keyword stop, which halts

execution.

« dynamic action

A dynamic action involves the instantiation or deletion of an entity. An entity instantiation is of the
form

name (parameter 1list)

where name is the name of the entity to be instantiated, and parameter 1list is the comma-
separated list of parameters. Each parameter can be an arithmetic or boolean expression involving
either parameters of the entity or constants, but not variables. An entity deletion is of the same form,
but prefixed with the keyword delete. Parameters are used in a call-by-value manner, so a

parameter cannot be redefined.

 definition
A definition is of the form
variable = expression

where expression is a boolean or integer arithmetic expression. The boolean operators available
are <, <=, ==, >=, >, !=, && and ||, and the arithmetic operators available are the four standard
operators (+, -, *, /), unary minus (-), the rand () function where rand (n) returns a value
between 1 and n, and the arithmetic i£...then.. .else. .. construct. Expressions can also
contain constants (true, false, @ and integers), the evaluation operator (e.g. |date|), and

other variables.

« variable
A variable is an identifier and possibly an associated parameter list. An identifier is an alphanumeric

string which starts with a letter. The associated parameter list may be empty, or may consist of a list

Addendum

[3%]

of parameters enclosed in square brackets. Parameters are identifiers prefixed by an underscore(_).

Examples of variables include valid, book [_number] and cheque [_date, signed].

PROGRAM EXECUTION

Once the entity descriptions are entered, the desired instantiations are made by commands of the form
name (parameter list)

More than one instantiation of the same entity can occur, but each must be disambiguated by the use
of distinct parameters. The program can be executed by typing start. Execution consists of
repeated execution cycles. Each execution cycle involves evaluating all guards, performing the
procedural actions associated with true guards and putting the associated command lists into the run
set, and then executing the lists of commands on the run set. Evaluation is optimised, so
"true || x"always evaluates to true. Evaluation of guards and printing of messages is performed

prior to any redefinitions in an execution cycle.

The program executes until a stop command is executed, no guards are true, the specified number
of iterations have been performed, or an error occurs. Errors are classified into notifiable, avoidance
and fatal, with explanatory diagnostics. A notifiable error occurs when a variable which is referred to
is not in the definition store D, or a dynamic action refers to an entity which is not in the program
store P. An avoidance error occurs when a guard cannot be evaluated. A fatal error occurs when there

1s interference between the commands in the run set.

» control variables in am

There are four control variables used by am (default values in brackets):

nflag (true) if true then print notifiable errors
aflag (true) if true then print avoidance errors
silent (false) if false then print information during simulation

iterations (true) the number of execution cycles which are to be performed in each simulation

Addendum

(%)

Their values can be examined by the keyword status, and can be changed either by using the
command line flags -n, -a, -s and -inumber respectively, or as a command from within am

using the keyword set, e.g. "set iterations = 12" or"set aflag = false".

* commands to am
Generally a program will be executed for a specified number of execution cycles (according to the
value of iterations), and then the user will be allowed to intervene. The contents of the various
stores can be examined:

1 en list the contents of the program store P

1 ds list the contents of the definition store D

1 as list the contents of the action store A

1 in list the currently instantiated entities
The run set can be loaded and examined:

load runset load the run set

1 runset list the run set
Entities can be instantiated, in the same way as the initial instantiations were made. Variables can be
redefined directly:

define variable = expression ;
The definition and value of a variable can be printed:

?(variable)
Notice that these facilities are intrinsic to the execution of an adm program, and are not merely
debugging aids. In particular, it is intended that the user will intervene to effect changes of state by
means of redefinitions and instantiations. Such changes will be guided by the current state, which is
discerned by examination of the various stores. Execution can then be continued by using the

keyword cont.

The implementation described here uses boolean and arithmetic data types and operators. Other
underlying algebras could have been used, which would be more suitable for specialised applications.
More sophisticated variants of the adm can be simulated by using the print command to generate

input to an interpreter for a special purpose definitive notation, such as DoNaLD or SCOUT.

Addendum

Addendum

Better is the end of a thing
than the beginning thereof.

Ecclesiastes vii 8.

This 'section’'deScribes the principal features of am, the implemented abstract definitive machine.

Familiarity with Chapters 2 and 3 of "Definitive Parallel Programming" is assumed. -

PROGRAM SPECIFICATION

An adm program is specified by a set of entity descriptions, each of which consists of a headerand a

body. The entity descriptions describe the sets of variables and actions which can be instantiated.

+ entity description
An entity description is of the form
~ entity name (péraméterblist)f'*
g Bedy'} T
The name of the entity is an alphanumeric identifier, and must start with a letter. The parameter list is -
a possibly empty list of comma-s¢parated parameter narhes, where each parameter name starts with an °
underscore ("_"), e.g. (_bank,_number). A set of entity descriptions gives a program specification. "

Any occurrence of "/ /" is the start of a comment, which is terminated by a newline.

+ entity body
An entity body is of the form
" definition variablé list
“ dection action list @t 1
where variable 1ist is a list of variables, each of which can be optionally initialised with-a

definition (e.g:a“= b * ¢ *-d). The action listis a‘comm a-separated list of actions.”" = ~

« action
An action is of the form
guard procedural action -> command
where a guard is an arithmetic or boolean expression involving constants and other variables. It is

AdQCndum

false if it evaluates to £alse or zero, and true otherwise: A procedural action is of the form
print {message) .- . g

where message is a comma-separated list of quoted strings (e.g. "Number: "), parameters and

parametric variables. The value of supplied parameters or variables is printed. A command is a

semicolon-separated list of dynamic actions and definitions, or the keyword stop, which.halts

execution.

+ dynamic action . ; WL e O e Ml s i B ¢ el BRI
A dynamic action involves the instantiation or deletion of an entity. An entity instantiation is of the
form TR LT AT A
name (parameter list) foame T
where name is the name of the entity to be instantiated, and parameter 1list is the comma-
separated list of parameters. Each parameter can be an arithmetic or boolean expression involving
either. parameters of the entity or constants, but,not variables, An entity deletion is of the same form,
but prefixed with the keyword delete. Parameters are used.in a call-by-value-manner, so a

pamametercannot:be redefined. . ..o e s e A swmecon dut g

» definition
A definition is of the form B E gy e
variable = expression G el b gt ikt o
where expression is a boolean or integer arithmetic ,exp_ljg;ssiqg. The boolean gperators available
are <, <=, ==, >=, >, |=, && and |l, and the arithmetic operators available are.the four standard
operators.(+; -, *, /), unary.minus (-);the rand{) function where rand (n). returns a.value
between_1:and-n, and the arithmetic if; . .then.....else. . .. construct. Expres,signs can also :
contain constants (true, false, @ and integers), the evaluation operator (e.g. |date|), and

other variables. fiutie e o

» variable \
A.variable is an identifier and.possibly an associated parameter list. An identifier is-an alphanumeric .

string which starts with a letter. The associated parameter list may be empty, or may consist of a list

Addendum

of parameters enclosed in square brackets Parameters are 1dent1ﬁers preﬁxed by an underscore(_)

Examples of vanables include valld book [number] and cheque [date, 31gned]

PROGRAM EXECUTION

Once the ent.ityfdeseription‘sare entered,y the desired instantiations are tnade by corninands‘of the fonn
name (parameter list) 101154 -
More than one instantiation of the same entity can occur; but each nrust be disasrnbiguatedby the ':use
of distinct parameters. The program can be executed by typlng start. iExecution: consists of
repeated execution cycles. Each execution cycle mvolves evaluatmg all guards, performmg the
procedural actions associated with true guards and puttmg the assocrated command llsts into the run“
set, and then executing the lists of commands on the run set Evaluation is optrrrused so

"true || x" always evaluates to true. Evaluation of guards and prmtmg of messages is performed

prior to any redefinitions in an execution cycle.

The program executes until a stop command is executed, no guards are true, the specrﬁed number“
of iterations have been performed, or an error occurs. Errors are c1a551ﬁed into nottfiable, avmdancew
and fatal, with explanatory diagnostics. A nouﬁable erTOT OCCUTS when a variable which is referred to ‘
is not in the definition store D ora dynarmc actlon refers to an entlty whrch is not in the program~ _y

store P. An avordance error occurs when & guard cannot be evaluated A fatal eTTOT OCCUrs when there

is mterference between the commands in the run set

« confrol variables in am

There are four control variables used by am (default values in brackets):

nf 1ag (true) if true then print notiﬁable errors
af lag (true) i 1f true then prmt avordance errors
s 1lent (false) 1f false then prmt mformanon dunng snnulatlon

t . 3¢

iterat ions (true) the number of executmn cycles Wthh are to be performed in each sunulatmn

Addendum

Their values can be examlned by the keyword st atus, and can be changed elther by usmg the
command 11ne ﬂags -n, -a, -s and 1number respectwely, orasa command from w1th1n am,

using thekeyword set, e.g. "set J.teratlons = 12" or set aflag = false"

« commands to am o)
Generally a program will be executed for a specified number of execution cycles (accordingvto the

value of 1terat 1on s), and then the user w111 be allowed to mtervene The contents of the vanous

B8

stores can be exammed

1 en list the contents of the program store P

35

1l ds hst the contents of the dcﬁmuon store D

B e

1 as hst the contents of the acuon store A

oy ok ¥ {1EFY
AT Bt 413 et

1 in , hst the currently mstanuated entmes

The run setcan be loadedandexammed

load runset load the run set

PR >

l runset hst the run set

Entities can be instantiated, in the same way as the initial instantiations were made. Variables can be

redefmed dnectly

ML

deflne varlable = expre531on ;

The deﬁmuon and value of a vanable can be prmted

? (varlable)

B

Not1ce that these fac111t1es are mtnnsrc to the executlon of an adm program and are not merely

e

SFpa £

debuggmg atds In paruoular itis mtended that the user w1ll 1ntervene to effect changes of state by
means of redefinitions and instantiations. Such changes w111 be gulded by the current state, whlch is

discerned by examination of the various stores. Execution can then be contlnued by using the

T

keyword cont.

teis

The implementation described here uses boolean and anthmetlc data types and operators Other. |

underlying algebras could have been used wh1ch would be more su1table for specxahsed apphcauons -

k) l

More sophlstlcated vanants of the adm can be 31mulated by usmg the prlnt command to generate ‘

= Yige

mput to an mterpreter for a specxal purpose deﬁmuve notatlon such as DoNaLD or SCOUT.

Addendum

orli gruieu o 19rliis bagnsdo sd nev bae ,2u s e browysd adi ¢d bsaimexs sd nss ¢sulsy wusedl

ms niftiw mot basmmos & 28 10 ,vlavitseqgest 1odmyn i~ bng 2~ .5~ ,n~ 238 sail basmmon

5208 = 2x2[18 29c" W0 "SI0 = zaolisyeri Tez” . 3.9 092 oeysy wir giier

na 0f ebasnmnng ¢
o) 0r 3mibn398) 25to¢s nonudsxs o wdmun beftinsge 8 701 batwssxs o4 liw misrgorq s vilewsns
zuohneyv ads 16 ainsinoy =T snavisint of bowolls od b 1970 st s bag (2 r:oi satati o9l

hopinexs o nrs emoke

H 91012 (BT30Tq 91! 10 21n9In0Y oAl Jeil 11s o

{ sosz notiailsh o o ans1m02 3ily y2if a2k I

o
7

A 5103z nouss st o aaaraod ol 2l =8

L]

PETNES Le':ish:m';enj '-,;Em‘m EELE Al o
shanims e Bag Babaoi od 1% Toir s el 1
152 00t %4 heol tezaus: beof

c sz v edr el tgenux |

od nes 2sldeitsV sharn 519w enoiteiinsrant [sivini odi 26 v8w srmise adr i batstinarzni od ngo zannad

tftoeib bonfshor

FRRS L S cA=

[y
v

87

ot
t
f

SR sidnitey s Iﬁt,g‘
b od sy sidaiily 8 19 sulgv bng non'rmb ariT

telnstyav) s
‘{.’3'{5(11. o 912 hay gusmorg mbe ne Yo oiinsoxy o o3 ﬂﬁzr:mm 918 29i0ilisa? azam 161 92807
d aislz 20 a‘:gm;;{:} inetis of =nsvrsini (iw 1900 :am 1udl bjbrwm{ai 3t sluoinag nl .z gaig :_i,urfab

et doidw aie g i 1r‘ hybitg o thiw 2s53as645 d'm? ancngitngle bas 2ooninitsbst Yo 2nesn.
fvw Ly 4o bqu*'mw w! nads fno nouuuaxﬂ 29012 PUHOIEY 340 10 AGLEMIMBXS frf b":’TT?")«?IL'

8

. LFrco Broveged

1510 amnmqo bm ?‘)q{' 815D o;.vﬁ'dms bns osslood 2920 9194 badivesh noistaomsiqmi adl
.mom;adqqu w2l i :)Sdmiu et o b fuow daiilw bozu nood sved blyow astdyxln, 3niv vobm
318'15;'33 of bﬂ!rnfrm) RERE am anien vd bammmu ;d 159 mbs ari' lo aru)mh Lamwm.qx)a 510V

TUODZ w CleMoG 28 oz .nonsmn svilin aob woqwuq Im:nqz 8 101 xszs'rqwm [16 OF tUapni.

miubnsbbA

)

()

Execution of ADM

Definition Store
Action Store

definitions [™———u__ o |

guard -> actions

Phase II Run Set

execution

of actions Phase I
instaitiation evaluation of guards
daletion set up run set
definition
stop

begin
while there is another variable to be examined in D test for notifiable errors

if the variable is defined in a non-evaluable manner
then issue a notifiable error
while there is another guard to be examined in A evaluate guards,
begin testing for avoidance errors
evaluate the guard
if the guard cannot be evaluated
then issue an avoidance error
else
if the guard is true
then
begin
if (the procedural action involves a non-evaluable variable)
or (anon-evaluable variable is evaluated in a command)
or (a variable used as a parameter cannot be evaluated)
then halt execution due to a fatal error
add the associated command list to the run set

end
end
if the run set is empty stop execution when no guards are true
then halt
if (the run set contains a redefinition of a non-existent variable) test whether run set
or (the run set contains an instantiation of an entity not in P) contains invalid transition

or (the run set contains two redefinition of the same variable which are not
in the same command list)
or (the run set contains a redefinition of a variable and a dynamic action on the entity owning
that variable, other than when the redefinition and dynamic action are in the same
command list and either the redefinition comes before an entity deletion or after an
entity instantiation) o
or (the run set contains an invalid dynamic action)
or (the run set contains two dynamic actions on the same entity, other than when they are in
the same command list and valid when performed sequentially)
then halt execution due to a fatal error
simulate the parallel execution of all the command lists in in the run set execute commands

end

't)

