Neural Networks and Deep Learning

Dr. Fayyaz Minhas

Department of Computer Science
University of Warwick
https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs909/
Biological Neurons and Networks
Single Neuron: Representation

• An abstraction of the biological neuron

\[u_i = \sum_j w_{ij} x_j = \mathbf{w}_i^T \mathbf{x} \]

\[y_i = a(u_i) = a \left(\sum_j w_{ij} x_j \right) \]
Activation Functions

- Can use any activation function

Activation Functions

- **Sigmoid**
 \[\sigma(x) = \frac{1}{1+e^{-x}} \]

- **tanh**
 \[\tanh(x) \]

- **ReLU**
 \[\max(0, x) \]

- **Leaky ReLU**
 \[\max(0.1x, x) \]

- **Maxout**
 \[\max(w_1^T x + b_1, w_2^T x + b_2) \]

- **ELU**
 \[\begin{cases}
 x & x \geq 0 \\
 \alpha(e^x - 1) & x < 0
 \end{cases} \]
Neural Networks

• Evaluation
 – Error between predicted and target output
 • Predicted output: $y = a(u) = a(w^T x)$
 • Target output: t
 • Error: $(t - y)^2$

• Optimization
 – Whenever the weights change, the output will change
 – Optimize the weights so that the output matches the target
 – Gradient Descent
How to implement Neurons?

• Remember:
 – If you can define a loss function
 – And a regularizer
 – The rest can be automated For any ML problem*

• Using Automatic Differentiation Libraries
 – Autograd
 – PyTorch
 – TensorFlow
 – JAX
 – Zygote.jl

Go through this exercise:
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb

• Representation
 – How does the model produce its output given its input
 • \(f(x; w) = w^T x \)

• Evaluation (SRM/Definition of Optimization Problem)
 – Define a loss function and a regularization strategy write the optimization problem
 • \(\min_w P(w; X, y) = \frac{1}{2} w^T w + \sum_{i=1}^N \max(0, 1 - y_i f(x; w)) \)

• Optimization
 – Obtain gradient \(\nabla_w P(w) = \frac{\partial P(w)}{\partial x} \) through an automatic differentiation method
 – Apply gradient descent (or other optimization) updates until convergence
 • \(w \leftarrow w - \alpha \nabla_w P(w) \)
 – Successful optimization is necessary for generalization (but not sufficient). Must check for successful optimization!
MULTILAYER PERCEPTRONS
A network of neurons

\[u_i = \sum_j w_{ij} x_j = w_i^T x \]

\[y_i = a(u_i) = a \left(\sum_j w_{ij} x_j \right) \]
Single to Multiple Neurons
Multilayer Perceptron: Representation

- Consists of multiple layers of neurons
 - Multi-Input Multi-Output
- Layers of units other than the input and output are called hidden units
- Unidirectional weight connections and biases (Feed-Forward)
- Activation functions
 - Use of activation functions
 - Sigmoidal activations
 - Nonlinear Operation: Ability to solve practical problems
 - Differentiable
 - Derivative can be expressed in terms of functions themselves: Computational Efficiency
 - Other activation functions also possible
 - Activation function is the same for all neurons in the same layer
 - Not a strict requirement though
 - Input layer just passes on the signal without processing (linear operation)

\[
\begin{align*}
z_j &= a(z_{inj}) \\
z_{inj} &= \sum_{i=0}^{n} x_i v_{ij}, \quad x_0 = 1, j = 1...p \\
y_k &= a(y_{in_k}) \\
y_{in_k} &= \sum_{j=0}^{p} z_j w_{jk}, \quad z_0 = 1, k = 1...m
\end{align*}
\]
Multilayer Perceptron: Evaluation

- Compute the error between prediction and target
 - SSE Loss:
 \[
 \text{loss} = \sum_{i} \sum_{k=1}^{m} (y^i_k - t^i_k)^2
 \]

Can use other loss terms.

L1 loss: \(\|y - o\|_1 \)
L2 loss: \(\|y - o\|_2 \)
Expectation loss: \(\|y - \sigma(o)\|_1 \)
Regularised expectation loss: \(\|y - \sigma(o)\|_2 \)
Chebyshev loss: \(\max_j |\sigma(o)^{(j)} - y^{(j)}| \)
Hinge loss: \(\sum_j \max(0, 1 - y^{(j)}\sigma(o)^{(j)}) \)
Squared hinge loss: \(\sum_j \max(0, 1 - y^{(j)}\sigma(o)^{(j)})^2 \)
Cubed hinge loss: \(\sum_j \max(0, 1 - y^{(j)}\sigma(o)^{(j)})^3 \)
Log loss: \(-\sum_j y^{(j)} \log \sigma(o)^{(j)} \)
Squared log loss: \(-\sum_j y^{(j)} \log^2 \sigma(o)^{(j)} \)
Tanimoto loss: \(\frac{\sum_j \sigma(o)^{(j)} y^{(j)}}{\|\sigma(o)\|^2_2 + \|y\|^2_2 - \sum_j \sigma(o)^{(j)} y^{(j)}} \)
Cauchy-Schwarz Divergence: \(-\log \frac{\langle \sigma(o), y \rangle}{\|\sigma(o)\|_2 \|y\|_2} \)
Multilayer Perceptron: Optimization

• Non-convex optimization
 – Because:
 \[y_{in_k} = \sum_{j=0}^{p} Z_j w_{jk} \]
 \[y_k = a(y_{in_k}) \]
 • Weighted combination of activation function outputs

• Compute the gradient of the error/loss function with respect to each weight of the neural network

• Update weights using gradient descent or other methods

\[
\begin{align*}
 w_{jk}^{new} &\leftarrow w_{jk}^{old} - \alpha \frac{\partial l}{\partial w_{jk}^{old}} \quad \text{or} \quad \Delta w_{jk} = -\alpha \frac{\partial l}{\partial w_{jk}^{old}} \\
 v_{ij}^{new} &\leftarrow v_{ij}^{old} - \alpha \frac{\partial l}{\partial v_{ij}^{old}} \quad \text{or} \quad \Delta v_{ij} = -\alpha \frac{\partial l}{\partial v_{ij}^{old}}
\end{align*}
\]
REO for MLPs

• **Representation**
 – Defined by the architecture
 • Number of inputs and outputs, Interconnection of neurons, number of neurons in layers, activation functions, etc.
 \[h(x) = \sum_{i=1}^{P} v_i a(w_i^T x + b_i) + v_0 = V a(Wx + b) + v_0 \]
 – Modern DL libraries require you to define “Representation”

• **Evaluation**
 – Defined by the ML problem
 – Can use any loss function
 • Square Error Loss
 • Hinge Loss
 • Cross-Entropy Loss

• **Optimization**
 – Solve for weights that reduce error over training data and (hopefully!) generalize to test data
 – Using any optimization method
 • Stochastic Gradient Descent
 • Adaptive Learning Rate with Momentum (Adam)
 • So many other

[Diagram of an MLP model]

Important:
The output of a fully connected layer of weights \(W \) can be viewed as a transformation \(z : \mathbb{R}^d \rightarrow \mathbb{R}^p \) involving a matrix-vector product and an activation function
\[z(x) = a(Wx + b) \]

[Link to playground.tensorflow.org]
Multilayer Perceptron

$$\text{Target} - t$$

$$\text{Loss}$$

Update Update
Backpropagation training cycle

Feed forward

Weight Update

Backpropagation
Training

• During training we are presented with input patterns and their targets
• At the output layer we can compute the error between the targets and actual output and use it to compute weight updates through the Delta Rule
• But the Error cannot be calculated at the hidden input as their targets are not known
• Therefore we propagate the error at the output units to the hidden units to find the required weight changes (Backpropagation)
• 3 Stages
 – Feed-forward of the input training pattern
 – Calculation and Backpropagation of the associated error
 – Weight Adjustment
• Based on minimization of SSE (Sum of Square Errors)
Proof for the Learning Rule

We can use the chain rule to compute the gradient of E

$$E = 0.5 \sum_k (t_k - y_k)^2$$

How much does E change with change in w_{jk}

$$\frac{\partial E}{\partial w_{jk}} = \frac{\partial}{\partial w_{jk}} 0.5 \sum_k (t_k - y_k)^2 = \frac{\partial}{\partial w_{jk}} 0.5(t_k - y_k)^2$$

$$= -(t_k - y_k) \frac{\partial}{\partial w_{jk}} y_k = -(t_k - y_k) \frac{\partial}{\partial w_{jk}} a(y_{in_k})$$

$$= -(t_k - y_k)a'(y_{in_k}) \frac{\partial}{\partial w_{jk}} y_{in_k}$$

$$= -(t_k - y_k)a'(y_{in_k}) \sum_{j=0}^p z_j w_{jk}$$

$$= -(t_k - y_k)a'(y_{in_k}) z_j = -\delta_k z_j$$

Take away lesson:
The change in w_{jk} is proportional to

- The error $t_k - y_k$
- Output z_j
- The derivative of the activation function $a'(y_{in_k})$

Weight update will be zero if any of these terms is zero!

Use of Gradient Descent Minimization

$$\Delta w_{jk} = -\alpha \frac{\partial E}{\partial w_{jk}} = \alpha \delta_k z_j$$

With $\delta_k = (t_k - y_k)a'(y_{in_k})$
The Learning Rule...

How much does E change with change in v_{ij}:

$$\frac{\partial E}{\partial v_{ij}} = \frac{\partial}{\partial v_{ij}} 0.5 \sum_k (t_k - y_k)^2 = 0.5 \sum_k \frac{\partial}{\partial v_{ij}} (t_k - y_k)^2$$

$$= \sum_k (t_k - y_k) \frac{\partial}{\partial v_{ij}} (-y_k) = - \sum_k (t_k - y_k) \frac{\partial}{\partial v_{ij}} a(y_{ink})$$

$$= - \sum_k (t_k - y_k) a'(y_{ink}) \frac{\partial}{\partial v_{ij}} y_{ink}$$

$$= - \sum_k \delta_k \frac{\partial}{\partial v_{ij}} \sum_{j=0}^p z_j w_{jk} = - \sum_k \delta_k \frac{\partial}{\partial v_{ij}} z_j w_{jk}$$

$$= - \sum_k \delta_k w_{jk} \frac{\partial}{\partial v_{ij}} a(z_{inj}) = - \sum_k \delta_k w_{jk} a'(z_{inj}) \frac{\partial}{\partial v_{ij}} z_{inj}$$

$$= - \sum_k \delta_k w_{jk} a'(z_{inj}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^n x_i v_{ij}$$

$$= - \sum_k \delta_k w_{jk} a'(z_{inj}) x_i = - \delta_j x_i$$

Take away message: The change in v_{ij} is proportion to:

- The input x_i
- δ_j: The backprop term which contains product of activation function derivatives

Use of Gradient Descent Minimization

$$\Delta v_{ij} = -\alpha \frac{\partial E}{\partial v_{ij}} = \alpha \delta_j x_i$$

With: $\delta_j = \sum_k \delta_k w_{jk} a'(z_{inj}) x_i$ or

$$\delta_j = \sum_k (t_k - y_k) w_{jk} a'(y_{inj}) a'(z_{inj}) x_i$$
Understanding Backpropagation

- Pass the input and compute the output
- Compute Error
- Compute Gradient of error wrt weights
- Compute weight updates
 - Compute δ_k
 - "Backpropagate" these δ_k through the network to Compute $\hat{\delta}_j$
 - Compute Δw_{jk} and Δv_{ij}
- Update weight updates

\[
\Delta w_{jk} = -\alpha \frac{\partial E}{\partial w_{jk}} = \alpha \delta_k z_j
\]
\[
\delta_k = (t_k - y_k)f'(y_{in_k})
\]
\[
\Delta v_{ij} = -\alpha \frac{\partial E}{\partial v_{ij}} = \alpha \delta_j x_i
\]

\[
\hat{\delta}_j = \sum_k \delta_k w_{jk} a' \left(z_{in_j} \right) x_i
\]
Step 0.

Initialize weights. (Set to small random values).

Step 1.

While stopping condition is false, do Steps 2–9.

Step 2.

For each training pair, do Steps 3–8.

Feedforward:

Step 3.

Each input unit \((X_i, i = 1, \ldots, n) \) receives input signal \(x_i \) and broadcasts this signal to all units in the layer above (the hidden units).

Step 4.

Each hidden unit \((Z_j, j = 1, \ldots, p) \) sums its weighted input signals,

\[
z_{inj} = v_{0j} + \sum_{i=1}^{n} x_i v_{ij}
\]

applies its activation function to compute its output signal,

\[
z_j = a(z_{inj})
\]

and sends this signal to all units in the layer above (output units).

Step 5.

Each output unit \(Y_k, k = 1, \ldots, m \) sums its weighted input signals,

\[
y_{in_k} = w_{0k} + \sum_{j=1}^{p} z_j w_{jk},
\]

and applies its activation function to compute its output signal,

\[
y_k = a(y_{in_k}).
\]
Training Algorithm...

Backpropagation of error:

Step 6.

Each output unit Y_k, $k = 1, \ldots, m$ receives a target pattern corresponding to the input training pattern, computes its error information term,

$$\delta_k = (t_k - y_k)a'(y_{ln_k})$$

calculates its weight correction term (used to update w_{jk} later),

$$\Delta w_{jk} = \alpha \delta_k z_j,$$

calculates its bias correction term (used to update w_{0k} later),

$$\Delta w_{0k} = \alpha \delta_k,$$

and sends δ_k to units in the layer below.
Training Algorithm...

Step 7.

Each hidden unit $Z_j, j = 1, \ldots, p$ sums its delta inputs (from units in the layer above),

$$\delta_{in_j} = \sum_{k=1}^{m} \delta_k w_{jk},$$

multiplies by the derivative of its activation function to calculate its error information term,

$$\hat{\delta}_j = \delta_{in_j} a'(z_{in_j}),$$

calculates its weight correction term (used to update w_{ij} later),

$$\Delta w_{ij} = \alpha \hat{\delta}_j x_i,$$

and calculates its bias correction term (used to update b_{0j} later),

$$\Delta b_{0j} = \alpha \hat{\delta}_j.$$
Training Algorithm...

Update weights and biases:

Step 8.

Each output unit $Y_k, k = 1, \ldots, m$ updates its bias and weights ($j = 0, \ldots, p$):

$$w_{jk}^{\text{new}} = w_{jk}^{\text{old}} + \Delta w_{jk}.$$

Each hidden unit $Z_j, j = 1, \ldots, p$ updates its bias and weights ($i = 0, \ldots, n$):

$$v_{ij}^{\text{new}} = v_{ij}^{\text{old}} + \Delta v_{ij}.$$

Step 9.

Test stopping condition.

Taken from:
Optimization in minibatches

• We can do a full-scale optimization across all examples in each step or take a few examples at a time to determine the gradients and perform an update
 – Mini-batches
 • Stochastic gradient descent
 • Reduces memory consumption
 • Faster convergence
Coding

- **Using Keras**
 - https://github.com/foxtrotmike/CS909/blob/master/keras_barebones.ipynb

- **PyTorch**
 - **Barebones code in PyTorch**
 - https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb

- **Using nn-module**
 - https://github.com/foxtrotmike/CS909/blob/master/pytorch_nn_barebones.ipynb

- **Universal Approximation code:**
 - https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb

- **Digit Classification Exercise**
 - https://github.com/foxtrotmike/CS909/blob/master/pytorch_mlp_mnist.ipynb
Libraries

• All Neural Network/Deep Learning Libraries **Do three things**
 – Automatic Differentiation (Efficient Algorithms such as Reverse mode autodiff!)
 – Implement Optimizers
 – Use efficient hardware for multiprocessing (GPUs)

• Support efficient representation / abstraction

- **Keras**
- **TensorFlow**
 - Static Computing Graphs
 - Build before you go (new version has dynamic graphs too!)
 - Compile then run/fit
 - Good Documentation
 - Distributed Computing / Delivery
 - TensorFlow.js

- **pyTorch**
 - Dynamic Computing Graphs
 - Graph built at run time
 - Build as you go
 - Good for research

- **Julia**

using Zygote

```python
# Define a simple function
f(x) = 3x^2 + 2x + 1
# derivative of f at x = 2
gradient(f, 2)
```
NN/Deep Learning Libraries

- Essentially Automatic Differentiation Tools with optimization packages
 - Represent a neural network loss calculation as a computational graph and then compute the gradients
 - Have rules for each operator on how to differentiate “through” that operator

- Can use GPU

```
e = (a + b)(b + 1) = ab + a + b^2 + b
\frac{\partial e}{\partial a}(a=2, b=1) = b + 1 = 2
\frac{\partial e}{\partial b}(a=2, b=1) = a + 2b + 1 = 5
```

```python
import torch
import numpy as np
from torchviz import make_dot
a = torch.from_numpy(np.array([2.0])); a.requires_grad_(True)
b = torch.from_numpy(np.array([1.0])); b.requires_grad_(True)
e = (a+b)*(b+1)
e.backward()
pred(a.grad) # 2
print(b.grad) # 5
make_dot(e)
```
Computation Graph of a two-layer network

```
model = torch.nn.Sequential(
    torch.nn.Linear(2, 2),
    torch.nn.Sigmoid(),
    torch.nn.Linear(2, 1),
    torch.nn.Sigmoid()
).to(device)

z = model(x)

e = loss_fn(z, y)

model.zero_grad()
e.backward()

with torch.no_grad():
    for param in model.parameters():
        param.data -= learning_rate * param.grad

# optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
model.zero_grad()
e.backward()
optimizer.step()
```
Optimization Methods

- Gradient Descent: Go down! \(\theta = \theta - \eta \cdot \nabla_\theta J(\theta) \)
- Stochastic Gradient Descent \(\theta = \theta - \eta \cdot \nabla_\theta J(\theta; x^{(i)}; y^{(i)}) \)
- Mini-batch Gradient Descent \(\theta = \theta - \eta \cdot \nabla_\theta J(\theta; x^{(i:i+n)}; y^{(i:i+n)}) \)
- SGD with momentum: accelerate if going downhill for a long time
- Nesterov momentum: accelerate but not indefinitely
- Adagrad: Adaptive Learning Rate by accumulating past gradients
- AdaDelta/RMSProp: Adaptive Learning rate but does not accumulate all past gradients
- Adam: Adaptive learning rate with momentum

- Learning rate scheduling
 - Changing Learning rates at different times in the learning

Here x is not an example, rather the input to an activation function f

Some functions like the "**Softmax**" take a vector as input and produce a vector output. The softmax function takes a vector of "logits" as input and produces pseudo-probability values as output.

Does the brain do backpropagation?

• Short answer:
 – No

• Long answer:
 – Not enough evidence

HOW TO IMPROVE NEURAL NETWORK TRAINING
Parameter Selection

• A MLP has a large number of parameters
 – Number of Neurons in Each Layer
 – Number of Layers
 – Activation Function for each neuron: ReLU, logsig...
 – Layer Connectivity: Dense, Dropout...

• Objective function
 – Loss Function: MSE, Entropy, Hinge loss, ...
 – Regularization: L1, L2...

• Optimization Method
 – SGD, ADAM, RMSProp, LM ...
 – Parameters for the Optimization method
 • Weight initialization
 • Momentum, weight decay, etc.
Issues with Neural Networks with non-linear activations

• Unlike an SVM, which has a single global optimum due to its convex loss function, the error surface of a neural network is not as smooth
• This complicates the optimization
• A number of “tricks” are used to make the neural network learn

Examples showing that combinations and compositions (such as those that can arise in a multilayer perceptron) of even convex functions are not convex

Given convex functions

\[g_1(x) = -x \]
\[g_2(x) = x^2 \]

Following are NOT convex:

\[g_1(x) - g_2(x) = -x - x^2 \]
\[g_1(g_2(x)) = -x^2 \]
How to improve MLP?

• For successful optimization
 – Don’t let the network stop learning prematurely!
 • For example: Don’t let the neurons saturate!
 – If the input or the gradient goes to zero, the learning stops!
 – Here is the gradient descent based weight update formula for a 2 layer MLP

\[
\Delta v_{ij} = \alpha x_i a'(v_j^T x) \sum_{k=1}^{m} w_{jk} \left(t_k - a \left(\sum_{j=0}^{p} w_{jk} a(v_j^T x) \right) \right) a' \left(\sum_{j=0}^{p} w_{jk} a(v_j^T x) \right)
\]

Final layer weight update:
\[
\Delta w_{jk} = -\alpha \frac{\partial E}{\partial w_{jk}} = \alpha \delta_k z_j
\]
Final layer backprop term:
\[
\delta_k = (t_k - y_k) f'(y_{in_k})
\]
Hidden layer weight update:
\[
\Delta v_{ij} = -\alpha \frac{\partial E}{\partial v_{ij}} = \alpha \hat{\delta}_j x_i
\]
Hidden layer backprop:
\[
\hat{\delta}_j = \delta_{in_j} a'(z_{in_j})
\]
Hidden layer output:
\[
z_j = a(z_{in_j}), z_{in_j} = \sum_{i=0}^{n} x_i v_{ij}
\]
Final layer output:
\[
y_k = a(y_{in_k}), y_{in_k} = \sum_{j=0}^{p} z_j w_{jk}
\]
Understanding optimization stalls in neural networks

\[\Delta v_{ij} = \alpha x_i a'(v_j^T x) \sum_{k=1}^{m} w_{jk} \left(t_k - a \left(\sum_{j=0}^{p} w_{jk} a(v_j^T x) \right) \right) a' \left(\sum_{j=0}^{p} w_{jk} a(v_j^T x) \right) \]

Why can optimization stall or slow down

1. When \(x_i = 0 \) (input is zero or too small)
2. Activation gradient \(a'(\cdot) \) is small for a given input
3. Weights are close to zero \(w_{jk} = 0 \)
4. When weight updates get too large, the next weights are going to be large leading to saturation (exploding gradients)
5. When the neural network output range cannot match the range of the target

How to fix / Good practice

1. Don’t use zero inputs (scale neuron inputs appropriately)
 - Scale neuron outputs appropriately too as they become inputs to other neurons.
2. Either large inputs or large weights can push the activation function into saturation
 - Don’t use “saturating” activation functions (leaky-RelU better than ReLU or sigmoid)
 - Don’t use very large inputs (use appropriate input and output scaling)
 - Don’t let weights get large
 - Each layer in a neural network introduces an additional product term of gradients of the activation function. If a neural network has many layers, there will be many products of activation function gradients and as the product of small numbers is even smaller, small gradients will just vanish and lead to a learning stall
 - **Vanishing gradients problem**
 - Don’t use too many layers!
3. Don’t start with zero weights (use proper weight initialization with small random weights – implicit regularization)
4. Choose the learning rate/optimizer appropriately. Plot the convergence plot. Use gradient clipping.
5. Choose an appropriate activation in the output layer

Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”
Improving MLP

- Improving optimization
 - Different optimizers
 - Adaptive Momentum based optimization
 - Learning rate cycling strategies
- Improving generalization
 - Use Early Stopping
 - Keep track of generalization error and stop if the generalization error does not improve enough even when the error on training data is going down
 - Using regularization
 - Explicit regularization
 - Weight norms
 - Gradient clipping
 - Data Augmentation
 - Create artificial examples
 - Addition of noise
 - Translation of images or other transforms
 - Drop-Off
 - Batch Normalization
- The loss function has a significant impact on learning (both optimization and regularization)
 - For example cross-entropy loss and softmax work well for classification tasks

```python
# Early stopping parameters
patience = 10  # How many epochs to wait after last time validation loss improved.
best_loss = None
epochs_no_improve = 0
early_stop = False

for epoch in range(100):  # epochs
    model.train()
    for inputs, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

    model.eval()
    val_loss = 0
    with torch.no_grad():
        for inputs, labels in val_loader:
            outputs = model(inputs)
            val_loss += criterion(outputs, labels).item()

    val_loss /= len(val_loader)
    print(f'Epoch {epoch}, Validation Loss: {val_loss}

    # Check for early stopping
    if best_loss is None:
        best_loss = val_loss
    elif val_loss < best_loss:
        best_loss = val_loss
        epochs_no_improve = 0
    else:
        epochs_no_improve += 1
    if epochs_no_improve == patience:
        print(f'Early stopping!')
        break  # Exit from the loop
    else:
        if not early_stop:
            print('Training completed without early stopping.')
```
Home/Lab Exercise!

• Solve the XOR using a single hidden layer BPNN with sigmoid activations
 – See what is the effect of different parameters on the convergence characteristics of the neural network
UNIVERSAL FUNCTION APPROXIMATION WITH NEURAL NETWORKS
Universal Function Approximation

• A neural network with a single hidden layer is a universal approximator

• Universal Approximation
 – Any function $g(x)$ over $x \in \mathbb{R}^m$ can be represented as follows:

$$h(x) = \sum_{i=1}^{P} v_i a(w_i^T x + b_i) + v_0 = \sum_{i=1}^{P} v_i z_i + v_0$$

 • $a(\cdot)$ is a non-constant, bounded and monotonically-increasing continuous “basis” function
 • P is the number of functions
 • $h(x)$ is an approximation of $g(x)$, i.e., $|g(x) - h(x)| < \varepsilon$

Universal Function Approximation Example

- Let’s try to approximate the function $g(x)$ by a NN
- Let’s build a neural network with sigmoid activations in the hidden layer
- The output of a single neuron depends on its net input which is a weighted summation of its inputs (with bias)
- The output is the sum of the outputs of all hidden neurons
- We want to find weights which sum up to produce the target function

CODE: https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb
Universal Function Approximation Example

• With no hidden layer neuron (P=1)
Universal Function Approximation Example

- With no hidden layer neuron (P=2)
Universal Function Approximation Example

• With no hidden layer neuron (P=3)
Universal Function Approximation Example

• With no hidden layer neuron (P=5)
Universal Function Approximation Example

- With no hidden layer neuron (P=50)
Practical Issues in Universal Approximation

• The universal approximation theorem means that regardless of what function we are trying to learn, we know that a large MLP will be able to represent this function.
• However, we are not guaranteed that the training algorithm will be able to “learn” that function.
 – Optimization can fail
 – Learning is different from optimization
 • The primary requirement for learning is generalization
 – Representability alone does not guarantee learning
Universal Function Approximation

- A neural network with one hidden layer can be used to approximate any shape
 - However, the approximation might require exponentially many neurons
 - How can we reduce the number of computations?

\[
h(x) = \sum_{i=1}^{p} v_i a(w_i^T x + b_i)
\]

A single hidden layer NN with step activation is a combination of straight cuts
Total number of learnable parameters: \(pd+p+p\)

The number of required straight cuts to approximate a given shape

WHY GO DEEP?
How many cuts?

• Remember: Classification can be thought of as partitioning of the feature space
• How can we reduce the number of required cuts?
 – By folding: which is equivalent to:
 • Applying a transformation $\phi(x)$
 – Neural networks
 • Changing the distance metric
 – Distance metric learning
 • Kernelization
 – SVM
Each layer is a transformation of the input data

• In the transformed space

\[h(x) = \sum_{i=1}^{p'} v_i a \left(\sum_{j=1}^{d'} w_{ij} g(u_j^T x + c_j) + b_i \right) \]

Total number of learnable parameters: \(dd'+d'+p'+p' \)

• We can implement a learnable feature transformation through neurons!

Montufar (2014)

Fold and Cut Theorem: https://www.youtube.com/watch?v=ZREp1mAPKTM
Width vs. Depth

• An MLP with a single hidden layer is sufficient to represent any function
 – But the layer may be infeasibly large
 – May fail to learn and generalize correctly

• Using a deeper model can reduce the number of units required to represent the desired function and can reduce the amount of generalization error
 – **Thus a deeper representation is more efficient!**
 – A function that could be expressed with $O(n)$ neurons on a network of depth k required at least $O(2^{\sqrt{n}})$ and $O((n - 1)^k)$ neurons on a two-layer neural network: Delalleau and Bengio (2011)
 – Functions representable with a deep rectifier net can require an exponential number of hidden units with a shallow (one hidden layer) network: Montufar (2014)
 – For a shallow network, the representation power can only grow polynomially with respect to the number of neurons, but for deep architecture, the representation can grow exponentially with respect to the number of neurons: Bianchini and Scarselli (2014)
 – Depth of a neural network is exponentially more valuable than the width of a neural network, for a standard MLP with any popular activation functions: Eldan and Shamir (2015)
Comparison of Depth

Both have approximately the same number of parameters (tunable weights)

- Deeper is better
- But is difficult to optimize

CODE: https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb
Width vs. Depth

- Empirical results for some data showed that depth increases generalization performance in a variety of applications.
Figure 6.7: Deeper models tend to perform better. This is not merely because the model is larger. This experiment from Goodfellow et al. (2014d) shows that increasing the number of parameters in layers of convolutional networks without increasing their depth is not nearly as effective at increasing test set performance. The legend indicates the depth of network used to make each curve and whether the curve represents variation in the size of the convolutional or the fully connected layers. We observe that shallow models in this context overfit at around 20 million parameters while deep ones can benefit from having over 60 million. This suggests that using a deep model expresses a useful preference over the space of functions the model can learn. Specifically, it expresses a belief that the function should consist of many simpler functions composed together. This could result either in learning a representation that is composed in turn of simpler representations (e.g., corners defined in terms of edges) or in learning a program with sequentially dependent steps (e.g., first locate a set of objects, then segment them from each other, then recognize them).
Shallow vs. Deep Networks

• Adding more layers increases the representation power of the neural network

• A deep network requires exponentially fewer parameters to get to the same error rate in comparison to a wide neural network
 – More efficient

• However, adding layers leads to a more difficult optimization problem
 – Vanishing and Exploding Gradients

\[
\Delta v_{ij} = \alpha x_i a'(v_j^T x) \sum_{k=1}^{m} w_{jk} \left(t_k - a \left(\sum_{j=0}^{p} w_{jk} f(v_j^T x) \right) \right) a' \left(\sum_{j=0}^{p} w_{jk} f(v_j^T x) \right)
\]
CONVOLUTIONAL NEURAL NETWORKS
Where’s Waldo?
Let’s solve it using a neural network

- **Input image**: 256x256x3
 - Flatten it: 196, 608 dimensional input
- **Target**: 256x256x3
 - Flatten it: 196, 608 dimensional output

- Let’s use a single hidden layer network
 - Very large number of parameters will be needed
- Let’s use a deep(er) network
 - Still a very large number of parameters will be needed
Key elements of a radar system. Like other echo location systems, radar transmits a short pulse of energy that is reflected by objects being examined. This makes the received waveform a shifted version of the transmitted waveform, plus random noise. Detection of a known waveform in a noisy signal is the fundamental problem in echo location. The answer to this problem is correlation.

The correlation machine. This is a flowchart showing how the cross-correlation of two signals is calculated. In this example, $y[n]$ is the cross-correlation of $x[n]$ and $t[n]$. The dashed box is moved left or right so that its output points at the sample being calculated in $y[n]$. The indicated samples from $t[n]$ are multiplied by the corresponding samples in $x[n]$, and the products added.
Important conceptual note

• Correlation vs. convolution

$$y[n] = f * g = \sum_{k=-\infty}^{+\infty} f[k]g[n-k]$$

$$y[n] = f * g = \sum_{k=-\infty}^{+\infty} f[k]g[n+k]$$
Convolutional Networks

• A feed-forward network inspired from visual cortex and the ideas of correlation
• Used for image or signal recognition tasks
• Objective
 – Find a set of filters which, when convolved with image, lead to the solution of the desired image recognition task
 • Invariant wrt translation
 • Hierarchical
 – Increasing feature complexity
 – Increasing “Globality”
Basics

- The convolution operation
 - Shows how a function (image) is modified by another (filter)

\[
H(i, j) = \sum_{k=-m/2}^{m/2} \sum_{l=-n/2}^{n/2} I(i + k, j + l)K(k, l)
\]

Technically, this is "correlation" and not convolution but we can ignore this for now. You can also use different edge handling or padding strategies.

https://en.wikipedia.org/wiki/Kernel_(image_processing)
Examples of filters

• Identity Filter

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

Muntjac

\[
\begin{bmatrix}
22 & 15 & 1 & 3 & 60 \\
42 & 5 & 38 & 39 & 7 \\
28 & 9 & 4 & 66 & 79 \\
0 & 2 & 25 & 12 & 17 \\
9 & 14 & 2 & 51 & 3 \\
\end{bmatrix}
\times
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
=
\begin{bmatrix}
5 & 38 & 39 \\
9 & 4 & 66 \\
2 & 25 & 12 \\
\end{bmatrix}
\]
Examples of filters

• Edge filters

\[\begin{bmatrix}
 1 & 0 & -1 \\
 0 & 0 & 0 \\
 -1 & 0 & 1 \\
\end{bmatrix} \]

\[\begin{bmatrix}
 0 & 1 & 0 \\
 1 & -4 & 1 \\
 0 & 1 & 0 \\
\end{bmatrix} \]

\[\begin{bmatrix}
 -1 & -1 & -1 \\
 -1 & 8 & -1 \\
 -1 & -1 & -1 \\
\end{bmatrix} \]

\[\begin{bmatrix}
 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 10 & 10 & 10 \\
 1 & 1 & 10 & 10 & 10 \\
 1 & 1 & 10 & 10 & 10 \\
 1 & 1 & 10 & 10 & 10 \\
\end{bmatrix} \]

\[\begin{bmatrix}
 9 & -18 & -9 \\
 9 & -9 & 0 \\
 9 & -9 & 0 \\
\end{bmatrix} \]

import numpy as np
I = np.array([[1,1,1,1,1],[1,1,10,10,10],[1,1,10,10,10],[1,1,10,10,10],[1,1,10,10,10]])
from scipy.ndimage.filters import convolve
K = np.array([[0,1,0],[1, -4,1],[0,1,0]])
H = convolve(I,K)
Example Filters

- Reducing noise using a smoothing filter

<table>
<thead>
<tr>
<th>Filter</th>
<th>Kernel</th>
<th>Image Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box blur (normalized)</td>
<td>$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{bmatrix}$</td>
<td></td>
</tr>
<tr>
<td>Gaussian blur 3×3 (approximation)</td>
<td>$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \ 2 & 4 & 2 \ 1 & 2 & 1 \end{bmatrix}$</td>
<td></td>
</tr>
<tr>
<td>Gaussian blur 5×5 (approximation)</td>
<td>$\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \ 4 & 16 & 24 & 16 & 4 \ 6 & 24 & 36 & 24 & 6 \ 4 & 16 & 24 & 16 & 4 \ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$</td>
<td></td>
</tr>
</tbody>
</table>
(a) Identity kernel
(b) Edge detection kernel
(c) Blur kernel
(d) Sharpen kernel
(e) Lighten kernel
(f) Darken kernel
(g) Random kernel 1
(h) Random kernel 2
Convolution*

If you think about it
- Convolution is a sum of products
 - Can be expressed as a dot product

*Strictly speaking, this is cross-correlation.
How to apply filters?

• The easy way
 – Use skimage filters

```python
import numpy as np
import matplotlib.pyplot as plt
from skimage.data import camera
from scipy.ndimage import convolve

K = np.array([[0,1,0],[1,-4,1],[0,1,0]])/4  # our filter.
I = camera()/255.0  # so that values are in the range 0-255
H = convolve(I,K)

plt.figure(); plt.subplot(1,2,1); plt.imshow(I,cmap='gray')
plt.subplot(1,2,2); plt.imshow(H,vmin=-0.05,vmax=+0.05,cmap = 'gray')
print(f"sizes of images are: {I.shape} and {H.shape}\")
```

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np

class Filter(nn.Module):
 def __init__(self, K):
 super(Filter, self).__init__()
 K = torch.from_numpy(K).float()
 self.K = K.unsqueeze(0).unsqueeze(0) # convert image to NCHW from HW by adding two extra dimensions in the beginning
 def forward(self, x):
 return F.conv2d(x, self.K) # this is the convolution of the kernel
 def __repr__(self):
 return f"Convolution filter of dimensions: {self.K.shape}"

plt.close('all')
from skimage import data
X = data.camera() / 255.0;
plt.subplot(1, 2, 1);
plt.imshow(X, cmap='gray')
K = np.array([[[0, 1, 0], [-1, -4, -1], [0, 1, 0]]]) / 4.0
X_torch = torch.from_numpy(X).float().unsqueeze(0).unsqueeze(0) # convert image to NCHW from HW by adding two extra dimensions in the beginning
move image to torch
f = Filter(K)
set the kernel in Filter object
Z_torch = f(X_torch)
convolution
Z = Z_torch.squeeze().detach().numpy() # move back to numpy
plt.subplot(1, 2, 2);
plt.imshow(Z, vmin=-0.05, vmax=0.05, cmap='gray')
print(f)
print(f"sizes of images are: {X.shape} and {Z.shape}"

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_conv.py
Now the interesting question

- Can we learn filters to do something we want to do?
 - Let’s say we have an image and it’s output after a certain operation.
 - Can we learn a filter that produces the output given the input?
Example

- Let’s say, we have an image and we want to design a filter that when convolved with the image leads to the desired output. How?
How can this be done?

• Let’s try to build a multi-layer perceptron
 – Input image size: (32,32)
 • This means the number of input neurons will be 1024
 – Target image size: (32,32)
 • This means the number of output neurons will be 1024
 – Number of weights:
 • 1024 * 1024 = 1,048,576
 – Add hidden layers!
 – Good luck!
Let’s try to learn a 3x3 filter

• Representation

\[H = I \star K \]

\[H(i, j) = \sum_{k=-1}^{m=1} \sum_{l=-1}^{n=1} I(i + k, j + l)K(k, l) \]

• Evaluation

\[E(K) = \sum_{k=1}^{M} \sum_{l=1}^{N} (H(i, j) - T(i, j))^2 \]

• Optimization

– Solve the following problem: \(\min_{K} E(K) \)
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
class Filter(nn.Module):
 def __init__(self, ksize = 3):
 super(Filter, self).__init__()
 self.conv1 = nn.Conv2d(1,1,ksize) #torch allows creating a convolution filter using a conv2d layer object which applies conv2d internally for a given input
 def forward(self, x):
 x = self.conv1(x) #perform convolution
 x = torch.tanh(x) #apply activation
 return x

let's use a convolution filter of size ksize
ksize = 3
bsize = int(ksize/2) #size of broder region
f = Filter(ksize)
optimizer = torch.optim.Adam(f.parameters(), lr=1e-2)
T_torch = torch.from_numpy(T[:bsize:-bsize,:bsize:-bsize]).float() # reduce target filter size to compensate for border loss in convolution
X_torch = torch.from_numpy(X).float().unsqueeze(0).unsqueeze(0) #convert image to NCHW from HW by adding two extra dimensions in the beginning
L = []
for _ in range(1000):
 optimizer.zero_grad() #optimization
 Z_torch = f(X_torch).squeeze()
 loss = torch.sum(torch.abs((T_torch-Z_torch)**2)) #error
 loss.backward()
 optimizer.step()
 L.append(loss.item())
output = Z_torch.squeeze().detach().numpy()
output = (output-np.min(output))/(np.max(output)-np.min(output)) #rescale so that the lowest value in the input image is 0 and the highest is 1 so we can threshold it

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
Results

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/learn_filters.py
Another way of looking at this

• We learned a convolution filter kernel based on an input and a target image
• The filter will act as a + detector when convolved with a new image (hopefully!)
Most basic convolutional neural network

- Acts as a “detection” or “feature extraction” unit
Classification with Multilayer Perceptron

Target: $y - t$

Loss:

Update:

Update:

Input Layer

Hidden Layer

Output Layer

Output
REO for a convolution neural network

- **Representation**
 - Input: a \(k \)-dimensional tensor \(x \)
 - \(k = 1 \): signal of length \(n \)
 - \(k = 2 \): (grayscale) image of size \(l \times w \)
 - RGB channel image: \(l \times w \times 3 \)
 - \(k = 3 \): \(l \times w \times t \) video of frame size \(l \times w \) with duration \(t \)
 - Output: A decision score \(y = f(x; \theta) \) (can be multi-dimensional as well)
- **Structure**
 - Layers of Learnable filters each of which is correlated (or convolved) with the input tensor in parallel followed by convolution with other filters
 - A single convolution is indicated by \(z = a(x \ast \theta) \) where \(\theta \) is the representation of a single filter and \(a(\cdot) \) is an activation function. Filters are much smaller than \(x \).
 - Implemented as layers: Conv1d, Conv2d, Conv3d (in PyTorch)
 - The correlation output is then pooled (optional)
 - Nonlinear activation functions are applied
 - Aggregated to produce the final output (depending upon application)
Convolutional Neural Networks for ML

• If we want to use the output of convolution filters for learning to classify or regress or rank or for any other task
 – We can use a multilayer perceptron but:
 • We will need to “flatten” the output of the correlation filter (aka feature/filter map)
 – Convert an image to a vector e.g., (8x8 to 64)
 • We will also need to reduce the dimensions of the output
 – Done through “Pooling”
 » Average or max
 – And/Or “Striding”
 » How we move the convolution filter
Structure

• Increasing “globality”
 – Input → Convolution → Non-linearity → Sub-sampling ... → Fully Connected Layer (for classification)
See Coding

- https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
- https://github.com/foxtrotmike/CS909/blob/master/cnn_mnist_pytorch.ipynb
Data Mining

Padding

<table>
<thead>
<tr>
<th>Input</th>
<th>Filter</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td>1 0 -1</td>
<td>![Result Image]</td>
</tr>
<tr>
<td>0 4 9 2 5 8 3 0</td>
<td>1 0 -1</td>
<td>![Result Image]</td>
</tr>
<tr>
<td>0 5 6 2 4 0 3 0</td>
<td>1 0 -1</td>
<td>![Result Image]</td>
</tr>
<tr>
<td>0 2 4 5 4 5 2 0</td>
<td>1 0 -1</td>
<td>![Result Image]</td>
</tr>
<tr>
<td>0 5 6 5 4 7 8 0</td>
<td>1 0 -1</td>
<td>![Result Image]</td>
</tr>
<tr>
<td>0 5 7 7 9 2 1 0</td>
<td>1 0 -1</td>
<td>![Result Image]</td>
</tr>
<tr>
<td>0 5 8 5 3 8 4 0</td>
<td>1 0 -1</td>
<td>![Result Image]</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td>1 0 -1</td>
<td>![Result Image]</td>
</tr>
</tbody>
</table>

Parameters:
- Size: $f = 3$
- Stride: $s = 2$
- Padding: $p = 1$

Dimension: 6×6

Multiple Channels

Parameters:
- Size: $f = 3$
- #channels: $n_c = 3$
- Stride: $s = 2$
- Padding: $p = 1$

$\eta_h \times \eta_w \times n_c = 6 \times 6 \times 3$

Multiple IO Channels

Parameters:
- Size: $f = 3$
- #channels: $n_c = 3$

1x1 Convolution

Parameters:
- Size: $f = 1$
- #channels: $n_c = 5$
- Stride: $s = 1$

Multiple IO Channels

1x1 Convolution

Pooling

• Average
• Max
• Adaptive Pooling
 – Produces a fixed (specified) sized output despite the size of the input by changing the window size adaptively
 – Allows us to have convolutional neural networks take arbitrary image sizes as input
 • nn.AdaptiveMaxPool2d
 • nn.AdaptiveAvgPool2d
• Learnable pooling

```
pool = nn.AdaptiveAvgPool2d(3)
input = torch.randn(1, 64, 8, 8)
output = pool(input)
print(output.shape) #3,3
```

```
input = torch.randn(1, 64, 6, 6)
output = pool(input)
print(output.shape) #3,3
```

Why do CNNs work?

• There are three major reasons why CNN’s work better than fully connected MLPs
 – Local weight connectivity
 • In contrast to a fully connected neural network like a multilayer perceptron, a filter in a CNN operates over an image at the local level
 – Shared weights
 • No separate weights for each pixel
 – Hierarchical representations
Filter 1

6 x 6 image

Only connect to 9 input, not fully connected

Less parameters!

CNN

MLP

Local Connectivity

Global Connectivity
Filter 1:

\[
\begin{bmatrix}
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1 \\
\end{bmatrix}
\]

6 x 6 image

Shared weights

Even less parameters!

Each output has its own weights for each input

CNN

MLP
Deep Learning: Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
ConvNetJS CIFAR-10 demo

This demo trains a Convolutional Neural Network on the CIFAR-10 dataset in your browser, with nothing but Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% (not perfect as the dataset can be a bit ambiguous). I used this python script to parse the original files (python version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping and random image shifts by up to 2px horizontally and vertically.

By default, in this demo we’re using Adadelta which is one of per-parameter adaptive step size methods, so we don’t have to worry about changing learning rates or momentum over time. However, I still included the text fields for changing these if you’d like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
RISK MINIMIZATION AND GENERALIZATION
Risk Minimization in Neural Networks

• Structural Risk
 – Empirical Error Minimization via Loss minimization
 – Regularization
Important Concepts

• Differences from fully connected nets
 – 3D volume of neurons
 – Local connectivity
 – Shared weights

• Hyper-parameter
 – Number of filters
 – Filter shape (receptive field)
 – Pooling type and shape
 – **Regularization**
 • Dropout
 • Early Stopping
 • Data Augmentation
 • Early Stopping
 • Norm constraints
 • L1/L2 regularization
 – Use performance over a validation set to pick hyperparameters
Regularization Mechanisms

• L2 penalty to weights
 – Weight_decay parameter
 • \texttt{sgd = torch.optim.SGD([w_torch], lr=lr, weight_decay=0.9)}

• Handling vanishing (or exploding) gradients
 – Pre-training (old!)
 – Layerwise training
 – Drop-out
 \texttt{nn.Dropout(0.5)}
 – Batch Normalization
 \texttt{nn.BatchNorm2d(6)}
 – Normalization free architectures with weight and gradient clipping
Understanding Drop-out in training

• “Dropout: A Simple Way to Prevent Neural Networks from Overfitting” by Srivastava et al., 2014.
 – Randomly drop units (along with their connections) from the neural network during training
 – Average weights across all “thinned” networks
 – Replaces explicit regularization and produces faster learning

Dropout Neural Net Model. **Left:** A standard neural net with 2 hidden layers. **Right:** An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.
Effect of Dropout

6.1.1 MNIST

<table>
<thead>
<tr>
<th>Method</th>
<th>Unit Type</th>
<th>Architecture</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Neural Net (Simard et al., 2003)</td>
<td>Logistic</td>
<td>2 layers, 800 units</td>
<td>1.60</td>
</tr>
<tr>
<td>SVM Gaussian kernel</td>
<td>NA</td>
<td>NA</td>
<td>1.40</td>
</tr>
<tr>
<td>Dropout NN</td>
<td>Logistic</td>
<td>3 layers, 1024 units</td>
<td>1.35</td>
</tr>
<tr>
<td>Dropout NN</td>
<td>ReLU</td>
<td>3 layers, 1024 units</td>
<td>1.25</td>
</tr>
<tr>
<td>Dropout NN + max-norm constraint</td>
<td>ReLU</td>
<td>3 layers, 1024 units</td>
<td>1.06</td>
</tr>
<tr>
<td>Dropout NN + max-norm constraint</td>
<td>ReLU</td>
<td>3 layers, 2048 units</td>
<td>1.04</td>
</tr>
<tr>
<td>Dropout NN + max-norm constraint</td>
<td>ReLU</td>
<td>2 layers, 4096 units</td>
<td>1.01</td>
</tr>
<tr>
<td>Dropout NN + max-norm constraint</td>
<td>ReLU</td>
<td>2 layers, 8192 units</td>
<td>0.95</td>
</tr>
<tr>
<td>Dropout NN + max-norm constraint (Goodfellow et al., 2013)</td>
<td>Maxout</td>
<td>2 layers, (5 × 240) units</td>
<td>0.94</td>
</tr>
<tr>
<td>DBN + finetuning (Hinton and Salakhutdinov, 2006)</td>
<td>Logistic</td>
<td>500-500-2000</td>
<td>1.18</td>
</tr>
<tr>
<td>DBM + finetuning (Salakhutdinov and Hinton, 2009)</td>
<td>Logistic</td>
<td>500-500-2000</td>
<td>0.96</td>
</tr>
<tr>
<td>DBN + dropout finetuning</td>
<td>Logistic</td>
<td>500-500-2000</td>
<td>0.92</td>
</tr>
<tr>
<td>DBM + dropout finetuning</td>
<td>Logistic</td>
<td>500-500-2000</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Does drop out help with overfitting and underfitting?

Figure 1. Dropout in early training helps the model produce mini-batch gradient directions that are more consistent and aligned with the overall gradient of the entire dataset.

Dropout Reduces Underfitting

Zhuang Liu1, Zhiqiu Xu2, Joseph Jin2, Zhiquiang Shen3, Trevor Darrell2

Abstract

Introduced by Hinton et al. in 2012, dropout has stood the test of time as a regularizer for preventing overfitting in neural networks. In this study, we demonstrate that dropout can also mitigate underfitting when used at the start of training. During the early phase, we find dropout reduces the directional variance of gradients across mini-batches and helps align the mini-batch gradients with the entire dataset’s gradient. This helps counteract the stochasticity of SGD and limit the influence of individual batches on model training. Our findings lead us to a solution for improving performance in underfitting models - early dropout: dropout is applied only during the initial phases of training, and turned off afterwards. Models equipped with early dropout achieve lower final training loss compared to their counterparts without dropout. Additionally, we explore a symmetric technique for regularizing overfitting models - late dropout, where dropout is not used in the early iterations and is only activated later in training. Experiments on ImageNet and various vision tasks demonstrate that our methods consistently improve generalization accuracy. Our results encourage more research on understanding regularization in deep learning and our methods can be useful tools for future neural network training, especially in the era of large data. Code is available at https://github.com/facebookresearch/dropout.

Data Mining

University of Warwick
• Quantifying uncertainty in neural network predictions
 – Use **drop-out at test time** and average the results (and compute error bounds)

\[
E_q(y^* | x^*) (y^*) \approx \frac{1}{T} \sum_{t=1}^{T} \hat{y}^*(x^*, w_t^1, \ldots, w_t^L)
\]

Consider a model with L layers with the weights of each obtained through a drop-out in T trials.

Figure 2. Predictive mean and uncertainties on the Mauna Loa CO2 concentrations dataset, for various models. In red is the observed function (left of the dashed blue line); in blue is the predictive mean plus/minus two standard deviations (8 for fig. 2d). Different shades of blue represent half a standard deviation. Mapped with a dashed red line is a point far away from the data: standard dropout confidently predicts an insensible value for the point; the other models predict insensible values as well but with the additional information that the models are uncertain about their predictions.
Understanding Batch-Normalization

- Given a batch of N examples, each dimension of each example is normalized to zero mean and unit variance
- Minimizes “covariate shift”
 - a change in the distribution of a function’s domain
 - Input changes and now the function cannot deal with it
 - Layer to layer changes
- Accelerates learning by preventing learning stalls
- Important Note: Keep batch norm parameter learning active only in training

https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
Effect of Batch Normalization

Figure taken from [S. Ioffe & C. Szegedy]
Batch Normalization Coding

• See: https://github.com/foxtrotmike/CS909/blob/master/xornet_batch_normalization.ipynb

• Compare the distributions of data before and after batch normalization:
 Better range of data after batch normalization
 – Both positive and negative values in outputs
What can you do with just training batch norm parameters?

Published as a conference paper at ICLR 2021

TRAINING BATCHNORM AND ONLY BATCHNORM: ON THE EXPRESSIVE POWER OF RANDOM FEATURES IN CNNs

Jonathan Frankle*
MIT CSAIL
jfrankle@mit.edu

David J. Schwab
CUNY Graduate Center, ITS
Facebook AI Research
dschwab@fb.com

Ari S. Morcos
Facebook AI Research
arimorcos@fb.com

ABSTRACT

A wide variety of deep learning techniques from style transfer to multitask learning rely on training affine transformations of features. Most prominent among these is the popular feature normalization technique BatchNorm, which normalizes activations and then subsequently applies a learned affine transform. In this paper, we aim to understand the role and expressive power of affine parameters used to transform features in this way. To isolate the contribution of these parameters from that of the learned features they transform, we investigate the performance achieved when training only these parameters in BatchNorm and freezing all weights at their random initializations. Doing so leads to surprisingly high performance considering the significant limitations that this style of training imposes. For example, sufficiently deep ResNets reach 82% (CIFAR-10) and 32% (ImageNet, top-5) accuracy in this configuration, far higher than when training an equivalent number of randomly chosen parameters elsewhere in the network. BatchNorm achieves this performance in part by naturally learning to disable around a third of the random features. Not only do these results highlight the expressive power of affine parameters in deep learning, but—in a broader sense—they characterize the expressive power of neural networks constructed simply by shifting and rescaling random features.
What can you do without batch normalization?

- Batch normalization requires a sufficient large batch size to allow effective estimation of mean and variance of each batch which can be a problem for large input data or low memory machines.

High-Performance Large-Scale Image Recognition Without Normalization

Andrew Brock, Soham De, Samuel L. Smith, Karen Simonyan

Batch normalization is a key component of most image classification models, but it has many undesirable properties stemming from its dependence on the batch size and interactions between examples. Although recent work has succeeded in training deep ResNets without normalization layers, these models do not match the test accuracies of the best batch-normalized networks, and are often unstable for large learning rates or strong data augmentations. In this work, we develop an adaptive gradient clipping technique which overcomes these instabilities, and design a significantly improved class of Normalizer-Free ResNets. Our smaller models match the test accuracy of an EfficientNet-B7 on ImageNet while being up to 8.7x faster to train, and our largest models attain a new state-of-the-art top-1 accuracy of 86.5%. In addition, Normalizer-Free models attain significantly better performance than their batch-normalized counterparts when finetuning on ImageNet after large-scale pre-training on a dataset of 300 million labeled images, with our best models obtaining an accuracy of 89.2%. Our code is available at this [GitHub URL](https://github.com/deepmind/research/tree/master/nfnets).

Figure 1. ImageNet Validation Accuracy vs Training Latency. All numbers are single-model, single crop. Our NFNNet-F1 model achieves comparable accuracy to an EffNet-B7 while being 8.7x faster to train. Our NFNNet-F5 model has similar training latency to EffNet-B7, but achieves a state-of-the-art 86.0% top-1 accuracy on ImageNet. We further improve on this using Sharpness Aware Minimization (Foret et al., 2021) to achieve 86.5% top-1 accuracy.
Data Augmentation

Table 1 Results of Taylor and Nitschke’s Data Augmentation experiments on Caltech101 [63]

<table>
<thead>
<tr>
<th></th>
<th>Top-1 accuracy (%)</th>
<th>Top-5 accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>48.13 ± 0.42</td>
<td>64.50 ± 0.65</td>
</tr>
<tr>
<td>Flipping</td>
<td>49.73 ± 1.13</td>
<td>67.36 ± 1.38</td>
</tr>
<tr>
<td>Rotating</td>
<td>50.80 ± 0.63</td>
<td>69.41 ± 0.48</td>
</tr>
<tr>
<td>Cropping</td>
<td>61.95 ± 1.01</td>
<td>79.10 ± 0.80</td>
</tr>
<tr>
<td>Color Jittering</td>
<td>49.57 ± 0.53</td>
<td>67.18 ± 0.42</td>
</tr>
<tr>
<td>Edge Enhancement</td>
<td>49.29 ± 1.16</td>
<td>66.49 ± 0.84</td>
</tr>
<tr>
<td>Fancy PCA</td>
<td>49.41 ± 0.84</td>
<td>67.54 ± 1.01</td>
</tr>
</tbody>
</table>
Data Augmentation

MixUp

```python
# y1, y2 should be one-hot vectors
for (x1, y1), (x2, y2) in zip(loader1, loader2):
    lam = numpy.random.beta(alpha, alpha)
    x = Variable(lam * x1 + (1. - lam) * x2)
    y = Variable(lam * y1 + (1. - lam) * y2)
    optimizer.zero_grad()
    loss(net(x), y).backward()
    optimizer.step()
```

(a) One epoch of mixup training in PyTorch.

(b) Effect of mixup ($\alpha = 1$) on a toy problem. Green: Class 0. Orange: Class 1. Blue shading indicates $p(y = 1|x)$.

Figure 1: Illustration of mixup, which converges to ERM as $\alpha \to 0$.

Libraries

- [Albumentations](https://albumentations.ai/)
- [Kornia](https://kornia.readthedocs.io/en/latest/augmentation.html)

What is my model doing? What is my model learning?

• **Interpretability**
 – Interpret why a certain model is producing a certain output for a given input
 – “What is the model doing?”

• **Explainable**
 – Explaining the “behavior” of the model or “What is the model learning?”

• **Model Agnostic Methods**
 • Permutation Feature Invariance
 • LIME Analysis
 • SHAP Analysis

• **For CNNs**
 – Pixel Attribution (Saliency Maps)
 • Score-CAM
 • Grad-CAM
 – Testing with Concept Activation Vectors (TCAV)
 – DeepSHAP

Great Resource on interpretable machine learning:

https://github.com/marcoancona/DeepExplain
Famous CNN

- LeNet (Le Cunn 1990, 1998)
- AlexNet
- VGG19
- Inception
- Xception
- EfficientNet
Transfer Learning and Fine Tuning

• Use a pretrained network for one task
• Keep the convolutional layers fixed (frozen)
• Freezing layers
 – for param in vgg.features.parameters():
 param.requires_grad = False
• **Transfer Learning**: Train the last layers (fully connected) for your task and/or add more layers as needed
• **Fine tuning**: Modify the weights of a few convolutional layers too

https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6#
We can choose which layers to freeze depending upon the application and the level of similarity between tasks.
Advanced: Adapters

• Generalize the concept of transfer learning

Figure 1: Visual Decathlon. We explore deep architectures that can learn simultaneously different tasks from very different visual domains. We experiment with ten representative ones: (a) Aircraft, (b) CIFAR-100, (c) Daimler Pedestrians, (d) Describable Textures, (e) German Traffic Signs, (f) ILSVRC (ImageNet) 2012, (g) VGG-Flowers, (h) OmniGlot, (i) SVHN, (j) UCF101 Dynamic Images.

Figure 2: Residual adapter modules. The figure shows a standard residual module with the inclusion of adapter modules (in blue). The filter coefficients \((w_1, w_2)\) are domain-agnostic and contains the vast majority of the model parameters; \((\alpha_1, \alpha_2)\) contain instead a small number of domain-specific parameters.

Predicting Hurricane Intensities

- **Deep-PHURIE**

Deep-PHURIE Robustness Analysis

Activation Maps for Deep PHURIE
Types of Neural Networks

- “Fully Connected”/Dense Feed Forward Backpropagation **multi-layer perceptrons**
- Convolutional neural networks
- Residual Neural networks
- Recurrent neural networks
- Auto-encoders
- Adversarial Networks
- Transformers
- Graph Neural Networks
A mostly complete chart of Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org
http://www.asimovinstitute.org/neural-network-zoo/
Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

NETWORKS WITH SKIP CONNECTIONS
Spectrum of Depth

- 5 layers: easy
- >10 layers: initialization, Batch Normalization
- >30 layers: skip connections
- >100 layers: identity skip connections
- >1000 layers: ?

Shallower to Deeper
Increasing Depth (10-100 Layers)

- What if we keep on stacking layers?
 - 56-layer net has **higher training error** and test error than 20-layer net

Simply Stacking Layers?

- “Overly deep” plain nets have **higher training error**
- A general phenomenon, observed in many datasets
- Reasons
 - Optimization failure

![Graphs showing error over iterations for CIFAR-10 and ImageNet-1000 datasets.](image-url)
Residual Learning: skip connections

Plain Network

- x → weight layer → relu → weight layer → relu → $H(x)$
- $H(x)$ is any desired mapping
- Hope the 2 weight layers fit $H(x)$

Residual Network

- x → weight layer → relu → weight layer → relu → $H(x) = F(x) + x$
- $F(x) = H(x) - x$
- The network learns fluctuations $F(x) = H(x) - x$
- Easier!

ResNet Models

- No Dropout
- With Batch Normalization
- Use Data Augmentation
class ResidualBlock(nn.Module):
 def __init__(self, in_channels, out_channels, stride=1, downsample=None):
 super(ResidualBlock, self).__init__()
 self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
 self.bn1 = nn.BatchNorm2d(out_channels)
 self.relu = nn.ReLU(inplace=True)
 self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
 self.bn2 = nn.BatchNorm2d(out_channels)
 self.downsample = downsample

 def forward(self, x):
 residual = x
 out = self.conv1(x)
 out = self.bn1(out)
 out = self.relu(out)
 out = self.conv2(out)
 out = self.bn2(out)
 # downsample only if dimensions of x and F(x) don’t match
 if self.downsample:
 residual = self.downsample(x)
 out += residual
 out = self.relu(out)
 return out

Strongly recommended: How to use a minimalistic residual network for MNIST Classification
https://github.com/foxtrotmike/CS909/blob/master/resnet_mnist.ipynb
Deep ResNets can be trained without difficulties

Deeper ResNets have **lower training error**, and also lower test error
Deeper ResNets have lower error

- this model has lower time complexity than VGG-16/19

ResNet-152: 5.7
ResNet-101: 6.1
ResNet-50: 6.7
ResNet-34: 7.4

10-crop testing, top-5 val error (%)

ImageNet experiments

152 layers

ImageNet Classification top-5 error (%)

ILSVRC'15 ResNet 3.57
ILSVRC'14 GoogleNet 6.7
ILSVRC'14 VGG 7.3
ILSVRC'13 11.7
ILSVRC'12 AlexNet 16.4
shallow 25.8
ILSVRC'11 28.2
ILSVRC'10
ResNet Results

• **1st places in all five main tracks**
 • ImageNet Classification: “Ultra-deep” 152-layer nets
 • ImageNet Detection: 16% better than 2nd
 • ImageNet Localization: 27% better than 2nd
 • COCO Detection: 11% better than 2nd
 • COCO Segmentation: 12% better than 2nd

• Can also concatenate outputs rather than sum
 – ResNeXT
Reasons for adding skip connections

- Making gradients flow more easily
 - If you work out the weight update equation for the neural network with skip connections, it will have fewer multiplicative terms of gradients thus reducing the chances of gradient based problems

- Making information flow more easily
 - Directly Preserving information learned in earlier layers

- Have a regularization effect

\[
\Delta v_{ij} = \alpha x_i f' \left(v_j^T x \right) \sum_{k=1}^{m} w_{jk} \left(t_k - f \left(\sum_{j=0}^{p} w_{jk} f \left(v_j^T x \right) \right) \right) f' \left(\sum_{j=0}^{p} w_{jk} f \left(v_j^T x \right) \right)
\]

U-Net for Segmentation
YOLO

- Convolution
- Residual Architecture
- Reversible function to allow preservation of information
- Programmable gradient information

Figure 1. Comparisons of the real-time object detectors on MS COCO dataset. The GELAN and PGI-based object detection method surpassed all previous train-from-scratch methods in terms of object detection performance. In terms of accuracy, the new method outperforms RT DETR [43] pre-trained with a large dataset, and it also outperforms depth-wise convolution-based design YOLO MS [7] in terms of parameters utilization.

Residual Networks

• Required Reading

• Many third-party implementations
 – list in https://github.com/KaimingHe/deep-residual-networks
 – Torch ResNet: https://github.com/pytorch/examples/tree/master/imagenet

TRANSFORMERS
Transformers

- Very useful and popular architecture for vision tasks though originally built for natural language processing
- Use “attention mechanism” to integrate information from different components of an input in a weighted manner to produce an output representation for the input that can be passed to predictor to generate predictions

Figure from the **Generative Pre-trained Transformer (GPT)** paper

https://twitter.com/rasbt/status/1634564282535878661/photo/1
Background

- Transformations: $T(x; \theta)$
 - Explicitly transform a point to a different feature space

- A kernel $k(a, b)$ is a generalized dot-product or a way of quantifying the degree of similarity between two examples or objects
 - If we can change the definition of how similar (or distant) two things are (by switching to a different kernel), this results in a folding of the feature space which is the same effect as we would achieve from an explicit transformation of the feature space

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Transform (for 2D Input)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear: $k(a, b) = a^T b$</td>
<td>$\phi(u) = u = [u^{(1)} \ u^{(2)}]^T$</td>
</tr>
<tr>
<td>Polynomial degree 2: $k(a, b) = (a^T b)^2$</td>
<td>$\phi(u) = \begin{bmatrix} u^{(1)^2} & u^{(2)^2} & \sqrt{2}u^{(1)}u^{(2)} \end{bmatrix}^T$</td>
</tr>
<tr>
<td>Polynomial degree 2: $k(a, b) = (a^T b + 1)^2$</td>
<td>$\phi(u) = \begin{bmatrix} 1 & \sqrt{2}u^{(1)} & \sqrt{2}u^{(2)} & u^{(1)^2} & u^{(2)^2} & \sqrt{2}u^{(1)}u^{(2)} \end{bmatrix}^T$</td>
</tr>
<tr>
<td>RBF Kernel: $k(a, b) = \exp(-\gamma</td>
<td></td>
</tr>
</tbody>
</table>

For Review see notes on Kernels in SVMs
Data Mining

University of Warwick

139

Loss
Update

Feature Detection or Representation Building
Predictor

Filter Feature Map Pooled Flattened Output Target

Input

Build Patch “Embedding” Representation
$S_x = \{x_i \in R^d | i = 1 ... n\}$

Transformer Encoding via Attention Blocks

Predictor

Optimus Prime
Bumblebee
Jazz
Ironhide
Ratchet

Optimus Prime
Bumblebee
Jazz
Ironhide
Ratchet

$x_i \equiv \phi(f_i, t_i)$

Feature Embedding: What is it?
Positional Embedding: Where is it?

\[x_i \equiv \phi(f_i, t_i) \quad \text{Feature Embedding: What is it?} \]
\[\text{Positional Embedding: Where is it?} \]

\[x_i = f_i + t_i \quad \text{Simplest:} \]

\[S_x = \{ x_i \in R^d | i = 1 \ldots n \} \]

\[\text{Building an integrated representation of how components form the overall object} \]

\[\text{Optimus} \quad \text{Bumblebee} \quad \text{Jazz} \quad \text{Ironhide} \quad \text{Ratchet} \]

\[\text{Output} \quad \text{Target} \]

\[\text{Weight Update} \]

\[\text{Loss} \]

\[(\text{Vision}) \text{ Transformers (for classification)} \]

\[(\text{NLP}) \text{ Transformers (for next word prediction)} \]
We are going to have a no gobbledygook introduction to attention (using the paper below)!

General Attention Building Blocks

Attention Layer

- A: $R^d \rightarrow R^{d'}$
- $x_q \in R^{d_q}$, $x'_q \in R^{d'}$
- $M(x_q, S_{x_k})$ where $S_{x_k} = \{x_1, x_2, ..., x_m\}$

Transformation

- $v: R^d \rightarrow R^{d'}$
- $v(x) \in R^{d'}$
- $x \in R^d$

Learnable “attention” kernel

- $k(x_q, x_k) \in R_{\geq 0}$
- $k: R^{d_q} \times R^d \rightarrow R_{\geq 0}$

Learnable Parameters

- A “value” or transformation function $v(x): R^d \rightarrow R^{d'}$ that produces a vector for a given token (For simplicity, assume, $d = d'$)
- A “Masking” function $M(x_q, S_{x_k})$ which gives a subset of tokens from S_{x_k} to which a given query can be compared, e.g., text up to a certain point. For simplicity, assume, for all x_q, $M(x_q, S_{x_k}) = S_{x_k}$
- A “kernel” function $k(x_i, x_j)$ that gives us the association between two tokens. Used to determine the attention scores that tell us how associated are x_q and x_k relative to similarity of x_q to all tokens
- Different formulations for $k(x_i, x_j)$, $M(x_q, S_{x_k})$ and $v(x)$ give you different flavours of attentions. Learnable parameters denoted by θ.

Input:

- A “query” token $x_q \in R^{d_q}$ representation of a component (patch or token) which will be transformed. In turn, all tokens will take the role of the query token in classical attention.

Output:

- $x'_q \in R^{d'}$. Transformed representation of x_q which is based on the transformed representations of other tokens and the degree of association of x_q to those other tokens

Attention Parameters

- Different formulations for $k(x_i, x_j)$, $M(x_q, S_{x_k})$ and $v(x)$ give you different flavours of attentions. Learnable parameters denoted by θ.

How similar are x_q and x_k relative to similarity of x_q to all tokens.
Input and defining attention scores

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k(x_q, x_1)$</td>
<td>$k(x_q, x_2)$</td>
<td>$k(x_q, x_3)$</td>
<td>$k(x_q, x_m)$</td>
</tr>
</tbody>
</table>

Legend:
- All circles are Points in S_{x_k}
- Filled circles are in $M(x_q, S_{x_k})$ and will be used in the layer
- Note that points in $M(x_q, S_{x_k})$ will change depending upon x_q
- Thickness of solid lines indicates attention scores $a_{qk} \in [0, 1]$ which is obtained by dividing $k(x_q, x_k)$ by the sum of all kernel values involving x_q.

Attention Parameters
- A value function $v(x): R^d \rightarrow R^{d'}$ that produces a vector for a given token (For simplicity, assume, $d = d' = d_q$)
- A “Masking” function $M(x_q, S_{x_k})$ which gives a subset of tokens from S_{x_k} to which a given query can be compared (For simplicity, assume, for all x_q, $M(x_q, S_{x_k}) = S_{x_k}$)
- A kernel function $k(x_i, x_j)$ that can give us a degree of similarity between two tokens
- Different formulations for $k(x_i, x_j)$, $M(x_q, S_{x_k})$ and $v(x)$ give you different flavors of attentions but once chosen they remain the same for a given attention block

After transformation/value function $v(x)$

<table>
<thead>
<tr>
<th>$v(x_q)$</th>
<th>$v(x_1)$</th>
<th>$v(x_3)$</th>
<th>$v(x_2)$</th>
</tr>
</thead>
</table>

Note change in space (blue to red dotted arrows and shifting of the points)

Output of Attention

<table>
<thead>
<tr>
<th>$v(x_q)$</th>
<th>$v(x_1)$</th>
<th>$v(x_3)$</th>
<th>$v(x_2)$</th>
</tr>
</thead>
</table>

The new representation of the token (indicated by star) is based on the “pulls” (attention values a_{qk}) of different points on the query token or the weighted combination of all transformed points.

This process can be applied for all tokens in the input one by one so if there are n tokens in the input, there would be n tokens in the output (with transformed representation).

Input:
- A “query” token $x_q \in R^d$ representation of a component (patch or token)
- A set of “key” tokens S_{x_k}

Attention Parameters
- A value function $v(x): R^d \rightarrow R^{d'}$ that produces a vector for a given token (For simplicity, assume, $d = d' = d_q$)
- A “Masking” function $M(x_q, S_{x_k})$ which gives a subset of tokens from S_{x_k} to which a given query can be compared (For simplicity, assume, for all x_q, $M(x_q, S_{x_k}) = S_{x_k}$)
- A kernel function $k(x_i, x_j)$ that can give us a degree of similarity between two tokens
- Different formulations for $k(x_i, x_j)$, $M(x_q, S_{x_k})$ and $v(x)$ give you different flavors of attentions but once chosen they remain the same for a given attention block

Output:
- A new representation for the query token (patch)

$$x_q' = A(x_q; M(x_q, S_{x_k}); \theta)$$

$$= \sum_{x_k \in M(x_q, S_{x_k})} a(x_q, x_k; \theta_a) v(x_k; \theta_v)$$

$$= \sum_{x_k \in M(x_q, S_{x_k})} \frac{k(x_q, x_k; \theta_k)}{\sum_{x_k' \in M(x_q, S_{x_k})} k(x_q, x_k'; \theta_k)} v(x_k; \theta_v)$$
Non-learnable attention

\[x_q' = A(x_q; M(x_q, S_{x_k}); \theta) = \sum_{x_k \in M(x_q, S_{x_k})} a(x_q, x_k; \theta_a) v(x_k; \theta_v) = \sum_{x_k \in M(x_q, S_{x_k})} \frac{k(x_q, x_k; \theta_k)}{\sum_{x_k' \in M(x_q, S_{x_k})} k(x_q, x_k'; \theta_k)} v(x_k; \theta_v) \]

- Note that if we pick a fixed \(k(x_q, x_k) \) and \(v(x_k) \), such as:
 - \(k(x_q, x_k; \theta_k) = \exp(-\theta^2 \|x_q - x_k\|^2) \)
 - \(v(x_k; \theta_v) = x_k \)
- This leads to the following expression which expresses \(x_q \) in terms of other points in \(M(x_q, S_{x_k}) \). This is similar, in concept, to locally linear embeddings.

\[x_q' = \sum_{x_k \in M(x_q, S_{x_k})} \frac{\exp(-\theta^2 \|x_q - x_k\|^2)}{\sum_{x_k' \in M(x_q, S_{x_k})} \exp(-\theta^2 \|x_q - x_k'\|^2)} x_k = \sum_{x_k \in M(x_q, S_{x_k})} \text{softmax}(-\theta^2 \|x_q - x_k\|^2) x_k \]
Learnable Attention as (asymmetric, non-Mercer) kernel transformations

\[x'_q = A(x_q; M(x_q, S_{x_k}); \theta) = \sum_{x_k \in M(x_q, S_{x_k})} a(x_q, x_k; \theta_a) v(x_k; \theta_v) = \sum_{x_k \in M(x_q, S_{x_k})} \frac{k(x_q, x_k; \theta_k)}{\sum_{x_k' \in M(x_q, S_{x_k})} k(x_q, x_k'; \theta_k)} v(x_k; \theta_v) \]

- We can introduce learnable parameters
 - We can learn **which input tokens should associate more with other tokens** to produce a representation that when passed to the predictor should produce the target output
 - For example, “Attention Is All You Need” paper uses the following functions with three learnable weight matrices \(W_q, W_k \) and \(W_v \)

\[
\begin{align*}
 k(x_q, x_k) &= \exp \left(\frac{1}{\sqrt{d}} \langle x_q W_q, x_k W_k \rangle \right) \\
 v(x_k) &= x_k W_v \\
 x'_q &= A \left(x_q; M(x_q, S_{x_k}); \theta \right) \\
 \sigma(z)_i &= \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}
\end{align*}
\]

\[v(x) \in \mathbb{R}^{d'} \]

\[v(x) \in \mathbb{R}^{d'} \]

Dot Product

\[\sigma(z) = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}} \]

\[\sigma(z) = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}} \]

\[\sum_{x_k \in M(x_q, S_{x_k})} \frac{\exp \left(\frac{1}{\sqrt{d}} \langle x_q W_q, x_k W_k \rangle \right)}{\sum_{x_k' \in M(x_q, S_{x_k})} \exp \left(\frac{1}{\sqrt{d}} \langle x_q W_q, x_k' W_k \rangle \right)} x_k W_v = \]

\[\text{softmax} \left(\frac{1}{\sqrt{d}} x_q W_q (x_k W_k)^T \right) x_k W_v = \]

\[\text{softmax} \left(\frac{1}{\sqrt{d}} q K^T \right) V \]

https://en.wikipedia.org/wiki/Softmax_function
Output of a single attention layer

$x_i \equiv \phi(f_i, t_i)$ Feature Embedding: What is it?
Positional Embedding: Where is it?

$S_x = \{x_i \in R^d | i = 1 \ldots n\}$

A total of n tokens (small grid squares) in output

Note that the representation of each patch (or token) at the output of attention is dependent upon the representation of all other patches in a end-to-end learnable manner so that when this representation is used for a prediction task, the loss is minimized
Attention gives transformations

• Another way of looking at an attention operation

\[A(x_q; M(x_q, S_{x_k})) = \sum_{x_k \in M(x_q, S_{x_k})} \frac{k(x_q, x_k)}{\sum_{x_k' \in M(x_q, S_{x_k})} k(x_q, x_k')} v(x_k) = \sum_{x_k \in S_{x_k}} a(x_q, x_k; W) v(x_k; W') \]

Learnable "attention" values

Learnable data transformation

• But a classic neural network layer also “learns” to “transform”

\[F(x; \theta) = activation(\theta_{d' \times d \times 1}) \]

• Where is the extra information coming from?
 – From comparing against all tokens and using a supervisory signal to learn the transform
 – Weight sharing across all patches is still there like in a convolutional neural network
Multi-headed Attention

- d-dimensional Patch “Embedding” Representation of n tokens
- Attention Head 1
- Attention Head 2
- Attention Head M
- Concatenate
- Weight Layer

A total of n tokens (small grid squares) in output
What happens at the end of the Training phase?

• We learn
 – [For NLP] The representation or embedding of different tokens only in reference to representations of other tokens
 – The association between different tokens
 – How to transform different tokens

https://github.com/jessevig/bertviz
Key Components

- **Multiple Multi-headed Attention Blocks**
 - standardization across features of the same input
- **Layer Normalization**
- **Skip Connections**
- **Various types of positional encodings**
- **“Class” tokens**
 - Add global features to each example to enable global sharing of information across examples
- **Masking strategies**
 - Needed for training in sentence completion or related problems where the next work cannot be used for generating the output
- **Computational Complexity**
 - As we compare each token against every other, transformers can be quite complex
 - **Performer architectures**
 - Uses kernel approximation to reduce complexity

How is an attention layer used in Chat-GPT?

- GPTs are essentially sophisticated auto-complete mechanisms
 - Predict next word
- **Training Principle**
- Taken each “document” as a set of tokens: \(S_{x_k} = \{x_1, x_2, \ldots, x_m\} \)
 1. Take a single next-word prediction task from the document (see **bold** text on the right)
 a. For each token in the input, apply the attention layers to a single token
 i. Take a single “query” token \(x_q \) in the input for which we want to generate a representation
 ii. For the given “example” input, mask the next token, i.e., set \(M(x_q, S_{x_k}) \) to be a subset of only those tokens that are available as inputs
 iii. Pass \(x_q \) and \(M(x_q, S_{x_k}) \) to the attention layer to generate \(x_q' \)
 2. Pass the updated representation through other downstream layers until you generate the output probability of the target token
 3. Maximize the probability of the target token while minimizing the probability of all other (non-target) tokens

Input	Next Token
How | Does
How does | Chat
How does Chat | GPT
How does Chat GPT | **Work**

... all sentences in the internet corpus ...

https://github.com/karpathy/nanoGPT
Do Vision Transformers See Like Convolutional Neural Networks?

Maithra Raghu
Google Research, Brain Team
maithrar@gmail.com

Thomas Unterthiner
Google Research, Brain Team
unterthiner@gmail.com

Simon Kornblith
Google Research, Brain Team
kornblith@gmail.com

Chiyuan Zhang
Google Research, Brain Team
chiyuan@gmail.com

Alexey Dosovitskiy
Google Research, Brain Team
adosovitskiy@gmail.com

Abstract

Convolutional neural networks (CNNs) have so far been the de-facto model for visual data. Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or even superior performance on image classification tasks. This raises a central question: how are Vision Transformers solving these tasks? Are they acting like convolutional networks, or learning entirely different visual representations? Analyzing the internal representation structure of ViTs and CNNs on image classification benchmarks, we find striking differences between the two architectures, such as ViT having more uniform representations across all layers. We explore how these differences arise, finding crucial roles played by self-attention, which enables early aggregation of global information, and ViT residual connections, which strongly propagate features from lower to higher layers. We study the ramifications for spatial localization, demonstrating ViTs successfully preserve input spatial information, with noticeable effects from different classification methods. Finally, we study the effect of (pretraining) dataset scale on intermediate features and transfer learning, and conclude with a discussion on connections to new architectures such as the MLP-Mixer.

Understanding Robustness of Transformers for Image Classification

Srinadh Bhojanapalli*, Ayan Chakrabarti*, Daniel Glasner*, Daliang Li*, Thomas Unterthiner*, Andreas Veit*
Google Research
{bsrinadh, ayanchakrab, dglasner, daliangli, unterthiner, aveit}@google.com

Figure 1. Transformers vs. ResNets. While they achieve similar performance for image classification, Transformer and ResNet architectures process their inputs very differently. Shown here are adversarial perturbations computed for a Transformer and a ResNet model, which are qualitatively quite different.
Are convolutions and attention really necessary?

• MLP Mixer Paper: “In this paper we show that while convolutions and attention are both sufficient for good performance, neither of them are necessary.”

• gMLP: “self-attention is not critical for Vision Transformers”

• Attention with Convolution may be more useful 😊

“Similar to fully-connected networks, the ViT architecture (and transformer architecture in general) lacks the inductive bias for spatial invariance/equivariance that convolutional networks have. Consequently, ViTs require more data for pretraining to acquire useful “priors” from the training data.” (S. Raschka)

https://twitter.com/rasbt/status/1636371712467177472
Using Transformers

• Hugging Face Transformers Library
 – Examples: https://huggingface.co/docs/transformers/model_doc/vit
 – Tutorial notebook on finetuning:
 https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb
Another way of thinking about GPTs

Modeling XOR as a “next token” problem or FSM or turing machine

GPT is becoming a Turing machine: Here are some ways to program it

Ana Jovic, Zhen Wang, Nebojsa Jovic

We demonstrate that, through appropriate prompting, GPT-3 family of models can be triggered to perform iterative behaviours necessary to execute (rather than just write or recall) programs that involve loops, including several popular algorithms found in computer science curricula or software developer interviews. We trigger execution and description of iterations by Regulating Self-Attention (IRSA) in one (or a combination) of three ways: 1) Using strong repetitive structure in an example of an execution path of a target program for one particular input, 2) Prompting with fragments of execution paths, and 3) Explicitly forbidding (skipping self-attention to parts of the generated text). On a dynamic program execution, IRSA leads to larger accuracy gains than replacing the model with the much more powerful GPT-4. IRSA has promising applications in education, as the prompts and responses resemble student assignments in data structures and algorithms classes. Our findings hold implications for evaluating LLMs, which typically target the in-context learning. We show that prompts that may not even cover one full task example can trigger algorithmic behaviour, allowing solving problems previously thought of as hard for LLMs, such as logical puzzles. Consequently, prompt design plays an even more critical role in LLM performance than previously recognized.

https://github.com/foxtrotmike/CS909/blob/master/gpt_finite_state.ipynb
GRAPH NEURAL NETWORKS
Graph Neural Networks

• The Need
 – Example
 • Classifying chemical compounds
 – It is difficult to model arbitrary input data structures with SVMs, MLPs, CNNs and Transformers
 • Images and text have “Linear Structure”
 – Text is 1-dimensional
 – Image is 2-dimensional
 – But each can be mapped onto a grid
Graphs

• Graph Modelling
 – Very flexible data structure

• Components of a graph
 – Vertices/Node Set: $V = \{x_1, x_2, x_3, x_4\}$
 • Each element of the set can have a vector descriptor of its properties
 – Edge Set: $E = \{e_{1,2}, e_{1,3}, e_{3,2}, e_{3,4}, e_{4,3}\} \subseteq V \times V$
 • Each element of the set can have a vector descriptor of its properties

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Adjacency_matrix
Examples of graphs

This is a graph
Graph Neural Networks

• Simple Graph Classification Example
 – Node and edge level prediction problems also possible

Input: Graph consisting of
Node set: what are things (each node has feature representation)
Edge set: how are they connected (each edge can have a feature representation but, in the very least, it tells us what nodes are connected by an edge)
How does a graph neural network layer work?

- Just like any other neural network layer, the goal of a graph layer is to transform the representation of the input to a new representation in a learnable/trainable fashion so that we can optimize the parameters in the layer to reduce our loss or error function.
- Input: A Graph with node and edge level features
- Output: A Graph with (transformed) node and edge features
- The GNN layer transforms the feature representation of each node as follows:
 - **Where am I?** Generate context for each input node
 - **Node pair transform:** Transform features of each node connected to an input node while taking pairwise edge information into account (using a neural network).
 - **Aggregation:** Aggregate information of neighbors of the node to provide the local context in the form of a fixed dimensional feature vector (max, sum, average, etc.).
 - **What should I become?** Transform each node in the context of its neighbors (using a neural network).
- Each GNN layer thus incorporates information from one hop away of each node thus multiple GNN layers in series can be used to incorporate information from multiple layers.

Implementing Different Graph Neural Network Layers

General GNN Layer

- **Input feature representation of node i**: $x_i^{(l-1)}$
- **Neighbor set of node i**: $N(i)$
- **Edge features e_{ji}**
- **Neighbor nodes $x_j^{(l-1)}$**

GNN Layer l

- **$\phi^{(l)}$ NN**
- **$\gamma^{(l)}$ NN**
- **Agg**

- **Output feature representation of node i**: $x_i^{(l)}$

General GNN Layer Equations:

$$x_i^{(l)} = \gamma^{(l)} \left(x_i^{(l-1)}, \bigoplus_{j \in N(i)} \phi^{(l)} \left(x_i^{(l-1)}, x_j^{(l-1)}, e_{ji} \right) \right)$$

Edge Convolution Layer (GCNConv)

- **$\phi^{(l)} = W$**
- **$\gamma^{(l)} = \sum$**

- **Edge Convolution Layer Equations**:

$$x_i^{(l)} = \sum_{j \in N(i)} \phi^{(l)} \left(x_i^{(l-1)} \| x_j^{(l-1)} - x_i^{(l-1)} \right)$$

Graph Convolution Layer (GCNConv)

- **$\phi^{(l)} = W$**
- **$\gamma^{(l)} = +$**

- **Graph Convolution Layer Equations**:

$$x_i^{(l)} = \sum_{j \in N(i) \cup \{i\}} \frac{1}{\sqrt{\deg(i) \deg(j)}} (Wx_j + b)$$

Data Mining

University of Warwick 163
Message Passing Based Graph Neural Networks

Incorporating extra information

Conventional Methods
Simple Averaging of Node predictions

-edge Connectivity & Features
-Input Node Features

Base Net

GMPL 1

GMPL 2

GMPL L

linear

pool

linear

pool

linear

pool

linear

pool

x

Graph Message Passing Layer (GMPL)

Latent Node Representations

Node level predictive scores
Averaging across all nodes in a graph
Skip-connected Layer-wise Graph-level Outputs

Graph Level Output

F(G)

F_0(G)

F_1(G)

F_2(G)

F_L(G)

x^{(0)}

x^{(1)}

x^{(2)}

x^{(L-1)}

x^{(L)}

Fayyaz Minhas, Whole Slide Images Are Graphs, 2020. https://www.youtube.com/watch?v=0f1u0i7roS0.

Gland Size
Lumen Shape Irregularity
Demo: https://tiademos.dcs.warwick.ac.uk/bokeh_app?demo=iguana
Are Transformers (secretly) GNNs?

Assume

- We have a set of “nodes” \(S_K \) and for a given “query” node \(x_q \), we have a masking set set \(M(x_q, S_K) \) (for simplicity assume \(M(x_q, S_K) = S_K \))
- Each node is connected to all other nodes including itself (i.e., neighborhood \(N(x_q) = M(x_q, S_K) \)) (Fully Connected Graph)

Now consider a specific graph neural network layer in which

- \(\gamma^{(k)}(a, b) = b \)
- \(\phi^{(l)}(x_i^{(l-1)}, x_j^{(l-1)}, e_{j,i}) = a(x_i^{(l-1)}, x_j^{(l-1)}, \theta_a) \nu(x_j^{(l-1)}; \theta_v) \)
- \(\bigoplus_{j \in N(\cdot)} \vdash = \sum_{x_k \in M(x_q, S_K)} (\cdot) \)

Then the output of the GNN layer:

- \(x_i^{(l)} = \gamma^{(l)}(x_i^{(l-1)}, \bigoplus_{j \in N(i)} \phi^{(l)}(x_i^{(l-1)}, x_j^{(l-1)}, e_{j,i})) \)
- Becomes (with notation \(x_i^{(l-1)} = x_q, x_j^{(l-1)} = x_k \) and \(x_i^{(l)} = x_q' \)
- \(x_q' = \sum_{x_k \in M(x_q, S_K)} a(x_q, x_k; \theta_a) \nu(x_k; \theta_v) \)
- Which is an attention layer (assuming position encoding is built into node features)

An attention layer is a special case of a GNN layer!

- Attention scores can be viewed as pairwise weights of edges between nodes
Reading on Graph Neural Networks

• http://web.stanford.edu/class/cs224w/

• Libraries
 – PyTorch Geometric
 – DGL
 – Topological Neural Networks
AUTOENCODERS
REO For Auto-Encoders

• Goal
 – Get an embedding (usually a compressed encoding) of a data sample such that the embedding can be used for reconstruction of data.
 – Used for dimensionality reduction, feature extraction, compression, visualization and generative learning

• Representation
 – Input: $x \in \mathbb{R}^d$ Output: Reconstruction $\hat{x} = D(E(x; \theta_E); \theta_D)$
 • Encoder $E(x; \theta_E): \mathbb{R}^d \rightarrow \mathbb{R}^{d_E}$ (Usually $d_E < d$)
 • Decode $D(x'; \theta_E): \mathbb{R}^{d_E} \rightarrow \mathbb{R}^d$

• Evaluation:
 – Mean Square Error Loss (Other losses such as KL Divergence etc)
 • $\min_{\theta_D,\theta_E} \frac{1}{N} \sum_i \|x_i - \hat{x}_i\|^2 = \frac{1}{N} \sum_i \|x_i - D(E(x; \theta_E); \theta_D)\|^2$

• Optimization
Unsupervised Learning - Autoencoders

L2 Loss function:
\[\| x - \hat{x} \|^2 \]

- Input data \(x \)
- Encoder
- Features \(\mathcal{Z} \)
- Decoder
- Reconstructed input data \(\hat{x} \)
- Reconstructed data
- AutoEncoder
Autoencoder

Unsupervised approach for learning a lower-dimensional feature representation from unlabelled training data

Usually <784

Q: Why dimensionality reduction?
A: Want features to capture meaningful factors of variation in data
How to Train Autoencoders?

Train such that features can be used to reconstruct original data

“Autoencoding” – encoding itself

Equivalent to PCA*

![Diagram of autoencoder architecture]

- **Input layer**: \(x \)
- **Hidden layer**: \(c \)
- **Output layer**: \(\hat{x} \)

Minimize \((x - \hat{x})^2\)

As close as possible

Output of the hidden layer is the code

*Under the assumptions that the data is mean-centered and mean squared error is used as a loss function along with an orthogonality constraint \(W_EW_D = I \)
Refresher PCA: Reconstruction

• We know that \(z = W^T x \) (assuming \(x \) is centered) therefore

\[
\hat{x} = (W^T)^{-1} z \\
\Rightarrow \hat{x} = W_{(d \times k)} z \quad \therefore WW^T = I
\]

• The reconstruction error is given by

\[
E_{\text{rec}} = \sum_{i=1}^{N} \|\hat{x}^i - x^i\|
\]

• Another way of interpreting PCA is that it finds orthogonal direction vectors such that after projecting data onto to them, the reconstruction error is minimal.

\[
\min_{W} \sum_{i=1}^{N} \|\hat{x}^i - x^i\| \quad s.t. WW^T = I
\]

Deep Auto-encoder

- Of course, the auto-encoder can be deep

“Latent Space” Representation

Other types of autoencoders

• Vanilla Auto-encoder
• Denoising Auto-encoders
• Variational Auto-encoder (VAE)
• Vector-Quantized Variational Autoencoders (VQ-VAE)

Further notes: https://github.com/foxtrotmike/CS909/blob/master/autoencoders.ipynb
Creating noise from data is easy; creating data from noise is generative modeling.*

Background: Introduction to Sampling

- **Empirical distribution Modelling**: Making a distribution from observations (Density Estimation)
 - Example:
 - Observations: \{H,T,H,T,H\}
 - \(P(H) = 3/5 = 0.6\), \(P(T) = 2/5 = 0.4\)
 - Shown as probability distribution (normalized histogram)

- **Sampling** from a distribution
 - Assume you are given a probability distribution \(p(x)\), then if you “sample” from it, you will be generating samples \(x\) which when observed will give you \(p(x)\)
 - Example
 - Given: \(P(H) = 0.6\), \(P(T) = 0.4\)
 - Generated Samples: \{H,T,H,T,H,T,H,H,T,H\}
Background: Generating samples

- Can we **generate** samples of a target distribution using samples from a source distribution as input?

\[
x \sim S(x) \quad z \sim T(z)
\]

\[
x \sim U(a = 0, b = 1)
X = \text{np.random.rand}(N)
\]

\[
z \sim N(\mu = 0.5, \sigma = 1)
Z = \text{np.random.randn}(N) + 0.5
\]
Background: Generating samples

- We can use **inverse transform sampling**
 - But that requires the knowledge of the formula for both probability distributions which may not be available for the target distribution

```
x ~ U(a = 0, b = 1)
X = np.random.rand(N)
```

https://en.wikipedia.org/wiki/Inverse_transform_sampling
A generative look at Machine Learning

Generative Process in Nature

\[
p(x) \rightarrow p(y|x) \rightarrow y_i
\]

Label Assignment

\[
f(x; \theta) \rightarrow y
\]

Fundamental aim of a discriminative model

Learn a model of \(p(y|x) \) from observations

Fundamental aim of a Generative Model

Learn a model of \(p(x) \) or \(p(x|y) \) from observations to generate samples from random noise input

https://www.youtube.com/watch?v=Ow25mjFjSmg.
Generating data with machine learning

• Can we generate examples that follow the same distribution as a given set of examples using noise as input?
• Sampling from the multi-dimensional distribution of data
• How?
 – Density Modelling
 • Modelling the Probability of observing a given point $p(x)$
 • Once I have an explicit or implicit $p(x)$, I can sample from that distribution to generate an example
Generating Data with Autoencoders

As close as possible

Input Layer
Output Layer

As close as possible

Input Layer
Output Layer

Tutorial Implementation: https://github.com/foxtrotmike/CS909/blob/master/autoencoders.ipynb
Generative Models

• Can we build a model to approximate a data distribution from given examples?

Several flavors:
 - **Explicit density estimation**: explicitly define and solve for $p_{\text{model}}(x)$
 - Algorithms: Gaussian Mixture Models, Kernel Density Estimation, Variational Autoencoders
 - **Implicit density estimation**: learn model that can sample from $p_{\text{model}}(x)$ w/o explicitly defining it
 - Algorithms: Vanilla autoencoder, Generative adversarial networks (GANs), Diffusion Models, Normalizing Flows

Density estimation: a core problem in unsupervised learning

Real image (training data) $\sim p_{\text{data}}(x)$ Generated samples $\sim p_{\text{model}}(x)$

Want to learn $p_{\text{model}}(x)$ similar to $p_{\text{data}}(x)$
A Simple Generative Machine Learning Example

• Nature
 – A coin with \(p(x=H)=0.7 \) and \(p(x=T)=0.3 \)
 – Generates data

• Given Data
 – \{H,H,H,T,T,H,T,H,H,T\}

• Goal of Generative Learning
 – Make a machine learning model that can generate data (heads or tails) that follows the same distribution as data from the real world or natural process.
 – The difference between the probability distributions of real and generated samples should be small
REO for Generative Models

• Goal
 – Given a set of real-world examples: \(x \sim p(x) \). \(p(x) \) is not explicitly known.
 – Learn parameters \(\theta \) of the model \(f(z; \theta) \) so that the examples generated by the model follow the same distribution as the real-world examples \(x \sim p(x) \).

• Representation: \(x = f(z; \theta) \) with \(z \sim \text{Noise} \)
 – Let’s denote the distribution of examples generated by this model as \(p_\theta(x) \).
 – Note that the model may not have an explicit internal formula for this distribution.

• Evaluation:
 – Differences between the probability distribution of \(x \) in nature \(p(x) \) and of the generated samples \(p_\theta(x) \) from \(f(z; \theta) \)
 • That is, if I sample from \(p(x) \) or if I sample from \(p_\theta(x) \), the real and generated samples are similar.

• Optimization
 – Use gradient descent to optimize for \(\theta \)
Generative Adversarial Networks

• Use “Adversarial Training” to train a generator and discriminator simultaneously
• Generator: Generate samples from noise
• Discriminator: Detect “fake” or generated samples
Adversarial Training in a GAN

- **GAN Training the goal is to:**
 - **Train the discriminator** to be good at detecting fakes
 - Simple classification: Discriminator should produce 1 for real and 0 for generated
 \[\min_{\theta_D} \sum_{x_i \in R} l(D(x_i; \theta_D), 1) + \sum_{z_j \sim N} l(D(G(z_j; \theta_G); \theta_D), 0) \]
 - **Train the generator** to be so good that the discriminator labels generated samples as “Real”
 - The generator exploits the discriminator’s ability or knowledge to distinguish between real and generated samples to its advantage
 - The generator is optimized such that the discriminator produces 1 for generated examples
 \[\min_{\theta_G} \sum_{z_j \sim N} l(D(G(z_j; \theta_G); \theta_D), 1) \]
 - OR equivalently, the generator is optimized such that the discriminator generates errors in classifying generated examples (note the max below)
 \[\max_{\theta_G} \sum_{z_j \sim N} l(D(G(z_j; \theta_G); \theta_D), 0) \]
 - Can also add additional loss terms for quality/realism etc.
A Barebones GAN in PyTorch for generating coin flips

By Fayyaz Minhas

Let's consider a very simple coin toss as a process that generates coin flips with a probability of 0.3 of producing heads. We can describe the underlying probability distribution for this generative process (coin toss) as $p(x)$ where $x \in \{H = 1, T = 0\}$ is sampled from $p(x)$, i.e., $x \sim p(x)$. We would like to use a Generative Adversarial Network (GAN) to model this process using a number of data samples or observations from the original process for training. Specifically, we would like to have a GAN with such a generator that you (and its discriminator) wouldn't be able to tell if a series of coin tosses has been generated using the GAN or the underlying true process! In more mathematical terms, we would like to train a generative model $x = G(z; \theta_G)$ that can generate samples x using Normally distributed random input ($z \sim N(0,1)$) such that the probability distribution of these generated samples $p_G(x)$ is close to $p(x)$ without knowing $p(x)$ in advance or explicitly modelling $p_G(x)$.

Using a GAN is an overkill for this simple task and there are much simpler and more effective ways of modelling this simple problem. However, this GAN based solution is intended to help you understand how GANs can model complex densities implicitly and can be used to generate samples that mimic the true or natural generative process.

We first simulate the coin toss and generate 1024 training samples below. The histogram shows the (sample estimate of) the true density.

```
---
A toy GAN to generate coin tosses
---

# Let's model the natural density and generate some data using that

import torch
from torch import nn

import math
import matplotlib.pyplot as plt
import numpy as np

train_data_length = 1024

def coin toss():
    phead = 0.3
    return 1 if np.random.binomial(1, phead) else 0

hist, bins = np.histogram(coin_toss(train_data_length), bins=10)

plt.hist(x, bins, density=True, label='Empirical')
plt.plot(x, y, 'r--', label='True')
plt.legend()
plt.show()
```

https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
How to go from generating coin flips to images?

• Assume you are given B&W images for training a GAN to generate more images like that.

• Let’s look at a single pixel location in each image

 – We have a distribution of pixel values across all images at that location

 • We would like our GAN to generate data according to that distribution at that pixel location

 • Naïve idea: Have multiple GANs – one for each pixel location

 – Assumes each pixel is independent of the other

 – Computationally intensive

 • We can train a single GAN to generate a multi-dimensional probability distribution by using a multi-output generator.
Performance Assessment of Generative Models

<table>
<thead>
<tr>
<th>Goal</th>
<th>Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure difference in probability distribution of generated and real samples</td>
<td>Earth Mover Distances</td>
</tr>
<tr>
<td></td>
<td>Maximum Mean Discrepancy</td>
</tr>
<tr>
<td></td>
<td>Kernel Inception Distance (KID)</td>
</tr>
<tr>
<td></td>
<td>Wasserstein Distance</td>
</tr>
<tr>
<td>Diversity: Evaluate whether the model can generate a wide variety of outputs:</td>
<td>Diversity Score</td>
</tr>
<tr>
<td></td>
<td>Mode Score</td>
</tr>
<tr>
<td>Coverage: Measure how well the generated samples cover the variety of the dataset</td>
<td>Coverage Score</td>
</tr>
<tr>
<td>Stability and Robustness:</td>
<td>Consistency of good results</td>
</tr>
<tr>
<td></td>
<td>Adversarial robustness measures</td>
</tr>
<tr>
<td>Quality</td>
<td>Inception score</td>
</tr>
<tr>
<td></td>
<td>Fréchet Inception Distance and KID</td>
</tr>
<tr>
<td></td>
<td>Structural Similarity Index Measure</td>
</tr>
<tr>
<td></td>
<td>Learned Perceptual Image Patch Similarity (LPIPS)</td>
</tr>
<tr>
<td>Task Specific metrics</td>
<td>NLP: BLEU, ROUGE</td>
</tr>
<tr>
<td></td>
<td>Drug Discovery: Quantitative Structure-Activity Relationship (QSAR) Metrics</td>
</tr>
<tr>
<td></td>
<td>Subjective Assessment</td>
</tr>
</tbody>
</table>
Unconditional vs Conditional Generation

• Unconditional Generative Modelling
 – Simple model the probability distribution of the data $p(x)$
 • Example: Generating images without paying any regard to the digit
Unconditional vs Conditional Generation

• Conditional Generative Modelling
 – Model the distribution $p(x|y)$ of data x conditioned on a variable y
 • Example: Generating images for a given digit
GANs Applications

• GANs have some impressive applications
 – Synthetic Image Generation
 – Speech Generation
 – Image to Image Translation
 – Style Transfer
 – Deep Fakes

Barebones GAN
https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb

https://medium.com/dev-genius/write-your-first-generative-adversarial-network-model-on-pytorch-7dc0c7c892c7

https://github.com/eriklindernoren/PyTorch-GAN
https://affinelayer.com/pixsrv/
The GAN Zoo

- GAN - Generative Adversarial Networks
- 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
- acGAN - Face Aging With Conditional Generative Adversarial Networks
- AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs
- AdaGAN - AdaGAN: Boosting Generative Models
- AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- AffGAN - Amortised MAP Inference for Image Super-resolution
- AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
- ALI - Adversarially Learned Inference
- AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization
- AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
- ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorical GANs
- b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks
- Bayesian GAN - Deep and Hierarchical Implicit Models
- BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks
- BiGAN - Adversarial Feature Learning
- BS-GAN - Boundary-Seeking Generative Adversarial Networks
- CGAN - Conditional Generative Adversarial Nets
- CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks
- CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
- CstGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
- CoGAN - Coupled Generative Adversarial Networks
- Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
- C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training
- CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
- CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
- CycleGAN - Unpaired Image-to-image Translation using Cycle-Consistent Adversarial Networks
- DTN - Unsupervised Cross-Domain Image Generation
- DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
- DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
- DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
- DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
- EBGAN - Energy-based Generative Adversarial Network
- f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
- FF-GAN - Towards Large-Pose Face Frontalization in the Wild
- GAiWNN - Learning What and Where to Draw
- GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
- Geometric GAN - Geometric GAN
- GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
- GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
- iAN - Neural Photo Editing with Intraspective Adversarial Networks
- iGAN - Generative Visual Manipulation on the Natural Image Manifold
- lCGAN - Invertible Conditional GANs for image editing
- ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
- Improved GAN - Improved Techniques for Training GANs
- InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
- LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis
- LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo
Text-to-Image Synthesis

Text to Image – Results

<table>
<thead>
<tr>
<th>Caption</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>a pitcher is about to throw the ball to the batter</td>
<td> </td>
</tr>
<tr>
<td>a group of people on skis stand in the snow</td>
<td> </td>
</tr>
<tr>
<td>a man in a wet suit riding a surfboard on a wave</td>
<td> </td>
</tr>
</tbody>
</table>
Image-to-image Translation

Unpaired Transformation – Cycle GAN, Disco GAN

Transform an object from one domain to another *without paired data*

- **Domain X**: photo → van Gogh
- **Domain Y**: photo → Monet

Examples:
- Monet ↔ Photos
- Zebras ↔ Horses
- Summer ↔ Winter
- summer → winter
- horse → zebra
TurbuGAN

Diffusion Models

• What is diffusion?

• Can we learn to reverse it?

https://en.wikipedia.org/wiki/Maxwell%27s_demon
Diffusion Models

• Main idea: Learn to reverse a “diffusion” process

Forward Process

Reverse Process

Diffusion Models

- **Generation by learning to reverse entropy**
- **Forward Process:** Generate noisy signals from data
 - Data distribution gets gradually converted to noise
- **Reverse Process:** Learn to denoise
 - Using a neural network \(\epsilon_\theta (x_t, t) \) with weights \(\theta \) which takes the noisy data \(x_t \) as input along with the time step \(t \) (and possibly other "conditioning" variables) to output an estimate of the noise \(\epsilon_t \) that has been added to \(x_0 \) to generate \(x_t \). This is achieved by solving the following optimization problem:

 \[
 \min_\theta E_{t,x_0,\epsilon} |\epsilon_t - \epsilon_\theta (x_t, t)|^2
 \]

- **Generation:** Once the neural network is trained, we can generate data using:

 \[
 x = x_T - \epsilon_\theta (x_T, T) \quad \text{with} \quad x_T \sim N(0,1)
 \]

- Can be improved by operating in a compressed or latent space: **Latent diffusion**

SORA: Diffusion Transformer

https://openai.com/research/video-generation-models-as-world-simulators
Seeing without seeing

CONCLUSIONS
Issues

- Deep Neural Networks are Easily Fooled
- Failures of deep learning
- To understand deep learning we need to understand kernel learning
- Understanding deep learning requires rethinking generalization
- Steps toward deep kernel methods from infinite neural networks
 - https://arxiv.org/abs/1508.05133
- Do Deep Neural Networks Really Need to be Deep?
- One pixel attack for fooling deep neural networks
 - https://www.youtube.com/watch?v=SA4YEAWVpbk
 - https://github.com/Hyperparticle/one-pixel-attack-keras
- Adversarial Examples that Fool both Computer Vision and Time-Limited Humans
- Alchemy? https://www.youtube.com/watch?v=ORHFOnaEzPc
 - Ali Rahimi
The Rise of Vector Databases

- Flowise, langchain

https://www.pinecone.io/

https://github.com/pinecone-io/examples/blob/master/docs/gpt-4-langchain-docs.ipynb
Other Topics

- Recurrent Neural Networks
- Reinforcement Learning
 - Learning from experience
 - Example: Learning to levitate or helping a mouse escape from a cat
- Learning Paradigms
 - Multi-task Learning
 - Multi-Label Learning
 - Self-Supervised Learning
 - Learn a task to learn a feature representation and adapt it to other tasks
 - Contrastive Learning
 - Zero Shot and Few Shot Learning
- Bayesian Neural Networks and Uncertainty Quantification (Conformal Prediction)
- Neural Ordinary Differential Equations (NODE)
- Data Efficient Learning
- Symbolic Regression
- Learning to Learn
- Quantum ML
- Domain Generalization
- Robustness
 - Building invariances into machine learning models
- Link between Causality, Symmetry, Invariance and Generalization
- Prompt Engineering, Retrieval Augmented Generation

My RL Tutorial Video: https://youtu.be/N20h6vpR13Y
Books

Foundations

SVMs and Kernels

Backpropagation and MLPs

Deep Learning

Understanding Deep Learning
by Simon J.D. Prince
https://udlbook.github.io/udlbook/
Assignment 1 Grades

Marks

AUC-PR

AUC-ROC

Marks Distribution

Data Mining

University of Warwick
THE END (2024)

Any Slides After This Are Optional and not included in the 2024 exam