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Notation

Let G be an undirected d-regular graph with n vertices.

Laplacian Matrix

The normalised Laplacian matrix of G is defined by

£é17$.A,

where A is the adjacency matrix of G.

Example:
1 -1/3 —1/3 -1/3
| =131 —1/3 —1/3
Lo = -1/3 -1/3 1 —1/3
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Notation

Let G be an undirected d-regular graph with n vertices.

Laplacian Matrix

The normalised Laplacian matrix of G is defined by

£é17$.A,

where A is the adjacency matrix of G.

Example:
1 -1/3 —1/3 -1/3
| =131 —1/3 —1/3
Lo = -1/3 -1/3 1 —1/3

-1/3 -1/3 -1/3 1

Matrix £ has eigenvalues 0 = \; < ... < \,, with corresponding eigenvectors
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Heat Kernel: a Fundamental Solution of a PDE

Let M be a compact Riemannian manifold, and
u: M x[0,00) = R

be a smooth function describing the temperature at a point in M and time t.
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Let M be a compact Riemannian manifold, and
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be a smooth function describing the temperature at a point in M and time t.

Heat Kernel

Let M be a compact Riemannian manifold and A the Laplacian operator. Then
the heat kernel is the fundament solution of the following PDE:
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Let M be a compact Riemannian manifold, and
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be a smooth function describing the temperature at a point in M and time t.

Heat Kernel

Let M be a compact Riemannian manifold and A the Laplacian operator. Then
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Heat Kernel Defines a Continuous-Time Random Walk

~—— Heat Kernel in Graphs

When A is the Laplacian matrix £ of graph G, for any ¢t > 0 the heat kernel of
G can be written as

oo

—tL tkeft k
Hi=e ™= Z Ll L
k=0 :

where P is the random walk matrix of G.
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G can be written as
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Hi=e &= Z Ll L
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where P is the random walk matrix of G.

.

Heat kernel defines a continuous-time random walk:
= Vertices choose a neighbour according to P;
= Jumps occur after Poison(1) waiting times.
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Heat Kernel Defines a Continuous-Time Random Walk

~—— Heat Kernel in Graphs

When A is the Laplacian matrix £ of graph G, for any ¢t > 0 the heat kernel of
G can be written as

co

—tL tkeft k
Hi=e &= Z Ll L
k=0 :

where P is the random walk matrix of G.

.

Heat kernel defines a continuous-time random walk:
= Vertices choose a neighbour according to P;
= Jumps occur after Poison(1) waiting times.

Continuous-time Random Walks =~ Discrete-time Random Walks!

The heat kernel defines a semi-group, i.e.,

Ht+5 =H; - H,;,Vt, s>0 and hH(l) H: =1
t—
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Heat Kernel in Graphs: Towards a Geometric Interpretation

For any time-step ¢ > 0, define an embedding ¢, : V +— R" by

Gi(@) = ("M fi(0) M fa(v), e ful0))
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Heat Kernel in Graphs: Towards a Geometric Interpretation

For any time-step ¢ > 0, define an embedding ¢, : V +— R" by

Let the heat kernel distance between vertices u and v be

di(u,v) = [|ebe(u) — e (v)]]2.
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For any time-step ¢ > 0, define an embedding ¢, : V +— R" by

() = (7 fi(0), e fa(v), T fa(0)

Let the heat kernel distance between vertices u and v be

di (1, 0) = [[be () — e (0) .

Heat kernel distance can be viewed as the derivative of the effective resistance of
the same edge, i.e.,

/OC di(u,v)dt = R(u,v).
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Heat Kernel in Graphs: Towards a Geometric Interpretation

For any time-step ¢ > 0, define an embedding ¢, : V +— R" by

() = (7 fi(0), e fa(v), T fa(0)

Let the heat kernel distance between vertices u and v be

di (1, 0) = [[be () — e (0) .

Heat kernel distance can be viewed as the derivative of the effective resistance of
the same edge, i.e.,

/OC di(u,v)dt = R(u,v).

J0

A simple calculation shows that d; (u,v) = 3\ (Hy(w,u) — Hy(w,v))”.
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Heat Kernel Distance: From Geometry to Random Walks

Assume that ¢ ~ local mixing time, which can will be found by binary search.

di(u,v) = Z (Hy(w,u) — Hy(w,v))?

weV

&% THE UNIVERSITY _ )
N of EDINBURGH University of Warwick He Sun



Heat Kernel Distance: From Geometry to Random Walks

Assume that ¢ ~ local mixing time, which can will be found by binary search.

di(u,v) = Z (Hy(w,u) — Hy(w,v))?

weV

&9 THE UNIVERSITY ; )
N of EDINBURGH University of Warwick He Sun



Heat Kernel Distance: From Geometry to Random Walks

Assume that ¢ ~ local mixing time, which can will be found by binary search.

di(u,v) = Z (Hy(w,u) — Hy(w,v))?

weV

edge {u, v} is along a sparse cut

F THE UNIVERSITY ; )
N of EDINBURGH University of Warwick He Sun



Heat Kernel Distance: From Geometry to Random Walks

Assume that ¢ ~ local mixing time, which can will be found by binary search.

di(u,v) = Z (Hy(w,u) — Hy(w,v))?

weV

edge {u, v} is along a sparse cut

F THE UNIVERSITY ; )
N of EDINBURGH University of Warwick He Sun



Heat Kernel Distance: From Geometry to Random Walks

Assume that ¢ ~ local mixing time, which can will be found by binary search.

di(u,v) = Z (Hy(w,u) — Hy(w,v))?

weV

edge {u, v} is along a sparse cut

= One of the two walks needs to
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Heat Kernel Distance: From Geometry to Random Walks

Assume that ¢ ~ local mixing time, which can will be found by binary search.

di(u,v) = Z (Hy(w,u) — Hy(w,v))?

weV
w
u v

edge {u, v} is along a sparse cut

= One of the two walks needs to
go across a sparse cut.

» For any vertex w, the value of
(He(w,u) — He(w,v))? is big.
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Heat Kernel Distance: From Geometry to Random Walks

Assume that t = local mixing time, which can will be found by binary search.

di(u,v) = Z (Hy(w,u) — Hy(w,v))?

weV
U
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U v
v
edge {u, v} is along a sparse cut edge {u, v} is at one side of a sparse cut

= One of the two walks needs to
go across a sparse cut.
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Heat Kernel Distance: From Geometry to Random Walks

Assume that t = local mixing time, which can will be found by binary search.

di(u,v) = Z (Hy(w,u) — Hy(w,v))?

weV
U
w w
U v
v w'
edge {u, v} is along a sparse cut edge {u, v} is at one side of a sparse cut
= One of the two walks needs to = The values of two H;(w, .)s are
go across a sparse cut. close to each other.

» For any vertex w, the value of
(He(w,u) — He(w,v))? is big.
= Hence, d:(u,v) is big.
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Heat Kernel Distance: From Geometry to Random Walks

Assume that t = local mixing time, which can will be found by binary search.

di(u,v) = Z (Hy(w,u) — Hy(w,v))?

weV

u
w w
u v
v w'
edge {u, v} is along a sparse cut edge {u, v} is at one side of a sparse cut
= One of the two walks needs to = The values of two H;(w, .)s are
go across a sparse cut. close to each other.
= For any vertex w, the value of = Hence, (H:(w,u) — H(w,v))?
(Hy(w, u) — Hy(w,v))? is big. is small for any vertex w.

= Hence, d:(u,v) is big.
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Key Questions

= Are our intuitions based on random walks correct?
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Key Questions

= Are our intuitions based on random walks correct?
* How do we apply these intuitions to design algorithms?

= Do heat kernels give us an entirely new technique to design algorithms for
large datasets?
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Graph Clustering

Applications in clustering:
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Graph Conductance

The conductance of a set S is defined by

o[BS, V\S)|
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o BB, V\8)|

The conductance of a graph G is defined by

[ole] £ min (,5(*(5)
S:|SI<|V]/2
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Graph Conductance

The conductance of a set S is defined by

o BB, V\8)|

The conductance of a graph G is defined by

oa £ min  ¢a(S)
SiSI<IVI/2

Cheeger’s Inequality

A2
- < ¢ < V2.
’ $a(S) = 5 = 1
G 16 12
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k-Way Expansion

The k-way expansion constant is defined by

k) = min max ¢a(A;).
() partition Al,...,Akléz‘SkgbG( l)
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The k-way expansion constant is defined by

k) = min max ¢a(A;).
() partition Al,...,Akléiékgf)G( l)

~— Higher-Order Cheeger’s Inequality

Ak

5 < p(k) < OK") Vs,

A large gap between A,+1 and p(k) implies that
= existence of a k-way partition with bounded p(k).
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k-Way Expansion

The k-way expansion constant is defined by

k) = min max ¢a(A;).
() partition Al,...,Akléiékgf)G( l)

~— Higher-Order Cheeger’s Inequality

Ak

5 < p(k) < OK") Vs,

A large gap between A,+1 and p(k) implies that
= existence of a k-way partition with bounded p(k).
= any (k + 1)-way partition contains a set with conductance at least A\x+1/2.
= Graph G has exactly k clusters.

Ak+1

X p(k)
THE UNIVERSITY

The key parameter: T £
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The Structure Theorem

Let G be a d-regular graph with £ disjoint
components S1, ..., Sk.
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components Si, ..., Sk. Forany 1 <i < klet

1 ifvesS;,
xi(v) _{

0 otherwise.
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Let G be a d-regular graph with £ disjoint
components Si, ..., Sk. Forany 1 <i < klet

1 ifves;,
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0 otherwise.

Then
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Let G be a d-regular graph with £ disjoint
components Si, ..., Sk. Forany 1 <i < klet

1 ifves;,
xi(v) _{

0 otherwise.

Then
span{ fi,..., fx} =span{x1,..., Xk} -
Lemma (Peng-S.-Zanetti, 2017)
‘ T = Q(k) implies that span {f1, ..., f} ~ span{x1,..., Xx}- ]
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Lemma (Peng-S.-Zanetti, 2017)
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Define F(v) = (f1(v),. .., fu(v)).
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The Structure Theorem

Let G be a d-regular graph with £ disjoint
components Si,...,S;. Forany 1 <i < k let

1 ifvesS;,
xi(v) _{

0 otherwise.

Then

span{ fi,..., fx} =span{x1,..., Xk} -

Lemma (Peng-S.-Zanetti, 2017)
‘ T = Q(k) implies that span {f1, ..., f} ~ span{x1,..., Xx}-

Define F(v) = (f1(v),. .., fu(v)).

[ There are points p*, ..., p*®, s.t. cluster S; is concentrated around p®.
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Corollaries of the Structure Theorem

R3

(1)

3

k
. 2
3 HF(u) 9" < k2.
i=1 u€esS;
; Points from S; concentrate around ps.
(o]
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Corollaries of the Structure Theorem

R?:

(1)

(2)

Fo

o ©

(3)

THE UNIVERSITY
of EDINBURGH

Sy 1P )~

i=1 u€esS;

Points from S; concentrate around ps.

(©)

bl e (5)-2
P 10°10) 15|

“Bigger” clusters are closer to the origin.

2
< K*/Y.
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Corollaries of the Structure Theorem

“Bigger” clusters are closer to the origin.

2 - 1
~ kmin{|S;|,]5;[}

() _ p(j)

|

Distance between different clusters inversely = the smaller cluster.

R® i > HF(u) | < k2.
i=1 ueSs;
° 9 Points from S; concentrate around ps.
p(l) :
o] € (%%) ' |;i|
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A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

4@ THE UNIVERSITY : )
¢ of EDINBURGH University of Warwick He Sun



A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

Algorithm
fori =1to K = O(klogk) do
set ¢; = v with prob. proportional to || F'(v)
return C = {c1,...,cx}.

I7.
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With const. prob., each S; has at least one vertex sampled.

4@ THE UNIVERSITY : )
¢ of EDINBURGH University of Warwick He Sun 13



A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

Algorithm
fori =1to K = O(klogk) do
set ¢; = v with prob. proportional to || F'(v)
return C = {c1,...,cx}.

I7.

With const. prob., each S; has at least one vertex sampled.
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A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

Algorithm
fori =1to K = O(klogk) do
set ¢; = v with prob. proportional to || F'(v)
return C = {c1,...,cx}.

I7.

With const. prob., each S; has at least one vertex sampled.

2. Delete points in C “close” to each other, until |C| = k.

With const. prob., each S; has exactly one vertex remaining in C'.

3. The other n — k vertices find their closest neighbours in C'

apply approximate nearest neighbour data structures.

Runtime is O(n - poly log n), even for a large value of k!




Obtaining the Pairwise Distances via Heat Kernels

Recall the two embeddings discussed so far:
* Fv) = (fi(v), ..., fx(v))
s i(v) = (7 fi(v),...,e"" fu(v))
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Recall the two embeddings discussed so far:
* Fv) = (fi(v), ..., fx(v))
s i(v) = (7 fi(v),...,e"" fu(v))

~—— Lemma (Peng-S.-Zanetti, 2017)

We can compute in O (nd - log*® n) time an embedding such that, with hight
probability, it holds that

(1= )IF(w) = F@)I* < [[9e(w) = e @)II* < |F(w) = F(0)]|*.
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Recall the two embeddings discussed so far:
* Fv) = (fi(v), ..., fx(v))
s i(v) = (7 fi(v),...,e"" fu(v))

~—— Lemma (Peng-S.-Zanetti, 2017)

We can compute in O (nd - log*® n) time an embedding such that, with hight
probability, it holds that

(1= )IF(w) = F@)I* < [[9e(w) = e @)II* < |F(w) = F(0)]|*.

—— Proof Sketch

» Johnson-Lindenstrauss transformation
= Algorithm for approximating matrix exponential.

5 THE UNIVERSITY N N
¢V of EDINBURGH University of Warwick He Sun



Main Result

Theorem (Peng-S.-Zanetti, 2017)

There is a linear-time algorithm that, for a graph G with k clusters Sy, . ..

and T = Q(k?), outputs a partition A1, ..., Ay such that
|4; A S;| =0k -1 |Si)).
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and T = Q(k?), outputs a partition A1, ..., Ay such that
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* The heat kernel distances
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= This gives us the first linear-time algorithm for graph clustering.

= Our intuitions are from random walk theory, but our analysis is based on
geometry.
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Main Result

~—— Theorem (Peng-S.-Zanetti, 2017)

There is a linear-time algorithm that, for a graph G with k clusters Si,..., Sk
and T = Q(k?), outputs a partition A1, ..., Ay such that

|4; A S;| =0k -1 |Si)).

* The heat kernel distances
di(u,v) =Y (Hi(w,u) — Hi(w,v))?
indeed behave differently among edges inside a cluster and edges crossing
different clusters.
= This gives us the first linear-time algorithm for graph clustering.

= Our intuitions are from random walk theory, but our analysis is based on
geometry.

= BUT, our analysis only holds when there is an eigengap.

\.
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Beyond Graph Clustering

Could heat kernels be a general tool for designing fast algorithms?
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Revisit the Graph Expansion Problem

Graph Expansion

Given a d-regular graph G = (V, E) as input, find aset S C V of size |S| < n/2
of minimum conductance, i.e.,

#c(S) =

= min
S’:|8"|<n/2

pc(S").
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Revisit the Graph Expansion Problem

Graph Expansion

Given a d-regular graph G = (V, E) as input, find aset S C V of size |S| < n/2
of minimum conductance, i.e.,

#c(S) =

= min
S’:|8"|<n/2

pc(S").

= This is the simplified version of graph clustering (k = 2 clusters).

* NP-hard to approximate, and there is no constant-factor approximation
algorithms assuming the small-set expansion conjecture holds.

= The current best approximation algorithm is based on SDP + geometric
embedding. Arora-Rao-Vazirani, JACM, 2009
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Revisit the Graph Expansion Problem

Graph Expansion

Given a d-regular graph G = (V, E) as input, find aset S C V of size |S| < n/2
of minimum conductance, i.e.,

#c(S) =

= min
S’:|8"|<n/2

pc(S").

= This is the simplified version of graph clustering (k = 2 clusters).

* NP-hard to approximate, and there is no constant-factor approximation
algorithms assuming the small-set expansion conjecture holds.

= The current best approximation algorithm is based on SDP + geometric
embedding. Arora-Rao-Vazirani, JACM, 2009

Improve the state-of-the-art algorithm by heat kernels?
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Grid Graphs

We define a family of graphs {G'},, as follows:
= Every G,, has 3n vertices, which form a grid of size \/n x 3/n.

= The weight of every edge in the middle row has weight 1/+/n, and all the
other edges have weight 1.

|

/1 rows

|

p——————  3ymcolumns —— |
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Grid Graphs

We define a family of graphs {G'},, as follows:
= Every G,, has 3n vertices, which form a grid of size \/n x 3/n.

= The weight of every edge in the middle row has weight 1/+/n, and all the
other edges have weight 1.

the Cheeger’s cut

|

/1 rows the sparest cut

|

p——————— 3ymcolumns ———
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Heat Kernel Distances in the Grid Graphs
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The proposed algorithm

Run the following for t = 2°,i = 1,2,...,clogn
= Compute heat kernel distances h¢(u, v) for all edges u ~ v
= Construct a new graph Q; = (V, E, w) where w(u, v) = exp(—h¢(u, v))
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Run the following for t = 2°,i = 1,2,...,clogn
= Compute heat kernel distances h¢(u, v) for all edges u ~ v
= Construct a new graph Q; = (V, E, w) where w(u, v) = exp(—h¢(u, v))

= Find a sparse cut of Q; by the sweep set algorithm, i.e. the proof from
Cheeger inequality

= Store the set S C V' with minimum conductance found so far.
Output S
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= Store the set S C V' with minimum conductance found so far.
Output S

This algorithm finds the optimal cut for the Grid Graph.
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The proposed algorithm

Run the following for t = 2°,i = 1,2,...,clogn
= Compute heat kernel distances h¢(u, v) for all edges u ~ v
= Construct a new graph Q; = (V, E, w) where w(u, v) = exp(—h¢(u, v))

= Find a sparse cut of Q; by the sweep set algorithm, i.e. the proof from
Cheeger inequality

= Store the set S C V' with minimum conductance found so far.
Output S

This algorithm finds the optimal cut for the Grid Graph.

What is the approximate ratio of this algorithm?
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Summary

= Heat kernel is a basic notion in spectral geometry.
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Summary

= Heat kernel is a basic notion in spectral geometry.

» We studied its connections to random walks and geometry, which allows us to
design the first linear-time algorithm for graph clustering.
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Summary

= Heat kernel is a basic notion in spectral geometry.

» We studied its connections to random walks and geometry, which allows us to
design the first linear-time algorithm for graph clustering.

» This leaves us a number of interesting questions, including the powers and
limits of heat kernels for designing fast algorithms.
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Summary

= Heat kernel is a basic notion in spectral geometry.

» We studied its connections to random walks and geometry, which allows us to
design the first linear-time algorithm for graph clustering.

» This leaves us a number of interesting questions, including the powers and
limits of heat kernels for designing fast algorithms.

THANK YOU!

Reference: Richard Peng, He Sun, and Luca Zanetti: Partitioning Well-Clustered Graphs: Spectral
Clustering Works! SIAM Journal on Computing, 46(2):710-743, 2017.
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