27

Sorting Networks

In Part II, we examined sorting algorithms for serial computers (random-access
machines, or RAM’s) that allow only one operation to be executed at a time. In this
chapter, we investigate sorting algorithms based on a comparison-network model
of computation, in which many comparison operations can be performed simulta-
neously.

Comparison networks differ from RAM’s in two important respects. First, they
can only perform comparisons. Thus, an algorithm such as counting sort (see
Section 8.2) cannot be implemented on a comparison network. Second, unlike
the RAM model, in which operations occur serially—that is, one after another—
operations in a comparison network may occur at the same time, or “in parallel.”
As we shall see, this characteristic allows the construction of comparison networks
that sort n values in sublinear time.

We begin in Section 27.1 by defining comparison networks and sorting networks.
We also give a natural definition for the “running time” of a comparison network
in terms of the depth of the network. Section 27.2 proves the “zero-one principle,”
which greatly eases the task of analyzing the correctness of sorting networks.

The efficient sorting network that we shall design is essentially a parallel version
of the merge-sort algorithm from Section 2.3.1. Our construction will have three
steps. Section 27.3 presents the design of a “bitonic” sorter that will be our basic
building block. We modify the bitonic sorter slightly in Section 27.4 to produce
a merging network that can merge two sorted sequences into one sorted sequence.
Finally, in Section 27.5, we assemble these merging networks into a sorting net-
work that can sort # values in O(Ig2 n) time.

27.1 Comparison networks

Sorting networks are comparison networks that always sort their inputs, so it makes
sense to begin our discussion with comparison networks and their characteristics.



27.1 Comparison networks 705

X —> ——> x’ = min(x, y) x -1 3 = min{x, y)
comparator 3 7
y ——> ——> y = max(x, y) y y' = max(x, y)
(a) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x’ and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x’ = 3, y’ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x" and y’, that performs the following function:

x' = min(x, y),

" = max(x,y).

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O (1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x’ and y’ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires ay, a,, . . ., a,, through which
the values to be sorted enter the network, and n output wires by, b,, . .., b,, which
produce the results computed by the network. Also, we shall speak of the input
sequence {a,, as, ..., a,) and the output sequence (b, b,, ..., b,), referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a;, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire by, which
comes from the top output of comparator C. Each comparator input is connected



706

Chapter 27  Sorting Networks

a; 2 b, a; 9 2 b,
A C A C
a 3 b, a 3 2 b,
E E
as 2 by as 2 2 by
B D B D
a, 6 b, a, 6 6 b,
depth 1 1
(@) (b)
a 9 5 2 b, a 9 5 2 2 b,
A C A C
a, 5 9 6 b, a, 5 9 6 5 b,
E E
ay 2 2 5 by ay 2 2 5 6 by
B D B D
a, 6 6 9 b, a, 6 6 9 9 b,
depth 1 1 2 2 depth 1 1 2 2 3
© (d)

Figure 27.2 (a) A 4-input, 4-output comparison network, which is in fact a sorting network. At
time 0, the input values shown appear on the four input wires. (b) At time 1, the values shown appear
on the outputs of comparators A and B, which are at depth 1. (¢) At time 2, the values shown appear
on the outputs of comparators C and D, at depth 2. Output wires b; and bg now have their final
values, but output wires b, and b3 do not. (d) At time 3, the values shown appear on the outputs of
comparator E, at depth 3. Output wires by and b3 now have their final values.

to a wire that is either one of the network’s » input wires a;, a,, . . ., a, or is con-
nected to the output of another comparator. Similarly, each comparator output is
connected to a wire that is either one of the network’s n output wires by, b, ..., b,
or is connected to the input of another comparator. The main requirement for in-
terconnecting comparators is that the graph of interconnections must be acyclic: if
we trace a path from the output of a given comparator to the input of another to
an output to an input, etc., the path we trace must never cycle back on itself and
go through the same comparator twice. Thus, as in Figure 27.2, we can draw a
comparison network with network inputs on the left and network outputs on the
right; data move through the network from left to right.

Each comparator produces its output values only when both of its input val-
ues are available to it. In Figure 27.2(a), for example, suppose that the sequence
(9, 5, 2, 6) appears on the input wires at time 0. At time 0, then, only comparators
A and B have all their input values available. Assuming that each comparator re-
quires one time unit to compute its output values, comparators A and B produce
their outputs at time 1; the resulting values are shown in Figure 27.2(b). Note



27.1 Comparison networks 707

that comparators A and B produce their values at the same time, or “in paral-
lel.” Now, at time 1, comparators C and D, but not E, have all their input values
available. One time unit later, at time 2, they produce their outputs, as shown in
Figure 27.2(c). Comparators C and D operate in parallel as well. The top output
of comparator C and the bottom output of comparator D connect to output wires
by and by, respectively, of the comparison network, and these network output wires
therefore carry their final values at time 2. Meanwhile, at time 2, comparator E has
its inputs available, and Figure 27.2(d) shows that it produces its output values at
time 3. These values are carried on network output wires b, and b3, and the output
sequence (2, 5, 6, 9) is now complete.

Under the assumption that each comparator takes unit time, we can define the
“running time” of a comparison network, that is, the time it takes for all the output
wires to receive their values once the input wires receive theirs. Informally, this
time is the largest number of comparators that any input element can pass through
as it travels from an input wire to an output wire. More formally, we define the
depth of a wire as follows. An input wire of a comparison network has depth 0.
Now, if a comparator has two input wires with depths d, and d,, then its output
wires have depth max(d,, d,) + 1. Because there are no cycles of comparators in
a comparison network, the depth of a wire is well defined, and we define the depth
of a comparator to be the depth of its output wires. Figure 27.2 shows comparator
depths. The depth of a comparison network is the maximum depth of an output
wire or, equivalently, the maximum depth of a comparator. The comparison net-
work of Figure 27.2, for example, has depth 3 because comparator E has depth 3.
If each comparator takes one time unit to produce its output value, and if network
inputs appear at time 0, a comparator at depth d produces its outputs at time d; the
depth of the network therefore equals the time for the network to produce values at
all of its output wires.

A sorting network is a comparison network for which the output sequence is
monotonically increasing (that is, b; < b, < --- < b,) for every input sequence.
Of course, not every comparison network is a sorting network, but the network of
Figure 27.2 is. To see why, observe that after time 1, the minimum of the four
input values has been produced by either the top output of comparator A or the top
output of comparator B. After time 2, therefore, it must be on the top output of
comparator C. A symmetrical argument shows that after time 2, the maximum of
the four input values has been produced by the bottom output of comparator D. All
that remains is for comparator E to ensure that the middle two values occupy their
correct output positions, which happens at time 3.

A comparison network is like a procedure in that it specifies how comparisons
are to occur, but it is unlike a procedure in that its size—the number of comparators
that it contains—depends on the number of inputs and outputs. Therefore, we shall
actually be describing “families” of comparison networks. For example, the goal



708

Chapter 27  Sorting Networks

of this chapter is to develop a family SORTER of efficient sorting networks. We
specify a given network within a family by the family name and the number of
inputs (which equals the number of outputs). For example, the n-input, n-output
sorting network in the family SORTER is named SORTER[7].

Exercises

27.1-1
Show the values that appear on all the wires of the network of Figure 27.2 when it
is given the input sequence (9, 6, 5, 2).

27.1-2

Let n be an exact power of 2. Show how to construct an n-input, 7-output compari-
son network of depth Ig n in which the top output wire always carries the minimum
input value and the bottom output wire always carries the maximum input value.

27.1-3

It is possible to take a sorting network and add a comparator to it, resulting in a
comparison network that is not a sorting network. Show how to add a comparator
to the network of Figure 27.2 in such a way that the resulting network does not sort
every input permutation.

27.1-4
Prove that any sorting network on n inputs has depth at least Ig n.

27.1-5
Prove that the number of comparators in any sorting network is 2 (n lgn).

27.1-6

Consider the comparison network shown in Figure 27.3. Prove that it is in fact a
sorting network, and describe how its structure is related to that of insertion sort
(Section 2.1).

27.1-7

We can represent an n-input comparison network with ¢ comparators as a list of ¢
pairs of integers in the range from 1 to n. If two pairs contain an integer in common,
the order of the corresponding comparators in the network is determined by the
order of the pairs in the list. Given this representation, describe an O (n + c¢)-time
(serial) algorithm for determining the depth of a comparison network.

27.1-8
Suppose that in addition to the standard kind of comparator, we introduce an
“upside-down” comparator that produces its minimum output on the bottom wire



27.2  The zero-one principle 709

a b
a b,
as by
a, b,
as bs
de 9 oo b
aq l . l by
ag l bg

Figure 27.3 A sorting network based on insertion sort for use in Exercise 27.1-6.

and its maximum output on the top wire. Show how to convert any sorting network
that uses a total of ¢ standard and upside-down comparators to one that uses ¢
standard ones. Prove that your conversion method is correct.

27.2 The zero-one principle

The zero-one principle says that if a sorting network works correctly when each
input is drawn from the set {0, 1}, then it works correctly on arbitrary input num-
bers. (The numbers can be integers, reals, or, in general, any set of values from
any linearly ordered set.) As we construct sorting networks and other comparison
networks, the zero-one principle will allow us to focus on their operation for input
sequences consisting solely of 0’s and 1’s. Once we have constructed a sorting
network and proved that it can sort all zero-one sequences, we shall appeal to the
zero-one principle to show that it properly sorts sequences of arbitrary values.

The proof of the zero-one principle relies on the notion of a monotonically in-
creasing function (Section 3.2).

Lemma 27.1

If a comparison network transforms the input sequence a = {(a;, as, ..., a,) into
the output sequence b = (by, by, ..., b,), then for any monotonically increasing
function f, the network transforms the input sequence f(a) = {(f(a), f(an),

..., f(a,)) into the output sequence f(b) = {f(b1), f(b2), ..., f(by)).

Proof We shall first prove the claim that if f is a monotonically increasing
function, then a single comparator with inputs f(x) and f(y) produces outputs
f(min(x, y)) and f(max(x, y)). We then use induction to prove the lemma.



710

Chapter 27  Sorting Networks

fx) min(f(x), f(y)) = f(min(x, y))
F max(f(x), f(y)) = f(max(x, y))

Figure 27.4 The operation of the comparator in the proof of Lemma 27.1. The function f is
monotonically increasing.

To prove the claim, consider a comparator whose input values are x and y. The
upper output of the comparator is min(x, y) and the lower output is max(x, y).
Suppose we now apply f(x) and f(y) to the inputs of the comparator, as is shown
in Figure 27.4. The operation of the comparator yields the value min(f(x), f(y))
on the upper output and the value max(f(x), f(y)) on the lower output. Since f
is monotonically increasing, x < y implies f(x) < f(y). Consequently, we have
the identities

min(f(x), f(y)) = f(min(x,y)),
max(f(x), f(y)) = f(max(x,y)).

Thus, the comparator produces the values f{(min(x, y)) and f(max{x, y)) when
f(x) and f(y) are its inputs, which completes the proof of the claim.

We can use induction on the depth of each wire in a general comparison network
to prove a stronger result than the statement of the lemma: if a wire assumes the
value a; when the input sequence «a is applied to the network, then it assumes the
value f(a;) when the input sequence f (a) is applied. Because the output wires are
included in this statement, proving it will prove the lemma.

For the basis, consider a wire at depth 0, that is, an input wire a;. The result
follows trivially: when f(a) is applied to the network, the input wire carries f(a;).
For the inductive step, consider a wire at depth d, where d > 1. The wire is the
output of a comparator at depth d, and the input wires to this comparator are at a
depth strictly less than d. By the inductive hypothesis, therefore, if the input wires
to the comparator carry values a; and a; when the input sequence a is applied,
then they carry f(a;) and f(a;) when the input sequence f(a) is applied. By
our earlier claim, the output wires of this comparator then carry f(min(a;, a;))
and f(max(q;, a;)). Since they carry min(a;, a;) and max(a;, a;) when the input
sequence is a, the lemma is proved. |

As an example of the application of Lemma 27.1, Figure 27.5(b) shows the sort-
ing network from Figure 27.2 (repeated in Figure 27.5(a)) with the monotonically
increasing function f(x) = [x/2] applied to the inputs. The value on every wire
is f applied to the value on the same wire in Figure 27.2.

When a comparison network is a sorting network, Lemma 27.1 allows us to
prove the following remarkable result.



a;

a

as

ay

27.2  The zero-one principle

9 5 2 2y, a 5 3 1 L p,

5 9 6 5 p, a 3 5 3 3y,

2 2 5 6 p, a 1 1 3 3 p,

6 6 9 9, a, 3 3 5 5,
(@ (b)

Figure 27.5 (a) The sorting network from Figure 27.2 with input sequence (9, 5, 2, 6). (b) The
same sorting network with the monotonically increasing function f(x) = [x/2] applied to the in-
puts. Each wire in this network has the value of f applied to the value on the corresponding wire
in (a).

Theorem 27.2 (Zero-one principle)
If a comparison network with z inputs sorts all 2" possible sequences of 0’s and 1’s
correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof Suppose for the purpose of contradiction that the network sorts all zero-one
sequences, but there exists a sequence of arbitrary numbers that the network does
not correctly sort. That is, there exists an input sequence {a;, a4, . . . , a,) containing
elements a; and a; such that a; < a;, but the network places a; before a; in the
output sequence. We define a monotonically increasing function f as

0 ifx <a;,
f(x)_{l ifx >a; .
Since the network places a; before g; in the output sequence when (a;, ay, . .., a,)
is input, it follows from Lemma 27.1 that it places f(a;) before f (a;) in the output
sequence when (f(a;), f(az), ..., f(a,)) is input. But since f(a;) = 1 and
f(a;) = 0, we obtain the contradiction that the network fails to sort the zero-one
sequence {f(ay), f(an), ..., f(a,)) correctly. ]
Exercises
27.2-1

Prove that applying a monotonically increasing function to a sorted sequence pro-
duces a sorted sequence.

27.2-2
Prove that a comparison network with » inputs correctly sorts the input sequence
(n,n — 1, ..., 1) if and only if it correctly sorts the n — 1 zero-one sequences

(1,0,0,....0,0),(1,1,0,...,0,0),...,(1,1,1,...,1,0).



712 Chapter 27  Sorting Networks

a by
as j: by
a, b,

Figure 27.6 A sorting network for sorting 4 numbers.

27.2-3
Use the zero-one principle to prove that the comparison network shown in Fig-
ure 27.6 is a sorting network.

27.2-4
State and prove an analog of the zero-one principle for a decision-tree model.
(Hint: Be sure to handle equality properly.)

27.2-5
Prove that an n-input sorting network must contain at least one comparator between
the ith and (i + 1)stlines foralli =1,2,...,n — 1.

27.3 A bitonic sorting network

The first step in our construction of an efficient sorting network is to construct a
comparison network that can sort any bitonic sequence: a sequence that monoton-
ically increases and then monotonically decreases, or can be circularly shifted to
become monotonically increasing and then monotonically decreasing. For exam-
ple, the sequences (1, 4, 6, 8, 3, 2), (6,9, 4, 2, 3,5), and (9, 8, 3, 2, 4, 6) are all
bitonic. As a boundary condition, we say that any sequence of just 1 or 2 numbers
is bitonic. The zero-one sequences that are bitonic have a simple structure. They
have the form 07 1/0* or the form 1'0/ 1%, for some i, j, k > 0. Note that a sequence
that is either monotonically increasing or monotonically decreasing is also bitonic.

The bitonic sorter that we shall construct is a comparison network that sorts
bitonic sequences of 0’s and 1’s. Exercise 27.3-6 asks you to show that the bitonic
sorter can sort bitonic sequences of arbitrary numbers.

The half-cleaner

A bitonic sorter is composed of several stages, each of which is called a half-
cleaner. Each half-cleaner is a comparison network of depth 1 in which input
line i is compared with line i + n/2 fori = 1,2, ..., n/2. (We assume that n is



bitonic

27.3 A bitonic sorting network 713

0O—ee—— 0 0O—ee—— 0

0 0 \ bitonic, 0 0 bitoni

1 0 clean 1 1 itonic
1 0 L 1 0

bitonic

1 1 1 1

0 0 bitoni 1 1 | bitonic,
0 1 itonic 1 ) clean

0 ———— 1 0 ———e— 1

Figure 27.7 The comparison network HALF-CLEANER([8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER([8], the half-cleaner with 8 inputs and
8 outputs.

When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the
half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i+n/2fori = 1,2,...,n/2. Without loss of generality, suppose that the in-
put is of the form 00...011...100...0. (The situation in which the input is of
the form 11...100...011...1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1°s in which the midpoint »/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1°s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds. [



714

Chapter 27  Sorting Networks

bitonic

bitonic

bitonic

bitonic

divide

top

bottom

top

bottom

bottom

top
0

bottom

........ e

n

afp|

compare

top
0

bottom
(@
top
"""Ii"h I
bottom
(b)
top
0 |
sassnssalii
bottom
(©
top
0 |
bottom
(d)

combine

El=l=]

[=]=] =]

[=[=]]

— —_ —_ —_

[=[=]]

bitonic,
clean

bitonic

bitonic

bitonic,
clean

bitonic,
clean

bitonic

bitonic,

clean

bitonic

Figure 27.8 The possible comparisons in HALF-CLEANER[#z]. The input sequence is assumed
to be a bitonic sequence of 0’s and 1’s, and without loss of generality, we assume that it is of the
form 00...011...100...0. Subsequences of 0’s are white, and subsequences of 1’s are gray. We
can think of the 7 inputs as being divided into two halves such that for i = 1,2, ..., /2, inputs i
and i + n/2 are compared. (a)—(b) Cases in which the division occurs in the middle subsequence
of 1’s. (c)—(d) Cases in which the division occurs in a subsequence of 0’s. For all cases, every
element in the top half of the output is at least as small as every element in the bottom half, both
halves are bitonic, and at least one half is clean.



27.3 A bitonic sorting network 715

L 0 0 0 I 0

BITONIC- — 0 0 U «— o

SORTER[n/2] | — 1 0 0 I 0
HALF- — bitoni 1 0 0 . 0 d
CLEANER[n] . itonic . 1 1 I 0 sorte

Bitonic- — 0 0 0 o 1

SORTER[n/2] | 0 1 1 1

L 0 1 1 l |

(a) (b)

Figure 27.9 The comparison network BITONIC-SORTER[#n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[#] followed by two copies of BITONIC-SORTER[7/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[#] consists of HALF-CLEANER[#], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER|[7/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D (n) of
BITONIC-SORTER[#] is given by the recurrence

0 ifn=1,

D(n):{D(n/2)+1 ifn=2Fandk > 1,

whose solution is D (n) = lgn.

Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which
has a depth of lgn. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?



716 Chapter 27  Sorting Networks

27.3-2
Show that BITONIC-SORTER[n], where n is an exact power of 2, contains
®(n lgn) comparators.

27.3-3
Describe how an O (lgn)-depth bitonic sorter can be constructed when the num-
ber n of inputs is not an exact power of 2.

27.3-4

If the input to a half-cleaner is a bitonic sequence of arbitrary numbers, prove that
the output satisfies the following properties: both the top half and the bottom half
are bitonic, and every element in the top half is at least as small as every element
in the bottom half.

27.3-5

Consider two sequences of 0’s and 1’s. Prove that if every element in one sequence
is at least as small as every element in the other sequence, then one of the two
sequences is clean.

27.3-6

Prove the following analog of the zero-one principle for bitonic sorting networks:
a comparison network that can sort any bitonic sequence of 0’s and 1°s can sort any
bitonic sequence of arbitrary numbers.

27.4 A merging network

Our sorting network will be constructed from merging networks, which are net-
works that can merge two sorted input sequences into one sorted output sequence.
We modify BITONIC-SORTER[#] to create the merging network MERGER[n]. As
with the bitonic sorter, we shall prove the correctness of the merging network only
for inputs that are zero-one sequences. Exercise 27.4-1 asks you to show how the
proof can be extended to arbitrary input values.

The merging network is based on the following intuition. Given two sorted se-
quences, if we reverse the order of the second sequence and then concatenate the
two sequences, the resulting sequence is bitonic. For example, given the sorted
zero-one sequences X = 00000111 and ¥ = 00001111, we reverse Y to get
YR = 11110000. Concatenating X and YR yields 0000011111110000, which is
bitonic. Thus, to merge the two input sequences X and Y, it suffices to perform a
bitonic sort on X concatenated with Y R,



sorted

sorted

274 A merging network 717

@ O, 0, @ Og 0y

0 0 0 0
a b a b
2 1 0 bitonic 2 1 0 2 bitonic
as by as by
“ . I . s bitonic “ : . s
as 0 ol bs ag 1 1 by

0 1 0 0
a b a b
6 0 0 6 bitonic ’ 0 1 ! bitonic
ay by ag bg
ag 1y 1 bg as 0 1 bs

(@) (b)

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[%], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences {aj.,az. ....a2)

and {@, /3211, an/242, - - - - an) into two bitonic sequences (b1, by, ..., by o} and (by oy 1. byj242.
..., bp). (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
{ar.ax. ... ayj2—1. a2 Gn. Gy_1. - ... ap242- ap2+1) is transformed into the two bitonic se-
quences (by. by, . ... bpjayand {bp.by—1. .. .. bujat1)-

We can construct MERGER|[#n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences (ai, aa, ..., @) and (@, 41, anjr42,

.. a,) to be merged, we want the effect of bitonically sorting the sequence
(ai,ao,....anp, Ay, @y_1, ..., ay;+1). Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 4+ i, fori = 1,2,...,n/2, we make the
first stage of the merging network compare inputs i and n — i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[#] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.

The resulting merging network is shown in Figure 27.11. Only the first stage of
MERGER[#] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[#] is lg n, the same as that of BITONIC-SORTER|[#].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-



718

Chapter 27  Sorting Networks

L 0 0 0 I 0
BiTONIC- — d 0 0 O « o
SORTER[1/2] | sorte 1 1 L o
. B , 0 0 |

1 . 1

I I 1 1 sorted
. — 0 . I 1
BiTONIC- — d 1 1 L . 1
SORTER[1/2] | sorte 1 1 L o
B | 1 L] |

(a) (b)

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[7] can be viewed as BITONIC-SORTER[ %] with the first half-cleaner altered to
compare inputs i and n —i+1fori = 1,2, ..., n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[#7/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n — 1 sorted items to produce a
sorted sequence of length n must have depth at least 1g n.

27.4-4 x

Consider a merging network with inputs a, a,, .. ., a,, for n an exact power of 2,
in which the two monotonic sequences to be merged are {a;, a3, ..., @,_1) and
{aa, aa, ..., a,). Prove that the number of comparators in this kind of merging
network is €2(n lgn). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

274-5 x
Prove that any merging network, regardless of the order of inputs, requires
Q(nlgn) comparators.



27.5 A sorting network 719

27.5 A sorting network

We now have all the necessary tools to construct a network that can sort any input
sequence. The sorting network SORTER[#] uses the merging network to implement
a parallel version of merge sort from Section 2.3.1. The construction and operation
of the sorting network are illustrated in Figure 27.12.

Figure 27.12(a) shows the recursive construction of SORTER[n]. The n input
elements are sorted by using two copies of SORTER[7n/2] recursively to sort (in
parallel) two subsequences of length n/2 each. The two resulting sequences are
then merged by MERGER|[n]. The boundary case for the recursion is when n = 1,
in which case we can use a wire to sort the 1-element sequence, since a 1-element
sequence is already sorted. Figure 27.12(b) shows the result of unrolling the re-
cursion, and Figure 27.12(c) shows the actual network obtained by replacing the
MERGER boxes in Figure 27.12(b) with the actual merging networks.

Data pass through Ign stages in the network SORTER[n]. Each of the indi-
vidual inputs to the network is already a sorted 1-element sequence. The first
stage of SORTER|[7n] consists of /2 copies of MERGER[2] that work in parallel to
merge pairs of 1-element sequences to produce sorted sequences of length 2. The
second stage consists of n/4 copies of MERGER[4] that merge pairs of these 2-
element sorted sequences to produce sorted sequences of length 4. In general, for
k=1,2,...,1lgn, stage k consists of n/2* copies of MERGER[2*] that merge pairs
of the 2¥~!-element sorted sequences to produce sorted sequences of length 2. At
the final stage, one sorted sequence consisting of all the input values is produced.
This sorting network can be shown by induction to sort zero-one sequences, and
consequently, by the zero-one principle (Theorem 27.2), it can sort arbitrary values.

We can analyze the depth of the sorting network recursively. The depth D(n)
of SORTER[#] is the depth D(n/2) of SORTER[n/2] (there are two copies of
SORTER[n/2], but they operate in parallel) plus the depth Ign of MERGER[#n].
Consequently, the depth of SORTER[#] is given by the recurrence

b = {° ifn=1,
"W=NDm/2) +1gn ifn=2%andk > 1,

whose solution is D (n) = @(lg2 n). (Use the version of the master method given
in Exercise 4.4-2.) Thus, we can sort # numbers in parallel in O (Ig 1) time.
Exercises

27.5-1
How many comparators are there in SORTER[#n]?



720

Chapter 27  Sorting Networks

MERGER[2]

] SORTER[7/2] B o ] MERGER[4] ] B
B | MERGER[2] ] ] B

MERGER [1] B o - ] MERGER[8] B

B | MERGER[2] ] ] B

o SORTER[7/2] B o ] MERGER[4] o B
B | MERGER[2] ] ] B

(@) (b)

*—o

*—o
*—o

*—o

*—9

*—9

S O = O = O =

*—9

*—9
*—9

*—o

*—9

=l el =l )

il =l el il e = =]
*—o

*—9
—_— == O O O O O

*—9
*—9

depth

1

2

2 3 4 4 4 45 5 6
©)

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b) Unrolling the recursion. (c¢) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2

Show that the depth of SORTER[#] is exactly (Ign)(Ign + 1)/2.

27.5-3

Suppose that we have 2n elements {(a;, a, . . . , az,) and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting {a;, as, ..., a,) and (@, 1, Ay12, ..., A2p).

27.5-4 x

Let S(k) be the depth of a sorting network with k£ inputs, and let M (k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k£ positions of its
correct position in the sorted order. Show that we can sort the » numbers in depth
S(k) 4+ 2M (k).



Problems for Chapter 27 721

27.5-5
We can sort the entries of an m x m matrix by repeating the following procedure &
times:

1. Sort each odd-numbered row into monotonically increasing order.
2. Sort each even-numbered row into monotonically decreasing order.

3. Sort each column into monotonically increasing order.

How many iterations k are required for this procedure to sort, and in what order
should we read the matrix entries after the k iterations to obtain the sorted output?

Problems

27-1 Transposition sorting networks
A comparison network is a transposition network if each comparator connects
adjacent lines, as in the network in Figure 27.3.

a. Show that any transposition sorting network with n inputs has € (n*) compara-
tors.

b. Prove that a transposition network with n inputs is a sorting network if and only
if it sorts the sequence {(n, n — 1, ..., 1). (Hint: Use an induction argument
analogous to the one in the proof of Lemma 27.1.)

An odd-even sorting network on n inputs (a;, a,. . . ., a,) is a transposition sorting
network with n levels of comparators connected in the “brick-like” pattern illus-
trated in Figure 27.13. As can be seen in the figure, fori = 1,2,...,nand d =
1,2,....n,line i is connected by a depth-d comparator to line j =i + (—1)"*¢ if
1<j<n.

¢. Prove that odd-even sorting networks actually sort.

27-2 Batcher’s odd-even merging network

In Section 27.4, we saw how to construct a merging network based on bitonic sort-
ing. In this problem, we shall construct an odd-even merging network. We assume
that # is an exact power of 2, and we wish to merge the sorted sequence of elements
on lines {a;, ay, ..., a,) with those on lines {(a,.1, d,12, ..., az,). If n = 1, we
put a comparator between lines a; and a,. Otherwise, we recursively construct two
odd-even merging networks that operate in parallel. The first merges the sequence
on lines {(ay, as, . .., a,_) with the sequence on lines {@,+1, a,+3, . .., az,—1) (the
odd elements). The second merges {a,, ay, . . ., a,) With {a,12, @414, . .., az,) (the



722

Chapter 27  Sorting Networks

a;
as
as
ay
as
de
ap

ag

Figure 27.13 An odd-even sorting network on 8 inputs.

even elements). To combine the two sorted subsequences, we put a comparator
between ay; and ay; .y fori =1,2,...,n— 1.

a.

b.

d.

Draw a 2n-input merging network for n = 4.

Professor Corrigan suggests that to combine the two sorted subsequences pro-
duced by the recursive merging, instead of putting a comparator between a;
and a1 fori = 1,2,...,n — 1, one should put a comparator between a,;_;
and ay; fori = 1,2,...,n. Draw such a 2n-input network for n = 4, and
give a counterexample to show that the professor is mistaken in thinking that
the network produced is a merging network. Show that the 2n-input merging
network from part (a) works properly on your example.

Use the zero-one principle to prove that any 2n-input odd-even merging net-
work is indeed a merging network.

What is the depth of a 2n-input odd-even merging network? What is its size?

27-3 Permutation networks

A permutation network on n inputs and n outputs has switches that allow it to
connect its inputs to its outputs according to any of the n! possible permutations.
Figure 27.14(a) shows the 2-input, 2-output permutation network P, which con-
sists of a single switch that can be set either to feed its inputs straight through to its
outputs or to cross them.

a.

Argue that if we replace each comparator in a sorting network with the switch
of Figure 27.14(a), the resulting network is a permutation network. That is, for



Problems for Chapter 27 723

PS
1 P, L1
2 2
3 3
4 4

® |
—PN- 8 — 8

(@ (b)

Figure 27.14 Permutation networks. (a) The permutation network P, which consists of a sin-
gle switch that can be set in either of the two ways shown. (b) The recursive construction of Pg
from 8 switches and two P4’s. The switches and P4’s are set to realize the permutation 7 =
4,7.3.5.1,6.8.2).

any permutation 7, there is a way to set the switches in the network so that
input i is connected to output 77 (7).

Figure 27.14(b) shows the recursive construction of an 8-input, 8-output permuta-
tion network Pg that uses two copies of P4 and 8 switches. The switches have been
set to realize the permutation 7 = (7 (1), 7 (2),...,7(8)) = 4,7,3,5,1,6,8, 2),
which requires (recursively) that the top P, realize (4, 2, 3, 1) and the bottom P,
realize (2, 3, 1, 4).

b. Show how to realize the permutation (5, 3,4, 6, 1, 8, 2, 7) on Pg by drawing the
switch settings and the permutations performed by the two Py’s.

Let n be an exact power of 2. Define P, recursively in terms of two P,;’s in a
manner similar to the way we defined Ps.

¢. Describe an O (n)-time (ordinary random-access machine) algorithm that sets
the n switches connected to the inputs and outputs of P, and specifies the per-
mutations that must be realized by each P, in order to accomplish any given
n-element permutation. Prove that your algorithm is correct.



724

Chapter 27  Sorting Networks

d. What are the depth and size of P,? How long does it take on an ordinary
random-access machine to compute all switch settings, including those within
the P, /2 ’s?

e. Argue that for n > 2, any permutation network—not just P,—must realize
some permutation by two distinct combinations of switch settings.

Chapter notes

Knuth [185] contains a discussion of sorting networks and charts their history.
They apparently were first explored in 1954 by P. N. Armstrong, R. J. Nelson,
and D. J. O’Connor. In the early 1960’s, K. E. Batcher discovered the first network
capable of merging two sequences of #n numbers in O (Ig n) time. He used odd-even
merging (see Problem 27-2), and he also showed how this technique could be used
to sort n numbers in O (Ig” n) time. Shortly afterward, he discovered an O(Ign)-
depth bitonic sorter similar to the one presented in Section 27.3. Knuth attributes
the zero-one principle to W. G. Bouricius (1954), who proved it in the context of
decision trees.

For a long time, the question remained open as to whether a sorting network
with depth O (Ig n) exists. In 1983, the answer was shown to be a somewhat unsat-
isfying yes. The AKS sorting network (named after its developers, Ajtai, Komlds,
and Szemerédi [11]) can sort » numbers in depth O (g n) using O (n Ig n) compara-
tors. Unfortunately, the constants hidden by the O-notation are quite large (many
thousands), and thus it cannot be considered practical.



