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1 Introduction

In studying the complexity of algorithms we develop techniques for evaluating the amount
of “resource”, usually time or storage space, used by new or existing programs; we attempt
to prove lower bounds for the resources required by any program which performs a given
task; we look for interesting relationships among different algorithms for the same problem
or explore possible connections between seemingly unconnected problem areas; and in all we
aim for a deeper understanding of the essential difficulties of, and possible solutions to, a
variety of computational problems.
In this note we consider matrices. Matrix methods have important applications in many
scientific fields, and frequently account for large amounts of computer time. The practical
benefit from improvements to algorithms is therefore potentially very great. The basic algo-
rithms, such as matrix multiplication are simple enough to invite total comprehension, yet
rich enough in structure to offer challenging mathematical problems and some elegant so-
lutions. The subject matter is well enough known for us to start immediately without an
extensive introduction.

2 Definitions of matrix arithmetic

If A is a p × q matrix and B a q × r matrix then their product C = A · B is a p × r matrix
with entries given by cij =

∑q
k=1 aikbkj for i = 1, . . . , p and j = 1, . . . , r.

Sometimes it is useful to think of A as composed of its p row vectors A1, . . . , Ap, and B as
composed of its r column vectors B1, . . . , Br. Then cij is the inner product of vectors Ai and
Bj . The sum of two matrices A,B with the same dimensions is the matrix C = A + B given
by cij = aij + bij for all i, j.

3 Arithmetic complexity

A computer program for an arithmetic algorithm will usually execute many instructions other
than the explicit arithmetic operations of the algorithm. There will, for example, be fetching,
storing, loading and copying operations. The properties of cache memory and external storage
devices can have a huge effect on running times. The proportion of the total execution time
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which is spent on such “overheads” will be very dependent on the computer and programming
language used. For simplicity and independence we shall often take account only of the
arithmetic operations involved. This measure will be referred to as the arithmetic complexity.
The consequences of this simplification in particular practical applications must of course be
carefully considered.
In the product of a p× q matrix by a q× r matrix (a p× q× r product) each of the pr entries
of the product can be computed using q multiplications and q − 1 additions. We can write
this arithmetic complexity as q m + (q − 1) a and then get a total for the (p× q × r)-product
of pqr m + p(q − 1)r a. The sum of two p× q matrices uses only pq a.
We can think of m and a as formal symbols to keep track of the numbers of each type of
arithmetic operation, or else we can think of these as the time or cost of each operation and
thus have an expression for the total cost of the operations. We will never distinguish between
the complexity of a basic addition and a subtraction and such an operation will be referred to
as an addition/subtraction (a/s). Similarly we may sometimes write multiplication/division
(m/d).
The kinds of question to which we shall seek answers are: “Can product be computed by
another algorithm using fewer operations?” “What is the minimum number of arithmetic
operations required?”
The first question is answered affirmatively; the second has as yet only very incomplete
answers.

4 Winograd’s algorithm for matrix product

To compute a1·b1+a2·b2 certainly requires 2 multiplications/divisions (and 1 addition/subtraction),
and more generally, a1 · b1 + · · ·+ an · bn requires n multiplication/divisions. An alternative
way to compute a1 · b1 + a2 · b2 is the following:

µ1 = a1 · a2

µ2 = b1 · b2

µ3 = (a1 + b2) · (a2 + b1)
result = µ3 − µ1 − µ2.

It needs good insight to see the significance for matrix product of this identity which, at first
glance, appears merely to take more multiplications and more additions than the obvious
algorithm. The important feature is that µ1 and µ2 are multiplications which involve only
a’s and only b’s respectively. Why is this so important?
We have already remarked that matrix product can be regarded as finding the inner product
of each row of one matrix with each column of the other matrix. In the sub-algorithm used for
inner product, if there is a computation involving the elements from only one of the vectors
then it can be performed just once for that row (column) instead of every time that vector is
used. This idea of “pre-processing” is very important and leads in this instance to Winograd’s
algorithm [9]. The algorithm is described first for the simple case of n × n matrices with n
even. For x = (x1, . . . , xn), define

W (x) = x1 · x2 + x3 · x4 + · · ·+ xn−1 · xn.
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Then
(i) For each row Ai of A compute W (Ai), and for each column Bj of B compute W (Bj).
(ii) For each pair (i, j), writing a for Ai and b for Bj , compute

a · b = (a1 + b2) · (a2 + b1)+ (a3 + b4) · (a4 + b3)+ · · ·+(an−1 + bn) · (an + bn−1)−W (a)−W (b).

The arithmetic complexity for (i) is

2n(n/2 m + (n/2− 1) a),

and for (ii) is
n2(n/2 m + (3n/2 + 1) a),

which gives a total of

( 1
2
n3 + n2) m + ( 3

2
n3 + 2n(n− 1)) a = 1

2
n3 m + 3

2
n3 a + O(n2).

Neglecting lower order terms, we have exchanged roughly n3/2 multiplications for an extra
n3/2 additions/subtractions. The algorithm is easily extended to the general p×q×r product.
If q is even the algorithm is essentially the same. If q is odd then one elementary multiplication
in each inner product is done in the conventional manner and added in separately, which
does not significantly affect the arithmetic complexity. The extra storage requirements of
Winograd’s algorithm are minimal: just one extra location for each row and column is needed
to store the value of W .
This algorithm is of possible value whenever m > a. Typical applications are when the matrix
elements are complex numbers or multiple-precision numbers. A significant restriction of the
algorithm is that its correctness depends on the commutativity of multiplication. This is seen
in the original identity for a1b1 + a2b2 above.
Let us consider the case of complex matrices in further detail. Assuming that the complex
numbers are represented by pairs of reals giving their real and imaginary parts, the obvious
algorithm to compute

(x + iy) · (u + iv) = (xu− yv) + i(xv + yu)

takes 4 m+2 a, and complex addition costs 2 a. This seems a good application for Winograd’s
algorithm. If we are on the look-out for unusual methods, we may find the following alternative
for complex product:

λ1 = x · u
λ2 = y · v
λ3 = (x + y) · (u + v).

Then
(x + iy) · (u + iv) = (λ1 − λ2) + i(λ3 − λ1 − λ2).

Although this identity is reminiscent of the identity underlying Winograd’s algorithm, note
that commutativity of multiplication need not be assumed here. Since this method uses
3 m + 5 a, instead of 4 m + 2 a, it requires a situation where m is much larger than a to be
useful. If the elements involved are themselves large matrices then this condition holds.
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This observation yields a new class of algorithms for complex matrix product. Note the
relevance of the remark above about commutativity. Given complex matrices, A and B, split
them into their real and imaginary parts so that we may write

A = X + iY, B = U + iV,

where X, Y, U, V are real matrices. Then the identity above is used to compute A · B using
only 3 real matrix products and 5 real matrix sums.
We now have a plethora of algorithms to consider, of which we identify eight. Given two
complex matrices, these may be multiplied directly using either the Classical method (C) or
Winograd’s algorithm (W), and then the complex entries can be multiplied in the Straight-
forward way (S) or the Unusual (Underhand?) way (U) given by the above identity. We can
denote these methods by

CS,CU,WS,WU.

Alternatively the original matrices may be split up into real and imaginary parts and multi-
plied using methods S or U. The real matrix products required are done by C or W, yielding
four more methods,

SC,UC,SW,UW.

We shall analyse the arithmetic complexity of these methods for n × n × n product as the
ratio of m to a varies. This is only a theoretical exercise since in practice the “overheads”
may be the crucial criterion in a comparison of similar algorithms. We set out in the table
below the leading coefficients of the m and a components of the arithmetic complexity.

Method Coefficient of n3 Coefficient of n3

CS 4 4
CU 3 7
WS 2 4
WU 11

2 51
2

SC 4 4
SW 2 6
UC 3 3
UW 11

2 41
2

As one would expect from the above discussion, if one is going to split up the matrices initially,
the first stage should be done with U rather than S, and if the matrices are to be multiplied
directly, W is better than C. Looking at the remaining complexities we find that

1. if m > a then UW has the lowest;

2. if m < a then UC has the lowest;

3. if m = a then WS, UW, UC are the joint leaders,

but if lower order terms are taken into account in case 3, then UC has the lowest arithmetic
complexity:

3n3 m + (3n3 + 2n2) a.
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Figure 1: Comparison of eight algorithms

In practice, the methods using an initial “U” splitting have a significant disadvantage since
these programs require three matrix multiplications instead of just one, and a large part of
the total execution time may be concerned with initialization and calculating the indices and
addresses of the arguments for operations. A promising approach which I have not tried out
in practice but which may overcome some of the inefficiencies in methods such as UC and
UW is the following. We take advantage of the circumstance that there are three real matrix
products, all of the same dimensions, to be computed and that they may be performed in
parallel. If the corresponding operations of these products are interleaved then some of the
“overheads” can be shared.

5 A recursive method and recurrence relations

For a different style of algorithm for matrix product we can use partitioned matrices and
“block multiplication”. To simplify matters suppose A,B are n × n matrices with n > 1. If
we regard A,B as composed of submatrices in the following way(

A11 | A12

A21 | A22

)
,

(
B11 | B12

B21 | B22

)
,

where A11, B11 are r × r matrices, 0 < r < n, then the product is given by(
A11B11 + A12B21 | A11B12 + A12B22

A21B11 + A22B21 | A21B12 + A22B22

)
.
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That the result is correct is easily proved, and uses only the associativity property of addition.
The product A · B is thus computed by performing 8 products of the sub-matrices, followed
by 4 sums of the resulting sub-matrices. The sub-matrix products may be done in a similar
manner by further partitioning into smaller matrices, and so on until the resulting matrices
are small, maybe 1 × 1. Thus we have a recursive procedure for matrix product. If we take
r = dn/2e, so the partitioning is as nearly as possible into equal parts, and if we write P (n),
S(n), for the arithmetic complexity of n×n×n product and n×n sum respectively, we derive
the following recurrence relation.

P (n) ≤ 8P (dn/2e) + 4S(dn/2e).

But S(n) = n2 a = O(n2) operations, so we have P (n) ≤ 8P (dn/2e) + O(n2).
Recurrence relations of the above form occur frequently and we give below a general solution.
For the above relation this will imply that

P (n) = O(nlog2 8 = O(n3).

This comes as no surprise to the observant reader who has seen that precisely the same
multiplications are performed as in the “classical” algorithm and the additions have just been
rearranged using associativity.

Theorem 1 If F is a non-negative function on the positive integers such that for some a ≥
1, b > 1 and β ≥ 0, F (n) ≤ a.F (dn/be) + O(nβ) then if α = logb a:

F (n) = O(nα) if α > β,

= O(nβ) if α < β,

= O(nα log n) if α = β.

Proof. Left to the reader!

6 Strassen’s algorithm

In the light of Winograd’s algorithm it would be tempting to conjecture that, while some
trade-off between multiplications and additions is possible, the total number of arithmetic
operations required is of order n3 for n×n×n product. This is not so! Strassen’s simple and
astonishing observation [7] is that for multiplying 2×2 matrices only 7 (not 8) multiplications
are needed, even if multiplication of elements is non-commutative. Using this fact, the block
multiplication algorithm described in the last section may be up-graded to one satisfying:

P (n) ≤ 7P (dn/2e) + O(n2),

which, by the theorem given above, yields

P (n) = O(nlog2 7) = O(n2.81).

Recall that P (n) is the total number of arithmetic operations (multiplications, additions/subtractions).
It should be apparent that with a straightforward implementation of this algorithm on a ma-
chine with reasonable properties the total execution time is also of the stated order.
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6.1 Strassen’s identities

We assume for simplicity that A,B are n × n matrices, and that n is even so the matrices
can be partitioned into 4 equal quarter-matrices. For(

A11 | A12

A21 | A22

)
·
(

B11 | B12

B21 | B22

)
=
(

C11 | C12

C21 | C22

)
,

compute:

m1 = (A11 + A21)(B11 + B12)
m2 = (A12 + A22)(B21 + B22)
m3 = (A11 −A22)(B11 + B22)
m4 = A11(B12 −B22)
m5 = (A21 + A22)B11

m6 = (A11 + A12)B22

m7 = A22(B21 −B11).

Then

C11 = m2 + m3 −m6 −m7

C12 = m4 + m6

C21 = m5 + m7

C22 = m1 −m3 −m4 −m5.

Thus,
P (n) = 7P (n/2) + 18S(n/2)

and so
P (n) = O(nlog2 7).

These identities may be conveniently expressed in the form of a diagram, where •(◦) in cell
(Aij , Bkl) represents the term +(−)AijBkl. The connected groups of circles represent the
terms occurring in the respective products. It is now easy to verify the correctness of the
identities.
A small improvement may be obtained by applying linear transformations to the above iden-
tities to reduce the number of matrix sums required from 18 to 15. Of course this has no effect
on the exponent, log2 7, but reduces the arithmetic complexity by a constant factor. The re-
sulting identities are given below. A curious feature is that the first two of the seven products
are A11B11 and A12B21 which would also be those done by the obvious block multiplication.
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Figure 2: Strassen diagram

m1 = A11B11

m2 = A12B21

m3 = (−A11 + A21 + A22)(B11 −B12 + B22)
m4 = (A11 −A21)(−B12 + B22)
m5 = (A21 + A22)(−B11 + B12)
m6 = (A11 + A12 −A21 −A22)B22

m7 = A22(−B11 + B12 + B21 −B22).

Then

C11 = m1 + m2

C12 = m1 + m3 + m5 + m6

C21 = m1 + m3 + m4 + m7

C22 = m1 + m3 + m4 + m5.

Note the claimed 15 additions is only achieved by a careful sharing of common terms. (Check
this!) Probert [6] has shown that 15 is optimal.
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7 Some related results

Can the 2 × 2 × 2 product be computed using fewer than 7 multiplications? Winograd [10]
shows that, even if multiplication is commutative, 7 is the optimal number. Hopcroft and
Musinski [3] show that for any non-commutative ring obtained by adjoining indeterminates
to a commutative ring, every algorithm with 7 multiplications for 2 × 2 × 2 product can be
got by applying linear transformations to Strassen’s algorithm. An example is provided by
the two sets of identities given above.
The tensor formulation of the matrix multiplication problem [8, 2] has a symmetry which
shows that the minimum number of multiplications required is the same for p×q×r, p×r×q,
q × r × p, q × p × r, r × p × q and r × q × p products, and thus depends only on the triple
{p, q, r}. Using results from [4] with this result we have that the minimal number for the
triple {p, q, 2} is d(3pq + max(p, q))/2e, for p ≤ 2 or p = q = 3, e.g., 7 for p = q = 2, and 15
for p = q = 3. It is clear that any improvement on Strassen’s bound using the same kind of
recursion has to be based on a larger basic product than 2× 2× 2.
If 3× 3 matrices could be multiplied using only 21 multiplications (non-commutative) then a
faster algorithm would be obtained since log3 21 < log2 7. Nothing better than 24 has yet been
achieved, but neither has any close lower bound been proved. For 4×4 matrices, obviously 48
would need to be achieved. A recursion could be based also on non-square decompositions.
The results of [3] show that a result of k multiplications for p × q × r product, yields k3 for
pqr × pqr × pqr product and hence an exponent for n of 3 logpqr k.
In 1980, Victor Pan published an algorithm for 70× 70× 70 product using 143640 multipli-
cations [5]. Note that log70 143640 < 2.796. Over the following few years the best exponent
known gradually dropped. The current record is still the 2.376 due to Coppersmith and
Winograd [1]. However, because of the huge constant factors involved, the only sub-cubic
algorithm with any present claim to practicality is Strassen’s.
In an algorithm for the product of matrices of arbitrary shapes and sizes it is very inefficient
merely to fill out the matrices with 0’s to the next power of two. Halving each dimension
and adding one row or column of 0’s is more efficient, but the best strategy involves parti-
tioning into varying sizes, using some of the non-square matrix recurrences, and transferring
to Winograd’s or the classical method for small matrices. It is certainly inefficient to use
Strassen’s recursion right down to 1× 1 matrices.
The idea mentioned in Section 2 for sharing some of the non-arithmetic overheads by per-
forming several matrix products in parallel would seem to be useful in an implementation of
Strassen’s algorithm also. Care must be exercised however to avoid an unacceptable increase
in the storage required.

8 Reductions and equivalences to matrix product

In Strassen’s original paper [7], he also shows how any fast matrix product algorithm yields
a correspondingly fast algorithm for matrix inversion and computing determinants. These
reductions are based on the following “block LDU factorization” formula which is easily
verified.
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A =
(

A11 A12

A21 A22

)
=

(
I O

A21A
−1
11 I

)(
A11 O

O ∆

)(
I A−1

11 A12

O I

)
if A11 is non-singular, where I is the unit matrix, O is the zero matrix and ∆ = A22 −
A21A

−1
11 A12. So,

A−1 =

(
I −A−1

11 A12

O I

)(
A−1

11 O

O ∆−1

)(
I O

−A21A
−1
11 I

)

=

(
A−1

11 + A−1
11 A12∆−1A21A

−1
11 −A−1

11 A12∆−1

−∆−1A21A
−1
11 ∆−1

)

provided ∆ is also non-singular. Assuming these non-singularities, we have immediately the
recurrence relation for I(n), the arithmetic complexity of inverting an n×n matrix, given by

I(n) ≤ 2I(dn/2e) + O(P (dn/2e) + O(n2).

If we assume an algorithm for product giving P (n) = O(nα), for some α ≥ 2, the general
solution given in Section 3 yields

I(n) = O(nα).

Similarly, from the LDU factorization, we have

Det
(

A11 A12

A21 A22

)
= Det(A11)Det(∆).

If D(n) is the arithmetic complexity for determinants we have the recurrence

D(n) ≤ 2D(dn/2e) + I(dn/2e) + O(P (dn/2e))

and so, with the same hypothesis,
D(n) = O(nα).

The algorithm for inversion uses block LDU factorization recursively and so will fail, even if A
is non-singular, whenever “A11” or “∆” at any level of the recursion happens to be singular.
An elegant way around this difficulty is given by the following results.
A non-singular matrix A is positive-definite if xTAx > 0 for all non-zero vectors x.

Theorem 2 For any non-singular matrix A, the matrix ATA is positive-definite.

Proof:
xT(ATA)x = (Ax)T(Ax) = ||Ax||2 ≥ 0.

If x 6= 0 then Ax 6= 0, and so ||Ax||2 > 0. �
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Theorem 3 For any non-singular matrix A,

A−1 = (ATA)−1AT.

Proof:
((ATA)−1AT)A = (ATA)−1(ATA) = I.

�

In Strassen’s algorithm, it can be shown that if A is positive-definite then every matrix which
needs to be inverted in the recursive calls is also positive-definite. Hence, matrix inversion
can be accomplished via Theorem 3 by applying Strassen’s algorithm to ATA.
Is it possible that I(n) is of lower order than P (n)? We show directly that this is not so. It
is easily verified that:  I A O

O I B
O O I

−1

=

 I −A AB
O I −B
O O I

 .

Thus, to find the product of two n×n matrices A,B, it is sufficient to invert an appropriately
constructed non-singular 3n× 3n matrix. We therefore have

P (n) ≤ I(3n).

Combining this with a previous result we obtain:

Theorem 4 For all α ≥ 2,

P (n) = O(nα) ⇐⇒ I(n) = O(nα).

A similar result for squaring matrices follows from(
O A
B O

)2

=
(

AB O
O BA

)
.
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