Discrete Fourier Transform (lecture notes)

Alexander Tiskin

1 Definitions

Given a natural number n > 1, a complex number w is called
e a root of unity of degree n, if Ww" =1
e in particular, a primitive root of unity of degree n, if w,w?,...,w" 1 # 1, and W™ =1

All roots of unity of degree n are of the form! >™#/" where k =0,1,...,n — 1. A root of
unity for a given k£ > 0 is primitive, if k is relatively prime with n. The principal root of
unity of degree n is the primitive root 2™/" corresponding to k = 1.

Let us fix a particular degree n and a primitive root of unity w of degree n. The Discrete
Fourier Transform (DFT) problem is defined as the matrix-vector product F,, ,,-a = b over
complex numbers, where the matrix is the special n x n Fourier matriz F,, , = [wij]zj_:lo,
the n-vector a is given as input, and the n-vector b is produced as output:

I 11 1 s 1 aq bo
w w? N al b1
1 w? wt w2 ] as — | b2

| 1 wntlownT2 L 1 | an-1 | | bn—1 |

n—1

Zwija‘:b 1,7=0 n—1
7 1 »J oty

j=0

Direct computation of the DFT by the above definition requires O(n?) operations to
evaluate the matrix-vector product.

The Fourier matrix F, , is always nonsingular, therefore the output vector b uniquely
determines the input vector a. The inverse DFT problem is given vector b as input, and
asks to find the corresponding vector a. The inverse of the Fourier matrix is given by
(Fum)™' = 1/n- F,-1, (this can be checked by direct multiplication). Therefore, the

"We use upright i for the imaginary unit, and italic ¢ (alongside j, k, etc.) for an integer index.



inverse DF'T corresponds to matrix-vector multiplication 1/n - F,-1 ,, - b = a, which is itself
a DFT problem, up to a change of the primitive of unity from w to w~' and scaling by a
constant 1/n. Therefore, any algorithm for DFT also solves the inverse DFT.

The DFT is a fundamental concept in many engineering applications. In particular,
in digital signal processing it transforms a vector a of a signal’s amplitude over time to a
vector b of its frequency components. The DFT can also be used as an algorithmic tool for
fast multiplication of polynomials and long integers.

2 Fast Fourier Transform, the “four-step” version

The Fast Fourier Transform (FFT) algorithm computes the DFT by divide-and-conquer,
solving it on smaller subproblems, and then combining their solutions to a solution of the
original problem.

The four-step FFT is the most symmetric version of FFT. It decomposes a DFT in-
stance of degree n into 2n'/2 subproblems, each of which is a DFT instance of degree nl/2.
Assume that n = 47, and let m = n'/2 = 2", Let Aup = Gmutv, Bst = bmsyt, Where

s,t,u,v =0,...,m— 1. Matrices A, B are n-vectors a, b, written out as m X m matrices:
a aq cee o Qm—1 bo b1 e bm,1
A, Am+1 <. A2m—1 bm b1 coo bopm
A=, : .. B = . :
an—m OGp—m+1 .- 0dp—1 bn-m bn—mi1 ... bp-1
We have

Bs,t _ § :w(ms+t)(mu+v)Au’v _ § :wmsv+tv+mtuAu7U _

u,v u,v

Z((wm)sv . wtv . Z(Wm)tuAu,v)

v u

where s,t,u,v=0,...,m — 1.
Define the twiddle-factor matriz T, , = [wt”]:nv;lo (note that it forms the top-left
corner m x m block in the n x n Fourier matrix F,, ). We have obtained

B = Fwnzym . (Twﬂn o (me,m : A)T)
where

e symbol ‘-’ denotes standard matrix product: A-B = C defined as ) y A jBjr=Ci
for all 4, k

e symbol ‘o’ denotes Hadamard (elementwise) matrix product: Ao B = C' defined as
Ai,jBi,j = C’i,j for all i, ]



ap a4 ag ai2 a1 as a9 aiz a2

ag aipo @14 a3z av ail ais

FFT(n'/?)

FFT(n'/?)

FFT(n'/?)

FFT(n'/?)

FFT(n'/?)

FFT(n'/?)

FFT(n'/?)

FFT(n'/?)

bo by bg biz b1 bs by biz b2 bg bip bia bz by b1 bis

Figure 1: The four-step FFT for n = 16 (divide-and-conquer)

e symbol ‘T” denotes matrix transposition: A7 = B defined as A; ; = Bj; for all 4, j

Observe that the m x m matrix-matrix product Fm ,, - A performs m independent
DFTs with primitive root of unity w™ of degree m on each column of matrix A. We thus
compute the DFT of degree n by divide-and-conquer in four steps:

e m independent DFTs of degree m (multiplication by Fm )
e transposition and twiddle-factor scaling (Hadamard multiplication by T, )
e m independent DFTs of degree m (multiplication by Fm )

We have reduced the DFT of size n = 4" to 2m DFTs of size m = n'/2 = 2" which are
combined by O(n) operations involved in matrix transposition and twiddle-factor scaling.
The base for the divide-and-conquer is provided by the DFT of degree 2:

11 agp ap + ay
F712~a: . =
’ 1 -1 al apg — ay

The divide-and-conquer procedure will go through log, r = O(loglog n) levels before reach-
ing its base. We have the following recurrence for the overall running time:
T(n) = O(n) +2-n'/?.T(n'/?) =
0(1-n-1+2-n1/2-n1/2+4-n3/4~n1/4+--~+10gn-n~1) =
On+2n+4n+---+logn-n) = 0(nlogn)

The structure of the four-step FFT is shown in Figures 1, 2 (for n = 16). This structure
is traditionally called a butterfly.



ap a4 ag a12 a1 a5 a9 ai3 a2 ae aip ai4 aiz ay ail ais

X X X X

X X X X

bo by bg biz b1 bs by biz b2 bg bip bia bz by b1 bis

Figure 2: The four-step FFT for n = 16 (fully expanded)

3 Fast Fourier Transform, traditional version

A more traditional version of FFT exists in two “complementary” variants: FFET with
decimation in time (FFT-DIT) and FFT with decimation in frequency (FFT-DIF). Both
decompose a DFT instance of degree n into two DFT subproblems of degree n/2 (solved
by divide-and-conquer), and n/2 further DFT subproblems of degree 2 (solved directly).
We describe FFT-DIT, and outline briefly the changes required to obtain FFT-DIF.

Both FFT-DIT and FFT-DIF only need to assume that n = 2". For FFT-DIT, let
Aup = a2utv; Bst = bygjags, where t,u = 0,...,n/2 — 1, s,v = 0,1. Matrices A, B are
n-vectors a, b, written out as an n/2 x 2 and a 2 X n/2 matrix, respectively:

ag aj
Ao a2 az B— |: bo b1 e bn/271
: : bn/2 bn/2+1 oo bn—l
Gn—-2 Adn-1
(FFT-DIF does the opposite, writing A, B as a 2xn/2 and an n/2 x 2 matrix, respectively.)
Similarly to the four-step FFT, we have

Bs,t _ Zw(ns/2+t)(2u+v)Au’U _ ansv/2+tv+2tuAu7U _

u,v u,v

Z((_l)sv . wtv . Z(WQ)tuAu,v)

v u

where t,u =0,...,n/2 -1, s,v =0, 1.



Denote the “even half” (v =0) and the “odd half” (v = 1) of vector a by

ao a1

ag as
Aeven = . Qodd =

Gn—2 an—1

and the "lower half” (s = 0) and the "upper half” (s = 1) of vector b by

blower = [ bo b1 ... bn/271 ] bupper = [ bn/2 bn/2+1 cor bp ]
We have
biower = (FwQ,n/2aeven)T + [ 1w w? . w2 ] © (FwQ,n/andd)T
bupper = (FwQ,n/Qaeven)T - [ 1 w w? ... wn/2 ] o (Fw2,n/2aodd)T

We have reduced the DFT of size n = 2" to two DFTs of size n/2, which are combined by
O(n) operations, including a computation of n/2 DFTs of size 2.

The base for the divide-and-conquer is provided by defining the DFT of degree 1 as the
identity function Fi 1a = a.

The divide-and-conquer procedure will go through log, n levels before reaching its base.
We have the following recurrence for the overall running time:

T(n)=0Mn)+2T(n/2)=0(1-n+2-n/2+4-n/d+...+n-1)=
On+n+...4+n)=0(nlogn)

4 Polynomial multiplication by Fast Fourier Transform

We consider a polynomial of degree n — 1 to be given by a vector of its n coeflicients.
Consider the polynomial multiplication problem: given two polynomials of degree n — 1
over real or complex numbers

n—1 n—1
a(x) = Z a;x’ b(z) = Z bz
i=0 i=0

obtain their product, which is a polynomial of degree 2n — 2:

2n—2 1

ab(z) = a(x) - b(z) = Z Zaibk_ixk

k=0 =0



Direct computation of the product’s coefficients by the above formula requires O(n?) op-
erations.

An alternative method for polynomial multiplication involves evaluation and interpola-
tion of polynomials for multiple arguments. Given a polynomial of degree n— 1 represented
by a column vector a of its n coefficients, and n argument values zg, 1, ..., Tp_1, the
vector of polynomial’s values at the given arguments corresponds to matrix-vector product

_ 9 nel 1 - _ -
0 T Ty ao a(zo)
1 = a:% x’f_l a1 a(zy)
2 n—1
9 x5 R | oas — | a(z9)
-1
(1w 2, ] Laa ] LaGa)
n—1
J _
E xja; = a(x;) ,j=0,....,n—1
J=0
If all arguments xg, x1, ..., Tp—1 are distinct, then the above matrix is nonsingular,

and therefore the polynomial’s n—1 coefficients are determined uniquely by its n—1 values.
Therefore, the polynomial multiplication problem can be solved as follows:

e pick N > 2n — 1 distinct complex numbers g, z1, ..., Ty_1

e evaluate each of the polynomials a, b on x;, obtaining a(x;), b(x;), for all i =
0,1,....,N —1

e obtain pairwise products ab(z;) = a(z;) - b(x;), which determine uniquely the coeffi-
cients of the polynomial ab

e interpolate the coefficients of the polynomial ab from its values

For arbitrarily chosen argument values x;, the described method does not give a com-
putational advantage over direct computation of the product’s coefficients. However, if
we choose N to be the smallest power of 2 no less than 2n — 1, and the arguments to be
2 =wt = e*/N ;=0,1,...,N —1, then the multiple evaluation step corresponds to the
DFT of degree N, and the interpolation step to the inverse DFT of degree N. Using the
FFT algorithm, we can perform both these steps, and therefore obtain the solution to the
polynomial multiplication problem, in O(nlogn) operations.



