Brake is applied

Train stops

_A

11 i
II’
STATION 1

STATION 2

agent sm() (/I The station master:

state (time) tarrive = [Timel; Il registers time of arrival
(bool) can_move = false; /I determines whether the driver can start the engine
(bool) whistle = false; Il controls the whistle
(bool) whistled = false; /I remembers whether he has blown the whistle
(bool) sm_flag = false; Il controls the flag
(bool) sm_raised_flag = false; // remembers whether he has raised the flag

oracle (time) Limit, Time; Il knows the time to elapse before departure due
(bool) guard_raised_flag; Il knows whether the guard has raised his flag
(bool) driver_ready; Il knows the driver is ready

(bool) around([d]; (d = 1 .. number_of_doors)
/I knows whether there’s anybody around doorway
(bool) door_open([d]; (d = 1 .. number_of_doors) / the doors status
handle (bool) can_move, whistle, whistled, sm_flag, sm_raised_flag;
(bool) door_open[d]; (d = 1 .. number_of_doors) // partially controls the doors

derivate (bool) ready = A (—door_open[d])Id=1 .. number_of_doors);
I/ monitors whether all doors are shut
(bool) timeout = (Time - tarrive) > Limit; // monitors whether departure is due
privilege door_open[d] A —around[d] -> door_open[d] = false; (d = 1 .. number_of_doors)
ready A timeout A —whistled —> whistle = true: whistled = true; guard(); whistle = false;
ready A whistled A —sm_raised_flag > sm _flag = true: sm raised flag = true
sm_flag A guard_raised_flag —> sm_flag = false;
ready A guard_raised_flag A driver_ready * engaged A —can_move —> can_move = true;
}

agent guard() {

state (bool) guard_raised_flag = false; guard_flag = false;

oracle (bool) engaging, whistled, guard_flag, sm_flag, sm_raised_flag, brake;

handle (bool) brake, guard_flag, guard_raised_flag;

derivate LIVE = engaging |l whistled;

privilege engaging A —brake —> brake = true;
sm_raised_flag A brake —> brake = false; guard flag = true: guard raised flag = frue:
guard_flag A —sm_flag —> guard_flag = false;

}

agent driver() {

state (bool) driver_ready = false;

oracle (bool) can_move, engaged, whistled;
(int) at, from;

handle (int) from, to;
(bool) driver_ready, running;

privilege engaged A whistled A —driver_ready —> driver_ready = true;
engaged A from < at—>from=latlto=3- :
engaged A can_move —> driver r = . running =

)

agent train() {

state (bool) running = true; brake = false; alarm = false
(int) from =0;t0=1l;at = 1;

oracle (bool) alarm, brake, running;
(int) from, to, at;

handle (bool) running, alarm;

derivate (bool) engaging = running A to == at;
(bool) leaving = running » from == at;
(bool) engaged = —running;

privilege engaging A —alarm —> alarm = true: guard(); smQ;
leaving A alarm —> alarm = . r
brake A running —> running = false;

mQ:

Figure 1

agent passenger((int) p, (int) d, (int) _from, (int) _to) {
I/ passenger p is intending to travel from station _from to station _to
/1 and he will access through door d of the train
state (int) from[p] = _from;
(int) to[p] = _10;
(int) pat[p] = _from;
(int) door(p] = d;
(int) pos[p] = 2;
(bool) alighting[p], boarding[p], join_queue(p.d];
oracle (int) at, pat[p];
(bool) queueing([d], pos[p], door_open(d];
handle (int) pos(p], pat(p];
(bool) door_open([d];
derivate alighting[p) = at == pat[p] * at = to[p] * -2 < pos[p] €0 A engaged;
boarding[p] = at == pat[p] A at = from[p] A 0 < pos[p] < 2 A engaged;
join_queue[p.d] = (alighting[p] * door_open [d] A pos[p] =-1) I
(boarding[p] A door_open(d] A pos[p] = 1);
LIVE = —(pat[p] == to[p] pos[p] == 2);
privilege boarding[p] A pos[p] == 2 —> pos(pl =1,
alighting([p] A pos[p] == -2 —> pos[p] = -1;
alighting[p] A —door_open[d] —> door_open([d] = true;
alighting{p] A pos[p] == 0~ door_open[d] * queuing[d]
—> poslpl = 1: patlp] = latl; pos[p] = 2;
alighting[p] A pos[p] =04 door_open([d] A —~queuing[d]
—> poslpl = 1: pat[p] = latl; door_open([d] = false; pos[p] = 2;
boarding[p] A —~door_open[d] —> door_open[d] = true;
boarding[p] A pos[p) == 0 A door_open(d] » queuing[d]

-> posipl = -1: patlp] = at pos[p] = -2;
boarding[p] A pos[p] == 0+ door_open[d] A —queuing(d]
> poslp] = —1: patlpl = at: door_open(d] = false; pos(p] = -2;

}

.agent door((int) d) {
“state (bool) queuing[d], occupied[d], around[d];
(bool) door_open([d] = false;
oracle (int) pos[p], door[p); (p =1 .. number_of, __passengers)
. (bool) join_queue[p,d]; (p=1.. number_of. _passengers)
" handle (int) pos[p]; (p = 1 .. number_of __passengers)
derivate queuing[d] = there exists p such that join_queue[p,d] == true;
occupied[d] = there exists p such that (pos[p] == 0 A door[p] == d)
around[d] = there exists p such that (door[p] ==d * -1<pos[pl £ 1)

privilege queuing(d] A —occupied(d] A join_queue(p,d] —> pos(p] = 0; (p = 1 .. number_of_passengers)

Carriage
pos[p] == - pos[p] =-2
pos[p] == I
pos[p] =1 Edge of Platform
pos(p] =2 Platform

Figure 2

