Parameterized Streaming Algorithms

Rajesh Chitnis

Workshop on Data Summarization
22nd March 2018
Parameterized Streaming Algorithms

Rajesh Chitnis

Workshop on Data Summarization
22nd March 2018

THE UNIVERSITY OF WARWICK
Outline of Talk
Outline of Talk

- Streaming Algorithms
Outline of Talk

- Streaming Algorithms
- Parameterized Algorithms
Outline of Talk

- Streaming Algorithms
- Parameterized Algorithms
- Parameterized Streaming Algorithms
Outline of Talk

- Streaming Algorithms
- Parameterized Algorithms
- Parameterized Streaming Algorithms
The Big Data Challenge

We have now collected 250 terabytes of data about our customers and the software has analyzed the data.

Great! Big Data! What does the software tell us?

It says we have 250 terabytes of data.

View more social media cartoons at www.socmedsean.com
Streaming algorithms

BIG graphs

- Social networks: Google+, Facebook, and Twitter
 - 10^{9} nodes
- Biological networks: Brain connectome
 - 10^{9} nodes
- Computer networks: Web graph
 - 2^{32} nodes
- Road networks: USA map in Google Maps
 - 10^8 intersection nodes
Streaming algorithms

BIG graphs

Social networks:
Google+, Facebook and Twitter

- 10^9 nodes
Streaming algorithms

BIG graphs

Social networks: Google+, Facebook and Twitter
 ▶ 10^9 nodes

Biological networks: Brain connectome
 ▶ 10^9 nodes
Streaming algorithms

BIG graphs

- Social networks: Google+, Facebook and Twitter
 - 10^9 nodes
- Biological networks: Brain connectome
 - 10^9 nodes
- Computer networks: Web graph
 - 2^{32} nodes

Road networks: USA map in Google Maps
- 10^8 intersection nodes
Streaming algorithms

BIG graphs

Social networks: Google+, Facebook and Twitter
- 10^9 nodes

Biological networks: Brain connectome
- 10^9 nodes

Computer networks: Web graph
- 2^{32} nodes

Road networks: USA map in Google Maps
- 10^8 intersection nodes
Streaming algorithms
... on graphs

▶ Model

- Vertex set V is known
- Edges arrive one-by-one
- Cannot store all the edges
- Cannot control which order edges arrive in
- More general model also allows edges to be deleted
- Still want to solve our favorite problems
- Max Matching (MM)
- Min Vertex Cover (VC)

Easy upper bound for space is $O(n^2)$
Finding a min vertex cover has $\Omega(n^2)$ lower bound
Reduction from Index
Essentially need to have stored all edges
Streaming algorithms
... on graphs

▶ Model
 ▶ Vertex set V is known
 ▶ Edges arrive one-by-one
 ▶ Cannot store all the edges
Streaming algorithms
... on graphs

- **Model**
 - Vertex set V is known
 - Edges arrive one-by-one
 - Cannot store all the edges

- **Cannot control which order edges arrive in**
 - More general model also allows edges to be deleted

- Easy upper bound for space is $O(n^2)$
- Finding a min vertex cover has $\Omega(n^2)$ lower bound
- Reduction from Index
 - Essentially need to have stored all edges
Streaming algorithms

... on graphs

- **Model**
 - Vertex set V is known
 - Edges arrive one-by-one
 - Cannot store all the edges
- Cannot control which order edges arrive in
 - More general model also allows edges to be deleted
- Still want to solve our favorite problems
Streaming algorithms

... on graphs

- **Model**
 - Vertex set V is known
 - Edges arrive one-by-one
 - Cannot store all the edges

- **Cannot control which order edges arrive in**
 - More general model also allows edges to be deleted

- **Still want to solve our favorite problems**
 - Max Matching (MM)
 - Min Vertex Cover (VC)
 -

Easy upper bound for space is $O(n^2)$

Finding a min vertex cover has $\Omega(n^2)$ lower bound

Reduction from Index

Essentially need to have stored all edges
Streaming algorithms

... on graphs

- Model
 - Vertex set V is known
 - Edges arrive one-by-one
 - Cannot store all the edges

- Cannot control which order edges arrive in
 - More general model also allows edges to be deleted

- Still want to solve our favorite problems
 - Max Matching (MM)
 - Min Vertex Cover (VC)
 -

- Easy upper bound for space is $O(n^2)$
- Finding a min vertex cover has $\Omega(n^2)$ lower bound
Streaming algorithms

... on graphs

- **Model**
 - Vertex set V is known
 - Edges arrive one-by-one
 - Cannot store all the edges

- Cannot control which order edges arrive in
 - More general model also allows edges to be deleted

- Still want to solve our favorite problems
 - Max Matching (MM)
 - Min Vertex Cover (VC)
 -

- Easy upper bound for space is $O(n^2)$
- Finding a min vertex cover has $\Omega(n^2)$ lower bound
 - Reduction from INDEX
 - Essentially need to have stored all edges
Outline of Talk

- Streaming Algorithms
- Parameterized Algorithms
- Parameterized Streaming Algorithms
Why, and what are parameterized algorithms?

Potential drawback of Classical Complexity?

- Classical complexity measures the running time of an algorithm as a function of the input size alone.
Why, and what are parameterized algorithms?

Potential drawback of Classical Complexity?

- Classical complexity measures the running time of an algorithm as a function of the input size alone.
 - Maximum Matching can be solved in $O(m\sqrt{n})$ time

Independent Set
- Input: An undirected graph $G = (V, E)$
- Output: Find a set $S \subseteq V$ of maximum size such that no two vertices of S form an edge.

Vertex Cover
- Input: An undirected graph $G = (V, E)$
- Output: Find a set $X \subseteq V$ of minimum size such that X intersects every edge.

S is an independent set if and only if $V \setminus S$ is a vertex cover.

Hence, the classical complexity of Independent Set and Vertex Cover is the same!

Any $f(n)$ algorithm for one problem also works for the other.
Why, and what are parameterized algorithms?

Potential drawback of Classical Complexity?

- Classical complexity measures the running time of an algorithm as a function of the input size alone.
 - Maximum Matching can be solved in $O(m\sqrt{n})$ time

- Consider the problems of **Independent Set** and **Vertex Cover**.
Why, and what are parameterized algorithms?
Potential drawback of Classical Complexity?

▶ Classical complexity measures the running time of an algorithm as a function of the input size alone.
 ▶ Maximum Matching can be solved in $O(m\sqrt{n})$ time

▶ Consider the problems of **Independent Set** and **Vertex Cover**.

Independent Set

Input: An undirected graph $G = (V, E)$

Output: Find a set $S \subseteq V$ of maximum size such that no two vertices of S form an edge.

Vertex Cover

Input: An undirected graph $G = (V, E)$

Output: Find a set $X \subseteq V$ of minimum size such that X intersects every edge.
Why, and what are parameterized algorithms?
Potential drawback of Classical Complexity?

- Classical complexity measures the running time of an algorithm as a function of the input size alone.
 - Maximum Matching can be solved in $O(m\sqrt{n})$ time

- Consider the problems of **Independent Set** and **Vertex Cover**.

 Independent Set

 Input: An undirected graph $G = (V, E)$

 Output: Find a set $S \subseteq V$ of maximum size such that no two vertices of S form an edge.

 Vertex Cover

 Input: An undirected graph $G = (V, E)$

 Output: Find a set $X \subseteq V$ of minimum size such that X intersects every edge.

- S is an independent set if and only if $V \setminus S$ is a vertex cover
Why, and what are parameterized algorithms?

Potential drawback of Classical Complexity?

- Classical complexity measures the running time of an algorithm as a function of the input size alone.
 - Maximum Matching can be solved in $O(m\sqrt{n})$ time

- Consider the problems of **Independent Set** and **Vertex Cover**.

Independent Set
Input: An undirected graph $G = (V, E)$
Output: Find a set $S \subseteq V$ of maximum size such that no two vertices of S form an edge.

Vertex Cover
Input: An undirected graph $G = (V, E)$
Output: Find a set $X \subseteq V$ of minimum size such that X intersects every edge.

- S is an independent set if and only if $V \setminus S$ is a vertex cover
- Hence, the classical complexity of **Independent Set** and **Vertex Cover** is the same!
Why, and what are parameterized algorithms?

Potential drawback of Classical Complexity?

- Classical complexity measures the running time of an algorithm as a function of the input size alone.
 - Maximum Matching can be solved in $O(m\sqrt{n})$ time

- Consider the problems of **Independent Set** and **Vertex Cover**.

Independent Set

Input: An undirected graph $G = (V, E)$

Output: Find a set $S \subseteq V$ of maximum size such that no two vertices of S form an edge.

Vertex Cover

Input: An undirected graph $G = (V, E)$

Output: Find a set $X \subseteq V$ of minimum size such that X intersects every edge.

- S is an independent set if and only if $V \setminus S$ is a vertex cover

- Hence, the classical complexity of **Independent Set** and **Vertex Cover** is the same!
 - Any $f(n)$ algorithm for one problem also works for the other.
Why, and what are parameterized algorithms?

Adding a parameter

- In the classical Vertex Cover problem, the goal is to find a minimum independent set.
Why, and what are parameterized algorithms?

Adding a parameter

- In the classical **Vertex Cover** problem, the goal is to find a minimum independent set.
- In the parameterized **Vertex Cover** problem, given a parameter k, we only want to know if G has a vertex cover of size at most k or not.
Why, and what are parameterized algorithms?

Adding a parameter

- In the classical Vertex Cover problem, the goal is to find a minimum independent set.
- In the parameterized Vertex Cover problem, given a parameter k, we only want to know if G has a vertex cover of size at most k or not.
- The goal is to develop fast algorithms when k is small, even if the input size n is large.
Why, and what are parameterized algorithms?

Adding a parameter

- In the classical **Vertex Cover** problem, the goal is to find a **minimum** independent set.
- In the parameterized **Vertex Cover** problem, given a parameter k, we only want to know if G has a vertex cover of size at most k or not.
- The goal is to develop **fast** algorithms when k is small, even if the input size n is large.

Definition: A parameterized problem with parameter k and input size n is said to be **fixed-parameter tractable (FPT)** if it can be solved in time $f(k) \cdot n^{O(1)}$, for some function f.
Why, and what are parameterized algorithms?

Parameterized **Vertex Cover** vs **Independent Set**

k-Vertex Cover

Input: An undirected graph \(G = (V, E) \)

Output: Does there exist a set \(X \subseteq V \) of size \(\leq k \) such that \(X \) intersects every edge.

k-Independent Set

Input: An undirected graph \(G = (V, E) \)

Output: Does there exist a set \(S \subseteq V \) of size \(\geq k \) such that no two vertices of \(S \) form an edge.
Why, and what are parameterized algorithms?

Parameterized Vertex Cover vs Independent Set

k-Vertex Cover

Input: An undirected graph $G = (V, E)$

Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.

k-Independent Set

Input: An undirected graph $G = (V, E)$

Output: Does there exist a set $S \subseteq V$ of size $\geq k$ such that no two vertices of S form an edge.

- Pick any edge uv, and branch on choosing either u or v
Why, and what are parameterized algorithms?

Parameterized **Vertex Cover vs Independent Set**

k-**Vertex Cover**
- Input: An undirected graph $G = (V, E)$
- Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.

k-**Independent Set**
- Input: An undirected graph $G = (V, E)$
- Output: Does there exist a set $S \subseteq V$ of size $\geq k$ such that no two vertices of S form an edge.

- Pick any edge uv, and branch on choosing either u or v
- Binary search tree of depth k
Why, and what are parameterized algorithms?

Parameterized **Vertex Cover vs Independent Set**

k-Vertex Cover
Input: An undirected graph $G = (V, E)$
Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.

k-Independent Set
Input: An undirected graph $G = (V, E)$
Output: Does there exist a set $S \subseteq V$ of size $\geq k$ such that no two vertices of S form an edge.

- Pick any edge uv, and branch on choosing either u or v
- Binary search tree of depth k
- $2^k \cdot n^{O(1)}$ algorithm

Thus, Vertex Cover and Independent Set are very different with respect to parameterized complexity. Although they were equivalent with respect to classical complexity, this notion of parameterized (time) complexity actually does give us some insight....

$n^{O(1)} = \Theta(n)$ is trivial

No $f(k) \cdot n^{o(k)}$ algorithm for any f (under ETH)

Thus, Vertex Cover and Independent Set are very different with respect to parameterized complexity
Why, and what are parameterized algorithms?

Parameterized **Vertex Cover vs Independent Set**

k-Vertex Cover
Input: An undirected graph $G = (V, E)$
Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.

k-Independent Set
Input: An undirected graph $G = (V, E)$
Output: Does there exist a set $S \subseteq V$ of size $\geq k$ such that no two vertices of S form an edge.

- Pick any edge uv, and branch on choosing either u or v
- Binary search tree of depth k
- $2^k \cdot n^{O(1)}$ algorithm

- $\binom{n}{k} = n^{O(k)}$ is trivial
Why, and what are parameterized algorithms?

Parameterized Vertex Cover vs Independent Set

\[k\text{-Vertex Cover} \]
Input: An undirected graph \(G = (V, E) \)
Output: Does there exist a set \(X \subseteq V \) of size \(\leq k \) such that \(X \) intersects every edge.

\[k\text{-Independent Set} \]
Input: An undirected graph \(G = (V, E) \)
Output: Does there exist a set \(S \subseteq V \) of size \(\geq k \) such that no two vertices of \(S \) form an edge.

- Pick any edge \(uv \), and branch on choosing either \(u \) or \(v \)
- Binary search tree of depth \(k \)
- \(2^k \cdot n^{O(1)} \) algorithm

\(\binom{n}{k} = n^{O(k)} \) is trivial
No \(f(k) \cdot n^{o(k)} \) algorithm for any \(f \) (under ETH)
Why, and what are parameterized algorithms?

Parameterized **Vertex Cover vs Independent Set**

k-Vertex Cover
Input: An undirected graph $G = (V, E)$
Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.

- Pick any edge uv, and branch on choosing either u or v
- Binary search tree of depth k
- $2^k \cdot n^{O(1)}$ algorithm

k-Independent Set
Input: An undirected graph $G = (V, E)$
Output: Does there exist a set $S \subseteq V$ of size $\geq k$ such that no two vertices of S form an edge.

- $(\binom{n}{k}) = n^{O(k)}$ is trivial
- No $f(k) \cdot n^{o(k)}$ algorithm for any f (under ETH)

Thus, **Vertex Cover and Independent Set** are **very different** with respect to parameterized complexity.
Why, and what are parameterized algorithms?

Parameterized **Vertex Cover** vs **Independent Set**

k-Vertex Cover

Input: An undirected graph $G = (V, E)$

Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.

- Pick any edge uv, and branch on choosing either u or v
- Binary search tree of depth k
- $2^k \cdot n^{O(1)}$ algorithm

k-Independent Set

Input: An undirected graph $G = (V, E)$

Output: Does there exist a set $S \subseteq V$ of size $\geq k$ such that no two vertices of S form an edge.

- $(\binom{n}{k}) = n^{O(k)}$ is trivial
- No $f(k) \cdot n^{o(k)}$ algorithm for any f (under ETH)

Thus, **Vertex Cover** and **Independent Set** are very different with respect to parameterized complexity

- Although they were equivalent with respect to classical complexity
Why, and what are parameterized algorithms?

Parameterized **Vertex Cover** vs **Independent Set**

k-**Vertex Cover**

Input: An undirected graph $G = (V, E)$

Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.

- Pick any edge uv, and branch on choosing either u or v
- Binary search tree of depth k
- $2^k \cdot n^{O(1)}$ algorithm

k-**Independent Set**

Input: An undirected graph $G = (V, E)$

Output: Does there exist a set $S \subseteq V$ of size $\geq k$ such that no two vertices of S form an edge.

- $(\binom{n}{k}) = n^{O(k)}$ is trivial
- No $f(k) \cdot n^{o(k)}$ algorithm for any f (under ETH)

Thus, **Vertex Cover** and **Independent Set** are very different with respect to parameterized complexity

- Although they were equivalent with respect to classical complexity

- So this notion of parameterized (time) complexity actually does give us some insight
The complexity classes of parameterized complexity are:

\[\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \ldots \subseteq \text{W}[i] \subseteq \ldots \]
The complexity classes of parameterized complexity are:

\[\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \ldots \subseteq \text{W}[i] \subseteq \ldots \]

- FPT: Solvable in \(f(k) \cdot n^{O(1)} \) time for some function \(f \)
Parameterized Algorithms
Complexity Classes

- The complexity classes of parameterized complexity are:

$$\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \ldots \subseteq \text{W}[i] \subseteq \ldots$$

- FPT: Solvable in $f(k) \cdot n^{O(1)}$ time for some function f
 - The “P” of the parameterized world
Parameterized Algorithms

Complexity Classes

- The complexity classes of parameterized complexity are:

\[
\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \ldots \subseteq \text{W}[i] \subseteq \ldots
\]

- **FPT**: Solvable in \(f(k) \cdot n^{O(1)} \) time for some function \(f \)
 - The “P” of the parameterized world

- **W[i]-hard**: Do not expect \(f(k) \cdot n^{O(1)} \) algorithms for any \(f \)
The complexity classes of parameterized complexity are:

\[\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \ldots \subseteq \text{W}[i] \subseteq \ldots \]

- **FPT**: Solvable in \(f(k) \cdot n^{O(1)} \) time for some function \(f \)
 - The “P” of the parameterized world

- **W[i]-hard**: Do not expect \(f(k) \cdot n^{O(1)} \) algorithms for any \(f \)
 - The “NP-hard” of the parameterized world
Parameterized Algorithms

Complexity Classes

- The complexity classes of parameterized complexity are:

 \[\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \ldots \subseteq \text{W}[i] \subseteq \ldots \]

- **FPT**: Solvable in \(f(k) \cdot n^{O(1)} \) time for some function \(f \)
 - The “P” of the parameterized world

- **W[i]-hard**: Do not expect \(f(k) \cdot n^{O(1)} \) algorithms for any \(f \)
 - The “NP-hard” of the parameterized world
 - The classes \(W[i] \) have technical definitions which we skip here
Parameterized Algorithms

Complexity Classes

- The complexity classes of parameterized complexity are:

\[\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \ldots \subseteq \text{W}[i] \subseteq \ldots \]

- **FPT**: Solvable in \(f(k) \cdot n^{O(1)} \) time for some function \(f \)
 - The “P” of the parameterized world

- **W[i]-hard**: Do not expect \(f(k) \cdot n^{O(1)} \) algorithms for any \(f \)
 - The “NP-hard” of the parameterized world
 - The classes \(W[i] \) have technical definitions which we skip here
 - Clique is an example of a \(W[1] \)-hard problem
The complexity classes of parameterized complexity are:

\[\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \ldots \subseteq \text{W}[i] \subseteq \ldots \]

- **FPT**: Solvable in \(f(k) \cdot n^{O(1)} \) time for some function \(f \)
 - The “P” of the parameterized world

- **W\([i]\)-hard**: Do not expect \(f(k) \cdot n^{O(1)} \) algorithms for any \(f \)
 - The “NP-hard” of the parameterized world
 - The classes \(W[i] \) have technical definitions which we skip here
 - Clique is an example of a \(W[1] \)-hard problem
 - Set Cover is an example of a \(W[2] \)-hard problem
Parameterized Algorithms

Kernels

- Different from all the kernels you’ve heard before in this workshop!
Parameterized Algorithms

Kernels

- Different from all the kernels you’ve heard before in this workshop!
- Kernel is the small, essential part of the big, hard input
Parameterized Algorithms

Kernels

- Different from all the kernels you’ve heard before in this workshop!
- Kernel is the small, essential part of the big, hard input
Parameterized Algorithms

Kernels

- Different from all the kernels you’ve heard before in this workshop!
- Kernel is the **small, essential** part of the big, hard input
Kernelization is a formal way of preprocessing the input graph.
Kernelization is a formal way of preprocessing the input graph.

Consider an instance \((G, k)\) of \(k\)-VC.

Kernelization is a formal way of preprocessing the input graph.
Consider an instance \((G, k)\) of \(k\)-VC.
Parameterized Algorithms

Kernels

- Kernelization is a formal way of preprocessing the input graph
- Consider an instance \((G, k)\) of \(k\)-VC
- Can we build a new graph \((G', k')\) in time \(n^{O(1)}\) such that

\[
\begin{align*}
|G'| &= g(k) \\
\end{align*}
\]

\[
\begin{align*}
k' &= h(k) \\
\end{align*}
\]

\((G, k)\) and \((G', k')\) are equivalent

Such a graph \(G'\) is called as a \(g(k)\)-sized kernel for \(k\)-VC

Observation:

- Any vertex of deg \(> k\) has to be part of every VC of size \(\leq k\)
- Otherwise we need to include all its neighbors into the VC!

Consider the following kernel:

- Find a vertex of degree \(> k\). Add it to VC, and delete from graph.
- Reduce \(k\) by 1
- Repeat

Finally, max degree of resulting graph \(G'\) becomes \(\leq k\)

Observation:

- If \(|E'(G)| > k^2\), then original instance \((G, k)\) of \(k\)-VC was NO
Kernelization is a formal way of preprocessing the input graph. Consider an instance \((G, k)\) of \(k\)-VC. Can we build a new graph \((G', k')\) in time \(n^{O(1)}\) such that:

- \(|G'| = g(k)|
- \(k' = h(k)\)
- \((G, k)\) and \((G', k')\) are equivalent

Observation: Any vertex of degree \(> k\) has to be part of every VC of size \(\leq k\). Otherwise, we need to include all its neighbors into the VC!

Consider the following kernel:

- Find a vertex of degree \(> k\). Add it to VC, and delete from graph.
- Reduce \(k\) by 1
- Repeat

Finally, the max degree of the resulting graph \(G'\) becomes \(\leq k\).

Observation: If \(|E'(G)| > k^2\), then the original instance \((G, k)\) of \(k\)-VC was NO.
Kernelization is a formal way of preprocessing the input graph. Consider an instance \((G, k)\) of \(k\)-VC. Can we build a new graph \((G', k')\) in time \(n^{O(1)}\) such that:
- \(|G'| = g(k)\)
- \(k' = h(k)\)
- \((G, k)\) and \((G', k')\) are equivalent

Such a graph \(G'\) is called as a \(g(k)\)-sized kernel for \(k\)-VC.
Kernelization is a formal way of preprocessing the input graph

Consider an instance \((G, k)\) of \(k\)-VC

Can we build a new graph \((G', k')\) in time \(n^{O(1)}\) such that:
- \(|G'| = g(k)\)
- \(k' = h(k)\)
- \((G, k)\) and \((G', k')\) are equivalent

Such a graph \(G'\) is called as a \(g(k)\)-sized kernel for \(k\)-VC

Observation: Any vertex of \(\text{deg} > k\) has to be part of every VC of size \(\leq k\)
Parameterized Algorithms

Kernels

- Kernelization is a formal way of preprocessing the input graph
- Consider an instance \((G, k)\) of \(k\)-VC
- Can we build a new graph \((G', k')\) in time \(n^{O(1)}\) such that
 - \(|G'| = g(k)\)
 - \(k' = h(k)\)
 - \((G, k)\) and \((G', k')\) are equivalent
- Such a graph \(G'\) is called as a \(g(k)\)-sized kernel for \(k\)-VC
- Observation: Any vertex of deg \(> k\) has to be part of every VC of size \(\leq k\)
 - Otherwise we need to include all its neighbors into the VC!
Parameterized Algorithms

Kernels

- Kernelization is a formal way of preprocessing the input graph
- Consider an instance \((G, k)\) of \(k\)-VC
- Can we build a new graph \((G', k')\) in time \(n^{O(1)}\) such that
 - \(|G'| = g(k)\)
 - \(k' = h(k)\)
 - \((G, k)\) and \((G', k')\) are equivalent
- Such a graph \(G'\) is called as a \(g(k)\)-sized kernel for \(k\)-VC
- Observation: Any vertex of deg > \(k\) has to be part of every VC of size \(\leq k\)
 - Otherwise we need to include all its neighbors into the VC!
- Consider the following kernel”
Kernelization is a formal way of preprocessing the input graph
Consider an instance \((G, k)\) of \(k\)-VC
Can we build a new graph \((G', k')\) in time \(n^{O(1)}\) such that
- \(|G'| = g(k)\)
- \(k' = h(k)\)
- \((G, k)\) and \((G', k')\) are equivalent
Such a graph \(G'\) is called as a \(g(k)\)-sized kernel for \(k\)-VC
Observation: Any vertex of degree \(> k\) has to be part of every VC of size \(\leq k\)
- Otherwise we need to include all its neighbors into the VC!
Consider the following kernel”
- Find a vertex of degree \(> k\). Add it to VC, and delete from graph.
- Reduce \(k\) by 1
- Repeat
Parameterized Algorithms

Kernels

- Kernelization is a formal way of preprocessing the input graph.
- Consider an instance \((G, k)\) of \(k\)-VC.
- Can we build a new graph \((G', k')\) in time \(n^{O(1)}\) such that
 - \(|G'| = g(k)\)
 - \(k' = h(k)\)
 - \((G, k)\) and \((G', k')\) are equivalent.
- Such a graph \(G'\) is called as a \(g(k)\)-sized kernel for \(k\)-VC.
- Observation: Any vertex of deg > \(k\) has to be part of every VC of size \(\leq k\).
 - Otherwise we need to include all its neighbors into the VC!
- Consider the following kernel:
 - Find a vertex of degree > \(k\). Add it to VC, and delete from graph.
 - Reduce \(k\) by 1.
 - Repeat.
- Finally max degree of resulting graph \(G'\) becomes \(\leq k\).
Parameterized Algorithms

Kernels

- Kernelization is a formal way of preprocessing the input graph
- Consider an instance \((G, k)\) of \(k\)-VC
- Can we build a new graph \((G', k')\) in time \(n^{O(1)}\) such that
 - \(|G'| = g(k)\)
 - \(k' = h(k)\)
 - \((G, k)\) and \((G', k')\) are equivalent
- Such a graph \(G'\) is called as a \(g(k)\)-sized kernel for \(k\)-VC
- **Observation:** Any vertex of deg > \(k\) has to be part of every VC of size \(\leq k\)
 - Otherwise we need to include all its neighbors into the VC!
- Consider the following kernel”
 - Find a vertex of degree > \(k\). Add it to VC, and delete from graph.
 - Reduce \(k\) by 1
 - Repeat
- Finally max degree of resulting graph \(G'\) becomes \(\leq k\)
- **Observation:** If \(|E'(G)| > k^2\), then original instance \((G, k)\) of \(k\)-VC was NO
Parameterized Algorithms

Kernels

- Kernelization is a formal way of preprocessing the input graph
- Consider an instance \((G, k)\) of \(k\)-VC
- Can we build a new graph \((G', k')\) in time \(n^{O(1)}\) such that
 - \(|G'| = g(k)\)
 - \(k' = h(k)\)
 - \((G, k)\) and \((G', k')\) are equivalent
- Such a graph \(G'\) is called as a \(g(k)\)-sized kernel for \(k\)-VC
- Observation: Any vertex of \(deg > k\) has to be part of every VC of size \(\leq k\)
 - Otherwise we need to include all its neighbors into the VC!
- Consider the following kernel
 - Find a vertex of degree \(> k\). Add it to VC, and delete from graph.
 - Reduce \(k\) by 1
 - Repeat
- Finally max degree of resulting graph \(G'\) becomes \(\leq k\)
- Observation: If \(|E'(G)| > k^2\), then original instance \((G, k)\) of \(k\)-VC was NO
Parameterized Algorithms

Kernel ⇔ FPT

Suppose we have $g(k)$-sized kernel

$nO(1) + \exp(g(k)) = r(k) \cdot nO(1)$

FPT ⇒ Kernel

Suppose we have $f(k) \cdot n^c$ algorithm

Run the algorithm for n^c+2 time

If it actually terminates, we have trivial kernel

Otherwise $f(k) \cdot n^c > n^c+2 \Rightarrow f(k) > n^2$, and whole graph is $f(k)$-kernel
Parameterized Algorithms

Kernel ⇔ FPT

- Kernel ⇒ FPT
Kernel \Leftrightarrow FPT

- Kernel \Rightarrow FPT
 - Suppose we have $g(k)$-sized kernel
Kernel \Leftrightarrow FPT

- **Kernel \Rightarrow FPT**
 - Suppose we have $g(k)$-sized kernel
 - $n^{O(1)} + \exp(g(k)) = r(k) \cdot n^{O(1)}$
Parameterized Algorithms

Kernel ⇔ FPT

- Kernel ⇒ FPT
 - Suppose we have \(g(k) \)-sized kernel
 - \(n^{O(1)} + \exp(g(k)) = r(k) \cdot n^{O(1)} \)

- FPT ⇒ Kernel
Parameterized Algorithms

Kernel \iff FPT

- Kernel \Rightarrow FPT
 - Suppose we have $g(k)$-sized kernel
 - $n^{O(1)} + \exp(g(k)) = r(k) \cdot n^{O(1)}$

- FPT \Rightarrow Kernel
 - Suppose we have $f(k) \cdot n^c$ algorithm
Parameterized Algorithms

Kernel ⇔ FPT

- **Kernel ⇒ FPT**
 - Suppose we have $g(k)$-sized kernel
 - $n^{O(1)} + \exp(g(k)) = r(k) \cdot n^{O(1)}$

- **FPT ⇒ Kernel**
 - Suppose we have $f(k) \cdot n^c$ algorithm
 - Run the algorithm for n^{c+2} time
Parameterized Algorithms

Kernel ⇔ FPT

- **Kernel ⇒ FPT**
 - Suppose we have $g(k)$-sized kernel
 - $n^{O(1)} + \exp(g(k)) = r(k) \cdot n^{O(1)}$

- **FPT ⇒ Kernel**
 - Suppose we have $f(k) \cdot n^c$ algorithm
 - Run the algorithm for n^{c+2} time
 - If it actually terminates, we have trivial kernel
Parameterized Algorithms

Kernel ⇔ FPT

Kernel ⇒ FPT
 - Suppose we have $g(k)$-sized kernel
 - $n^{O(1)} + \exp(g(k)) = r(k) \cdot n^{O(1)}$

FPT ⇒ Kernel
 - Suppose we have $f(k) \cdot n^c$ algorithm
 - Run the algorithm for n^{c+2} time
 - If it actually terminates, we have trivial kernel
 - Otherwise $f(k) \cdot n^c > n^{c+2} \Rightarrow f(k) > n^2$, and whole graph is $f(k)$-kernel
Kernel \equiv FPT

Kernel \Rightarrow FPT

- Suppose we have $g(k)$-sized kernel
- $n^{O(1)} + \exp(g(k)) = r(k) \cdot n^{O(1)}$

FPT \Rightarrow Kernel

- Suppose we have $f(k) \cdot n^c$ algorithm
- Run the algorithm for n^{c+2} time
- If it actually terminates, we have trivial kernel
- Otherwise $f(k) \cdot n^c > n^{c+2} \Rightarrow f(k) > n^2$, and whole graph is $f(k)$-kernel
Outline of Talk

- Streaming Algorithms
- Parameterized Algorithms
- Parameterized Streaming Algorithms
Parameterized Streaming Algorithms

How about we introduce some parameters?

What if we try to design streaming algorithms for the parameterized versions of the problem, where the space is a function of both n and k (the solution size)?

k-Vertex Cover

Input: An undirected graph $G = (V, E)$

Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.

- Space requirement?
- $f(k)$
- $f(k) \cdot \text{poly log } n$
- $f(k) \cdot \sqrt{n}$
- $f(k) \cdot n$
- $f(k) \cdot n \cdot \text{poly log } n$
- $O(n^2)$

Play same “game” as before, but for space now instead of time!

Maybe implement kernels in streaming model?
Parameterized Streaming Algorithms

How about we introduce some parameters?

What if we try to design streaming algorithms for the parameterized versions of the problem, where the space is a function of both n and k (the solution size)?
Parameterized Streaming Algorithms

How about we introduce some parameters?

What if we try to design streaming algorithms for the parameterized versions of the problem, where the space is a function of both n and k (the solution size)?

k-Vertex Cover

Input: An undirected graph $G = (V, E)$

Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.
Parameterized Streaming Algorithms

How about we introduce some parameters?

What if we try to design streaming algorithms for the parameterized versions of the problem, where the space is a function of both n and k (the solution size)?

▶ Space requirement?

k-Vertex Cover
Input: An undirected graph $G = (V, E)$
Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.
Parameterized Streaming Algorithms

How about we introduce some parameters?

What if we try to design streaming algorithms for the parameterized versions of the problem, where the space is a function of both n and k (the solution size)?

- **Space requirement?**
 - $f(k)$

k-Vertex Cover

Input: An undirected graph $G = (V, E)$

Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.
Parameterized Streaming Algorithms

How about we introduce some parameters?

What if we try to design streaming algorithms for the parameterized versions of the problem, where the space is a function of both \(n \) and \(k \) (the solution size)?

\begin{itemize}
 \item Space requirement?
 \begin{itemize}
 \item \(f(k) \)
 \item \(f(k) \cdot \text{poly log } n \)
 \end{itemize}
\end{itemize}

\textbf{\texttt{k-Vertex Cover}}

\textbf{Input}: An undirected graph \(G = (V, E) \)

\textbf{Output}: Does there exist a set \(X \subseteq V \) of size \(\leq k \) such that \(X \) intersects every edge.
Parameterized Streaming Algorithms

How about we introduce some parameters?

What if we try to design streaming algorithms for the parameterized versions of the problem, where the space is a function of both n and k (the solution size)?

k-Vertex Cover

Input: An undirected graph $G = (V, E)$

Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.

- Space requirement?
 - $f(k)$
 - $f(k) \cdot \text{poly log } n$
 - $f(k) \cdot \sqrt{n}$
Parameterized Streaming Algorithms

How about we introduce some parameters?

What if we try to design streaming algorithms for the parameterized versions of the problem, where the space is a function of both n and k (the solution size)?

Space requirement?
- $f(k)$
- $f(k) \cdot \text{poly log } n$
- $f(k) \cdot \sqrt{n}$
- $f(k) \cdot n$

k-Vertex Cover

Input: An undirected graph $G = (V, E)$

Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.
Parameterized Streaming Algorithms

How about we introduce some parameters?

What if we try to design streaming algorithms for the parameterized versions of the problem, where the space is a function of both n and k (the solution size)?

k-Vertex Cover

Input: An undirected graph $G = (V, E)$

Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.

- Space requirement?
 - $f(k)$
 - $f(k) \cdot \text{poly log } n$
 - $f(k) \cdot \sqrt{n}$
 - $f(k) \cdot n$
 - $f(k) \cdot n \cdot \text{poly log } n$
Parameterized Streaming Algorithms

How about we introduce some parameters?

What if we try to design streaming algorithms for the parameterized versions of the problem, where the space is a function of both n and k (the solution size)?

$\textbf{k-Vertex Cover}$

\textbf{Input}: An undirected graph $G = (V, E)$

\textbf{Output}: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.

- $f(k)$
- $f(k) \cdot \text{poly log } n$
- $f(k) \cdot \sqrt{n}$
- $f(k) \cdot n$
- $f(k) \cdot n \cdot \text{poly log } n$
- $O(n^2)$
Parameterized Streaming Algorithms

How about we introduce some parameters?

What if we try to design streaming algorithms for the parameterized versions of the problem, where the space is a function of both n and k (the solution size)?

k-Vertex Cover
Input: An undirected graph $G = (V, E)$
Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.

Space requirement?
- $f(k)$
- $f(k) \cdot \text{poly log } n$
- $f(k) \cdot \sqrt{n}$
- $f(k) \cdot n$
- $f(k) \cdot n \cdot \text{poly log } n$
- $O(n^2)$

Play same “game” as before, but for space now instead of time!
Parameterized Streaming Algorithms

How about we introduce some parameters?

What if we try to design streaming algorithms for the parameterized versions of the problem, where the space is a function of both n and k (the solution size)?

\mathbf{k}-\mathbf{V}\textsc{ertex Cover}

Input: An undirected graph $G = (V, E)$

Output: Does there exist a set $X \subseteq V$ of size $\leq k$ such that X intersects every edge.

- Space requirement?
 - $f(k)$
 - $f(k) \cdot \text{poly log } n$
 - $f(k) \cdot \sqrt{n}$
 - $f(k) \cdot n$
 - $f(k) \cdot n \cdot \text{poly log } n$
 - $O(n^2)$

- Play same “game” as before, but for space now instead of time!
- Maybe implement kernels in streaming model?
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Maintain a maximal matching M
 - Let the vertices of the matching be V_M
Parameterized Streaming Algorithms

\(O(k^2)\) space algorithm for \(k\)-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [’15]

- Maintain a **maximal** matching \(M\)
 - Let the vertices of the matching be \(V_M\)
- For every \(x \in V_M\)
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Maintain a maximal matching M
 - Let the vertices of the matching be V_M

- For every $x \in V_M$
 - Keep up to k neighbors (and corresponding edges)
Parameterized Streaming Algorithms

\(O(k^2)\) space algorithm for \(k\)-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [’15]

- Maintain a **maximal** matching \(M\)
 - Let the vertices of the matching be \(V_M\)

- For every \(x \in V_M\)
 - Keep up to \(k\) neighbors (and corresponding edges)
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Maintain a maximal matching M
 - Let the vertices of the matching be V_M
- For every $x \in V_M$
 - Keep up to k neighbors (and corresponding edges)

\[s_1 \rightarrow t_1 \]
\[s_2 \rightarrow t_2 \]
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Maintain a maximal matching M
 - Let the vertices of the matching be V_M

- For every $x \in V_M$
 - Keep upto k neighbors (and corresponding edges)
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

G. Cormode, Hajiaghayi, Monemizadeh ['15]

- Maintain a maximal matching M
 - Let the vertices of the matching be V_M
- For every $x \in V_M$
 - Keep up to k neighbors (and corresponding edges)
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Maintain a maximal matching M
 - Let the vertices of the matching be V_M
- For every $x \in V_M$
 - Keep up to k neighbors (and corresponding edges)
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Maintain a maximal matching M
 - Let the vertices of the matching be V_M
- For every $x \in V_M$
 - Keep up to k neighbors (and corresponding edges)
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Maintain a maximal matching M
 - Let the vertices of the matching be V_M

- For every $x \in V_M$
 - Keep up to k neighbors (and corresponding edges)
Parameterized Streaming Algorithms

\(O(k^2)\) space algorithm for \(k\)-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Maintain a maximal matching \(M\)
 - Let the vertices of the matching be \(V_M\)
- For every \(x \in V_M\)
 - Keep up to \(k\) neighbors (and corresponding edges)
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Maintain a maximal matching M
 - Let the vertices of the matching be V_M
- For every $x \in V_M$
 - Keep up to k neighbors (and corresponding edges)
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Greedily maintain a **maximal matching M**
 - Let the vertices of the matching be V_M
- For every $x \in V_M$
 - Keep up to k neighbors (and corresponding edges)
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Greedily maintain a maximal matching M
 - Let the vertices of the matching be V_M

- For every $x \in V_M$
 - Keep upto k neighbors (and corresponding edges)

- If $p > k$, say NO
 - Hence $p \leq k$
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Greedily maintain a **maximal** matching M
 - Let the vertices of the matching be V_M

- For every $x \in V_M$
 - Keep up to k neighbors (and corresponding edges)

- If $p > k$, say NO
 - Hence $p \leq k$

- Let G_M be the graph that we store

\[VC(G) \leq k \iff VC(G_M) \leq k \]

Hence, it is safe to only store the smaller graph G_M

Idea: Any vertex of degree $p > k$ must be in every VC of size $\leq k$; otherwise we need to choose all its neighbors in the VC

Space required is $2p \cdot (k+1) = O(k^2)$ vertices and edges
Parameterized Streaming Algorithms

\(O(k^2)\) space algorithm for \(k\)-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [’15]

- Greedily maintain a maximal matching \(M\)
 - Let the vertices of the matching be \(V_M\)
- For every \(x \in V_M\)
 - Keep up to \(k\) neighbors (and corresponding edges)
- If \(p > k\), say NO
 - Hence \(p \leq k\)
- Let \(G_M\) be the graph that we store
 - Everything except green edges
Parameterized Streaming Algorithms

\(O(k^2)\) space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Greedily maintain a maximal matching \(M\)
 - Let the vertices of the matching be \(V_M\)
- For every \(x \in V_M\)
 - Keep up to \(k\) neighbors (and corresponding edges)
- If \(p > k\), say NO
 - Hence \(p \leq k\)
- Let \(G_M\) be the graph that we store
 - Everything except green edges
- Lemma: \(VC(G) \leq k \iff VC(G_M) \leq k\)
Parameterized Streaming Algorithms

\(O(k^2) \) space algorithm for \(k \)-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh ['15]

- Greedily maintain a maximal matching \(M \)
 - Let the vertices of the matching be \(V_M \)
- For every \(x \in V_M \)
 - Keep up to \(k \) neighbors (and corresponding edges)
- If \(p > k \), say NO
 - Hence \(p \leq k \)
- Let \(G_M \) be the graph that we store
 - Everything except green edges
- Lemma: \(VC(G) \leq k \iff VC(G_M) \leq k \)
 - Hence, it is safe to only store the smaller graph \(G_M \)
Parameterized Streaming Algorithms

\[O(k^2) \] space algorithm for \(k \)-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [’15]

- **Greedily maintain a maximal matching** \(M \)
 - Let the vertices of the matching be \(V_M \)

- **For every** \(x \in V_M \)
 - Keep up to \(k \) neighbors (and corresponding edges)

- **If** \(p > k \), say NO
 - Hence \(p \leq k \)

- **Let** \(G_M \) **be the graph that we store**
 - Everything except green edges

- **Lemma**: \(VC(G) \leq k \iff VC(G_M) \leq k \)
 - Hence, it is safe to only store the smaller graph \(G_M \)

- **Idea**: Any vertex of degree \(\geq k \) must be in every VC of size \(\leq k \); otherwise we need to choose all its neighbors in the VC
Parameterized Streaming Algorithms

$O(k^2)$ space algorithm for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [‘15]

- Greedily maintain a \textit{maximal} matching M
 - Let the vertices of the matching be V_M

- For every $x \in V_M$
 - Keep up to k neighbors (and corresponding edges)

- If $p > k$, say NO
 - Hence $p \leq k$

- Let G_M be the graph that we store
 - Everything except green edges

- \textbf{Lemma}: $\text{VC}(G) \leq k \iff \text{VC}(G_M) \leq k$
 - Hence, it is \textit{safe} to only store the smaller graph G_M

- \textbf{Idea}: Any vertex of degree $> k$ must be in every VC of size $\leq k$; otherwise we need to choose all its neighbors in the VC

\begin{align*}
\text{Space required is } 2p \cdot (k + 1) &= O(k^2) \text{ vertices and edges}
\end{align*}
Parameterized Streaming Algorithms

$\Omega(k^2)$ lower bound for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]
Parameterized Streaming Algorithms

$\Omega(k^2)$ lower bound for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]

- INDEX problem
Parameterized Streaming Algorithms

$\Omega(k^2)$ lower bound for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]

- **INDEX problem**
 - Alice has $X = (X_1, X_2, \ldots, X_N) \in \{0, 1\}^N$
Parameterized Streaming Algorithms

$\Omega(k^2)$ lower bound for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]

- **INDEX problem**
 - Alice has $X = (X_1, X_2, \ldots, X_N) \in \{0, 1\}^N$
 - Bob has index $i \in [N]$, and wants to find X_i
Parameterized Streaming Algorithms

\(\Omega(k^2) \) lower bound for \(k \)-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]

- **Index problem**
 - Alice has \(X = (X_1, X_2, \ldots, X_N) \in \{0, 1\}^N \)
 - Bob has index \(i \in [N] \), and wants to find \(X_i \)
 - Lower bound of \(\Omega(N) \) bits
Parameterized Streaming Algorithms

$\Omega(k^2)$ lower bound for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]

- **Index** problem
 - Alice has $X = (X_1, X_2, \ldots, X_N) \in \{0, 1\}^N$
 - Bob has index $i \in [N]$, and wants to find X_i
 - Lower bound of $\Omega(N)$ bits

- Set $k = \sqrt{N}$
Parameterized Streaming Algorithms

Ω\(k^2\) lower bound for \(k\)-VC in insertion-only streams
C., Cormode, Hajiaghayi, Monemizadeh [2015]

- **INDEX problem**
 - Alice has \(X = (X_1, X_2, \ldots, X_N) \in \{0, 1\}^N\)
 - Bob has index \(i \in [N]\), and wants to find \(X_i\)
 - Lower bound of \(\Omega(N)\) bits

- Set \(k = \sqrt{N}\)

- Fix a bijection \([k] \times [k] \rightarrow [N]\)
Parameterized Streaming Algorithms

Ω(k^2) lower bound for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]

- **INDEX problem**
 - Alice has $X = (X_1, X_2, \ldots, X_N) \in \{0, 1\}^N$
 - Bob has index $i \in [N]$, and wants to find X_i
 - Lower bound of $\Omega(N)$ bits

- Set $k = \sqrt{N}$
- Fix a bijection $[k] \times [k] \to [N]$
- Introduce $2k$ vertices
 - v_1, v_2, \ldots, v_k
 - w_1, w_2, \ldots, w_k
- For each $(i, j) \in [k] \times [k]$
 - Alice adds an edge $v_i - w_j$ iff $X_{i,j} = 1$
- Let Bob’s index be (i^*, j^*)
- For each $(i, j) \in [k] \times [k]$ such that $i \neq i^*$ and $j \neq j^*$
 - Bob adds two leaves each to v_i and w_j

\[
VC(G) = 2k - 2 \text{ if and only if } X_{i^*, j^*} = 0
\]
Parameterized Streaming Algorithms

$\Omega(k^2)$ lower bound for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]

- INDEX problem
 - Alice has $X = (X_1, X_2, \ldots, X_N) \in \{0, 1\}^N$
 - Bob has index $i \in [N]$, and wants to find X_i
 - Lower bound of $\Omega(N)$ bits

- Set $k = \sqrt{N}$
- Fix a bijection $[k] \times [k] \rightarrow [N]$
- Introduce $2k$ vertices
 - v_1, v_2, \ldots, v_k
 - w_1, w_2, \ldots, w_k
- For each $(i, j) \in [k] \times [k]$
 - Alice adds an edge $v_i - w_j$ iff $X_{i,j} = 1$
- Let Bob’s index be (i^*, j^*)
- For each $(i, j) \in [k] \times [k]$ such that $i \neq i^*$ and $j \neq j^*$
 - Bob adds two leaves each to v_i and w_j

$\text{VC}(G) = 2k - 2$ if and only if $X_{i^*,j^*} = 0$
Parameterized Streaming Algorithms

\[\Omega(k^2) \] lower bound for \(k \)-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]

- **INDEX problem**
 - Alice has \(X = (X_1, X_2, \ldots, X_N) \in \{0, 1\}^N \)
 - Bob has index \(i \in [N] \), and wants to find \(X_i \)
 - Lower bound of \(\Omega(N) \) bits

- Set \(k = \sqrt{N} \)
- Fix a bijection \([k] \times [k] \rightarrow [N]\)
- Introduce \(2k \) vertices
 - \(v_1, v_2, \ldots, v_k \)
 - \(w_1, w_2, \ldots, w_k \)
- For each \((i, j) \in [k] \times [k]\)
 - Alice adds an edge \(v_i - w_j \) iff \(X_{i,j} = 1 \)
- Let Bob’s index be \((i^*, j^*)\)
- For each \((i, j) \in [k] \times [k]\) such that \(i \neq i^* \) and \(j \neq j^* \)
 - Bob adds two leaves each to \(v_i \) and \(w_j \)

\[\text{VC}(G) = 2k - 2 \text{ if and only if } X_{i^*,j^*} = 0 \]
Parameterized Streaming Algorithms

$\Omega(k^2)$ lower bound for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]

- **INDEX problem**
 - Alice has $X = (X_1, X_2, \ldots, X_N) \in \{0, 1\}^N$
 - Bob has index $i \in [N]$, and wants to find X_i
 - Lower bound of $\Omega(N)$ bits

- Set $k = \sqrt{N}$
- Fix a bijection $[k] \times [k] \rightarrow [N]$
- Introduce $2k$ vertices
 - v_1, v_2, \ldots, v_k
 - w_1, w_2, \ldots, w_k
- For each $(i, j) \in [k] \times [k]$
 - Alice adds an edge $v_i - w_j$ iff $X_{i,j} = 1$
- Let Bob’s index be (i^*, j^*)
- For each $(i, j) \in [k] \times [k]$ such that $i \neq i^*$ and $j \neq j^*$
 - Bob adds two leaves each to v_i and w_j

$$\text{VC}(G) = 2k - 2 \text{ if and only if } X_{i^*,j^*} = 0$$
Parameterized Streaming Algorithms

$\Omega(k^2)$ lower bound for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]

- **INDEX problem**
 - Alice has $X = (X_1, X_2, \ldots, X_N) \in \{0, 1\}^N$
 - Bob has index $i \in [N]$, and wants to find X_i
 - Lower bound of $\Omega(N)$ bits

- Set $k = \sqrt{N}$
- Fix a bijection $[k] \times [k] \rightarrow [N]$
- Introduce $2k$ vertices
 - v_1, v_2, \ldots, v_k
 - w_1, w_2, \ldots, w_k
- For each $(i, j) \in [k] \times [k]$
 - Alice adds an edge $v_i - w_j$ iff $X_{i,j} = 1$
- Let Bob’s index be (i^*, j^*)
- For each $(i, j) \in [k] \times [k]$ such that $i \neq i^*$ and $j \neq j^*$
 - Bob adds two leaves each to v_i and w_j

$\text{VC}(G) = 2k - 2$ if and only if $X_{i^*, j^*} = 0$
Parameterized Streaming Algorithms

$\Omega(k^2)$ lower bound for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]

- **INDEX problem**
 - Alice has $X = (X_1, X_2, \ldots, X_N) \in \{0, 1\}^N$
 - Bob has index $i \in [N]$, and wants to find X_i
 - Lower bound of $\Omega(N)$ bits

- Set $k = \sqrt{N}$
- Fix a bijection $[k] \times [k] \rightarrow [N]$
- Introduce $2k$ vertices
 - v_1, v_2, \ldots, v_k
 - w_1, w_2, \ldots, w_k
- For each $(i, j) \in [k] \times [k]$
 - Alice adds an edge $v_i - w_j$ iff $X_{i,j} = 1$
- Let Bob’s index be (i^*, j^*)
- For each $(i, j) \in [k] \times [k]$ such that $i \neq i^*$ and $j \neq j^*$
 - Bob adds two leaves each to v_i and w_j

$$VC(G) = 2k - 2 \text{ if and only if } X_{i^*, j^*} = 0$$
Parameterized Streaming Algorithms

$\Omega(k^2)$ lower bound for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]

- **INDEX problem**
 - Alice has $X = (X_1, X_2, \ldots, X_N) \in \{0, 1\}^N$
 - Bob has index $i \in [N]$, and wants to find X_i
 - Lower bound of $\Omega(N)$ bits

- Set $k = \sqrt{N}$
- Fix a bijection $[k] \times [k] \to [N]$
- Introduce $2k$ vertices
 - v_1, v_2, \ldots, v_k
 - w_1, w_2, \ldots, w_k
- For each $(i, j) \in [k] \times [k]$
 - Alice adds an edge $v_i - w_j$ iff $X_{i,j} = 1$
- Let Bob's index be (i^*, j^*)
- For each $(i, j) \in [k] \times [k]$ such that $i \neq i^*$ and $j \neq j^*$
 - Bob adds two leaves each to v_i and w_j

$\text{VC}(G) = 2k - 2$ if and only if $X_{i^*,j^*} = 0$
Parameterized Streaming Algorithms

Ω(\(k^2\)) lower bound for k-VC in insertion-only streams

C., Cormode, Hajiaghayi, Monemizadeh [2015]

- INDEX problem
 - Alice has \(X = (X_1, X_2, \ldots, X_N)\) \(\in \{0, 1\}^N\)
 - Bob has index \(i \in [N]\), and wants to find \(X_i\)
 - Lower bound of \(\Omega(N)\) bits

- Set \(k = \sqrt{N}\)
- Fix a bijection \([k] \times [k] \rightarrow [N]\)
- Introduce \(2k\) vertices
 - \(v_1, v_2, \ldots, v_k\)
 - \(w_1, w_2, \ldots, w_k\)
- For each \((i, j) \in [k] \times [k]\)
 - Alice adds an edge \(v_i - w_j\) iff \(X_{i,j} = 1\)
- Let Bob’s index be \((i^*, j^*)\)
- For each \((i, j) \in [k] \times [k]\) such that \(i \neq i^*\) and \(j \neq j^*\)
 - Bob adds two leaves each to \(v_i\) and \(w_j\)

\[\text{VC}(G) = 2k - 2 \text{ if and only if } X_{i^*,j^*} = 0\]
Parameterized Streaming algorithms

Can we handle edge-deletions?
Parameterized Streaming algorithms

Can we handle edge-deletions?

- C., Cormode, Hajiaghayi, Monemizadeh ['15]
 - $O(nk \cdot \log^{O(1)} n)$ space algorithm for k-VC in insertion-deletion streams
Parameterized Streaming algorithms

Can we handle edge-deletions?

- C., Cormode, Hajiaghayi, Monemizadeh ['15]
 - $O(nk \cdot \log^{O(1)} n)$ space algorithm for k-VC in insertion-deletion streams

- C., Esfandiari, Cormode, Hajiaghayi, Monemizadeh ['15]
 - Promise: VC is $\leq k$ at every timestamp
Parameterized Streaming algorithms
Can we handle edge-deletions?

- C., Cormode, Hajiaghayi, Monemizadeh ['15]
 - $O(nk \cdot \log^{O(1)} n)$ space algorithm for k-VC in insertion-deletion streams

- C., Esfandiari, Cormode, Hajiaghayi, Monemizadeh ['15]
 - Promise: VC is $\leq k$ at every timestamp
 - $O(k^2 \cdot \log^{O(1)} n)$ space algorithm for k-VC in insertion-deletion streams

- Also works for Maximum Matching
- Generalizes to d-uniform hypergraphs

Sketch on next slide...
Parameterized Streaming algorithms

Can we handle edge-deletions?

- C., Cormode, Hajiaghayi, Monemizadeh ['15]
 - $O(nk \cdot \log^{O(1)} n)$ space algorithm for k-VC in insertion-deletion streams

- C., Esfandiari, Cormode, Hajiaghayi, Monemizadeh ['15]
 - Promise: VC is $\leq k$ at every timestamp
 - $O(k^2 \cdot \log^{O(1)} n)$ space algorithm for k-VC in insertion-deletion streams

- C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]
 - Promise: VC is $\leq k$ at end of stream

- Also works for Maximum Matching
- Generalizes to d-uniform hypergraphs

Sketch on next slide...
Parameterized Streaming algorithms

Can we handle edge-deletions?

- C., Cormode, Hajiaghayi, Monemizadeh ['15]
 - $O(nk \cdot \log^{O(1)} n)$ space algorithm for k-VC in insertion-deletion streams

- C., Esfandiari, Cormode, Hajiaghayi, Monemizadeh ['15]
 - Promise: VC is $\leq k$ at every timestamp
 - $O(k^2 \cdot \log^{O(1)} n)$ space algorithm for k-VC in insertion-deletion streams

- C., Cormode, Esfandiari, Hajiaghayi, Mcgregor, Monemizadeh, Vorotnikova ['16]
 - Promise: VC is $\leq k$ at end of stream
 - $O(k^2 \cdot \log^{O(1)} n)$ space for k-VC in insertion-deletion streams

Also works for Maximum Matching
Generalizes to d-uniform hypergraphs

Sketch on next slide...
Parameterized Streaming algorithms

Can we handle edge-deletions?

- C., Cormode, Hajiaghayi, Monemizadeh ['15]
 - $O(nk \cdot \log^{O(1)} n)$ space algorithm for k-VC in insertion-deletion streams

- C., Esfandiari, Cormode, Hajiaghayi, Monemizadeh ['15]
 - Promise: VC is $\leq k$ at every timestamp
 - $O(k^2 \cdot \log^{O(1)} n)$ space algorithm for k-VC in insertion-deletion streams

- C., Cormode, Esfandiari, Hajiaghayi, Mcgregor, Monemizadeh, Vorotnikova ['16]
 - Promise: VC is $\leq k$ at end of stream
 - $O(k^2 \cdot \log^{O(1)} n)$ space for k-VC in insertion-deletion streams
 - Also works for Maximum Matching
Parameterized Streaming algorithms

Can we handle edge-deletions?

- C., Cormode, Hajiaghayi, Monemizadeh ['15]
 - \(O(nk \cdot \log^{O(1)} n) \) space algorithm for \(k \)-VC in insertion-deletion streams

- C., Esfandiari, Cormode, Hajiaghayi, Monemizadeh ['15]
 - Promise: VC is \(\leq k \) at every timestamp
 - \(O(k^2 \cdot \log^{O(1)} n) \) space algorithm for \(k \)-VC in insertion-deletion streams

- C., Cormode, Esfandiari, Hajiaghayi, Mcgregor, Monemizadeh, Vorotnikova ['16]
 - Promise: VC is \(\leq k \) at end of stream
 - \(O(k^2 \cdot \log^{O(1)} n) \) space for \(k \)-VC in insertion-deletion streams
 - Also works for Maximum Matching
 - Generalizes to \(d \)-uniform hypergraphs
Parameterized Streaming algorithms

Can we handle edge-deletions?

- C., Cormode, Hajiaghayi, Monemizadeh ['15]
 - \(O(nk \cdot \log^{O(1)} n) \) space algorithm for \(k \)-VC in insertion-deletion streams

- C., Esfandiari, Cormode, Hajiaghayi, Monemizadeh ['15]
 - Promise: VC is \(\leq k \) at every timestamp
 - \(O(k^2 \cdot \log^{O(1)} n) \) space algorithm for \(k \)-VC in insertion-deletion streams

- C., Cormode, Esfandiari, Hajiaghayi, Mcgregor, Monemizadeh, Vorotnikova ['16]
 - Promise: VC is \(\leq k \) at end of stream
 - \(O(k^2 \cdot \log^{O(1)} n) \) space for \(k \)-VC in insertion-deletion streams
 - Also works for Maximum Matching
 - Generalizes to \(d \)-uniform hypergraphs
 - Sketch on next slide ...
Parameterized Streaming algorithms

$O(k^2 \cdot \text{poly log } n)$ space algorithm for k-VC in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

- **Promise:** VC $\leq k$ at end of stream
Parameterized Streaming algorithms

\(O(k^2 \cdot \text{poly log } n)\) space algorithm for \(k\)-VC in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

- **Promise:** \(\text{VC} \leq k\) at end of stream
- **Color vertices using** \(O(k)\) colors
 - Pick coloring from a family of pairwise independent hash functions
Parameterized Streaming algorithms

$O(k^2 \cdot \text{poly log } n)$ space algorithm for k-VC in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova [‘16]

- **Promise:** $\text{VC} \leq k$ at end of stream
- Color vertices using $O(k)$ colors
 - Pick coloring from a family of pairwise independent hash functions
- **Forget** edges within a color class
Parameterized Streaming algorithms

\(O(k^2 \cdot \text{poly} \log n)\) space algorithm for \(k\)-VC in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova [’16]

- **Promise:** VC \(\leq k\) at end of stream
- **Color vertices using** \(O(k)\) colors
 - Pick coloring from a family of pairwise independent hash functions
- **Forget** edges within a color class
- **For every pair** of color classes
 - Pick **one** edge u.a.r using \(\ell_0\)-sampler
Parameterized Streaming algorithms

$O(k^2 \cdot \text{poly log } n)$ space algorithm for k-VC in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

- **Promise:** VC $\leq k$ at end of stream
- Color vertices using $O(k)$ colors
 - Pick coloring from a family of pairwise independent hash functions
- Forget edges within a color class
- For every pair of color classes
 - Pick one edge u.a.r using ℓ_0-sampler
- Let G' be resulting graph
Parameterized Streaming algorithms

$O(k^2 \cdot \text{poly log } n)$ space algorithm for k-VC in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

- **Promise**: $\text{VC} \leq k$ at end of stream
- Color vertices using $O(k)$ colors
 - Pick coloring from a family of pairwise independent hash functions
- Forget edges within a color class
- For every pair of color classes
 - Pick one edge u.a.r using ℓ_0-sampler
- Let G' be resulting graph
- With probability $1/2$ it holds that

$\text{MM}(G) = \text{MM}(G')$

$\text{VC}(G) = \text{VC}(G')$

G' is randomized kernel

Space bound

There are $O(k^2)$ pairs of color classes

For each pair of color classes we use a ℓ_0-sampler
Parameterized Streaming algorithms

\(O(k^2 \cdot \text{poly log } n)\) space algorithm for \(k\)-VC in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova [’16]

- **Promise:** \(VC \leq k\) at end of stream
- Color vertices using \(O(k)\) colors
 - Pick coloring from a family of pairwise independent hash functions
- Forget edges within a color class
- For every pair of color classes
 - Pick one edge u.a.r using \(\ell_0\)-sampler
- Let \(G'\) be resulting graph
- With probability \(1/2\) it holds that
 - \(MM(G) = MM(G')\)
 - \(VC(G) = VC(G')\)
- \(G'\) is randomized kernel
Parameterized Streaming algorithms

\(O(k^2 \cdot \text{poly log } n) \) space algorithm for \(k\text{-VC} \) in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

- **Promise**: \(\text{VC} \leq k \) at end of stream
- Color vertices using \(O(k) \) colors
 - Pick coloring from a family of pairwise independent hash functions
- Forget edges within a color class
- For every pair of color classes
 - Pick one edge u.a.r using \(\ell_0 \)-sampler
- Let \(G' \) be resulting graph
- With probability 1/2 it holds that
 - \(MM(G) = MM(G') \)
 - \(VC(G) = VC(G') \)
- \(G' \) is randomized kernel
- Space bound
Parameterized Streaming algorithms

\(O(k^2 \cdot \text{poly log } n)\) space algorithm for \(k\text{-VC}\) in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

- **Promise:** \(\text{VC} \leq k\) at end of stream
- Color vertices using \(O(k)\) colors
 - Pick coloring from a family of pairwise independent hash functions
- Forget edges within a color class
- For every pair of color classes
 - Pick one edge u.a.r using \(\ell_0\)-sampler
- Let \(G'\) be resulting graph
- With probability 1/2 it holds that
 - \(\text{MM}(G) = \text{MM}(G')\)
 - \(\text{VC}(G) = \text{VC}(G')\)
- \(G'\) is randomized kernel
- Space bound
 - There are \(O(k^2)\) pairs of color classes
Parameterized Streaming algorithms

$O(k^2 \cdot \text{poly log } n)$ space algorithm for k-VC in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

- **Promise:** $VC \leq k$ at end of stream
- Color vertices using $O(k)$ colors
 - Pick coloring from a family of pairwise independent hash functions
- Forget edges within a color class
- For every pair of color classes
 - Pick one edge u.a.r using ℓ_0-sampler
- Let G' be resulting graph
- With probability $1/2$ it holds that
 - $MM(G) = MM(G')$
 - $VC(G) = VC(G')$
- G' is randomized kernel
- Space bound
 - There are $O(k^2)$ pairs of color classes
 - For each pair of color classes we use a ℓ_0-sampler
Parameterized Streaming algorithms

\(O(k^2 \cdot \text{poly log } n)\) space algorithm for \(k\)-MM in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

- Two applications in non-parameterized streaming algorithms which use this algorithm as sub-routine
Parameterized Streaming algorithms

$O(k^2 \cdot \text{poly log } n)$ space algorithm for k-MM in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

- Two applications in non-parameterized streaming algorithms which use this algorithm as sub-routine

- $O(n^{1/3})$-approximation for MM in dynamic streams in $O(n \cdot \text{poly log } n)$ space
Parameterized Streaming algorithms

\(O(k^2 \cdot \text{poly log } n)\) space algorithm for \(k\text{-MM}\) in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

- Two applications in non-parameterized streaming algorithms which use this algorithm as sub-routine

- \(O(n^{1/3})\)-approximation for MM in dynamic streams in \(O(n \cdot \text{poly log } n)\) space
 - First sublinear approximation for dynamic streams in semi-streaming model
Parameterized Streaming algorithms

\(O(k^2 \cdot \text{poly log } n) \) space algorithm for \(k\)-MM in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

- Two applications in non-parameterized streaming algorithms which use this algorithm as sub-routine

- \(O(n^{1/3}) \)-approximation for MM in dynamic streams in \(O(n \cdot \text{poly log } n) \) space
 - First sublinear approximation for dynamic streams in semi-streaming model

- \(O(1) \)-approximation for estimating MM size in planar dynamic streams in \(O(n^{4/5}) \) space
Parameterized Streaming algorithms

$O(k^2 \cdot \text{poly log } n)$ space algorithm for k-MM in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

- Two applications in non-parameterized streaming algorithms which use this algorithm as sub-routine

- $O(n^{1/3})$-approximation for MM in dynamic streams in $O(n \cdot \text{poly log } n)$ space
 - First sublinear approximation for dynamic streams in semi-streaming model

- $O(1)$-approximation for estimating MM size in planar dynamic streams in $O(n^{4/5})$ space
 - First sublinear space constant-factor approximation for estimating MM size in planar dynamic streams
Parameterized Streaming algorithms

$O(k^2 \cdot \text{poly log } n)$ space algorithm for k-MM in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

Implemented on some real-world BIG data...
Parameterized Streaming algorithms

\(O(k^2 \cdot \text{poly log } n) \) space algorithm for \(k\)-MM in insertion-deletion streams

C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova ['16]

Implemented on some real-world BIG data...

BigDND: Big Dynamic Network Data

Erik Demaine (MIT) & MohammadTaghi Hajiaghayi (UMD)

Networks are everywhere, and there is an increasing amount of data about networks viewed as graphs: nodes and edges/connections. But this data typically ignores a third key component of networks: time. This repository provides free, big datasets for real-world networks viewed as a dynamic (multi)graph, with two types of temporal data:

1. A timeseries of instantaneous edge events, such as messages sent between people. Many such events can occur between the same pair of nodes.
2. Timestamped edge insertions and edge deletions, such as friending and defriending in a social network. Generally only one such edge can exist at any specific time, but the same edge can be added and deleted multiple times.

Our hope is that these datasets will promote new research into the dynamics of complex networks, improving our understanding of their behavior, and helping the community to experimentally evaluate their big-data algorithms: approximation, fixed-parameter, external-memory, streaming, and network-analysis algorithms.

Help us:

- If you have a dynamic network dataset, email us at dhel (at) csail.mit.edu with a brief description about the data, its format, its license, and how/where to download it. We will link to it with appropriate credit/citation.
- If you have interesting visualizations and/or analysis of these data sets, email us at dhel (at) csail.mit.edu and we will post it with appropriate credit/citation.

http://projects.csail.mit.edu/dnd/
Parameterized Streaming algorithms

Other examples

- Some problems have $\Omega(n)$ lower bound for constant k.
 - Rules out $f(k) \cdot n^{1-\beta}$ space algorithms for any $\beta > 0$.

- k-FVS (Feedback Vertex Set)
 - Is there a set of $\leq k$ vertices whose deletion makes the graph acyclic?
 - $\Omega(n)$ lower bound for $k = 0$.
 - Observation: $FVS \leq k$ implies graph can have $\leq O(k \cdot n)$ edges.

- k-Path
 - Is there a path of length $\geq k$?
 - $\Omega(n)$ lower bound for $k = 3$.
 - Observation: At least nk edges implies existence of k-path.
Parameterized Streaming algorithms

Other examples

- Some problems have $\Omega(n)$ lower bound for constant k
Parameterized Streaming algorithms

Other examples

- Some problems have \(\Omega(n) \) lower bound for constant \(k \)
 - Rules out \(f(k) \cdot n^{1-\beta} \) space algorithms for any \(\beta > 0 \)
Parameterized Streaming algorithms

Other examples

- Some problems have $\Omega(n)$ lower bound for constant k
 - Rules out $f(k) \cdot n^{1-\beta}$ space algorithms for any $\beta > 0$

- k-FVS (Feedback Vertex Set)
Parameterized Streaming algorithms

Other examples

- Some problems have $\Omega(n)$ lower bound for constant k
 - Rules out $f(k) \cdot n^{1-\beta}$ space algorithms for any $\beta > 0$

- k-FVS (Feedback Vertex Set)
 - Is there a set of $\leq k$ vertices whose deletion makes the graph acyclic?
Parameterized Streaming algorithms

Other examples

- Some problems have $\Omega(n)$ lower bound for constant k
 - Rules out $f(k) \cdot n^{1-\beta}$ space algorithms for any $\beta > 0$

- k-FVS (Feedback Vertex Set)
 - Is there a set of $\leq k$ vertices whose deletion makes the graph acyclic?
 - $\Omega(n)$ lower bound for $k = 0$
Parameterized Streaming algorithms

Other examples

- Some problems have $\Omega(n)$ lower bound for constant k
 - Rules out $f(k) \cdot n^{1-\beta}$ space algorithms for any $\beta > 0$

- k-FVS (Feedback Vertex Set)
 - Is there a set of $\leq k$ vertices whose deletion makes the graph acyclic?
 - $\Omega(n)$ lower bound for $k = 0$
 - Observation: $\text{FVS} \leq k$ implies graph can have $\leq O(k \cdot n)$ edges
Parameterized Streaming algorithms

Other examples

- Some problems have $\Omega(n)$ lower bound for constant k
 - Rules out $f(k) \cdot n^{1-\beta}$ space algorithms for any $\beta > 0$

- k-FVS (Feedback Vertex Set)
 - Is there a set of $\leq k$ vertices whose deletion makes the graph acyclic?
 - $\Omega(n)$ lower bound for $k = 0$
 - Observation: $\text{FVS} \leq k$ implies graph can have $\leq O(k \cdot n)$ edges

- k-Path
Parameterized Streaming algorithms

Other examples

- Some problems have $\Omega(n)$ lower bound for constant k
 - Rules out $f(k) \cdot n^{1-\beta}$ space algorithms for any $\beta > 0$

- k-FVS (Feedback Vertex Set)
 - Is there a set of $\leq k$ vertices whose deletion makes the graph acyclic?
 - $\Omega(n)$ lower bound for $k = 0$
 - Observation: FVS $\leq k$ implies graph can have $\leq O(k \cdot n)$ edges

- k-Path
 - Is there a path of length $\geq k$
Parameterized Streaming algorithms

Other examples

- Some problems have $\Omega(n)$ lower bound for constant k
 - Rules out $f(k) \cdot n^{1-\beta}$ space algorithms for any $\beta > 0$

- k-FVS (Feedback Vertex Set)
 - Is there a set of $\leq k$ vertices whose deletion makes the graph acyclic?
 - $\Omega(n)$ lower bound for $k = 0$
 - Observation: FVS $\leq k$ implies graph can have $\leq O(k \cdot n)$ edges

- k-Path
 - Is there a path of length $\geq k$
 - $\Omega(n)$ lower bound for $k = 3$
Parameterized Streaming algorithms

Other examples

- Some problems have $\Omega(n)$ lower bound for constant k
 - Rules out $f(k) \cdot n^{1-\beta}$ space algorithms for any $\beta > 0$

- k-FVS (Feedback Vertex Set)
 - Is there a set of $\leq k$ vertices whose deletion makes the graph acyclic?
 - $\Omega(n)$ lower bound for $k = 0$
 - Observation: FVS $\leq k$ implies graph can have $\leq O(k \cdot n)$ edges

- k-Path
 - Is there a path of length $\geq k$
 - $\Omega(n)$ lower bound for $k = 3$
 - Observation: At least nk edges implies existence of k-path
Looking forward
Looking forward

- I’m not aware of that many results on parameterized streaming
Looking forward

- I’m not aware of that many results on parameterized streaming

- Parameter *does not* have to be size of solution!
Looking forward

- I’m not aware of that many results on parameterized streaming

- Parameter *does not* have to be size of solution!
 - Treewidth
 - Max degree
 - Girth
Looking forward

- I’m not aware of that many results on parameterized streaming

- Parameter does not have to be size of solution!
 - Treewidth
 - Max degree
 - Girth
 -
Looking forward

- I’m not aware of that many results on parameterized streaming

- Parameter **does not** have to be size of solution!
 - Treewidth
 - Max degree
 - Girth
 -

- Lower bounds \Rightarrow birth of new (types of) algorithms
Looking forward

- I’m not aware of that many results on parameterized streaming

- Parameter does not have to be size of solution!
 - Treewidth
 - Max degree
 - Girth
 -

- Lower bounds \Rightarrow birth of new (types of) algorithms

- Let X be a graph problem with an $\Omega(n)$ lower bound
Looking forward

- I’m not aware of that many results on parameterized streaming

- Parameter does not have to be size of solution!
 - Treewidth
 - Max degree
 - Girth
 -

- Lower bounds ⇒ birth of new (types of) algorithms

- Let X be a graph problem with an $\Omega(n)$ lower bound
 - Say can design $f(k) \cdot \log^{O(1)} n$ space algorithm for some parameter k
Looking forward

▶ I’m not aware of that many results on parameterized streaming

▶ Parameter does not have to be size of solution!
 ▶ Treewidth
 ▶ Max degree
 ▶ Girth
 ▶

▶ Lower bounds ⇒ birth of new (types of) algorithms

▶ Let X be a graph problem with an $\Omega(n)$ lower bound
 ▶ Say can design $f(k) \cdot \log^{O(1)} n$ space algorithm for some parameter k
 ▶ This means that the parameter k was a barrier to small-space algorithms
Looking forward

- I’m not aware of that many results on parameterized streaming

- Parameter **does not** have to be size of solution!
 - Treewidth
 - Max degree
 - Girth
 -

- Lower bounds ⇒ birth of new (types of) algorithms

- Let X be a graph problem with an $\Omega(n)$ lower bound
 - Say can design $f(k) \cdot \log^{O(1)} n$ space algorithm for some parameter k
 - This means that the parameter k was a **barrier** to small-space algorithms
 - Helps to pinpoint the reason(s) for intractability!
Looking forward

- I’m not aware of that many results on parameterized streaming

- Parameter *does not* have to be size of solution!
 - Treewidth
 - Max degree
 - Girth
 -

- Lower bounds ⇒ birth of new (types of) algorithms

- Let X be a graph problem with an $\Omega(n)$ lower bound
 - Say can design $f(k) \cdot \log^{O(1)} n$ space algorithm for some parameter k
 - This means that the parameter k was a barrier to small-space algorithms
 - Helps to pinpoint the reason(s) for intractability!

- Choose your favorite (graph) problems and parameters!
Thank You

Questions?