Coronavirus (Covid-19): Latest updates and information
Skip to main content Skip to navigation

Theory and Foundations News

Archive news content can be found here.

Select tags to filter on

Prof. Nasir Rajpoot awarded funding by Cancer Research UK to use machine learning to improve the early detection of oral cancer

Cancer Research UK is funding a study to examine the use of machine learning to assist pathologists and improve the early detection of oral cancer.

We are very excited to work on this project with Dr Khurram and his team at Sheffield. Early detection of cancer is a key focus area of research in our lab and this award by CRUK adds to the portfolio of research at the TIA lab on early detection of cancer.

The pilot project will pave the way towards the development of a tool that can help identify pre-malignant changes in oral dysplasia, crucial for the early detection of oral cancer. Successful completion of this project carries significant potential for saving lives and improving patient healthcare provision. -- Professor Nasir Rajpoot

The research is led by Dr Ali Khurram at the University of Sheffield with Professor Nasir Rajpoot from the University of Warwick as the co-Principal Investigator. Other co-investigators and collaborators include Professor Hisham Mehanna and Dr Paul Navkivell from the University of Birmingham and Dr Jacqueline James from Queen’s University Belfast.

Tue 03 Nov 2020, 10:12 | Tags: Grants Research Applied Computing Artificial Intelligence

WM5G funding awarded to Prof. Hakan Ferhatosmanoglu on machine learning based spatio-temporal forecasting

Warwick's Department of Computer Science has been awarded a new research grant to develop a machine learning solution for dynamic forecasting of available capacity on road networks. The developed software is planned to be integrated within the TfWM's Regional Transport Coordination Centre for adaptive route planning and traffic management mitigation against disruptions, incidents and roadworks.

The “5G Enabled Dynamic Network Capacity Manager” project is in collaboration with commercial partners, Blacc, Immense, one.network, and O2. The team has won the WM5G’s transport competition to leverage 5G networks for near real-time AI based modelling.

Prof. Hakan Ferhatosmanoglu is leading the development of the scalable ML solution to forecast residual capacities in a dynamic spatio-temporal graph. The solution is designed to benefit from high-granular and low-latency data feeds from 5G cellular and sensor data enabling congestion to be accurately monitored, modelled, and predicted.

Mon 02 Nov 2020, 11:20 | Tags: Grants Research Artificial Intelligence Data Science

Adam Shephard joins the TIA lab

Adam Shephard

Adam Shephard has just joined the department as a Research Fellow and is currently working in the Tissue Image Analytics (TIA) Lab on the ANTICIPATE project funded by Cancer Research UK. He has recently submitted his thesis on the application of deep learning to paediatric MRI at Aston University, under the supervision of Prof. Amanda Wood and Dr. Jan Novak. His role in the ANTICIPATE project will be concerned with the development and application of deep learning techniques to digitized histology slides to aid in the more efficient grading of head and neck tumours, to ultimately provide more accurate patient prognoses.


Exoplanet Validation with Machine Learning: 50 new validated Kepler planets

Dr Theo Damoulas (Department of Computer Science) along with Dr David Armstrong (Department of Physics) and Jevgenij Gamper (Department of Mathematics) have developed probabilistic machine learning algorithms that can separate out real planets from fake ones in the large samples of thousands of candidates found by telescope missions such as NASA’s Kepler and TESS. The results of which have led to fifty new confirmed planets, the first to be not only ranked but also probabilistically validated by machine learning.

The paper "Exoplanet Validation with Machine Learning: 50 new validated Kepler planets" has been accepted to the Monthly Notice of the Royal Astronomical Society, DOI: 10.1093/mnras/staa2498

Thu 10 Sep 2020, 13:30 | Tags: Research Artificial Intelligence

Wearable IoT Electronic Nose for Urinary Incontinence Detection

Work performed by Computer Systems Engineering student Michael Shanta for his 3rd year project, supervised by Dr. Marina Cole and Dr. Siavash Esfahani in the School of Engineering, was written up in a paper that was recently accepted for presentation at the IEEE Sensors 2020 Conference.

For his 3rd year project Michael worked on developing machine learning techniques for an Electronic Nose in order to classify odours based on the sensor responses. The system aims to detect incontinence incidents, allowing alerts to be sent to relevant personnel from an IoT network via a cloud server.


Promotion to Associate Professor

Paolo TurriniA further piece of excellent news: Dr Paolo Turrini has been promoted to Associate Professor, effective from 1 September 2020. Many congratulations to Paolo, whose recommendation says:

Dr Turrini has maintained an internationally recognised publication trajectory, with papers appearing in highly-ranked journals and conferences. He has also grown his research group to 4 PhD students currently, and developed fruitful research collaborations with several academics in the department. … Dr Turrini has contributed to designing two 4th-year/MSc modules. He has been attentive to his teaching to an exemplary degree, resulting in consistently positive feedback from students...

Wed 01 Jul 2020, 16:01 | Tags: People Highlight Artificial Intelligence

PETRAS SRF award to Dr Arshad Jhumka to investigate trust in IoT systems

Dr Arshad Jhumka from the department’s Artificial Intelligence research theme has been awarded a grant as PI, under the PETRAS SRF programme, to develop and deploy a trusted edge-based Internet of Things (IoT) network. IoT networks are expected to be deployed as solutions to problems in a wide variety of contexts, from non-critical applications such as smart city monitoring to providing support to emergency services such as critical communications. As IoT devices are resource constrained, execution of resource-hungry applications will be offloaded to edge networks for quick response. Such an infrastructure is open to cyber-attacks and needs to be resilient to attack.

Fri 22 May 2020, 18:16 | Tags: Grants Research Artificial Intelligence

Older news