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Scalable machine learning algorithms with provable guarantees

In this talk: towards scalable numerical linear algebra in kernel
spaces with provable guarantees
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Linear regression
Input:

» a sequence of d-dimensional data points Xy, ..., X, € R?
> values y;=f(x;),j=1,...,n

Output: linear approximation to f
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Solve least squares problem:

min Z Ixjo— yjI? + Allad |3
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» a sequence of d-dimensional data points x4, ..., X, € RY
» values y;=f(x;),j=1,...,n

Output: approximation from class of ‘smooth’ functions on RY
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Choose an embedding into a high dimensional feature space
¥:R—RP

Dimension D may be infinite (e.g. Gaussian kernel).
Solve least squares problem:

m|nZ|\P (X)a— y;I? + Alladll3
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Choose an embedding into a high dimensional feature space
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s A (=x)7/4
VX (zn)1/4e

Xg X9 X10

1 1
T T

Xq Xo X3 X4 X5 X6 X7

‘ 1 1 1 1 1 1 1
T T T T T T T

43
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Choose an embedding into a high dimensional feature space
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Choose an embedding into a high dimensional feature space
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Choose an embedding into a high dimensional feature space

1 2
e L A (x)?/4
Y:x (2n)1/4e

Xq Xo X3 X4 X5 X6
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Solve least squares problem:

mle\P X)a—y;1? +Nllall3

aeRP
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Solve least squares problem:

n
min ) |‘I’(xj)0(—yjl2 + MIO(II%

0(€[RDJ':1

2
3
w e . %
e o ™
.,
e . . .
.0 . .
A .
skt g » e ot :
A - - . K L
of . .l .
o o “ - - IR
- . b - .t
osk LT ¥
A .
% X
4 .. g
RN -
15 e .
e
P
2 LY}
08 05 04 02 0 02 04



Solve least squares problem:

mle\P (X)a—yiI2 + N3
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Solve least squares problem:

mle\P (x;)a = yj12 + Allad[2
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After algebraic manipulations

=wT(K+Al)y




Kernel ridge regression

Main computational effort:

(K+AD) 1y
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Kernel ridge regression
Main computational effort:

(K+AD) 1y

The (i,j)-th entry of Gaussian kernel matrix K is

Ky = e
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The (i,j)-th entry of Gaussian kernel matrix K is

Kj=e i)’/
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How quickly can we compute (K +Al)™" y?
The (i,j)-th entry of Gaussian kernel matrix K is

Kj=e i)’/

n® (or n®) in full generality...

Q(n?) time needed when A =0 assuming SETH
Backurs-Indyk-Schmidt (NIPS17)

In practice: find Z € R"*S, s <« n such that
K~zZT

and use ZZT + Al as a proxy for K +Al!

Can compute (ZZ7 + )~y in O(ns?) time and O(ns) space!
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Fourier Features

Theorem (Bochner’s Theorem)

A normalized continuous function k : R — R is a shift-invariant
kernel if and only if its Fourier transform k is a measure.
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Fourier Features

Theorem (Bochner’s Theorem)

A normalized continuous function k : R — R is a shift-invariant
kernel if and only if its Fourier transform k is a measure.

Let p(n) := k(n)). Then for every xa, X
Kab = k(Xa - Xb) :f /R(rl)e_zn"(xa_xb)rldrl
R

= fR e 2m0a)p(n)dn
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Fourier Features

[e.e]
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1

COLEE AT|> o0
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Fourier Features

o0
—\/\é\/\/\/\/ K
?

COLEE AT|> | oo

Rahimi-Recht’2007: fix s, sample i.i.d. ny,...,ns ~ p(n)
Let j-th row of Z be

1 .
Zjk = ﬁe‘zmxf'”k (samples of pure frequency x;)

and use ZZT as a proxy for K!
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Fourier Features: sampling columns of Fourier
factorization of K

o0 n
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Rahimi-Recht’2007: fix s, sample i.i.d. n,...,ns ~ p(n)
Let j-th row of Z be

1 ,
Zig:= —se‘z"’xf”k (samples of pure frequency x;)

and use ZZT as a proxy for K!
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Fourier Features: sampling columns of Fourier
factorization of K
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Fourier Features: sampling columns of Fourier
factorization of K

o0 n
) =
n A § K
/ AVAY,
p(n)e2mxn AT |00

Column n has ¢3 norm n-p(n)!

Fourier features = sampling columns of A with probability
proportional to column norms squared!
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Fourier Features: sampling columns of Fourier
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Fourier Features: sampling columns of Fourier
factorization of K
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Column n has ¢3 norm n-p(n)!

Fourier features = sampling columns of A with probability
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Fourier Features: sampling columns of Fourier

factorization of K
S
° T ~
,, EdENE

Column n has ¢3 norm n-p(n)!

Fourier features = sampling columns of A with probability
proportional to column norms squared!

One has E[ZZT] =K
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Spectral approximations

1SS n
§ . ]
n K
/7 VAV
p(me 2 0

Our goal: find Z € R™S,s < n such that
(1—e)(K+A)<ZZT+ X < (1 +€)(K+Al)?
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Subspace embeddings for kernel matrices that can be applied
implicitly to points x1,..., X, € R9?
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Spectral approximations

o0 n
SR
n K
VAV

COLRE e

T

Our goal: find Z € R™S,s < n such that
(1—e)(K+A)<ZZT+ X < (1 +€)(K+Al)?

Subspace embeddings for kernel matrices that can be applied
implicitly to points x1,..., X, € R9?

Known for the polynomial kernel only: Avron et al., NIPS’2014
via TENSORSKETCH
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Spectral approximation via column sampling
D n

For each j=1,...,D compute sampling probability ()

Sample s columns independently from distribution t, include j

in Z with weight \/;T_(/) if sampled.
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Spectral approximation via column sampling
D n

AT D

For each j=1,...,D compute sampling probability ()

Sample s columns independently from distribution t, include j

in Z with weight —— if sampled.
I Ve " Samee

That way
E[ZZT]=K

Choose T to ensure ZZT spectrally close to K whp?
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Ridge leverage scores

Define A-ridge leverage scores by

w():=al (K+AN)* g

19/43



Ridge leverage scores

Define A-ridge leverage scores by

w():=al (K+AN)* g

The number of samples required ~ statistical dimension of K

Aj
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S\(K):=tr(K+AN)"K) = i
j=1
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Ridge leverage scores

Define A-ridge leverage scores by

w():=al (K+AN)* g

The number of samples required ~ statistical dimension of K

Aj
7\]'+)\

S\(K):=tr(K+AN)"K) = i
j=1

Statistical dimension= # eigenvalues above A
+(sum of eigenvalues below A)/A
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AT D

Theorem (Folklore)
Suppose that

» foreachi=1,...,s one has Z; ~ a; with probability ~ T, (j)
independently;

» s=0(e7?s)l0gs)).
Then
(1—e)(K+A)<ZZT + A < (1 +€)(K +A))
with high probability.
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Q1: does Fourier Features provide spectral guarantees with

O(s)\) samples?
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Q1: does Fourier Features provide spectral guarantees with

O(sy) samples?

This paper: NO, not even in dimension d =1

Q1’: how many samples are necessary and sufficient for
spectral guarantees?
This paper: (essentially) tight bounds

Q2: a better sampling scheme with O(s,) samples?
This paper: YES, at least in constant dimensions for bounded datasets
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» Leverage score density function
» Primal-dual characterization

» Tight lower bound for Fourier Features
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i

vp(n)z(n) 0

For each neR let
z(n);:= &7

and let du(n) := p(n)dn so that

K= [ 2(mz(n)" du(n)
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i

vp(n)z(n) 0

For each neR let
z(n);:= &7

and let du(n) := p(n)dn so that
K= [ 2(mz(n)" du(n)
Define the ridge leverage score function

w(n):=p()z(n)* (K +M)~"z(n)
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Define the ridge leverage score function
w(n) = pm)z(n)* (K +A)~"z(n)

Lemma
For everyneR
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Define the ridge leverage score function
w(n) = pm)z(n)* (K +A)~"z(n)

Lemma
ForeveryneR

Proof:

T(n) =pm)z(n)"(K+ A1)~ z(n)
=p(n)z(n)"z(n)/A
= p(n)liz(n)li3/A
=p(n)-

>’|3
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Theorem
For every kernel k, any dataset x1,...,xn, any e€(0,1/2) ifZ is
a Fourier Features matrix with s = O(g—2 2sylogsy) columns, then

(1—e)(K+A)<ZZT+ X < (1 +€)(K+Al)

with high probability.
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Theorem
For every kernel k, any dataset x1,...,xn, any e€(0,1/2) ifZ is
a Fourier Features matrix with s = O(g—2 2sylogsy) columns, then

(1—e)(K+A)<ZZT+ X < (1 +€)(K+Al)
with high probability.
Is this good? Usually A = w(1) (e.g. A = v/n), and definitely A < n.
Is this best possible? basically YES, even for 1d datasets!

Can we do better? YES, at least for bounded datasets in
constant dimension
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Assume: dimension d is constant (one in pictures), kernel is
Gaussian, data points belong to [-R, +A]

— 00000000000
-R +R
data points xq,...,Xp

27/43



Theorem (Upper bound, informal)

For every In| < 10+/log(n/A):
2(1) = 25max(R,3000log'°(n/1)).
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Theorem (Upper bound, informal)

For every In| < 10+/log(n/A):
2(1) = 25max(R,3000log'°(n/1)).

upper bound Gaussian density p(n)
N
-10y/log(n/A) +10+/log(n/A)

—1 00000000000
-R +R
data points xq,..., X
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Theorem (Lower bound, informal)

For integer n, regularization parameter \, and radius R', there
exist x1,...,xn € [-R, R| such that for every

ne[-100+/log(n/A),+100+/log(n/A)]

R p(n)
™= 155 | o+ 2R0 M) )

1Restrictions apply
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Theorem (Lower bound, informal)

For integer n, regularization parameter \, and radius R', there
exist x1,...,xn € [-R, R| such that for every

ne[-100+/log(n/A),+100+/log(n/A)]

__R p(n)
™) 755 (p(r]) +2R()\/n))'
lower bound A~ Gaussian denS|ty p(n)
T
—v/2log(n/(RA)) +4y/2log(n/(RA\))
-R +R

data points xy,...,Xn

1Restrictions apply
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Theorem
Suppose that

» foreachi=1,...,s one has Z; ~ a, with probability T)(n)dn
independently;
» s=0(e7?s)logsy).
Then
(1—e)(K+A)<ZZT + X < (1 +€)(K +Al)
with high probability.
- : . A
Statistical dimension of s)(K) = ;’:1 )\j—i)\
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» Leverage score density function
» Primal-dual characterization

» Tight lower bound for Fourier Features
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Define operator @ : Lo(dp) — C" by

oy = [ 2(€)y©)du(E)

(o.]

n = (0] Y

B VAVAVAVAV
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We have ©o* = K.

e\\)
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Lemma
The ridge leverage function can alternatively be defined as

follows:

()= min ATN0y =\ p)MIE +IVIF, g

Intuition: recombine many columns of @ to get our column (i.e.

frequency n), approximately
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For a function y € Ly(dn)

oy = [ 2(€)y@)dn()

Fix n e R. Want to upper bound

— 1
w(n)= min APy —y/p(n)2( I +IYIZ, (g

i N

t

Gaussian times sinc

N\ .

T \

-R +R
Gaussian convolved with box

36/43



For a function y € Ly(dn)

oy = [ 2(€)y@)dn()

Fix n e R. Want to upper bound

()= min A7Tloy —\/p(m)z(nii +IVIIE, g,

yelo(dy)

N

\

Gaussian times sinc

1
t t

-R +R
Gaussian convolved with box
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Lemma
The ridge leverage function can alternatively be defined as
follows: »
la*z(n)|
ta(n) = max p(n)-la*z(n) '
aeC™ || 0" a| +Allall3

2
Lo(dp)
Intuition: recombine rows of @ to create a ‘localized’ vector

D

U

l
nHo (0] y

[0

Similar construction of test functions
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» Leverage score density function
» Primal-dual characterization

» Tight lower bound for Fourier Features
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Tight lower bound — proof idea
Need: for every a e R"

al Ka+ )\Ilallg e(1+ 8)((xTZZT(x+ )\Ilallg)

AN ,
\Zg
-R +R

For a vector a e R"

Tk [ ot

2
dn

n .
Z e—2nlxjnaj
j=1

NG|
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Tight lower bound — proof idea
Need: for every a e R"

al Ka+ )\Ilallg e(1+ 8)((xTZZT(x+ )\Ilallg)

A 1
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n . 2
O‘TKO‘:fdp(“) Z e—2m)qnaj dn
R j=1
S

2
samples nj ~ e /2
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Tight lower bound — proof idea
Need: for every a e R"

al Ka+ )\Ilallg e(1+ 8)((xTZZT(x+ )\Ilallg)

1 1
T T

-R +R
For a vector a e R”
n . 2 s onixTn 2
aTKa= [ p(n)| Y, e #mag| dn= 3" pln) |3 & > ey
RY j=1 k=1 j=1
S

2
samples nj ~ e /2
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Experiments: one-dimensional
Sample from the function

f*(x) =sin(6x) +sin(60exp(x)).

Use a 400-point uniform grid spanning [-5/2n,+5/27], and
sample according to

yi=1"(x;) +vi.

where v; is i.i.d. Gaussian noise.
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Experiments: one-dimensional
Sample from the function

f*(x) =sin(6x) +sin(60exp(x)).

Use a 400-point uniform grid spanning [-5/2n,+5/27], and
sample according to

yi=1"(x;) +vi.

where v; is i.i.d. Gaussian noise.

——True Function
—— Estimator

- Data

I
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Experiments: two-dimensional

f*(x,z) = (sin(x) +sin(10exp(x)))(sin(z) + sin(10exp(z))).
Sample points on a 40 x 40 uniform grid.
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Experiments: two-dimensional

f*(x,z) = (sin(x) +sin(10exp(x)))(sin(z) + sin(10exp(z))).
Sample points on a 40 x 40 uniform grid.
KRR Estimator

-0.6
-0.4
-0.2

0.2
0.4
0.6

-0.6
-0.4
-0.2

0.2

True Function

-0.5 0 0.5

CRF Estimator

-0.6
-0.4
-0.2

0.2

MRF Estimator
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Summary

Our results:

» tight bounds for Fourier Features for bounded datasets in
constant dimension
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Summary

Our results:

» tight bounds for Fourier Features for bounded datasets in
constant dimension

» tight bounds on leverage score function for bounded
datasets in any constant dimension

Subspace embeddings with poly(d) dependence? Tight
bounds for worst case datasets? Does Rahimi-Recht work on
‘typical’ datasets? Other kernels?

Thank you!
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