
Data Mining University of Warwick

Neural Networks and Deep Learning

Dr. Fayyaz Minhas

Department of Computer Science
University of Warwick

https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs909/

https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs909/

Data Mining University of Warwick

Biological Neurons and Networks

2

Data Mining University of Warwick

Single Neuron: Representation

• An abstraction of the biological neuron

3

𝑢𝑖 = ෍

𝑗

𝑤𝑖𝑗𝑥𝑗 = 𝒘𝒊
𝑻𝒙

𝑦𝑖 = 𝑎(𝑢𝑖) = 𝑎 ෍

𝑗

𝑤𝑖𝑗𝑥𝑗
∑

𝑤𝑖𝑗

𝑤𝑖1

𝑤𝑖𝑛

𝑥1

𝑥𝑗

𝑥𝑛

𝑢𝑖 𝑦𝑖

summation activation

𝑤𝑖0

𝑥0 = 1

n
-d

im
en

si
o

n
al

 in
p

u
t

𝒙

𝑖th neuron

Data Mining University of Warwick

Activation Functions

4

• Can use any activation function

Data Mining University of Warwick

Neural Networks

• Evaluation

– Error between predicted and target output

• Predicted output: 𝑦 = 𝑎(𝑢) = 𝑎(𝑤𝑇𝑥)

• Target output: 𝑡

• Error: 𝑡 − 𝑦 2

• Optimization

– Whenever the weights change, the output will change

– Optimize the weights so that the output matches the target

– Gradient Descent

5

Data Mining University of Warwick

How to implement Neurons?

• Remember:
– If you can define a loss function

– And a regularizer

– The rest can be automated For
any ML problem*!
• Using Automatic Differentiation

Libraries
– Autograd

– PyTorch

– TensorFlow

– JAX

– Zygote.jl

6*Terms and conditions apply

Go through this exercise:

https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb

REO and SRM are all you need!

• Representation
• How does the model produce its output given its input

• 𝒇 𝒙; 𝒘 = 𝒘𝑻𝒙
• Evaluation (SRM/Definition of Optimization Problem)

• Define a loss function and a regularization strategy write the
optimization problem

• 𝑚𝑖𝑛𝒘𝑃 𝒘; 𝑿, 𝒚 =
𝜆

2
𝒘𝑻𝒘 + ∑𝑖=1

𝑁 𝑚𝑎𝑥 0, 1 − 𝑦𝑖𝑓(𝒙; 𝒘)

• Optimization

• Obtain gradient ∇𝑤𝑃(𝑤) =
𝜕𝑃(𝑤)

𝜕𝑥
 through an automatic

differentiation method
• Apply gradient descent (or other optimization) updates until

convergence
• 𝑤 ← 𝑤 − 𝛼∇𝑤𝑃(𝑤)

• Successful optimization is necessary for generalization (but not
sufficient). Must check for successful optimization!

𝑃 𝒘

P(w) dP(w)

𝑃′ 𝒘

def P_fun(w):
 return w**2 w = 1.0 # a value of w

out = P_fun(w)
out.backward() #generates
w.grad #equal to 2*w

#manual implement or use sympy
def dP_symbolic(w):
 return 2*w
#numeric differentiation
def dP_numeric(w,d):
 return (P_fun(w+d)-P_fun(w))/d

𝑃 𝑤 = 𝑤2 𝜕𝑃

𝜕𝑤
= 2𝑤

https://en.wikipedia.org/wiki/Automatic_differentiation
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb

Data Mining University of Warwick

MULTILAYER PERCEPTRONS

7

Data Mining University of Warwick

A network of neurons

8

𝑢𝑖 = ෍

𝑗

𝑤𝑖𝑗𝑥𝑗 = 𝒘𝒊
𝑻𝒙

𝑦𝑖 = 𝑎(𝑢𝑖) = 𝑎 ෍

𝑗

𝑤𝑖𝑗𝑥𝑗
∑

𝑤𝑖𝑗

𝑤𝑖1

𝑤𝑖𝑛

𝑥1

𝑥𝑗

𝑥𝑛

𝑢𝑖 𝑦𝑖

summation activation

𝑤𝑖0

𝑥0 = 1

n
-d

im
en

si
o

n
al

 in
p

u
t

𝒙

𝑖th neuron

Data Mining University of Warwick

Single to Multiple Neurons

9

Data Mining University of Warwick 10

Multilayer Perceptron: Representation

• Consists of multiple layers of neurons
– Multi-Input Multi-Output

• Layers of units other than the input and
output are called hidden units

• Unidirectional weight connections and
biases (Feed-Forward)

• Activation functions
– Use of activation functions

• Sigmoidal activations
– Nonlinear Operation: Ability to solve practical problems
– Differentiable
– Derivative can be expressed in terms of functions

themselves: Computational Efficiency

• Other activation functions also possible

– Activation function is the same for all
neurons in the same layer
• Not a strict requirement though

– Input layer just passes on the signal
without processing (linear operation)

𝑧𝑗 = 𝑎 𝑧_𝑖𝑛𝑗

 𝑧_𝑖𝑛𝑗 = ෍

𝑖=0

𝑛

𝑥𝑖𝑣𝑖𝑗 , 𝑥0 = 1, 𝑗 = 1. . . 𝑝

𝑦𝑘 = 𝑎 𝑦_𝑖𝑛𝑘

 𝑦_𝑖𝑛𝑘 = ෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘 , 𝑧0 = 1, 𝑘 = 1. . . 𝑚

n-dimensional
input

p hidden units

m output
units

Output
layer
weights

Hidden
layer
weights

Data Mining University of Warwick

Multilayer Perceptron: Evaluation

• Compute the error between
prediction and target

– SSE Loss:

loss = ෍

𝑖

෍

𝑘=1

𝑚

𝑦𝑘
𝑖 − 𝑡𝑘

𝑖 2

Can use other loss terms.

11

Data Mining University of Warwick

Multilayer Perceptron: Optimization

• Non-convex optimization
– Because:

𝑦𝑖𝑛𝑘
= ෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘

𝑦𝑘 = 𝑎 𝑦_𝑖𝑛𝑘

• Weighted combination of activation function outputs

• Compute the gradient of the error/loss
function with respect to each weight of the
neural network

• Update weights using gradient descent or
other methods

12

𝜕𝑙

𝜕𝑤𝑗𝑘

𝜕𝑙

𝜕𝑣𝑖𝑗

𝑤𝑗𝑘
𝑛𝑒𝑤 ← 𝑤𝑗𝑘

𝑜𝑙𝑑 − 𝛼
𝜕𝑙

𝜕𝑤𝑗𝑘
𝑜𝑙𝑑 or Δ𝑤𝑗𝑘 = −𝛼

𝜕𝑙

𝜕𝑤𝑗𝑘
𝑜𝑙𝑑

𝑣𝑖𝑗
𝑛𝑒𝑤 ← 𝑣𝑖𝑗

𝑜𝑙𝑑 − 𝛼
𝜕𝑙

𝜕𝑣𝑖𝑗
𝑜𝑙𝑑 or Δ𝑣𝑖𝑗 = −𝛼

𝜕𝑙

𝜕𝑣𝑖𝑗
𝑜𝑙𝑑

w1w2

Error

Data Mining University of Warwick

REO for MLPs
• Representation

– Defined by the architecture
• Number of inputs and outputs, Interconnection of neurons, number of neurons in

layers, activation functions, etc.

ℎ 𝒙 = ෍

𝑖=1

𝑃

𝒗𝑖𝑎 𝒘𝑖
𝑇𝒙 + 𝑏𝑖 + 𝑣0 = 𝑽𝑎 𝑾𝒙 + 𝒃 + 𝑣0

– Modern DL libraries require you to define “Representation”

• Evaluation
– Defined by the ML problem
– Can use any loss function

• Square Error Loss
• Hinge Loss
• Cross-Entropy Loss

• Optimization
– Solve for weights that reduce error over training data and (hopefully!)

generalize to test data
– Using any optimization method

• Stochastic Gradient Descent
• Adaptive Learning Rate with Momentum (Adam)
• So many other

13

𝒗1

𝒗2

𝒗𝑝

𝒘11

𝒘12
𝒘21

𝒘22

𝒘𝑝1

𝒘𝑝𝑑

𝒙1

𝒙𝑑=2

ℎ 𝒙

𝑏1
𝑏2𝑏𝑝

𝑥0 = 1

1

𝑣0

https://playground.tensorflow.org

𝒉 𝒙 = 𝑽𝑎 𝑾𝒙 + 𝒃 + 𝑣0

Important:
The output of a fully connected layer of weights

𝑾 can be viewed as a transformation z: Rd → Rp
involving a matrix-vector product and an
activation function

𝑧 𝒙 = 𝑎 𝑾𝒙 + 𝒃

https://playground.tensorflow.org/

Data Mining University of Warwick

Multilayer Perceptron

14

𝑇𝑎𝑟𝑔𝑒𝑡

−𝒚 𝒕

𝐿𝑜𝑠𝑠

𝑈𝑝𝑑𝑎𝑡𝑒𝑈𝑝𝑑𝑎𝑡𝑒

∑

∑

∑

∑

∑

∑

Data Mining University of Warwick 15

Backpropagation training cycle

Feed forward

BackpropagationWeight Update

Data Mining University of Warwick 16

Training

• During training we are presented with input patterns
and their targets

• At the output layer we can compute the error between
the targets and actual output and use it to compute
weight updates through the Delta Rule

• But the Error cannot be calculated at the hidden input
as their targets are not known

• Therefore we propagate the error at the output units
to the hidden units to find the required weight
changes (Backpropagation)

• 3 Stages
– Feed-forward of the input training pattern
– Calculation and Backpropagation of the associated

error
– Weight Adjustment

• Based on minimization of SSE (Sum of Square Errors)

Data Mining University of Warwick 17

Proof for the Learning Rule

Use of Gradient Descent Minimization

We can use the chain rule to compute the gradient of 𝐸

𝑧𝑗 = 𝑎 𝑧_𝑖𝑛𝑗 , 𝑧𝑖𝑛𝑗
= ∑𝑖=0

𝑛 𝑥𝑖𝑣𝑖𝑗 , 𝑥0 = 1, 𝑗 = 1. . . 𝑝

𝑦𝑘 = 𝑎 𝑦_𝑖𝑛𝑘 , 𝑦𝑖𝑛𝑘
= ෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘 , 𝑧0 = 1, 𝑘 = 1. . . 𝑚

𝐸 = 0.5 ෍
𝑘

𝑡𝑘 − 𝑦𝑘
2

How much does 𝐸 change with change in 𝑤𝑗𝑘

𝜕𝐸

𝜕𝑤𝑗𝑘
=

𝜕

𝜕𝑤𝑗𝑘
0.5 ෍

𝑘
𝑡𝑘 − 𝑦𝑘

2 =
𝜕

𝜕𝑤𝑗𝑘
0.5 𝑡𝑘 − 𝑦𝑘

2

= − 𝑡𝑘 − 𝑦𝑘

𝜕

𝜕𝑤𝑗𝑘
𝑦𝑘 = − 𝑡𝑘 − 𝑦𝑘

𝜕

𝜕𝑤𝑗𝑘
𝑎 𝑦_𝑖𝑛𝑘

= − 𝑡𝑘 − 𝑦𝑘 𝑎′ 𝑦_𝑖𝑛𝑘

𝜕

𝜕𝑤𝑗𝑘
𝑦_𝑖𝑛𝑘

= − 𝑡𝑘 − 𝑦𝑘 𝑎′ 𝑦_𝑖𝑛𝑘

𝜕

𝜕𝑤𝑗𝑘
෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘

= − 𝑡𝑘 − 𝑦𝑘 𝑎′ 𝑦_𝑖𝑛𝑘 𝑧𝑗 = −𝛿𝑘𝑧𝑗

Take away lesson:
The change in 𝑤𝑗𝑘 is proportional to

• The error 𝑡𝑘 − 𝑦𝑘

• Output 𝑧𝑗

• The derivative of the activation function 𝑎′ 𝑦_𝑖𝑛𝑘
Weight update will be zero if any of these terms is zero! With 𝛿𝑘 = 𝑡𝑘 − 𝑦𝑘 𝑎′ 𝑦_𝑖𝑛𝑘Δ𝑤𝑗𝑘 = −𝛼

𝜕𝐸

𝜕𝑤𝑗𝑘
= 𝛼𝛿𝑘𝑧𝑗

Change in wjk

affects only yk

𝛿𝑘

𝑡1 𝑡𝑘 𝑡𝑚

𝐸𝑟𝑟𝑜𝑟: 𝐸

𝑇𝑎𝑟𝑔𝑒𝑡

Data Mining University of Warwick18

The Learning Rule…

Change in vij

affects all Y1..m

Change in vij

affects only zj

Use of Gradient Descent Minimization

𝑣𝑖𝑗

𝑍𝑗

𝑌𝑘

𝑤𝑗𝑘

𝑌𝑚

𝑍𝑝

𝑋𝑛𝑋𝑖

How much does 𝐸 change with change in 𝑣𝑖𝑗 :
𝜕𝐸

𝜕𝑣𝑖𝑗
=

𝜕

𝜕𝑣𝑖𝑗
0.5 ෍

𝑘
𝑡𝑘 − 𝑦𝑘

2 = 0.5 ෍
𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑡𝑘 − 𝑦𝑘

2

= ෍
𝑘

𝑡𝑘 − 𝑦𝑘

𝜕

𝜕𝑣𝑖𝑗
−𝑦𝑘 = − ෍

𝑘
𝑡𝑘 − 𝑦𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑎 𝑦𝑖𝑛𝑘

= − ෍
𝑘

𝑡𝑘 − 𝑦𝑘 𝑎′ 𝑦𝑖𝑛𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑦𝑖𝑛𝑘

= − ෍
𝑘

𝛿𝑘

𝜕

𝜕𝑣𝑖𝑗
෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘 = − ෍
𝑘

𝛿𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑧𝑗𝑤𝑗𝑘

= − ෍
𝑘

𝛿𝑘𝑤𝑗𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑎 𝑧𝑖𝑛𝑗

= − ෍
𝑘

𝛿𝑘𝑤𝑗𝑘𝑎′ 𝑧𝑖𝑛𝑗

𝜕

𝜕𝑣𝑖𝑗
𝑧𝑖𝑛𝑗

= − ෍
𝑘

𝛿𝑘𝑤𝑗𝑘𝑎′ 𝑧𝑖𝑛𝑗

𝜕

𝜕𝑣𝑖𝑗
෍

𝑖=0

𝑛

𝑥𝑖𝑣𝑖𝑗

= − ෍
𝑘

𝛿𝑘𝑤𝑗𝑘𝑎′ 𝑧𝑖𝑛𝑗
𝑥𝑖 = − መ𝛿𝑗𝑥𝑖

Take away message: The change in 𝑣𝑖𝑗 is proportion to:

• The input 𝑥𝑖

• መ𝛿𝑗: The backprop term which contains product of activation

function derivatives

Δ𝑣𝑖𝑗 = −𝛼
𝜕𝐸

𝜕𝑣𝑖𝑗
= 𝛼 መ𝛿𝑗𝑥𝑖

𝑧𝑗 = 𝑎 𝑧_𝑖𝑛𝑗 , 𝑧𝑖𝑛𝑗
= ∑𝑖=0

𝑛 𝑥𝑖𝑣𝑖𝑗 , 𝑥0 = 1, 𝑗 = 1. . . 𝑝

𝑦𝑘 = 𝑎 𝑦_𝑖𝑛𝑘 , 𝑦𝑖𝑛𝑘
= ෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘 , 𝑧0 = 1, 𝑘 = 1. . . 𝑚

With 𝛿𝑘 = 𝑡𝑘 − 𝑦𝑘 𝑎′ 𝑦_𝑖𝑛𝑘

With: መ𝛿𝑗 = ∑𝑘 𝛿𝑘𝑤𝑗𝑘𝑎′ 𝑧𝑖𝑛𝑗
𝑥𝑖 or

መ𝛿𝑗 = ෍
𝑘

𝑡𝑘 − 𝑦𝑘 𝑤𝑗𝑘𝑎′ 𝑦_𝑖𝑛𝑘 𝑎′ 𝑧𝑖𝑛𝑗
𝑥𝑖

𝛿𝑘𝛿1 𝛿𝑚

መ𝛿𝑗

𝑡1 𝑡𝑘 𝑡𝑚

𝐸𝑟𝑟𝑜𝑟: 𝐸

𝑇𝑎𝑟𝑔𝑒𝑡

Data Mining University of Warwick

Understanding Backpropagation

• Pass the input and compute the output

• Compute Error

• Compute Gradient of error wrt weights

• Compute weight updates

– Compute 𝛿𝑘

– “Backpropagate” these 𝛿𝑘 through the

network to Compute መ𝛿𝑗

– Compute Δ𝑤𝑗𝑘 and Δ𝑣𝑖𝑗

• Update weight updates

19

Δ𝑤𝑗𝑘 = −𝛼
𝜕𝐸

𝜕𝑤𝑗𝑘
= 𝛼𝛿𝑘𝑧𝑗

𝛿𝑘 = 𝑡𝑘 − 𝑦𝑘 𝑓′ 𝑦_𝑖𝑛𝑘

Δ𝑣𝑖𝑗 = −𝛼
𝜕𝐸

𝜕𝑣𝑖𝑗
= 𝛼𝛿𝑗𝑥𝑖

መ𝛿𝑗 = ෍
𝑘

𝛿𝑘𝑤𝑗𝑘𝑎′ 𝑧𝑖𝑛𝑗
𝑥𝑖

𝜹𝒌

෡𝜹𝒋

𝛿𝑘

መ𝛿𝑗መ𝛿1
መ𝛿𝑝

𝛿1 𝛿𝑚

Data Mining University of Warwick 20

Training
Algorithm

xi

zj

yk

Data Mining University of Warwick 21

Training Algorithm…

δk

Data Mining University of Warwick 22

Training Algorithm…

δj

Data Mining University of Warwick 23

Training Algorithm…

Taken from:
Fausett, Laurene V. Fundamentals of Neural Networks: Architectures, Algorithms And Applications: United States
Edition. US Ed edition. Englewood Cliffs, NJ: Pearson, 1993.

Data Mining University of Warwick

Optimization in minibatches

• We can do a full-scale optimization across all examples in each
step or take a few examples at a time to determine the
gradients and perform an update

– Mini-batches

• Stochastic gradient descent

• Reduces memory consumption

• Faster convergence

24

Data Mining University of Warwick

Coding

25

• Using Keras

• https://github.com/foxtrotmike/CS909/blob/master/keras_barebones.ipynb

• PyTorch

• Barebones code in PyTorch

• https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb

• Using nn-module

• https://github.com/foxtrotmike/CS909/blob/master/pytorch_nn_barebones.ipynb

• Universal Approximation code:

• https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb

• Digit Classification Exercise

• https://github.com/foxtrotmike/CS909/blob/master/pytorch_mlp_mnist.ipynb

https://playground.tensorflow.org

https://github.com/foxtrotmike/CS909/blob/master/keras_barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/keras_barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_nn_barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_nn_barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_mlp_mnist.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_mlp_mnist.ipynb
https://playground.tensorflow.org/

Data Mining University of Warwick

Libraries

• All Neural Network/Deep Learning Libraries Do three things

– Automatic Differentiation (Efficient Algorithms such as Reverse mode autodiff!)

– Implement Optimizers

– Use efficient hardware for multiprocessing (GPUs)

• Support efficient representation / abstraction

26

TensorFlow
Static Computing Graphs

Build before you go (new version has dynamic graphs too!)
Compile then run/fit

Good Documentation
Distributed Computing / Delivery
TensorFlow.js

pyTorch
Dynamic Computing Graphs

Graph built at run time
Build as you go

Good for research

using Zygote

Define a simple function
f(x) = 3x^2 + 2x + 1
derivative of f at x = 2
gradient(f, 2)

Data Mining University of Warwick

NN/Deep Learning Libraries

• Essentially Automatic Differentiation Tools with optimization packages
– Represent a neural network loss calculation as a computational graph and then compute the

gradients
• Have rules for each operator on how to differentiate “through” that operator

• Can use GPU

27

import torch
import numpy as np
from torchviz import make_dot
a = torch.from_numpy(np.array([2.0])); a.requires_grad_(True)
b = torch.from_numpy(np.array([1.0])); b.requires_grad_(True)
e = (a+b)*(b+1)
e.backward()
print(a.grad) # 2
print(b.grad) # 5
make_dot(e)

a b

c d

e

1

+ +

*

• 𝑒 = 𝑎 + 𝑏 𝑏 + 1 = 𝑎𝑏 + 𝑎 + 𝑏2 + 𝑏

• ቚ
𝜕𝑒

𝜕𝑎 𝑎=2,𝑏=1
= 𝑏 + 1 = 2

• ቚ
𝜕𝑒

𝜕𝑏 𝑎=2,𝑏=1
= 𝑎 + 2𝑏 + 1 = 5

!pip install torchviz
from torchviz import make_dot
make_dot(tloss,params=dict(model.named_parameters()))

Data Mining University of Warwick

Computation Graph of a two-layer
network

28

model = torch.nn.Sequential(
 torch.nn.Linear(2, 2),
 torch.nn.Sigmoid(),
 torch.nn.Linear(2, 1),
 torch.nn.Sigmoid()
).to(device)

z = model(x)

model.zero_grad()
e.backward()

with torch.no_grad():
for param in model.parameters():
 param.data -= learning_rate * param.grad

e = loss_fn(z, y)

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
model.zero_grad()
e.backward()
optimizer.step()

R
e

p
re

se
n

ta
ti

o
n

Ev
al

u
at

io
n

O
p

ti
m

iz
at

io
n

Manual Gradient Descent

Using Built-in Optimizer

Loss y
z

e

อ
𝜕𝑒

𝜕𝑊𝑖𝑗
𝒙,𝒚

Data Mining University of Warwick

Optimization Methods
• Gradient Descent: Go down!

• Stochastic Gradient Descent

• Mini-batch Gradient Descent

• SGD with momentum: accelerate if going downhill for a long
time

• Nesterov momentum: accelerate but not indefinitely

• Adagrad: Adaptive Learning Rate by accumulating past
gradients

• AdaDelta/RMSProp: Adaptive Learning rate but does not
accumulate all past gradients

• Adam: Adaptive learning rate with momentum

• Learning rate scheduling
– Changing Learning rates at different times in the learning

– https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.One
CycleLR.html

29

An overview of gradient descent optimization algorithms by Sebastian Ruder, 20-16
http://sebastianruder.com/optimizing-gradient-descent/ , https://arxiv.org/abs/1609.04747

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
http://sebastianruder.com/optimizing-gradient-descent/
https://arxiv.org/abs/1609.04747

Data Mining University of Warwick

Softmax Used for multi-
class
classification

𝑓 𝑥𝑖 = 𝑝𝑖 =
𝑒𝑥𝑖

∑𝑗 𝑒𝑥𝑗

𝜕𝑓(𝑥𝑖)

𝜕𝑥𝑘
= ቊ

𝑝𝑖(1 − 𝑝𝑖) 𝑖 = 𝑘
−𝑝𝑖𝑝𝑘 𝑒𝑙𝑠𝑒

30

sigmoid

Bipolar sigmoid

Minhas, Fayyaz ul Amir Afsar, and Amina Asif. “Learning Neural Activations.” arXiv:1912.12187 [Cs, Stat], December 27, 2019. http://arxiv.org/abs/1912.12187.

Here 𝑥 is not an example,
rather the input to an
activation function 𝑓

Some functions like the
“Softmax” take a vector as
input and produce a
vector output. The
softmax function takes a
vector of “logits” as input
and produces pseudo-
probability values as
output.

Readmore:
https://en.wikipedia.org/
wiki/Softmax_function

http://arxiv.org/abs/1912.12187
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function

Data Mining University of Warwick

Does the brain do backpropagation?

• Short
answer:

– No

• Long answer:

– Not enough
evidence

31

Lillicrap, Timothy P., et al. "Backpropagation and the brain." Nature Reviews

Neuroscience 21.6 (2020): 335-346.

Data Mining University of Warwick

HOW TO IMPROVE NEURAL NETWORK
TRAINING

32

Data Mining University of Warwick

Parameter Selection

• A MLP has a large number of parameters
– Number of Neurons in Each Layer
– Number of Layers
– Activation Function for each neuron: ReLU,

logsig…
– Layer Connectivity: Dense, Dropout…

• Objective function
– Loss Function: MSE, Entropy, Hinge loss, …
– Regularization: L1, L2…

• Optimization Method
– SGD, ADAM, RMSProp, LM …
– Parameters for the Optimization method

• Weight initialization
• Momentum, weight decay, etc.

33

Data Mining University of Warwick

Issues with Neural Networks with non-linear activations

• Unlike an SVM, which has a single global
optimum due to its convex loss function,
the error surface of a neural network is
not as smooth

• This complicates the optimization

• A number of “tricks” are used to make
the neural network learn

34

Examples showing that combinations and
compositions (such as those that can arise in a
multilayer perceptron) of even convex functions are
not convex
 Given convex functions

𝑔1 𝑥 = −𝑥
𝑔2 𝑥 = 𝑥2

Following are NOT convex:
𝑔1 𝑥 − 𝑔2 𝑥 = −𝑥 − 𝑥2

𝑔1(𝑔2 𝑥) = −𝑥2

Loss Landscape of a neural network

Li, Hao, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. “Visualizing the Loss Landscape of Neural Nets.” In Advances
in Neural Information Processing Systems, Vol. 31. Curran Associates, Inc., 2018.
https://papers.nips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html.

https://papers.nips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html

Data Mining University of Warwick

How to improve MLP?

• For successful optimization

– Don’t let the network stop learning
prematurely!

• For example: Don’t let the neurons
saturate!
– If the input or the gradient goes to zero, the

learning stops!

– Here is the gradient descent based
weight update formula for a 2 layer
MLP

35

∆𝑣𝑖𝑗 = 𝛼𝑥𝑖𝑎′ 𝒗𝒋
𝑻𝒙 ෍

𝑘=1

𝑚

𝑤𝑗𝑘 𝑡𝑘 − 𝑎 ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑎 𝒗𝒋
𝑻𝒙 𝑎′ ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑎 𝒗𝒋
𝑻𝒙

Δ𝑤𝑗𝑘 = −𝛼
𝜕𝐸

𝜕𝑤𝑗𝑘
= 𝛼𝛿𝑘𝑧𝑗

𝛿𝑘 = 𝑡𝑘 − 𝑦𝑘 𝑓′ 𝑦_𝑖𝑛𝑘

Δ𝑣𝑖𝑗 = −𝛼
𝜕𝐸

𝜕𝑣𝑖𝑗
= 𝛼 መ𝛿𝑗𝑥𝑖

𝛿𝑖𝑛𝑗 = ෍
𝑘

𝛿𝑘𝑤𝑗𝑘

መ𝛿𝑗 = 𝛿𝑖𝑛𝑗𝑎′ 𝑧𝑖𝑛𝑗

𝑧𝑗 = 𝑎 𝑧_𝑖𝑛𝑗 , 𝑧𝑖𝑛𝑗
= ∑𝑖=0

𝑛 𝑥𝑖𝑣𝑖𝑗

𝑦𝑘 = 𝑎 𝑦_𝑖𝑛𝑘 , 𝑦𝑖𝑛𝑘
= ෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘

Final layer weight update

Final layer backprop term

Hidden layer weight update

Hidden layer backprop

Hidden layer output

Final layer output

Data Mining University of Warwick

Understanding optimization stalls in neural networks

Why can optimization stall or slow down
1. When 𝑥𝑖 = 0 (input is zero or too small)

2. Activation gradient 𝑎′(∙) is small for a given input

3. Weights are close to zero 𝑤𝑗𝑘 = 0

4. When weight updates get too large, the next weights are
going to be large leading to saturation (exploding
gradients)

5. When the neural network output range cannot match the
range of the target

How to fix / Good practice
1. Don’t use zero inputs (scale neuron inputs appropriately)

Scale neuron outputs appropriately too as they become inputs to other neurons.

2. Either large inputs or large weights can push the activation
function into saturation
– Don’t use “saturating” activation functions (leaky-RelU better than ReLU or sigmoid)
– Don’t use very large inputs (use appropriate input and output scaling)
– Don’t let weights get large
– Each layer in a neural network introduces an additional product term of gradients of

the activation function. If a neural network has many layers, there will be many
products of activation function gradients and as the product of small numbers is
even smaller, small gradients will just vanish and lead to a learning stall

• Vanishing gradients problem
• Don’t use too many layers!

3. Don’t start with zero weights (use proper weight initialization
with small random weights – implicit regularization)

4. Choose the learning rate/optimizer appropriately. Plot the
convergence plot. Use gradient clipping.

5. Choose an appropriate activation in the output layer

36

∆𝑣𝑖𝑗 = 𝛼𝑥𝑖𝑎′ 𝒗𝒋
𝑻𝒙 ෍

𝑘=1

𝑚

𝑤𝑗𝑘 𝑡𝑘 − 𝑎 ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑎 𝒗𝒋
𝑻𝒙 𝑎′ ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑎 𝒗𝒋
𝑻𝒙

Sigmoid activation
and its derivative

Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”.

Weight updates:
When do we want them to be zero?
 When all outputs target: 𝑡𝑘 − 𝑦𝑘 = 0
When can they unwantedly be zero?
 Leading to learning stall!

Data Mining University of Warwick

Improving MLP
• Improving optimization

– Different optimizers
• Adaptive Momentum based optimization
• Learning rate cycling strategies

• Improving generalization
– Use Early Stopping

• Keep track of generalization error and stop if the generalization error does
not improve enough even when the error on training data is going down

– Using regularization
• Explicit regularization

– Weight norms
– Gradient clipping

• Data Augmentation
– Create artificial examples

» Addition of noise
» Translation of images or other transforms

• Drop-Off
• Batch Normalization

• The loss function has a significant impact on learning (both
optimization and regularization)
– For example cross-entropy loss and softmax work well for

classification tasks

37

Early stopping parameters
patience = 10 # How many epochs to wait after last time validation
loss improved.
best_loss = None
epochs_no_improve = 0
early_stop = False

for epoch in range(100): # epochs
 model.train()
 for inputs, labels in train_loader:
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()

 model.eval()
 val_loss = 0
 with torch.no_grad():
 for inputs, labels in val_loader:
 outputs = model(inputs)
 val_loss += criterion(outputs, labels).item()

 val_loss /= len(val_loader)
 print(f'Epoch {epoch}, Validation Loss: {val_loss}')

 # Check for early stopping
 if best_loss is None:
 best_loss = val_loss
 elif val_loss < best_loss:
 best_loss = val_loss
 epochs_no_improve = 0
 else:
 epochs_no_improve += 1
 if epochs_no_improve == patience:
 print('Early stopping!')
 early_stop = True
 break # Exit from the loop

if not early_stop:
 print('Training completed without early stopping.')

Data Mining University of Warwick

Home/Lab Exercise!

• Solve the XOR using a single hidden layer BPNN with sigmoid
activations

– See what is the effect of different parameters on the convergence
characteristics of the neural network

38

Data Mining University of Warwick

UNIVERSAL FUNCTION APPROXIMATION WITH
NEURAL NETWORKS

39

Data Mining University of Warwick

Universal Function Approximation

• A neural network with a single hidden layer is a universal
approximator

• Universal Approximation
– Any function g 𝒙 over 𝒙 ∈ 𝑹𝒎 can be represented as follows:

ℎ 𝒙 = ෍

𝑖=1

𝑃

𝒗𝑖𝑎 𝒘𝑖
𝑇𝒙 + 𝑏𝑖 + 𝑣0 = ෍

𝑖=1

𝑃

𝒗𝑖𝑧𝑖 + 𝑣0

• 𝑎 ∙ is a non-constant, bounded and monotonically-increasing continuous
“basis” function

• P is the number of functions

• ℎ 𝒙 is an approximation of 𝑔 𝒙 , i.e., 𝑔 𝒙 − ℎ 𝒙 < 𝜖

40

𝒗1

𝒗2

𝒗𝑝

𝒘11

𝒘12
𝒘21

𝒘22

𝒘𝑝1

𝒘𝑝𝑑

𝒙1

𝒙𝑑=2

ℎ 𝒙

𝑧𝑖 = 𝑎 𝒘𝑖
𝑇𝒙 + 𝑏𝑖

𝑏1
𝑏2𝑏𝑝

𝑥0 = 1

1

𝑣0

https://en.wikipedia.org/wiki/Universal_approximation_theorem

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Data Mining University of Warwick

Universal Function Approximation Example

• Let’s try to approximate the
function g(x) by a NN

• Let’s build a neural network with
sigmoid activations in the hidden
layer

• The output of a single neuron
depends on its net input which is a
weighted summation of its inputs
(with bias)

• The output is the sum of the
outputs of all hidden neurons

• We want to find weights which sum
up to produce the target function

41

CODE: https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb

With no hidden layer neuron (P=0)

https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb

Data Mining University of Warwick

Universal Function Approximation Example

• With no hidden layer neuron (P=1)

42

Data Mining University of Warwick

Universal Function Approximation Example

• With no hidden layer neuron (P=2)

43

Data Mining University of Warwick

Universal Function Approximation Example

• With no hidden layer neuron (P=3)

44

Data Mining University of Warwick

Universal Function Approximation Example

• With no hidden layer neuron (P=5)

45

Data Mining University of Warwick

Universal Function Approximation Example

• With no hidden layer neuron (P=50)

46

Data Mining University of Warwick

Practical Issues in Universal Approximation

• The universal approximation theorem means that regardless of what
function we are trying to learn, we know that a large MLP will be able to
represent this function.

• However, we are not guaranteed that the training algorithm will be able
to “learn” that function.

– Optimization can fail

– Learning is different from optimization
• The primary requirement for learning is generalization

– Representability alone does not guarantee learning

48

Data Mining University of Warwick

Universal Function Approximation

• A neural network with one
hidden layer can be used to
approximate any shape
– However, the approximation might

require exponentially many neurons

– How can we reduce the number of
computations?

49

Wang, Haohan, and Bhiksha Raj. “On the Origin of Deep Learning.” arXiv:1702.07800 [Cs, Stat], February 24, 2017.
http://arxiv.org/abs/1702.07800.

The number of required straight cuts to approximate a given shape

ℎ 𝒙 = ෍

𝑖=1

𝑝

𝒗𝑖𝑎 𝒘𝑖
𝑇𝒙 + 𝑏𝑖

A single hidden layer NN with
step activation is a
combination of straight cuts
Total number of learnable
parameters: pd+p+p

𝒗1

𝒗2

𝒗𝑝

𝒘11

𝒘12
𝒘21

𝒘22

𝒘𝑝1

𝒘𝑝𝑑

𝒙1

𝒙𝑑=2

ℎ 𝒙

𝒘1

𝒘2

𝒘𝑝

𝒗

http://arxiv.org/abs/1702.07800

Data Mining University of Warwick

WHY GO DEEP?

50

Data Mining University of Warwick

How many cuts?

• Remember: Classification can be thought
of as partitioning of the feature space

• How can we reduce the number of
required cuts?
– By folding: which is equivalent to:

• Applying a transformation 𝝓 𝒙
– Neural networks

• Changing the distance metric
– Distance metric learning

• Kernelization
– SVM

51

Data Mining University of Warwick

Each layer is a transformation of the input data

• In the transformed space

• We can implement a learnable feature transformation through neurons!

52

Montufar (2014)

ℎ 𝒙 = ෍

𝑖=1

𝑝′

𝒗𝑖𝑎 𝒘𝑖
𝑇𝝓 𝒙 + 𝑏𝑖

ℎ 𝒙 = ෍

𝑖=1

𝑝′

𝒗𝑖𝑎 ෍

𝑗=1

𝑑′

𝒘𝑖𝑗𝑔 𝒖𝑗
𝑇𝒙 + 𝑐𝑗 + 𝑏𝑖

𝒗1

𝒗2

𝒗𝑝′

𝒘11

𝒘12
𝒘21

𝒘22

𝒘𝑝′1

𝒘𝑝′𝑑′

𝒙1

𝒙𝑑=2

ℎ 𝒙

𝒘1

𝒘2

𝒘𝑝′

𝒗

𝝓1 𝒙

𝝓𝑑′=2 𝒙

𝒖11
𝒖12

𝒖21
𝒖22

𝒖1

𝒖2

Transformation
𝒙 ⟶ 𝝓 𝒙

Total number of learnable parameters: dd’+d’+p’d’+p’+p’

Fold and Cut Theorem: https://www.youtube.com/watch?v=ZREp1mAPKTM

https://www.youtube.com/watch?v=ZREp1mAPKTM

Data Mining University of Warwick

Width vs. Depth

• An MLP with a single hidden layer is sufficient to represent any function

– But the layer may be infeasibly large

– May fail to learn and generalize correctly

• Using a deeper model can reduce the number of units required to represent the desired
function and can reduce the amount of generalization error
– Thus a deeper representation is more efficient!

– A function that could be expressed with O(n) neurons on a network of depth k required at least O(2√n) and O((n
-1)k) neurons on a two-layer neural network: Delalleau and Bengio (2011)

– Functions representable with a deep rectifier net can require an exponential number of hidden units with a
shallow (one hidden layer) network: Montufar (2014)

– For a shallow network, the representation power can only grow polynomially with respect to the number of
neurons, but for deep architecture, the representation can grow exponentially with respect to the number of
neurons: Bianchini and Scarselli (2014)

– Depth of a neural network is exponentially more valuable than the width of a neural network, for a standard MLP
with any popular activation functions: Eldan and Shamir (2015)

53

Data Mining University of Warwick

Comparison of Depth

• Both have approximately the same number of parameters (tunable weigths)
– Deeper is better
– But is difficult to optimize

54

CODE: https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb

 nn.Sequential(

 nn.Linear(input_size, 128),

 nn.Sigmoid(),

 nn.Linear(128, output_size))

 nn.Sequential(

 nn.Linear(input_size, 32),

 nn.Sigmoid(),

 nn.Linear(32, 8),

 nn.Sigmoid(),

 nn.Linear(8, output_size))

https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb

Data Mining University of Warwick

Width vs. Depth

• Empirical results for some data showed that depth increases
generalization performance in a variety of applications

55

Data Mining University of Warwick 56

Data Mining University of Warwick

Shallow vs. Deep Networks

• Adding more layers increases the representation power of the neural
network

• A deep network requires exponentially fewer parameters to get to the
same error rate in comparison to a wide neural network

– More efficient

• However, adding layers leads to a more difficult optimization problem

– Vanishing and Exploding Gradients

57

∆𝑣𝑖𝑗 = 𝛼𝑥𝑖𝑎′ 𝒗𝒋
𝑻𝒙 ෍

𝑘=1

𝑚

𝑤𝑗𝑘 𝑡𝑘 − 𝑎 ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑓 𝒗𝒋
𝑻𝒙 𝑎′ ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑓 𝒗𝒋
𝑻𝒙

Data Mining University of Warwick

CONVOLUTIONAL NEURAL NETWORKS

58

Data Mining University of Warwick

Where’s Waldo?

59

Data Mining University of Warwick 60

Data Mining University of Warwick 61

Neural
Network

Data Mining University of Warwick

Let’s solve it using a neural network

• Input image: 256x256x3

– Flatten it: 196, 608 dimensional input

• Target: 256x256x3

– Flatten it: 196, 608 dimensional output

• Let’s use a single hidden layer network

– Very large number of parameters will be needed

• Let’s use a deep(er) network

– Still a very large number of parameters will be needed

62

Data Mining University of Warwick 63

Data Mining University of Warwick

Important conceptual note

• Correlation vs. convolution

64

𝑦 𝑛 = 𝑓 ∗ 𝑔 = ෍

𝑘=−∞

+∞

𝑓 𝑘 𝑔[𝑛 − 𝑘] 𝑦 𝑛 = 𝑓 ⋆ 𝑔 = ෍

𝑘=−∞

+∞

𝑓 𝑘 𝑔[𝑛 + 𝑘]

𝑦 𝑛

Data Mining University of Warwick 65

Data Mining University of Warwick

Convolutional Networks

• A feed-forward network inspired from visual cortex and the
ideas of correlation

• Used for image or signal recognition tasks

• Objective

– Find a set of filters which, when convolved with image, lead to the
solution of the desired image recognition task

• Invariant wrt translation

• Hierarchical
– Increasing feature complexity

– Increasing “Globality”

66

Data Mining University of Warwick

Basics

• The convolution operation

– Shows how a function (image) is modified by another (filter)

67

𝐼

𝐾

𝐻 = 𝐼 ⋆ 𝐾

Input Image

Kernel/Filter

Output

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Technically, this is
“correlation” and not
convolution but we can ignore
this for now. You can also use
different edge handling or
padding strategies.

𝐻 𝑖, 𝑗 = ෍

𝑘=−𝑚/2

𝑚/2

෍

𝑙=−𝑛/2

𝑛/2

𝐼 𝑖 + 𝑘, 𝑗 + 𝑙 𝐾(𝑘, 𝑙)

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Data Mining University of Warwick

Examples of filters

• Identity Filter

68

⋆ =

Muntjac

Data Mining University of Warwick

Examples of filters

• Edge filters

69

1 1 1
1 1 10
1 1 10

1 1
10 10
10 10

1
1

1
1

10
10

10 10
10 10

∗ K =
9 −18 −9
9 −9 0
9 −9 0

import numpy as np
I = np.array([[1,1,1,1,1],[1,1,10,10,10],[1,1,10,10,10],[1,1,10,10,10],[1,1,10,10,10]])
from scipy.ndimage.filters import convolve
K = np.array([[0,1,0],[1,-4,1],[0,1,0]])
H = convolve(I,K)

Data Mining University of Warwick

Example Filters

• Reducing noise using a smoothing filter

70

Data Mining University of Warwick 71

Data Mining University of Warwick

Convolution*

• If you think about it

– Convolution is a sum of products

• Can be expressed as a dot product

72

𝐻𝐼 𝐾

Input Image Kernel/Filter Output

𝐻 𝑖, 𝑗 = ෍

𝑘=−𝑚/2

𝑚/2

෍

𝑙=−𝑛/2

𝑛/2

𝐼 𝑖 + 𝑘, 𝑗 + 𝑙 𝐾(𝑘, 𝑙)

*Strictly speaking, this is cross-correlation.

Data Mining University of Warwick

How to apply filters?

• The easy way

– Use skimage filters

73

import numpy as np

import matplotlib.pyplot as plt

from skimage.data import camera

from scipy.ndimage import convolve

K = np.array([[0,1,0],[1,-4,1],[0,1,0]])/4 # our filter.

I = camera()/255.0 #so that values are in the range 0-255

H = convolve(I,K)

plt.figure();plt.subplot(1,2,1); plt.imshow(I,cmap='gray')

plt.subplot(1,2,2); plt.imshow(H,vmin=-0.05,vmax=+0.05,cmap = 'gray')

print(f"sizes of images are: {I.shape} and {H.shape}")

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb

Data Mining University of Warwick

But what’s the fun in that?

74

import torch

import torch.nn as nn

import torch.nn.functional as F

import matplotlib.pyplot as plt

import numpy as np

class Filter(nn.Module):

 def __init__(self,K):

 super(Filter, self).__init__()

 K = torch.from_numpy(K).float()

 self.K = K.unsqueeze(0).unsqueeze(0) #convert image to NCHW from HW by adding two

extra dimensions in the beginning

 def forward(self, x):

 return F.conv2d(x, self.K) #this is the convolution of the kernel

 def __repr__(self):

 return f"Convolution filter of dimensions: {self.K.shape}"

plt.close('all')

from skimage import data

X = data.camera()/255.0;

plt.subplot(1,2,1); plt.imshow(X,cmap='gray')

K = np.array([[0 ,1, 0],[1,-4,1], [0, 1 ,0]])/4.0

X_torch = torch.from_numpy(X).float().unsqueeze(0).unsqueeze(0) #convert image to NCHW from

HW by adding two extra dimensions in the beginning

#move image to torch

f = Filter(K)

#set the kernel in Filter object

Z_torch = f(X_torch)

#convolution

Z = Z_torch.squeeze().detach().numpy()

#move back to numpy

plt.subplot(1,2,2); plt.imshow(Z,vmin=-0.05,vmax=+0.05,cmap = 'gray')

print(f)

print(f"sizes of images are: {X.shape} and {Z.shape}")

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_conv.py

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_conv.py

Data Mining University of Warwick

Now the interesting question

• Can we learn filters to do something we want to do?

– Let’s say we have an image and it’s output after a certain operation

– Can we learn a filter that produces the output given the input?

75

Filter?

Data Mining University of Warwick

Example

• Let’s say, we have an image and we want to design a filter that
when convolved with the image leads to the desired output.
How?

76

Data Mining University of Warwick

How can this be done?

• Let’s try to build a multi-layer perceptron

– Input image size: (32,32)

• This means the number of input neurons will be 1024

– Target image size: (32,32)

• This means the number of output neurons will be 1024

– Number of weights:

• 1024*1024 = 1,048,576

– Add hidden layers!

– Good luck!

77

Data Mining University of Warwick

Let’s try to learn a 3x3 filter

• Representation

• Evaluation

• Optimization

– Solve the following problem: min
𝐾

𝐸(𝐾)

78

𝐻 = 𝐼 ⋆ 𝐾 𝐻 𝑖, 𝑗 = ෍

𝑘=−1

𝑚=1

෍

𝑙=−1

𝑛=1

𝐼 𝑖 + 𝑘, 𝑗 + 𝑙 𝐾(𝑘, 𝑙)

𝐸(𝐾) = ෍

𝑘=1

𝑀

෍

𝑙=1

𝑁

𝐻 𝑖, 𝑗 − 𝑇 𝑖, 𝑗
2

∗

𝐾

=

Data Mining University of Warwick

Let’s solve this

79

import torch

import torch.nn as nn

import matplotlib.pyplot as plt

import numpy as np

class Filter(nn.Module):

 def __init__(self, ksize = 3):

 super(Filter, self).__init__()

 self.conv1 = nn.Conv2d(1,1, ksize) #torch allows creating a convolution filter using a conv2d layer object which applies

conv2d internally for a given input

 def forward(self, x):

 x = self.conv1(x) #perform convolution

 x = torch.tanh(x) #apply activation

 return x

let's use a convolution filter of size ksize

ksize = 3

bsize = int(ksize/2) #size of broder region

f = Filter(ksize)

optimizer = torch.optim.Adam(f.parameters(), lr=1e-2)

T_torch = torch.from_numpy(T[bsize:-bsize,bsize:-bsize]).float()# reduce target filter size to compensate for border loss in

convolution

X_torch = torch.from_numpy(X).float().unsqueeze(0).unsqueeze(0) #convert image to NCHW from HW by adding two extra dimensions in

the beginning

L = []

for _ in range(1000):

 optimizer.zero_grad() #optimization

 Z_torch = f(X_torch).squeeze()

 loss = torch.sum(torch.abs((T_torch-Z_torch)**2)) #error

 loss.backward()

 optimizer.step()

 L.append(loss.item())

output = Z_torch.squeeze().detach().numpy()

output = (output-np.min(output))/(np.max(output)-np.min(output)) #rescale so that the lowest value in the input image is 0 and the

highest is 1 so we can threshold it

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb

Data Mining University of Warwick

Results

80

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/learn_filters.py

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/learn_filters.py

Data Mining University of Warwick

Another way of looking at this

• We learned a convolution filter kernel based on an input and a
target image

• The filter will act as a + detector when convolved with a new
image (hopefully!)

81

Filter?

Data Mining University of Warwick

Most basic convolutional neural network

• Acts as a “detection” or “feature extraction” unit

82

∗ −

𝐸𝑟𝑟𝑜𝑟

𝑈𝑝𝑑𝑎𝑡𝑒

𝐼𝑛𝑝𝑢𝑡 𝐹𝑖𝑙𝑡𝑒𝑟

𝑂𝑢𝑡𝑝𝑢𝑡
(Feature Map) 𝑇𝑎𝑟𝑔𝑒𝑡

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

Data Mining University of Warwick

Classification with Multilayer Perceptron

83

𝑇𝑎𝑟𝑔𝑒𝑡

−𝑦 𝑡

𝐿𝑜𝑠𝑠

𝑈𝑝𝑑𝑎𝑡𝑒𝑈𝑝𝑑𝑎𝑡𝑒

∑

∑

∑

∑

∑

∑

Data Mining University of Warwick

REO for a convolution neural network

• Representation
– Input: a k-dimensional tensor 𝒙

• k = 1: signal of length n
• k = 2: (grayscale) image of size 𝑙 × 𝑤

– RGB channel image: 𝑙 × 𝑤 × 3

• k = 3: 𝑙 × 𝑤 × 𝑡 video of frame size 𝑙 × 𝑤 with duration 𝑡

– Output: A decision score y = 𝑓(𝑥; 𝜽) (can be multi-dimensional as well)
– Structure

• Layers of Learnable filters each of which is correlated (or convolved) with the input tensor in parallel followed by convolution with other filters
– A single convolution is indicated by 𝒛 = 𝒂(𝒙 ⋆ 𝜽) where 𝜽 is the representation of a single filter and 𝒂(⋅) is an activation function. Filters are much smaller than 𝒙.
– Implemented as layers: Conv1d, Conv2d, Conv3d (in PyTorch)

• The correlation output is then pooled (optional)
• Nonlinear activation functions are applied
• Aggregated to produce the final output (depending upon application)

84

𝐿𝑜𝑠𝑠

𝑈𝑝𝑑𝑎𝑡𝑒

𝐼𝑛𝑝𝑢𝑡 𝐹𝑖𝑙𝑡𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 𝑇𝑎𝑟𝑔𝑒𝑡

−𝑦 𝑡

𝑈𝑝𝑑𝑎𝑡𝑒

Detector Classifier

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝 𝑃𝑜𝑜𝑙𝑒𝑑 𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑

∗

Data Mining University of Warwick 85

𝐼𝑛𝑝𝑢𝑡 𝐹𝑖𝑙𝑡𝑒𝑟𝑠

𝑂𝑢𝑡𝑝𝑢𝑡 𝑇𝑎𝑟𝑔𝑒𝑡

𝐿𝑜𝑠𝑠

−𝑦 𝑡

𝑈𝑝𝑑𝑎𝑡𝑒

Detector Classifier

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝
𝑃𝑜𝑜𝑙𝑒𝑑 𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑

∗

∗

∗

𝐹𝑖𝑙𝑡𝑒𝑟𝑠

∗

𝑃𝑜𝑜𝑙𝑒𝑑

Data Mining University of Warwick

Convolutional Neural Networks for ML

• If we want to use the output of
convolution filters for learning to
classify or regress or rank or for any
other task
– We can use a multilayer perceptron but:

• We will need to “flatten” the output of the
correlation filter (aka feature/filter map)
– Convert an image to a vector e.g., (8x8 to 64)

• We will also need to reduce the dimensions
of the output
– Done through “Pooling”

» Average or max

– And/Or “Striding”

» How we move the convolution filter

86

Stride: 1

Stride: 3

2x2 Output Volume

Data Mining University of Warwick

Structure

• Increasing “globality”

– Input → Convolution →
Non-linearity → Sub-
sampling … → Fully
Connected Layer (for
classification)

87

Data Mining University of Warwick

See Coding

• https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb

• https://github.com/foxtrotmike/CS909/blob/master/cnn_mnist_pytorch.ipynb

88

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/cnn_mnist_pytorch.ipynb

Data Mining University of Warwick

Padding

89

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

Multiple Channels

Multiple IO Channels 1x1 Convolution

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

Data Mining University of Warwick

Pooling

• Average

• Max

• Adaptive Pooling
– Produces a fixed (specified) sized output

despite the size of the input by changing
the window size adaptively

– Allows us to have convolutional neural
networks take arbitrary image sizes as
input
• nn.AdaptiveMaxPool2d

• nn.AdaptiveAvgPool2d

• Learnable pooling

90

pool = nn.AdaptiveAvgPool2d(3)

input = torch.randn(1, 64, 8, 8)

output = pool(input)

print(output.shape)#3,3

input = torch.randn(1, 64, 6, 6)

output = pool(input)

print(output.shape) #3,3

Pool Window

Pool
Window

Output
“Learning Pooling for Convolutional Neural Network.” Neurocomputing 224 (February 8, 2017): 96–104.
https://doi.org/10.1016/j.neucom.2016.10.049.

https://doi.org/10.1016/j.neucom.2016.10.049

Data Mining University of Warwick

Why do CNNs work?

• There are three major reasons why CNN’s work better than
fully connected MLPs

– Local weight connectivity

• In contrast to a fully connected neural network like a multilayer perceptron, a
filter in a CNN operates over an image at the local level

– Shared weights

• No separate weights for each pixel

– Hierarchical representations

91

Data Mining University of Warwick 92

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

Only connect to 9
input, not fully
connected

Less parameters!

C
N

N

M
LP

2:

3:

…

7:

8:

9:

…

13:

14:

15:

4:

36:

1

0

0

0

0

1

0

0

0

0

1

0

Local
Connectivity…

2:

3:

…
7:

8:

9:

…

13:

14:

15:

4:

36:

1

0

0

0

0

1

0

0

0

0

1

0

Global
Connectivity…

1: 1:

Data Mining University of Warwick 93

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

Filter 1

1:

2:

3:

…

7:

8:

9:
…

33:

34:

35:

4:

10:

36:

1

0

0

0

0

1

0

0

1

0

1

0

Shared weights

6 x 6 image

Even less parameters!

C
N

N

M
LP

Each output has
its own weights
for each input

1 -1 -1

-1 1 -1

-1 -1 1

2:

3:

…

7:

8:

9:

…

13:

14:

15:

4:

36:

1

0

0

0

0

1

0

0

0

0

1

0

…

1:

Data Mining University of Warwick

Deep Learning: Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable

Classifier

Low-Level

Feature

Mid-Level

Feature

High-Level

Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

94

Data Mining University of Warwick

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

[ConvNetJS demo: training on CIFAR-10]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

95

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Data Mining University of Warwick

RISK MINIMIZATION AND GENERALIZATION

96

Data Mining University of Warwick

Risk Minimization in Neural Networks

• Structural Risk

– Empirical Error Minimization via Loss minimization

– Regularization

97

Data Mining University of Warwick

Important Concepts
• Differences from fully connected nets

– 3D volume of neurons
– Local connectivity
– Shared weights

• Hyper-parameter
– Number of filters
– Filter shape (receptive field)
– Pooling type and shape
– Regularization

• Dropout
• Early Stopping
• Data Augmentation
• Early Stopping
• Norm constraints
• L1/L2 regularization

– Use performance over a validation set
to pick hyperparameters

98

Data Mining University of Warwick

Regularization Mechanisms

• L2 penalty to weights

– Weight_decay parameter

• sgd = torch.optim.SGD([w_torch], lr=lr, weight_decay=0.9)

• Handling vanishing (or exploding) gradients

– Pre-training (old!)

– Layerwise training

– Drop-out

– Batch Normalization

– Normalization free architectures with weight and gradient clipping

99

nn.Dropout(0.5)

nn.BatchNorm2d(6)

Data Mining University of Warwick

Understanding Drop-out in training

• “Dropout: A Simple Way to Prevent Neural Networks from Overfitting” by Srivastava
et al., 2014.
– Randomly drop units (along with their connections) from the neural network during training

– Average weights across all “thinned” networks

– Replaces explicit regularization and produces faster learning

100

Data Mining University of Warwick

Effect of Dropout

101

Data Mining University of Warwick

Does drop out help with overfitting and underfitting?

102

Data Mining University of Warwick

Dropout in testing: MCDropout

• Quantifying uncertainty in
neural network predictions

– Use drop-out at test time and
average the results (and compute
error bounds)

103

Consider a model with L layers with the
weights of each obtained through a drop-
out in T trials

Gal, Yarin, and Zoubin Ghahramani. “Dropout as a Bayesian Approximation: Representing
Model Uncertainty in Deep Learning.” arXiv, October 4, 2016.
https://doi.org/10.48550/arXiv.1506.02142.

https://doi.org/10.48550/arXiv.1506.02142

Data Mining University of Warwick

Understanding Batch-Normalization
• Given a batch of N examples, each dimension

of each example is normalized to zero mean
and unit variance

• Minimizes “covariate shift”
– a change in the distribution of a function’s

domain
– Input changes and now the function cannot

deal with it
– Layer to layer changes

• Accelerates learning by preventing learning
stalls

• Important Note: Keep batch norm parameter
learning active only in training

104

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167v3, 2015.

https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html

https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html

Data Mining University of Warwick

Effect of Batch Normalization

105

Data Mining University of Warwick

Batch Normalization Coding

• See:
https://github.com/foxtrotmike/CS909/blob/master/xornet_ba
tch_normalization.ipynb

• Compare the distributions of data before and after batch normalization:
Better range of data after batch normalization

– Both positive and negative values in outputs

106

https://github.com/foxtrotmike/CS909/blob/master/xornet_batch_normalization.ipynb
https://github.com/foxtrotmike/CS909/blob/master/xornet_batch_normalization.ipynb

Data Mining University of Warwick

What can you do with just training batch norm parameters?

107

Data Mining University of Warwick

What can you do without batch normalization?

• Batch normalization requires a sufficient
large batch size to allow effective
estimation of mean and variance of each
batch which can be a problem for large
input data or low memory machines

108

Data Mining University of Warwick

Data Augmentation

109

Shorten, Connor, and Taghi M. Khoshgoftaar. “A Survey on Image Data Augmentation for Deep
Learning.” Journal of Big Data 6, no. 1 (July 6, 2019): 60. https://doi.org/10.1186/s40537-019-0197-
0.

https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0

Data Mining University of Warwick

Data Augmentation

110

Libraries

https://pytorch.org/vision/stable/transforms.html
https://albumentations.ai/
https://kornia.readthedocs.io/en/latest/augmentation.html

Zhang, Hongyi, Moustapha Cisse, Yann N. Dauphin, and David
Lopez-Paz. “Mixup: Beyond Empirical Risk Minimization.” arXiv,
April 27, 2018. https://doi.org/10.48550/arXiv.1710.09412.

MixUp

https://albumentations.ai/
https://albumentations.ai/
https://kornia.readthedocs.io/en/latest/augmentation.html
https://doi.org/10.48550/arXiv.1710.09412

Data Mining University of Warwick

What is my model doing? What is my model learning?

• Interpretability
– Interpret why a certain model is producing a

certain output for a given input
– “What is the model doing?”

• Explainable
– Explaining the “behavior” of the model or “What

is the model learnin?”

• Model Agnostic Methods
• Permutation Feature Invariance
• LIME Analysis
• SHAP Analysis

• For CNNs
– Pixel Attribution (Saliency Maps)

• Score-CAM
• Grad-CAM

– Testing with Concept Activation Vectors (TCAV)
– DeepSHAP

111

Great Resource on interpretable machine learning:
https://christophm.github.io/interpretable-ml-book/

https://github.com/marcoancona/DeepExplain

https://christophm.github.io/interpretable-ml-book/
https://github.com/marcoancona/DeepExplain

Data Mining University of Warwick

Famous CNN

• LeNet (Le Cunn 1990, 1998)

• AlexNet

• VGG19

• Inception

• Xception

• EfficientNet

112

Data Mining University of Warwick

Transfer Learning and Fine Tuning

• Use a pretrained network for one
task

• Keep the convolutional layers fixed
(frozen)

• Freezing layers
– for param in vgg.features.parameters():

param.requires_grad = False

• Transfer Learning: Train the last
layers (fully connected) for your
task and/or add more layers as
needed

• Fine tuning: Modify the weights of
a few convolutional layers too

113

https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6#

Conventional ML

Transfer Learning

https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6
https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6

Data Mining University of Warwick 114

𝐼𝑛𝑝𝑢𝑡 𝐹𝑖𝑙𝑡𝑒𝑟𝑠

𝑂𝑢𝑡𝑝𝑢𝑡 𝑇𝑎𝑟𝑔𝑒𝑡

𝐿𝑜𝑠𝑠

−𝑦 𝑡

𝑈𝑝𝑑𝑎𝑡𝑒

Detector / Automated Feature Extractor Classifier

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝
𝑃𝑜𝑜𝑙𝑒𝑑

𝐹𝑙𝑎𝑡𝑡𝑒𝑛

∗

∗

∗

𝐹𝑖𝑙𝑡𝑒𝑟𝑠

∗

𝑃𝑜𝑜𝑙𝑒𝑑

𝐹𝑟𝑜𝑧𝑒𝑛

We can choose which layers to freeze depending upon the application and the level of similarity between tasks

Data Mining University of Warwick

Advanced: Adapters

• Generalize the concept of transfer learning

115

Rebuffi, Sylvestre-Alvise, Hakan Bilen, and Andrea Vedaldi. “Learning Multiple Visual Domains with Residual Adapters.” arXiv, November 27, 2017.
https://doi.org/10.48550/arXiv.1705.08045.

https://doi.org/10.48550/arXiv.1705.08045

Data Mining University of Warwick

Predicting Hurricane Intensities

• Deep-PHURIE

116

https://link.springer.com/article/10.1007/s00521-019-04410-7

0

2

4

6

8

10

12

14

16

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Mean

PHURIE vs Deep-PHURIE Comparisions

PHURIE Deep-PHURIE
R

M
SE

https://link.springer.com/article/10.1007/s00521-019-04410-7

Data Mining University of Warwick

Deep-PHURIE Robustness Analysis

117

Activation Maps for Deep PHURIE

Data Mining University of Warwick

Types of Neural Networks

• “Fully Connected”/Dense Feed Forward Backpropagation multi-
layer perceptrons

• Convolutional neural networks

• Residual Neural networks

• Recurrent neural networks

• Auto-encoders

• Adversarial Networks

• Transformers

• Graph Neural Networks

118

Data Mining University of Warwick 119

Data Mining University of Warwick 120

Data Mining University of Warwick

NETWORKS WITH SKIP CONNECTIONS

121

Data Mining University of Warwick

Spectrum of Depth

122

Data Mining University of Warwick

Increasing Depth (10-100 Layers)

• What if we keep on stacking layers?

– 56-layer net has higher training error and test error than 20-layer net

123

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for
Image Recognition”. CVPR 2016

Data Mining University of Warwick

Simply Stacking Layers?

• “Overly deep” plain nets have higher training error

• A general phenomenon, observed in many datasets

• Reasons

– Optimization failure

124

Data Mining University of Warwick

Residual Learning: skip connections

125

H(x) is any desired mapping
Hope the 2 weight layers fit H(x)

Plain Network

H(x) is any desired mapping
Hope the 2 weight layers fit F(x)

The network learns fluctuations F(x)=H(x)-x
Easier!

Residual Network

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Data Mining University of Warwick

ResNet Models

• No Dropout

• With Batch
Normalization

• Use Data
Augmentation

126

Data Mining University of Warwick

A residual/skip block in code

127

class ResidualBlock(nn.Module):

 def __init__(self, in_channels, out_channels, stride=1, downsample=None):

 super(ResidualBlock, self).__init__()

 self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)

 self.bn1 = nn.BatchNorm2d(out_channels)

 self.relu = nn.ReLU(inplace=True)

 self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)

 self.bn2 = nn.BatchNorm2d(out_channels)

 self.downsample = downsample

 def forward(self, x):

 residual = x

 out = self.conv1(x)

 out = self.bn1(out)

 out = self.relu(out)

 out = self.conv2(out)

 out = self.bn2(out)

 # downsample only if dimensions of x and F(x) don’t match

 if self.downsample:

 residual = self.downsample(x)

 out += residual

 out = self.relu(out)

 return out

Strongly recommended: How to use a minimalistic residual network for MNIST Classification
https://github.com/foxtrotmike/CS909/blob/master/resnet_mnist.ipynb

https://github.com/foxtrotmike/CS909/blob/master/resnet_mnist.ipynb

Data Mining University of Warwick

CIFAR-10 Experiments

• Deep ResNets can be trained without difficulties

• Deeper ResNets have lower training error, and also lower test error

128

Data Mining University of Warwick 129

Data Mining University of Warwick 130

Data Mining University of Warwick

ResNet Results

• 1st places in all five main tracks
• ImageNet Classification: “Ultra-deep” 152-layer nets
• ImageNet Detection: 16% better than 2nd
• ImageNet Localization: 27% better than 2nd
• COCO Detection: 11% better than 2nd
• COCO Segmentation: 12% better than 2nd

• Can also concatenate outputs rather than
sum

– ResNeXT

131

Data Mining University of Warwick

Reasons for adding skip connections

• Making gradients flow more easily

– If you work out the weight update equation for the neural
network with skip connections, it will have fewer multiplicative
terms of gradients thus reducing the chances of gradient based
problems

• Making information flow more easily
– Directly Preserving information learned in earlier layers

• Have a regularization effect

132

∆𝑣𝑖𝑗 = 𝛼𝑥𝑖𝑓′ 𝒗𝒋
𝑻𝒙 ෍

𝑘=1

𝑚

𝑤𝑗𝑘 𝑡𝑘 − 𝑓 ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑓 𝒗𝒋
𝑻𝒙 𝑓′ ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑓 𝒗𝒋
𝑻𝒙

V W Loss

𝑡

V W Loss

𝑡

𝑦𝑥

+
𝑦

Oyedotun, Oyebade K., Kassem Al Ismaeil, and Djamila Aouada. “Training Very Deep Neural Networks: Rethinking the Role of Skip Connections.”
Neurocomputing 441 (June 21, 2021): 105–17. https://doi.org/10.1016/j.neucom.2021.02.004.

https://doi.org/10.1016/j.neucom.2021.02.004

Data Mining University of Warwick

U-Net for Segmentation

133

Data Mining University of Warwick

YOLO

• Convolution

• Residual Architecture

• Reversible function to allow preservation of relevant
information

• Programmable gradient information

134

Wang, Chien-Yao, I.-Hau Yeh, and Hong-Yuan Mark Liao. “YOLOv9: Learning What You Want
to Learn Using Programmable Gradient Information.” arXiv, February 21, 2024.
https://doi.org/10.48550/arXiv.2402.13616.

https://doi.org/10.48550/arXiv.2402.13616

Data Mining University of Warwick

Residual Networks

• Required Reading
• Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for

Image Recognition”. CVPR 2016.

• Many third-party implementations
– list in https://github.com/KaimingHe/deep-residual-networks

– Torch ResNet:
https://github.com/pytorch/examples/tree/master/imagenet

– Transfer Learning with ResNet:
https://www.pluralsight.com/guides/introduction-to-resnet

135

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

https://github.com/KaimingHe/deep-residual-networks
https://github.com/pytorch/examples/tree/master/imagenet
https://www.pluralsight.com/guides/introduction-to-resnet

Data Mining University of Warwick

TRANSFORMERS

136

Data Mining University of Warwick

Transformers
• Very useful and popular architecture for vision tasks though originally built for natural language processing
• Use “attention mechanism” to integrate information from different components of an input in a weighted

manner to produce an output representation for the input that can be passed to predictor to generate
predictions

137

https://twitter.com/rasbt/status/1634564282535878661/photo/1

Figure from the Generative Pre-trained Transformer (GPT) paper
Radford, Alec, et al (OpenAI). “Improving Language Understanding by Generative Pre-Training,” 2018.

https://twitter.com/rasbt/status/1634564282535878661/photo/1

Data Mining University of Warwick

Background
• Transformations: 𝑇 𝑥; 𝜃

– Explicitly transform a point to a different feature space

• A kernel 𝑘 𝒂, 𝒃 is a generalized dot-product or a way of
quantifying the degree of similarity between two examples or
objects

– If we can change the definition of how similar (or distant) two things
are (by switching to a different kernel), this results in a folding of the
feature space which is the same effect as we would achieve from an
explicit transformation of the feature space

138

Kernel Transform (for 2D Input)

Linear: 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃 𝜙 𝒖 = 𝒖 = 𝑢 1 𝑢 2 𝑻

Polynomial degree 2: 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃
2

 (Homogeneous) 𝜙 𝒖 = 𝑢 1 2
𝑢 2 2

2𝑢 1 𝑢 2 𝑇

Polynomial degree 2: 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃 + 1
2

𝜙 𝒖 = 1 2𝑢 1 2𝑢 2 𝑢 1 2
𝑢 2 2

2𝑢 1 𝑢 2
𝑇

RBF Kernel: 𝑘 𝒂, 𝒃 = exp(−𝛾 𝒂 − 𝒃 2) Infinite dimensional (depending upon hyperpameter 𝛾 > 0
See: https://en.wikipedia.org/wiki/Radial_basis_function_kernel

For Review see notes on Kernels in SVMs

𝑥𝑞

Input After Applying transformation

𝑥1
𝑥2

𝑥3

𝑥𝑚

𝑇(𝑥𝑞) 𝑇(𝑥1)

𝑇(𝑥2)
𝑇(𝑥3)

𝑇(𝑥𝑚)

https://en.wikipedia.org/wiki/Radial_basis_function_kernel

Data Mining University of Warwick 139

𝐿𝑜𝑠𝑠
𝑈𝑝𝑑𝑎𝑡𝑒

𝐼𝑛𝑝𝑢𝑡
𝐹𝑖𝑙𝑡𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 𝑇𝑎𝑟𝑔𝑒𝑡

−𝑦 𝑡

Feature Detection or Representation Building Predictor

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝 𝑃𝑜𝑜𝑙𝑒𝑑 𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑

∗

𝑊𝑒𝑖𝑔ℎ𝑡
𝑈𝑝𝑑𝑎𝑡𝑒

Build Patch
“Embedding”

Representation

𝑆𝑥 = 𝒙𝒊 ∈ 𝑅𝑑|𝑖 = 1 … 𝑛

Transformer
Encoding via

Attention Blocks
Predictor

Optimus Prime

Bumblebee

Jazz

⋮
Ironhide

Ratchet

𝒙𝒊 ≡ 𝜙 𝒇𝒊, 𝒕𝒊
Feature Embedding: What is it?
Positional Embedding: Where is it?

Output Target

Optimus Prime

Bumblebee

Jazz

⋮
Ironhide

Ratchet

𝐿𝑜𝑠𝑠

−

Convolutional
Neural Network

(Vision) Transformers

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al. “An Image Is Worth 16x16
Words: Transformers for Image Recognition at Scale.” arXiv, June 3, 2021. https://doi.org/10.48550/arXiv.2010.11929.

https://doi.org/10.48550/arXiv.2010.11929

Data Mining University of Warwick 140

𝑊𝑒𝑖𝑔ℎ𝑡
𝑈𝑝𝑑𝑎𝑡𝑒

Build Patch
“Embedding”

Representation

𝑆𝑥 = 𝒙𝒊 ∈ 𝑅𝑑|𝑖 = 1 … 𝑛

Transformer
Encoding via

Attention Blocks
Predictor

Optimus

Bumblebee

Jazz

⋮
Ironhide

Ratchet

𝒙𝒊 ≡ 𝜙 𝒇𝒊, 𝒕𝒊
Feature Embedding: What is it?
Positional Embedding: Where is it?

Output Target

Optimus

Bumblebee

Jazz

⋮
Ironhide

Ratchet

𝐿𝑜𝑠𝑠

−

(Vision) Transformers (for classification)

𝑊𝑒𝑖𝑔ℎ𝑡
𝑈𝑝𝑑𝑎𝑡𝑒

Build Token/Word
“Embedding”

Representation

𝑆𝑥 = 𝒙𝒊 ∈ 𝑅𝑑|𝑖 = 1 … 𝑛

Transformer
Encoding via

Attention Blocks
Predictor

Optimus

Bumblebee

Jazz

⋮
Ironhide

Ratchet

𝒙𝒊 ≡ 𝜙 𝒇𝒊, 𝒕𝒊
Feature Embedding: What is it?
Positional Embedding: Where is it?

Output Target

Optimus

Bumblebee

Jazz

⋮
Ironhide

Ratchet

𝐿𝑜𝑠𝑠

−

(NLP) Transformers (for next word prediction)

A transformer that can transform into
a yellow car is called ____________.

Building an integrated
representation of how
components form the overall
object

Simplest: 𝜙 𝒇𝒊, 𝒕𝒊 = 𝒇𝒊 + 𝒕𝒊

1 2 ⋯

𝑛 tokens/patches

Data Mining University of Warwick

What is attention and why do you need it?

141

We are going to have a no gobbledygook introduction to attention (using the paper below)!

Tsai, Yao-Hung Hubert, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhutdinov. “Transformer
Dissection: A Unified Understanding of Transformer’s Attention via the Lens of Kernel.” ArXiv:1908.11775 [Cs, Stat],
November 11, 2019. http://arxiv.org/abs/1908.11775.

http://arxiv.org/abs/1908.11775

Data Mining University of Warwick

General Attention Building Blocks

142

Input:
A “query” token 𝑥𝑞 ∈ 𝑅𝑑𝑞 representation of a component (patch or token) which will be transformed. In turn, all tokens will take the role of the query token in classical attention.

A set of “key” tokens 𝑆𝑥𝑘
= {𝑥1, 𝑥2, … , 𝑥𝑚}. Can come from a different source (e.g., as in cross-attention).

Output:
𝑥𝑞

′ ∈ 𝑅𝑑′
 Transformed representation of 𝑥𝑞 which is based on the transformed representations of other tokens and the degree of association of 𝑥𝑞 to those other tokens

Attention Parameters
• A “value” or transformation function 𝑣 𝑥 : 𝑅𝑑 → 𝑅𝑑′

 that produces a vector for a given token (For simplicity, assume, 𝑑 = 𝑑′)

• A “Masking” function 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
 which gives a subset of tokens from 𝑆𝑥𝑘

to which a given query can be compared, e.g., text upto a certain point. For simplicity, assume, for all 𝑥𝑞, 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
= 𝑆𝑥𝑘

)

• A “kernel” function k(𝑥𝑖 , 𝑥𝑗) that gives us the association between two tokens. Used to determine the attention scores that tell us how associated are 𝑥𝑞 and 𝑥𝑘 relative to similarity of 𝑥𝑞 to all tokens

• Different formulations for k(𝑥𝑖 , 𝑥𝑗), 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
 and 𝑣 𝑥 give you different flavours of attentions. Learnable parameters denoted by 𝜽.

𝑥𝑞
′ = 𝐴 𝑥𝑞; 𝑀 𝑥𝑞 , 𝑆𝑥𝑘

; 𝜽 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

a 𝑥𝑞 , 𝑥𝑘 ; 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
, 𝜽𝒌 𝑣 𝑥𝑘; 𝜽𝒗 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞 , 𝑥𝑘; 𝜽𝒌

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞 , 𝑥𝑘′; 𝜽𝒌

𝑣 𝑥𝑘; 𝜽𝒗

k

[𝜽𝑘]

k 𝑥𝑞, 𝑥𝑘 ∈ 𝑅≥0
𝑥𝑞 ∈ 𝑅𝑑𝑞

𝑥𝑘 ∈ 𝑅𝑑

Learnable “attention” kernel

k: 𝑅𝑑𝑞 × 𝑅𝑑 → 𝑅≥0

𝑣

[𝜃𝑣]

𝑥 ∈ 𝑅𝑑 𝑣(𝑥) ∈ 𝑅𝑑′

Transformation

𝑣: 𝑅𝑑 → 𝑅𝑑′

Attention Layer
𝑥𝑞 ∈ 𝑅𝑑𝑞 𝑥𝑞

′ ∈ 𝑅𝑑′

𝑆𝑥𝑘
= {𝑥1, 𝑥2, … , 𝑥𝑚}

A: 𝑅𝑑 → 𝑅𝑑′

𝑀 𝑥𝑞 , 𝑆𝑥𝑘

Let simplify and understand transformers
(Masked out)

How similar are 𝑥𝑞 and

𝑥𝑘 relative to similarity of 𝑥𝑞 to

all tokens

Data Mining University of Warwick

• Input:
– A “query” token 𝑥𝑞 ∈ 𝑅𝑑 representation of a component (patch or token)

– A set of “key” tokens 𝑆𝑥𝑘

• Attention Parameters
– A value function 𝑣 𝑥 : 𝑅𝑑 → 𝑅𝑑′

 that produces a vector for a given token (For simplicity,
assume, 𝑑 = 𝑑′ = 𝑑𝑞)

– A “Masking” function 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
 which gives a subset of tokens from 𝑆𝑥𝑘

to which a
given query can be compared (For simplicity, assume, for all 𝑥𝑞, 𝑀 𝑥𝑞 , 𝑆𝑥𝑘

= 𝑆𝑥𝑘
)

– A kernel function k(𝑥𝑖 , 𝑥𝑗) that can give us a degree of similarity between two tokens

– Different formulations for k(𝑥𝑖 , 𝑥𝑗), 𝑀 𝑥𝑞, 𝑆𝑥𝑘
 and 𝑣 𝑥 give you different flavours of

attentions but once chosen they remain the same for a given attention block

143

𝑥𝑞

Legend:
All circles are Points in 𝑆𝑥𝑘

Filled circles are in 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
 and will be used in the layer

Note that points in 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
 will change depending upon 𝑥𝑞

Thickness of solid lines indicates attention scores 𝑎𝑞𝑘 ∈ [0,1]

which is a obtained by dividing k 𝑥𝑞 , 𝑥𝑘 by the sum of all kernel

values involving 𝑥𝑞.

Input and defining
attention scores

After transformation/value
function v(x)

𝑥1
𝑥2

𝑥3

𝑥𝑚

k(𝑥𝑞 , 𝑥𝑞)

k(𝑥𝑞 , 𝑥1)

k(𝑥𝑞 , 𝑥2)

k(𝑥𝑞 , 𝑥3)

k(𝑥𝑞 , 𝑥𝑚)

𝑣(𝑥𝑞) 𝑣(𝑥1)

𝑣(𝑥2)
𝑣(𝑥3)

𝑣(𝑥𝑚)

𝑣(𝑥𝑞) 𝑣(𝑥1)

𝑣(𝑥2)
𝑣(𝑥3)

𝑣(𝑥𝑚)

𝐴 𝑥𝑞; 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
= ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

𝑎𝑞𝑘𝑣(𝑥𝑘)

𝑎𝑞𝑘 =
k 𝑥𝑞 , 𝑥𝑘

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞 , 𝑥𝑘′

Output of Attention

𝑥𝑞
′ = 𝐴 𝑥𝑞; 𝑀 𝑥𝑞 , 𝑆𝑥𝑘

; 𝜽

= ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

a 𝑥𝑞 , 𝑥𝑘; 𝜽𝒂 𝑣 𝑥𝑘; 𝜽𝒗

= ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞 , 𝑥𝑘; 𝜽𝒌

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞 , 𝑥𝑘′; 𝜽𝒌

𝑣 𝑥𝑘; 𝜽𝒗

Note change in space (blue
to red dotted arrows and

shifting of the points)

• Output:
– A new representation for the query token (patch)

The new representation of the token (indicated by star) is based on the
“pulls” (attention values 𝑎𝑞𝑘) of different points on the query token or

the weighted combination of all transformed points.
This process can be applied for all tokens in the input one by one so if
there are 𝑛 tokens in the input, there would be 𝑛 tokens in the output

(with transformed representation).

attention values

Data Mining University of Warwick

Non-learnable attention

• Note that if we pick a fixed k 𝑥𝑞 , 𝑥𝑘 and 𝑣 𝑥𝑘 , such as:

▪ k 𝑥𝑞 , 𝑥𝑘; 𝜽𝒌 = 𝒆𝒙𝒑 −𝜽𝟐 𝒙𝒒 − 𝒙𝒌
𝟐

▪ 𝑣 𝒙𝒌; 𝜽𝒗 = 𝒙𝒌

▪ This leads to the following expression which expresses 𝑥𝑞

in terms of other points in 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
. This is similar, in

concept, to locally linear embeddings.

144

𝑥𝑞
′ = 𝐴 𝑥𝑞; 𝑀 𝑥𝑞, 𝑆𝑥𝑘

; 𝜽 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

a 𝑥𝑞, 𝑥𝑘; 𝜽𝒂 𝑣 𝑥𝑘; 𝜽𝒗 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞, 𝑥𝑘; 𝜽𝒌

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞, 𝑥𝑘′; 𝜽𝒌

𝑣 𝑥𝑘; 𝜽𝒗

𝑥𝑞
′ = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

𝒆𝒙𝒑 −𝜽𝟐 𝒙𝒒 − 𝒙𝒌
𝟐

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

𝒆𝒙𝒑 −𝜽𝟐 𝒙𝒒 − 𝒙𝒌′
𝟐

𝒙𝒌 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(−𝜽𝟐 𝒙𝒒 − 𝒙𝒌
𝟐

) 𝒙𝒌

𝑥𝑞

𝑥1
𝑥2

𝑥3

𝑥𝑚

k(𝑥𝑞 , 𝑥𝑞)

k(𝑥𝑞 , 𝑥1)

k(𝑥𝑞 , 𝑥2)

k(𝑥𝑞 , 𝑥3)

k(𝑥𝑞 , 𝑥𝑚)

Data Mining University of Warwick

Learnable Attention as (asymmetric, non-Mercer) kernel transformations

• We can introduce learnable parameters
– We can learn which input tokens should associate

more with other tokens to produce a representation
that when passed to the predictor should produce
the target output

– For example, “Attention Is All You Need” paper uses
the following functions with three learnable weight
matrices 𝑾𝒒, 𝑾𝒌 and 𝑾𝒗

145

𝑥𝑞
′ = 𝐴 𝑥𝑞; 𝑀 𝑥𝑞, 𝑆𝑥𝑘

; 𝜽 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

a 𝑥𝑞, 𝑥𝑘; 𝜽𝒂 𝑣 𝑥𝑘; 𝜽𝒗 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞, 𝑥𝑘; 𝜽𝒌

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞, 𝑥𝑘′; 𝜽𝒌

𝑣 𝑥𝑘; 𝜽𝒗

k 𝑥𝑞, 𝑥𝑘 = 𝑒𝑥𝑝
1

𝑑
𝑥𝑞𝑾𝒒, 𝑥𝑘𝑾𝒌

𝑣 𝑥𝑘 = 𝑥𝑘𝑾𝒗

𝑥𝑞
′ = 𝐴 𝑥𝑞; 𝑀 𝑥𝑞, 𝑆𝑥𝑘

; 𝜽

𝑥𝑞
′ = 𝐴 𝑥𝑞; 𝑀 𝑥𝑞 , 𝑆𝑥𝑘

=

∑
𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

𝑒𝑥𝑝
1

𝑑
𝑥𝑞𝑾𝒒,𝑥𝑘𝑾𝒌

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

𝑒𝑥𝑝
1

𝑑
𝑥𝑞𝑾𝒒,𝑥𝑘′𝑾𝒌

𝑥𝑘𝑾𝒗 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
1

𝑑
𝑥𝑞𝑾𝒒 𝑥𝑘𝑾𝒌

𝑇 𝑥𝑘𝑾𝒗 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
1

𝑑
𝑞𝐾𝑇 𝑉

Dot Product

k 𝑥𝑞 , 𝑥𝑘 ∈ 𝑅≥0
𝑥𝑞 ∈ 𝑅𝑑𝑞

𝑥𝑘 ∈ 𝑅𝑑

k: 𝑅𝑑𝑞 × 𝑅𝑑 → 𝑅≥0

𝑾𝒒

𝑾𝒌

⊙
𝑄𝐾𝑇𝑒𝑥𝑝

√𝑑 𝑣

[𝑊𝑣]

𝑥 ∈ 𝑅𝑑 𝑣(𝑥) ∈ 𝑅𝑑′

𝑣: 𝑅𝑑 → 𝑅𝑑′

https://en.wikipedia.org/wiki/
Softmax_function

https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function

Data Mining University of Warwick

Output of a single attention layer

146

Build Patch
“Embedding”

Representation

𝑆𝑥 = 𝒙𝒊 ∈ 𝑅𝑑|𝑖 = 1 … 𝑛

Attention Layer

𝒙𝒊 ≡ 𝜙 𝒇𝒊, 𝒕𝒊
Feature Embedding: What is it?
Positional Embedding: Where is it?

A total of n tokens (small grid
squares)

 in output

Note that the representation of each patch (or token) at the output of attention is dependent upon the
representation of all other patches in a end-to-end learnable manner so that when this representation is used for a

prediction task, the loss is minimized

1 2 ⋯

𝑛 tokens Representation of n tokens
(small grid squares)

𝑥𝑞

𝑥1
𝑥2

𝑥3

𝑥𝑚

𝑣(𝑥𝑞) 𝑣(𝑥1)

𝑣(𝑥2)
𝑣(𝑥3)

𝑣(𝑥𝑚)

“Learnable”
Feature Transformation

via attention

(shown for a single token as a
scatter plot but this is applied to

each point in the input)

Data Mining University of Warwick

Attention gives transformations

• Another way of looking at an attention operation

• But a classic neural network layer also “learns” to “transform”
𝐹 𝑥; 𝜃 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝜃𝑑′×𝑑𝑥𝑑×1)

• Where is the extra information coming from?
– From comparing against all tokens and using a supervisory signal to learn the

transform
– Weight sharing across all patches is still there like in a convolutional neural

network

147

𝐴 𝑥𝑞; 𝑀 𝑥𝑞, 𝑆𝑥𝑘
= ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞, 𝑥𝑘

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞, 𝑥𝑘

𝑣 𝑥𝑘 = ෍

𝑥𝑘∈𝑆𝑥𝑘

𝑎(𝑥𝑞, 𝑥𝑘; 𝑊) 𝑣 𝑥𝑘; 𝑊′

Learnable “attention” values

Learnable data transformation

Data Mining University of Warwick

Multi-headed Attention

148

d-dimensional Patch
“Embedding”

Representation of n
tokens

Attention Head 1

Attention Head 2

Attention Head M
C

o
n

cate
n

ate

W
e

igh
t Laye

r

A total of n tokens (small
grid squares) in output

𝑀
×

𝑑
′

 d
im

en
si

o
n

al
 r

ep
re

se
n

ta
ti

o
n

 o
f

ea
ch

 t
o

ke
n

A total of n tokens (small grid
squares) in output

A total of n tokens (small
grid squares) in output

A total of n tokens (small
grid squares) in output

Data Mining University of Warwick

What happens at the end of the Training phase?

• We learn

– [For NLP] The representation or
embedding of different tokens only in
reference to representations of other
tokens

– The association between different
tokens

– How to transform different tokens

149

https://github.com/jessevig/bertviz

https://github.com/jessevig/bertviz

Data Mining University of Warwick

Transformers Key Components

• Multiple Multi-headed Attention
Blocks

• Layer Normalization
– standardization across features of the

same input

• Skip Connections
• Various types of positional

encodings
• “Class” tokens

– Add global features to each example to
enable global sharing of information
across examples

• Masking strategies
– Needed for training in sentence

completion or related problems where
the next work cannot be used for
generating the output

• Computational Complexity
– As we compare each token against

every other, transformers can be quite
complex

– Performer architectures
• Uses kernel approximation to reduce

complexity

150

My PyTorch tutorial: https://github.com/foxtrotmike/CS909/blob/master/mnist_transformer.ipynb
Another Tutorial: https://medium.com/mlearning-ai/vision-transformers-from-scratch-pytorch-a-step-by-step-guide-96c3313c2e0c
Figure from : Bazi, Yakoub, Laila Bashmal, Mohamad M. Al Rahhal, Reham Al Dayil, and Naif Al Ajlan. “Vision Transformers for Remote
Sensing Image Classification.” Remote Sensing 13, no. 3 (January 2021): 516. https://doi.org/10.3390/rs13030516.
Krzysztof, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, et al. “Rethinking Attention with
Performers.” arXiv, November 19, 2022. https://doi.org/10.48550/arXiv.2009.14794
Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al. “An
Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale.” arXiv, June 3, 2021.
https://doi.org/10.48550/arXiv.2010.11929.

https://github.com/foxtrotmike/CS909/blob/master/mnist_transformer.ipynb
https://medium.com/mlearning-ai/vision-transformers-from-scratch-pytorch-a-step-by-step-guide-96c3313c2e0c
https://doi.org/10.3390/rs13030516
https://doi.org/10.48550/arXiv.2009.14794
https://doi.org/10.48550/arXiv.2010.11929

Data Mining University of Warwick

How is an attention layer used in Chat-GPT?
• GPTs are essentially sophisticated auto-complete

mechanisms
– Predict next word

• Training Principle
• Taken each “document” as a set of tokens: 𝑆𝑥𝑘

=
{𝑥1, 𝑥2, … , 𝑥𝑚}

1. Take a single next-word prediction task from the
document (see bold text on the right)

a. For each token in the input, apply the attention layers
to a single token
i. Take a single “query” token 𝑥𝑞 in the input for which we want to

generate a representation
ii. For the given “example” input, mask the next token, i.e., set

𝑀 𝑥𝑞 , 𝑆𝑥𝑘
 to be a subset of only those tokens that are available

as inputs

iii. Pass 𝑥𝑞 and 𝑀 𝑥𝑞, 𝑆𝑥𝑘
 to the attention layer to generate 𝑥𝑞

′

2. Pass the updated representation through other
downstream layers until you generate the output
probability of the target token

3. Maximize the probability of the target token while
minimizing the probability of all other (non-target)
tokens

151

Input Next Token

How Does

How does Chat

How does Chat GPT

How does Chat GPT Work

… all setences in the internet corpus …

Attention Layer
𝑥𝑞 ∈ 𝑅𝑑𝑞 𝑥𝑞

′ ∈ 𝑅𝑑′

𝑆𝑥𝑘
= {𝑥1, 𝑥2, … , 𝑥𝑚}

A: 𝑅𝑑 → 𝑅𝑑′

𝑀 𝑥𝑞 , 𝑆𝑥𝑘

How Does Chat GPT Work
(Masked out)

GPT

https://github.com/karpathy/nanoGPT

GPT

https://github.com/karpathy/nanoGPT

Data Mining University of Warwick

What do transformers see?

152

Data Mining University of Warwick

Are convolutions and attention really necessary?

• MLP Mixer Paper: “In this paper we
show that while convolutions and
attention are both sufficient for
good performance, neither of them
are necessary. ”

• gMLP: “self-attention is not critical
for Vision Transformers”

• Attention with Convolution may be
more useful ☺

153

Tolstikhin, Ilya, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, et al. “MLP-Mixer: An All-MLP
Architecture for Vision.” arXiv, June 11, 2021. https://doi.org/10.48550/arXiv.2105.01601.
Liu, Hanxiao, Zihang Dai, David R. So, and Quoc V. Le. “Pay Attention to MLPs.” arXiv, June 1, 2021. https://doi.org/10.48550/arXiv.2105.08050.

“Similar to fully-connected networks, the ViT architecture (and transformer
architecture in general) lacks the inductive bias for spatial
invariance/equivariance that convolutional networks have. Consequently,
ViTs require more data for pretraining to acquire useful "priors" from the
training data.” (S. Raschka)

https://twitter.com/rasbt/status/1636371712467177472

https://doi.org/10.48550/arXiv.2105.01601
https://doi.org/10.48550/arXiv.2105.08050
https://twitter.com/rasbt/status/1636371712467177472

Data Mining University of Warwick

Using Transformers

• Hugging Face Transformers Library

– Examples: https://huggingface.co/docs/transformers/model_doc/vit

– Tutorial notebook on finetuning:
https://github.com/NielsRogge/Transformers-
Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Tr
ansformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb

154

https://huggingface.co/docs/transformers/model_doc/vit
https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb
https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb
https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb

Data Mining University of Warwick

Another way of thinking about GPTs

Modeling XOR as a “next token” problem or FSM or turing machine

155

Input Next “Target”
Token

Target Probability

P(0) P(1)

0,0 0 1 0

0,1 1 0 1

1,0 1 0 1

1,1 0 1 0

0 10

1

0

https://github.com/foxtrotmike/CS909/blob/master/gpt_finite_state.ipynb

1

NN

P(0)

P(1)

00

https://github.com/foxtrotmike/CS909/blob/master/gpt_finite_state.ipynb

Data Mining University of Warwick

GRAPH NEURAL NETWORKS

157

Data Mining University of Warwick

Graph Neural Networks

• The Need
– Example

• Classifying chemical compounds

– It is difficult to model arbitrary
input data structures with
SVMs, MLPs, CNNs and
Transformers
• Images and text have “Linear

Structure”
– Text is 1-dimensional

– Image is 2-dimensional

– But each can be mapped onto a grid

158

Cancer Drugs

Other Drugs

Data Mining University of Warwick

Graphs

• Graph Modelling

– Very flexible data structure

• Components of a graph
– Vertices/Node Set: 𝑉 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}

• Each element of the set can have a vector
descriptor of its properties

– Edge Set: 𝐸 = 𝑒1,2, 𝑒1,3, 𝑒3,2, 𝑒3,4, 𝑒4,3 ⊆ 𝑉 × 𝑉

• Each element of the set can have a vector
descriptor of its properties

159

3

7 1

5

8

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Adjacency_matrix

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Adjacency_matrix

Data Mining University of Warwick

Examples of graphs

 This is a graph

160

Data Mining University of Warwick

Graph Neural Networks

• Simple Graph Classification Example

– Node and edge level prediction problems also possible

161

𝑊𝑒𝑖𝑔ℎ𝑡
𝑈𝑝𝑑𝑎𝑡𝑒

Build
“Embedding”

Representation of
each node and edge

Graph Message
Passing Layers

Predictor Cancer Drug

Not Cancer Drug

Output Target

𝐿𝑜𝑠𝑠

−

Cancer Drug

Not Cancer Drug

0
1
0
0
0

𝑥𝑖 =

𝐶
𝐻
𝑂
𝑁
𝑆

=

1
0
0
0
0

Input: Graph consisting of
Node set: what are things (each node has feature representation)
Edge set: how are they connected (each edge can have a feature representation but, in the very least, it tells us what nodes are connected by an edge)

Data Mining University of Warwick

How does a graph neural network layer work?
• Just like any other neural network layer, the goal of a

graph layer is to transform the representation of the
input to a new representation in a learnable/trainable
fashion so that we can optimize the parameters in the
layer to reduce our loss or error function

• Input: A Graph with node and edge level features
• Output: A Graph with (transformed) node and edge

features
• The GNN layer transforms the feature representation

of each node as follows:
– Where am I? Generate context for each input node

• Node pair transform: Transform features of each node
connected to an input node while taking pairwise edge
information into account (using a neural network)

• Aggregation: Aggregate information of neighbors of the node
to provide the local context in the form of a fixed dimensional
feature vector (max, sum, average, etc.)

– What should I become? Transform each node in the context
of its neighbors (using a neural network)

• Each GNN layer thus incorporates information from
one hop away of each node thus multiple GNN layers
in series can be used to incorporate information from
multiple layers

162

𝜙(𝑙) NN
Transform pairwise

neighbor information

⨁
Aggregation
Mechanism

𝛾(𝑙) NN
Transform in context

𝒙𝑖
(𝑙−1)

𝒆𝑗,𝑖

𝑁 𝑖 =

𝒙𝑗
(𝑙−1)

𝒙𝑖
(𝑙)

∀𝑗 ∈ 𝑁(𝑖)

𝒙𝑖
(𝑙)

= 𝛾(𝑙) 𝒙𝑖
𝑙−1 , ⨁𝑗∈𝑁(𝑖)𝜙(𝑙) 𝒙𝑖

(𝑙−1)
, 𝒙𝑗

𝑙−1 , 𝒆𝑗,𝑖

GNN
Layer 𝑙

𝑖

𝑗

𝑒𝑗,𝑖
𝑖

𝑗

𝑒𝑗,𝑖

𝒙𝑖
(𝑙)

𝒙𝑖
(𝑙−1)

Input feature
representation
of node 𝑖

Output feature
representation
of node 𝑖

Neighbor set
of node 𝑖

Edge features

Neighbor
nodes

https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html

𝑖

𝑗
𝑒𝑗,𝑖

Local context

https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html

Data Mining University of Warwick

Implementing Different Graph Neural Network Layers

163

𝒙𝑖
(𝑙)

= ෍

𝑗∈𝑁(𝑖)

𝜙(𝑙) 𝒙𝑖
(𝑙−1)

 ቛ𝒙𝑗
(𝑙−1)

 − 𝒙𝑖
(𝑙−1)

⨁
∑

𝒙𝑖
(𝑙−1)

𝑁(𝑖)

𝒙𝑗
(𝑙−1) 𝒙𝑖

(𝑙)
∀𝑗 ∈ 𝑁(𝑖)

𝜙(𝑙)

−

https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html

𝜙(𝑙) NN ⨁
Agg

𝛾(𝑙) NN𝒙𝑖
(𝑙−1)

𝒆𝑗,𝑖

𝑁(𝑖)

𝒙𝑗
(𝑙−1)

𝒙𝑖
(𝑙)

∀𝑗 ∈ 𝑁(𝑖)

𝒙𝑖
(𝑙)

= 𝛾(𝑙) 𝒙𝑖
𝑙−1 , ⨁𝑗∈𝑁(𝑖)𝜙(𝑙) 𝒙𝑖

(𝑙−1)
, 𝒙𝑗

𝑙−1 , 𝒆𝑗,𝑖

GNN
Layer 𝑙

𝑖

𝑗

𝑒𝑗,𝑖

𝑖

𝑗

𝑒𝑗,𝑖

𝒙𝑖
(𝑙)

𝒙𝑖
(𝑙−1)

Input feature
representation
of node 𝑖

Output feature
representation
of node 𝑖

Neighbor set
of node 𝑖

Edge features

Neighbor
nodes

𝒙𝑖
(𝑙)

= ෍

𝑗∈𝑁(𝑖)∪{i}

1

√deg 𝑖 deg(𝑗)
𝑾𝒙𝒋 + 𝒃

𝜙(𝑙) = 𝑊 ∑

𝛾(𝑙) = + 𝒙𝑖
(𝑙−1)

𝒙𝑗
(𝑙−1)

𝒙𝑖
(𝑙)

∀𝑗 ∈ 𝑁(𝑖)

Neighbor set of node 𝑖

Neighbor
nodes

𝛾(𝑙) = 𝑊

G
en

er
al

 G
N

N
 L

ay
er

G
ra

p
h

 C
o

n
vo

lu
ti

o
n

La

ye
r

(G
C

N
C

o
n

v)

Ed
ge

 C
o

n
vo

lu
ti

o
n

La

ye
r

(G
C

N
C

o
n

v)

https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html

Data Mining University of Warwick

Message Passing Based Graph Neural Networks

164

Base
Net

GMPL
2

GMPL
1

GMPL
L

pool

+

pool poolpool

linear linear linear linear

Graph Message
Passing Layer

(GMPL)…

Edge
 Connectivity
& Features

Input Node
 Features

Graph Level Output

Node level
predictive scores

Latent Node
Representations

Conventional Methods
Simple Averaging of

Node predictions

𝒙

𝒆

𝒙(𝑳−𝟏)𝒙(𝟐)𝒙(𝟏)𝒙(𝟎) 𝒙(𝑳)

Skip-connected
Layer-wise

Graph-level Outputs

𝑓𝟎(𝒙) 𝑓𝟏(𝒙) 𝑓𝟐(𝒙) 𝑓𝑳(𝒙)

𝑭𝟎(𝑮) 𝑭𝟏(𝑮) 𝑭𝟐(𝑮) 𝑭𝑳(𝑮)

𝐹(𝐺)

Incorporating extra information

Fayyaz Minhas, Whole Slide Images Are Graphs, 2020. https://www.youtube.com/watch?v=Of1u0i7roS0.

Code: https://tia-toolbox.readthedocs.io/en/latest/_notebooks/jnb/inference-pipelines/slide-graph.html

Readout: Converting multi-level node level feature representation to a graph
level output

Averaging
across all nodes

in a graph

𝐺

https://www.youtube.com/watch?v=Of1u0i7roS0
https://tia-toolbox.readthedocs.io/en/latest/_notebooks/jnb/inference-pipelines/slide-graph.html

Data Mining University of Warwick 165

Data Mining University of Warwick 166
Gland Size

Data Mining University of Warwick 167Lumen Shape Irregularity

Data Mining University of Warwick 168

Data Mining University of Warwick 169

Data Mining University of Warwick

IGUANA

170

Graham, Simon, Fayyaz Minhas, Mohsin Bilal, Mahmoud Ali, Yee Wah Tsang, Mark Eastwood, Noorul Wahab, et al. “Screening of Normal Endoscopic Large Bowel Biopsies with Interpretable
Graph Learning: A Retrospective Study.” Gut, May 12, 2023. https://doi.org/10.1136/gutjnl-2023-329512.
Demo: https://tiademos.dcs.warwick.ac.uk/bokeh_app?demo=iguana

https://doi.org/10.1136/gutjnl-2023-329512
https://tiademos.dcs.warwick.ac.uk/bokeh_app?demo=iguana

Data Mining University of Warwick 171

Data Mining University of Warwick

Are Transformers (secretly) GNNs?

Assume
▪ We have a set of “nodes” 𝑆𝑥𝐾

 and for a given “query” node 𝑥𝑞, we have a

masking set set 𝑀 𝑥𝑞 , 𝑆𝑥𝐾
 (for simplicity assume 𝑀 𝑥𝑞 , 𝑆𝑥𝐾

= 𝑆𝑥𝐾
)

▪ Each node is connected to all other nodes including itself (i.e., neighborhood
𝑁 𝑥𝑞 = 𝑀 𝑥𝑞 , 𝑆𝑥𝐾

) (Fully Connected Graph)

Now consider a specific graph neural network layer in which

▪ 𝛾 𝑘 a, b = b

▪ 𝜙(𝑙) 𝒙𝑖
(𝑙−1)

, 𝒙𝑗
𝑙−1

, 𝒆𝑗,𝑖 = a 𝒙𝑖
(𝑙−1)

, 𝒙𝑗
𝑙−1

; 𝜽𝒂 𝑣 𝒙𝑗
𝑙−1

; 𝜽𝒗

▪ ⨁𝑗∈𝑁(𝑞)(⋅) = ∑
𝒙𝒌∈𝑀 𝒙𝒒,𝑆𝑥𝑘

(⋅)

▪ Then the output of the GNN layer:

▪ 𝒙𝑖
(𝑙)

= 𝛾(𝑙) 𝒙𝑖
𝑙−1

, ⨁𝑗∈𝑁(𝑖)𝜙(𝑙) 𝒙𝑖
(𝑙−1)

, 𝒙𝑗
𝑙−1

, 𝒆𝑗,𝑖

▪ Becomes (with notation 𝒙𝑖
(𝑙−1)

= 𝑥𝑞, 𝒙𝑗
𝑙−1

= 𝑥𝑘 and 𝒙𝑖
(𝑙)

= 𝒙𝑞
′)

▪ 𝒙𝑞
′ = ∑

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

a 𝑥𝑞 , 𝑥𝑘; 𝜽𝒂 𝑣 𝑥𝑘; 𝜽𝒗

▪ Which is an attention layer (assuming position encoding is built into node
features)

▪ An attention layer is a special case of a GNN layer!
▪ Attention scores can be viewed as pairwise weights of edges between nodes

172

𝒙𝑖
(𝑙)

= 𝛾(𝑙) 𝒙𝑖
𝑙−1 , ⨁𝑗∈𝑁(𝑖)𝜙(𝑙) 𝒙𝑖

(𝑙−1)
, 𝒙𝑗

𝑙−1 , 𝒆𝑗,𝑖

𝜙(𝑙) NN
Transform pairwise

neighbor information

⨁
Aggregation
Mechanism

𝛾(𝑙) NN
Transform in context

𝒙𝑖
(𝑙−1)

𝒆𝑗,𝑖

𝑁 𝑖 =

𝒙𝑗
(𝑙−1)

𝒙𝑖
(𝑙)

∀𝑗 ∈ 𝑁(𝑖)

Input features
of node 𝑖 Output

features
of node 𝑖

Neighbor set
of node 𝑖

Edge features

Neighbor
nodes

𝑖

𝑗
𝑒𝑗,𝑖

Local context

෍

Aggregation
Mechanism

𝒙𝑞

𝒆𝑗,𝑖

𝑁(⋅) = 𝑀 𝒙𝒒, 𝑆𝑥𝐾

𝒙𝒌

𝒙𝑞
′

∀𝑘 ∈ 𝑀 𝒙𝒒, 𝑆𝑥𝐾

𝒙𝑞
′ = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

a 𝑥𝑞 , 𝑥𝑘; 𝜽𝒂 𝑣 𝑥𝑘; 𝜽𝒗

Input
features of
query token

Output
features of
query token

Masking set
of token 𝒙𝒒

Edge features

Neighbor
nodes

𝒂 ⋅

𝒗 ⋅

𝐼

⨂

𝑎𝑞,0

𝑎𝑞,𝑞

𝑎𝑞,1
𝑎𝑞,2

𝑎𝑞,𝑚

Data Mining University of Warwick

Reading on Graph Neural Networks

• Xu*, Keyulu, Weihua Hu*, Jure Leskovec, and Stefanie Jegelka. “How Powerful Are Graph Neural
Networks?,” 2023. https://openreview.net/forum?id=ryGs6iA5Km.

• Kanatsoulis, Charilaos I., and Alejandro Ribeiro. “Graph Neural Networks Are More Powerful Than We
Think.” arXiv, October 2, 2022. https://doi.org/10.48550/arXiv.2205.09801.

• Bronstein, Michael M., Joan Bruna, Taco Cohen, and Petar Veličković. “Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges.” arXiv, May 2, 2021.
https://doi.org/10.48550/arXiv.2104.13478.

• http://web.stanford.edu/class/cs224w/

• Libraries
– PyTorch Geometric

– DGL

– Topological Neural Networks

173

https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.48550/arXiv.2205.09801
https://doi.org/10.48550/arXiv.2104.13478
http://web.stanford.edu/class/cs224w/

Data Mining University of Warwick

AUTOENCODERS

174

Data Mining University of Warwick

REO For Auto-Encoders

• Goal
– Get an embedding (usually a compressed encoding) of a data sample such that

the embedding can be used for reconstruction of data.
– Used for dimensionality reduction, feature extraction, compression, visualization

and generative learning

• Representation
– Input: 𝒙 ∈ 𝑅𝒅 Output: Reconstruction ෝ𝒙 = 𝑫(𝑬 𝒙; 𝜽𝑬 ; 𝜽𝑫)

• Encoder 𝑬 𝒙; 𝜽𝑬 : 𝑅𝑑 → 𝑅𝑑𝐸 (Usually 𝑑𝐸 < 𝑑)
• Decode 𝑫 𝒙′; 𝜽𝑬 :𝑅𝑑𝐸 → 𝑅𝑑

• Evaluation:
– Mean Square Error Loss (Other losses such as KL Divergence etc)

• 𝒎𝒊𝒏𝜽𝑫,𝜽𝑬

1

𝑁
∑𝒊 𝒙𝒊 − ෝ𝒙𝒊

𝟐 =
1

𝑁
∑𝒊 𝒙𝒊 − 𝑫(𝑬 𝒙; 𝜽𝑬 ; 𝜽𝑫) 𝟐

• Optimization

175

Data Mining University of Warwick

Unsupervised Learning - Autoencoders

176

AutoEncoder

Data Mining University of Warwick

Autoencoder

NN
Encoder

NN
Decoder

code

Compact
representation of
the input object

reconstruct the
original object

28 X 28 = 784

Usually <784

Unsupervised approach for learning a lower-dimensional feature
representation from unlabelled training data

Q: Why dimensionality reduction?

A: Want features to capture meaningful factors of variation in data

177

Data Mining University of Warwick

How to Train Autoencoders?

𝑥

Input layer

𝑊𝐸

ො𝑥

𝑊𝐷

output layer
hidden layer

(linear)

𝑐

As close as possible

Minimize 𝑥 − ො𝑥 2

Bottleneck later

Output of the hidden layer is the code

encode decode

Train such that features can be used to reconstruct original data
“Autoencoding” – encoding itself
Equivalent to PCA*

178

*Under the assumptions that the data is mean-centered and mean squared error is used as a loss function along with an orthogonality constraint 𝑊𝐸𝑊𝐷 = 𝐼
 .

Data Mining University of Warwick 179

Refresher PCA: Reconstruction
• We know that 𝒛 = 𝑾𝑇𝒙 (assuming

𝒙 is centered) therefore

• The reconstruction error is given by

• Another way of interpreting PCA is
that it finds orthogonal direction
vectors such that after projecting
data onto to them, the
reconstruction error is minimal.

ෝ𝒙 = 𝑾𝑇 −1𝒛
⇒ ෝ𝒙 = 𝑾(𝑑×𝑘)𝒛 ∵ 𝑾𝑾𝑻 = 𝑰

𝐸𝑟𝑒𝑐 = ෍

𝑖=1

𝑁

ෝ𝒙𝒊 − 𝒙𝒊

min
𝑾

෍

𝑖=1

𝑁

ෝ𝒙𝒊 − 𝒙𝒊 𝒔. 𝒕𝒉. 𝑾𝑾𝑻 = 𝑰

𝒙 𝑾𝑇 𝒛 𝑾 ෝ𝒙

𝑃𝐶𝐴
ℝ𝑑 → ℝ𝑘

𝐼𝑃𝐶𝐴
ℝ𝑘 → ℝ𝑑

−

flatten Un-flatten

See Tutorial: https://github.com/foxtrotmike/PCA-
Tutorial/blob/master/pca-lagrange.ipynb

https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb

Data Mining University of Warwick

Reference: Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural
networks." Science 313.5786 (2006): 504-507

Deep Auto-encoder

• Of course, the auto-encoder can be deep

In
p

u
t Layer

Layer

Layer

b
o

ttle

O
u

tp
u

t Layer

Layer

Layer

Layer

Layer

… …

Code

As close as possible

𝑥 ො𝑥

180

Data Mining University of Warwick

7
8

4

7
8

4

7
8

4

1
0

0
0

5
0

0

2
5

0

2

2

2
5

0

5
0

0

1
0

0
0

7
8

4

181

“Latent Space” Representation

Tutorial Implementation: https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb

https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb

Data Mining University of Warwick

Other types of autoencoders

• Vanilla Auto-encoder

• Denoising Auto-encoders

• Variational Auto-encoder (VAE)

• Vector-Quantized Variational Autoencoders (VQ-VAE)

182

Further notes: https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb

https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb

Data Mining University of Warwick

GENERATIVE MACHINE LEARNING

190

Creating noise from data is easy; creating data from noise is generative modeling.*

[*] Song, Yang, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. “Score-Based Generative
Modeling through Stochastic Differential Equations.” arXiv, February 10, 2021. https://doi.org/10.48550/arXiv.2011.13456.

https://doi.org/10.48550/arXiv.2011.13456

Data Mining University of Warwick

Background: Introduction to Sampling

• Empirical distribution Modelling: Making a distribution from
observations (Density Estimation)
– Example:

• Observations: {H,T,H,T,H}
• P(H) = 3/5 = 0.6, P(T) = 2/5 = 0.4
• Shown as probability distribution (normalized histogram)

• Sampling from a distribution
– Assume you are given a probability distribution p(x), then if you “sample”

from it, you will be generating samples x which when observed will give
you p(x)

– Example
• Given: P(H) = 0.6, P(T) = 0.4
• Generated Samples: {H,T,H,T,H,T,H,H,T,H}

191

H,T,H,T,T,H H
T

p(x)

H
T

p(x)

H,T,H,H,T,H,H,H,T,T,H

Data Mining University of Warwick

Background: Generating samples

• Can we generate samples of a target distribution using
samples from a source distribution as input?

192

Generator
𝑥~𝑆(𝑥) 𝑧~𝑇(𝑧)

X = np.random.rand(N) Z = np.random.randn(N)+0.5

𝑥~𝑈(𝑎 = 0, 𝑏 = 1) 𝑧~𝑁(𝜇 = 0.5, 𝜎 = 1)

Data Mining University of Warwick

Background: Generating samples

• We can use inverse transform sampling

– But that requires the knowledge of the formula for both probability
distributions which may not be available for the target distribution

193

https://en.wikipedia.org/wiki/Inverse_transform_sampling

𝑧~𝑁(𝜇 = 0.5, 𝜎 = 1)
X = np.random.rand(N)

𝑥~𝑈(𝑎 = 0, 𝑏 = 1)

Input
Samples

Output
Samples

https://en.wikipedia.org/wiki/Inverse_transform_sampling

Data Mining University of Warwick

A generative look at Machine Learning

194

Lex Fridman. Complete Statistical Theory of Learning (Vladimir Vapnik) | MIT Deep Learning Series, 2020.
https://www.youtube.com/watch?v=Ow25mjFjSmg.

𝑝(𝑦|𝑥)

𝑓(𝑥; 𝜃)

𝑝(𝑥)

Generative Process in Nature Label Assignment

Learning Machine

𝑥𝑖
𝑦𝑖

𝑦

𝑥𝑖

𝑥

𝑦𝑖

Noise

Fundamental aim of a discriminative model
Learn a model of p(y|x) from observations

Fundamental aim of a Generative Model
Learn a model of 𝑝(𝑥) or 𝑝(𝑥|𝑦) from observations to generate

samples from random noise input

Training input

Training input

https://www.youtube.com/watch?v=Ow25mjFjSmg

Data Mining University of Warwick

Generating data with machine learning

• Can we generate examples that
follow the same distribution as a
given set of examples using noise
as input?

• Sampling from the multi-
dimensional distribution of data

• How?
– Density Modelling

• Modelling the Probability of observing
a given point 𝑝(𝑥)

• Once I have an explicit or implicit 𝑝(𝑥),
I can sample from that distribution to
generate an example

195

Data Mining University of Warwick

Generating Data with Autoencoders

196

In
p

u
t Layer

Layer

Layer

b
o

ttle

O
u

tp
u

t Layer

Layer

Layer

Layer

Layer

… …

Code

As close as possible

𝑥 ො𝑥

In
p

u
t Layer

Layer

Layer

b
o

ttle

Layer

…

Code𝑥

𝑊1 𝑊2

O
u

tp
u

t Layer

Layer

Layer

Layer
…

Code ො𝑥

Tutorial Implementation: https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb

0.1
−0.1

0.2
−0.2

https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb

Data Mining University of Warwick

Generative Models

• Can we build a model to approximate a data distribution
from given examples?

Lecture 12 -

Density estimation: a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for pmodel(x)

- Algorithms: Gaussian Mixture Models, Kernel Density Estimation, Variational Autoencoders

- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it

- Algorithms: Vanilla autoencoder, Generative adversarial networks (GANs), Diffusion Models, Normalizing Flows

https://openai.com/blog/generative-models/ 197

Real image (training data) ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Data Mining University of Warwick

A Simple Generative Machine Learning Example

• Nature
– A coin with p(x=H)=0.7 and p(x=T)=0.3

– Generates data

• Given Data
– {H,H,H,T,T,H,T,H,H,T}

• Goal of Generative Learning
– Make a machine learning model that can generate data (heads or tails)

that follows the same distribution as data from the real world or natural
process.

– The difference between the probability distributions of real and generated
samples should be small

199

Noise

{H,H,H,T,T,H,T,H,H,T}

Data Mining University of Warwick

REO for Generative Models
• Goal

– Given a set of real-world examples: 𝑥~𝑝 𝑥 . 𝑝 𝑥 is not explicitly
known.

– Learn parameters 𝜃 of the model 𝑓(𝑧; 𝜃) so that the examples
generated by the model follow the same distribution as the real-
world examples 𝑥~𝑝(𝑥)

• Representation: 𝑥 = 𝑓(𝑧; 𝜃) with 𝑧~𝑁𝑜𝑖𝑠𝑒
– Let’s denote the distribution of examples generated by this model

as 𝑝𝜃(𝑥).
– Note that the model may not have an explicit internal formula for

this distribution.

• Evaluation:
– Differences between the probability distribution of 𝑥 in nature

𝑝(𝑥) and of the generated samples 𝑝𝜃(𝑥) from 𝑓(𝑧; 𝜃)
• That is, if I sample from 𝑝 𝑥 or if I sample from𝑝𝜃(𝑥), the real and

generated samples are similar

• Optimization
– Use gradient descent to optimize for 𝜃

200

𝑧~𝑁(𝟎, 𝑰)

𝑓(𝑧; 𝜃)

Real image (training data) ~ 𝑝 𝑥
𝑝 𝑥 is not given.

Generated samples ~ 𝑝𝜃(𝑥)
𝑝𝜃(𝑥) may be implicit.

Data Mining University of Warwick

Generative Adversarial Networks

• Use “Adversarial Training” to train a generator and
discriminator simultaneously

• Generator: Generate samples from noise

• Discriminator: Detect “fake” or generated samples

201

Data Mining University of Warwick

Adversarial Training in a GAN

• GAN Training the goal is to:
– Train the discriminator to be good at detecting fakes

• Simple classification: Discriminator should produce 1 for real and 0
for generated

▪ min
𝜽𝑫

∑𝑥𝑖∈𝑅 𝑙(𝐷(𝒙𝑖; 𝜽𝑫), 1) + ∑𝑧𝑗~𝑁 𝑙(𝐷(𝐺 𝒛𝑗; 𝜽𝑮 ; 𝜽𝑫), 0)

– Train the generator to be so good that the discriminator
labels generated samples as “Real”
• The generator exploits the discriminator’s ability or knowledge to

distinguish between real and generated samples to its advantage

• The generator is optimized such that the discriminator produces 1
for generated examples

▪ min
𝜽𝑮

∑𝒛𝑗~𝑁 𝑙(𝐷(𝐺 𝒛𝒋; 𝜽𝑮 ; 𝜽𝑫), 1)

▪ OR equivalently, the generator is optimized such that the
discriminator generates errors in classifying generated examples
(note the max below)

▪ max
𝜽𝑮

∑𝒛𝒋~𝑁 𝑙(𝐷(𝐺 𝑧𝑗; 𝜽𝑮 ; 𝜽𝑫), 0)

▪ Can also add additional loss terms for quality/realism etc.

202

𝐷 ⋅; 𝜽𝑫𝐺 ⋅; 𝜽𝑮

Label: 1

Label: 0

𝐿𝑜𝑠𝑠

R
ea

l 𝒙
𝑖

Generated 𝐺 𝒛𝑗; 𝜽𝑮
Random
Number

Generator
Minimization
Updates

𝐷 ⋅; 𝜽𝑫𝐺 ⋅; 𝜽𝑮

Label: 1

𝐿𝑜𝑠𝑠

Generated 𝐺 𝒛𝑗; 𝜽𝑮
Random
Number

Generator

Minimization Updates

Data Mining University of Warwick

GAN Tutorial

203

https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb

https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb

Data Mining University of Warwick

How to go from generating coin flips to images?

• Assume you are given B&W images for training
a GAN to generate more images like that.

• Let’s look at a single pixel location in each
image
– We have a distribution of pixel values across all

images at that location
• We would like our GAN to generate data according to

that distribution at that pixel location

• Naïve idea: Have multiple GANs – one for each pixel
location

– Assumes each pixel is independent of the other

– Computationally intensive

• We can train a single GAN to generate a multi-
dimensional probability distribution by using a multi-
output generator.

204

Data Mining University of Warwick

Performance Assessment of Generative Models

205

Goal Metrics

Measure difference in probability distribution of
generated and real samples

Earth Mover Distances
Maximum Mean Discrepancy
Kernel Inception Distance (KID)
Wasserstein Distance

Diversity: Evaluate whether the model can generate a
wide variety of outputs:

Diversity Score
Mode Score

Coverage: Measure how well the generated samples
cover the variety of the dataset

Coverage Score

Stability and Robustness: Consistency of good results
Adversarial robustness measures

Quality Inception score
Fréchet Inception Distance and KID
Structural Similarity Index Measure
Learned Perceptual Image Patch Similarity (LPIPS)

Task Specific metrics NLP: BLEU, ROUGE
Drug Discovery: Quantitative Structure-Activity
Relationship (QSAR) Metrics
Subjective Assessment

Data Mining University of Warwick

Unconditional vs Conditional Generation

• Unconditional Generative Modelling

– Simple model the probability distribution of the data p(x)

• Example: Generating images without paying any regard to the digit

206

Generative Model
Training

Trained Model

Used
for gives

Random Noise

produces

Data Mining University of Warwick

Unconditional vs Conditional Generation

• Conditional Generative Modelling

– Model the distribution p(x|y) of data x conditioned on a variable y

• Example: Generating images for a given digit

207

Generative Model
Training

Trained Model
Used

for

gives

Random Noise

produces

co
n

d
itio

n
in

g

𝑦 = 1

conditioning

Class Labels

Data Mining University of Warwick

GANs Applications

• GANs have some impressive applications

– Synthetic Image Generation

– Speech Generation

– Image to Image Translation

– Style Transfer

– Deep Fakes

209

Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. https://arxiv.org/abs/1701.00160
https://github.com/eriklindernoren/PyTorch-GAN
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://affinelayer.com/pixsrv/

Raevskiy, Mikhail. “Write Your First Generative Adversarial Network
Model on PyTorch.” Medium, August 31, 2020.
https://medium.com/dev-genius/write-your-first-generative-
adversarial-network-model-on-pytorch-7dc0c7c892c7.

Barebones GAN
https://github.com/foxtrotmike/CS909/blob/mas
ter/simpleGAN.ipynb

https://arxiv.org/abs/1701.00160
https://github.com/eriklindernoren/PyTorch-GAN
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://affinelayer.com/pixsrv/
https://medium.com/dev-genius/write-your-first-generative-adversarial-network-model-on-pytorch-7dc0c7c892c7
https://medium.com/dev-genius/write-your-first-generative-adversarial-network-model-on-pytorch-7dc0c7c892c7
https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb

Data Mining University of Warwick

https://github.com/hindupuravinash/the-gan-zoo 12

8

The GAN Zoo

210

https://github.com/hindupuravinash/the-gan-zoo

Data Mining University of Warwick

Text-to-Image Synthesis

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, “Generative Adversarial Text-to-Image Synthesis”, ICML 2016
H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, D. Metaxas, “StackGAN: Text to Photo-realistic Image Synthesis with
Stacked Generative Adversarial Networks”, arXiv prepring, 2016
S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, H. Lee, “Learning What and Where to Draw”, NIPS 2016

211

Data Mining University of Warwick

Text to Image – Results

212

Data Mining University of Warwick

Image-to-image Translation

P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks”,

arXiv preprint, 2016

213

Data Mining University of Warwick

Unpaired Transformation – Cycle GAN, Disco GAN

Transform an object from one domain to another without paired data

photo van Gogh

Domain X Domain Y

214

Data Mining University of Warwick

TurbuGAN

215

Feng, Brandon Yushan, Mingyang Xie, and Christopher A. Metzler. “TurbuGAN: An Adversarial Learning Approach to Spatially-Varying Multiframe Blind
Deconvolution with Applications to Imaging Through Turbulence.” arXiv, August 22, 2022. https://doi.org/10.48550/arXiv.2203.06764.

https://doi.org/10.48550/arXiv.2203.06764

Data Mining University of Warwick

Diffusion Models
• What is diffusion?

• Can we learn to reverse it?

216

High EntropyLow Entropy

https://en.wikipedia.org/wiki/Maxwell%27s_demon

1925

Maxwell’s Demon

https://en.wikipedia.org/wiki/Maxwell%27s_demon

Data Mining University of Warwick

Diffusion Models

• Main idea: Learn to reverse a “diffusion” process

217

Tutorial: https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
Dhariwal, Prafulla, and Alex Nichol. “Diffusion Models Beat GANs on Image Synthesis.” arXiv, June 1, 2021. https://doi.org/10.48550/arXiv.2105.05233.
Nichol, Alex, and Prafulla Dhariwal. “Improved Denoising Diffusion Probabilistic Models.” arXiv, February 18, 2021. https://doi.org/10.48550/arXiv.2102.09672.

https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
https://doi.org/10.48550/arXiv.2105.05233
https://doi.org/10.48550/arXiv.2102.09672

Data Mining University of Warwick

Diffusion Models

• Generation by learning to reverse entropy
• Forward Process: Generate noisy signals

from data
– Data distribution gets gradually

converted to noise
• Reverse Process: Learn to denoise

– Using a neural network 𝜖𝜃 𝑥𝑡 , 𝑡 with
weights 𝜃 which takes the noisy
data 𝑥𝑡 as input along with the time
step 𝑡 (and possibly other
"conditioning" variables) to output an
estimate of the noise 𝜖𝑡 that has been
added to 𝑥0 to generate 𝑥𝑡. This is
achieved by solving the following
optimization problem:

• Generation: Once the neural network is
trained, we can generate data using:

• Can be improved by operating in a
compressed or latent space: Latent
diffusion

218

Simplest Diffusion Tutorial: https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb

minθ 𝐸𝑡,𝑥0𝜖 𝜖𝑡 − 𝜖𝜃 𝑥𝑡, 𝑡 2

𝑥 = 𝑥𝑇 − 𝜖𝜃 𝑥𝑇 , 𝑇 with 𝑥𝑇~𝑁(0,1)
NN

𝜖𝜃 𝑥𝑡, 𝑡𝑇
𝑥~𝑃𝑚𝑜𝑑𝑒𝑙

𝒙𝑻~𝑁𝑜𝑖𝑠𝑒

-

𝑥𝑇

Generation

Trained

NN
𝜖𝜃 𝑥𝑡, 𝑡

𝑡

𝜖𝑡~𝑁𝑜𝑖𝑠𝑒

+𝑥0~𝑝(𝑥)
𝑥𝑡

-

𝜖𝑡

loss

Estimated noise

Noisy
sample

Training

Original
sample

https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb

Data Mining University of Warwick

SORA: Diffusion Transformer

219

https://openai.com/research/video-generation-models-as-world-simulators

https://openai.com/research/video-generation-models-as-world-simulators

Data Mining University of Warwick

Seeing without seeing
• Takagi, Yu, and Shinji Nishimoto. “High-Resolution Image Reconstruction with Latent Diffusion Models from Human Brain Activity.” bioRxiv,

December 1, 2022. https://doi.org/10.1101/2022.11.18.517004.

221

https://doi.org/10.1101/2022.11.18.517004

Data Mining University of Warwick

CONCLUSIONS

224

Data Mining University of Warwick

Issues

• Deep Neural Networks are Easily Fooled
– https://arxiv.org/abs/1412.1897v4

• Failures of deep learning
– https://arxiv.org/abs/1703.07950

• To understand deep learning we need to understand kernel learning
– https://arxiv.org/abs/1802.01396

• Understanding deep learning requires rethinking generalization
• Steps toward deep kernel methods from infinite neural networks

– https://arxiv.org/abs/1508.05133

• Do Deep Neural Networks Really Need to be Deep?
• One pixel attack for fooling deep neural networks

– https://www.youtube.com/watch?v=SA4YEAWVpbk
– https://github.com/Hyperparticle/one-pixel-attack-keras

• Adversarial Examples that Fool both Computer Vision and Time-Limited
Humans

• Alchemy? https://www.youtube.com/watch?v=ORHFOnaEzPc
– Ali Rahimi

225

https://arxiv.org/abs/1412.1897v4
https://arxiv.org/abs/1703.07950
https://arxiv.org/abs/1802.01396
https://arxiv.org/abs/1508.05133
https://www.youtube.com/watch?v=SA4YEAWVpbk
https://github.com/Hyperparticle/one-pixel-attack-keras
https://www.youtube.com/watch?v=ORHFOnaEzPc

Data Mining University of Warwick

The Rise of Vector Databases

• Flowise, langchain

226

https://www.pinecone.io/ https://github.com/pinecone-io/examples/blob/master/docs/gpt-4-langchain-docs.ipynb

Data Mining University of Warwick

Other Topics• Recurrent Neural Networks

• Reinforcement Learning

– Learning from experience

– Example: Learning to levitate or helping a mouse escape from a cat

– https://github.com/foxtrotmike/RL-MagLev/blob/master/RL.ipynb

– https://github.com/foxtrotmike/RL-MagLev/blob/master/cat_mouse.ipynb

• Learning Paradigms

– Multi-task Learning

– Multi-Label Learning

– Self-Supervised Learning

• Learn a task to learn a feature representation and adapt it to other tasks

• Contrastive Learning

– Zero Shot and Few Shot Learning

• Bayesian Neural Networks and Uncertainty Quantification (Conformal Prediction)

• Neural Ordinary Differential Equations (NODE)

– https://github.com/foxtrotmike/NODE-Tutorial/blob/main/node_tutorial%20(2).ipynb

• Data Efficient Learning

• Symbolic Regression

• Learning to Learn

• Quantum ML

• Domain Generalization

• Robustness

• Building invariances into machine learning models

• Link between Causality, Symmetry, Invariance and Generalization

• Prompt Engineering, Retrieval Augmented Generation

227

My RL Tutorial Video: https://youtu.be/N20h6vpR13Y

https://astroautomata.com/paper/symbolic-neural-nets/

https://github.com/foxtrotmike/RL-MagLev/blob/master/RL.ipynb
https://github.com/foxtrotmike/RL-MagLev/blob/master/cat_mouse.ipynb
https://github.com/foxtrotmike/NODE-Tutorial/blob/main/node_tutorial%20(2).ipynb
https://youtu.be/N20h6vpR13Y
https://astroautomata.com/paper/symbolic-neural-nets/

Data Mining University of Warwick

Books

Understanding Deep Learning
by Simon J.D. Prince
https://udlbook.github.io/udlbook/

228

Backpropagation and MLPsSVMs and Kernels Deep LearningFoundations

https://udlbook.github.io/udlbook/

Data Mining University of Warwick

Assignment 1 Grades

229

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

AUC-ROCAUC-PR

M
ar

ks

Data Mining University of Warwick

THE END (2024)

Any Slides After This Are Optional and not included in the
2024 exam

230

	Default Section
	Slide 1: Neural Networks and Deep Learning

	Single Neurons
	Slide 2: Biological Neurons and Networks
	Slide 3: Single Neuron: Representation
	Slide 4: Activation Functions
	Slide 5: Neural Networks
	Slide 6: How to implement Neurons?

	MLP
	Slide 7: Multilayer perceptrons
	Slide 8: A network of neurons
	Slide 9: Single to Multiple Neurons
	Slide 10: Multilayer Perceptron: Representation
	Slide 11: Multilayer Perceptron: Evaluation
	Slide 12: Multilayer Perceptron: Optimization
	Slide 13: REO for MLPs
	Slide 14: Multilayer Perceptron
	Slide 15: Backpropagation training cycle
	Slide 16: Training
	Slide 17: Proof for the Learning Rule
	Slide 18: The Learning Rule…
	Slide 19: Understanding Backpropagation
	Slide 20: Training Algorithm
	Slide 21: Training Algorithm…
	Slide 22: Training Algorithm…
	Slide 23: Training Algorithm…
	Slide 24: Optimization in minibatches
	Slide 25: Coding
	Slide 26: Libraries
	Slide 27: NN/Deep Learning Libraries
	Slide 28: Computation Graph of a two-layer network
	Slide 29: Optimization Methods
	Slide 30
	Slide 31: Does the brain do backpropagation?

	Factors affecting NN Training
	Slide 32: How to improve neural network training
	Slide 33: Parameter Selection
	Slide 34: Issues with Neural Networks with non-linear activations
	Slide 35: How to improve MLP?
	Slide 36: Understanding optimization stalls in neural networks
	Slide 37: Improving MLP
	Slide 38: Home/Lab Exercise!

	Universal Function Approximation
	Slide 39: Universal function approximation with neural networks
	Slide 40: Universal Function Approximation
	Slide 41: Universal Function Approximation Example
	Slide 42: Universal Function Approximation Example
	Slide 43: Universal Function Approximation Example
	Slide 44: Universal Function Approximation Example
	Slide 45: Universal Function Approximation Example
	Slide 46: Universal Function Approximation Example
	Slide 48: Practical Issues in Universal Approximation
	Slide 49: Universal Function Approximation

	Why go deep?
	Slide 50: Why go deep?
	Slide 51: How many cuts?
	Slide 52: Each layer is a transformation of the input data
	Slide 53: Width vs. Depth
	Slide 54: Comparison of Depth
	Slide 55: Width vs. Depth
	Slide 56
	Slide 57: Shallow vs. Deep Networks

	Convolution Neural Networks
	Slide 58: Convolutional neural networks
	Slide 59: Where’s Waldo?
	Slide 60
	Slide 61
	Slide 62: Let’s solve it using a neural network
	Slide 63
	Slide 64: Important conceptual note
	Slide 65
	Slide 66: Convolutional Networks
	Slide 67: Basics
	Slide 68: Examples of filters
	Slide 69: Examples of filters
	Slide 70: Example Filters
	Slide 71
	Slide 72: Convolution*
	Slide 73: How to apply filters?
	Slide 74: But what’s the fun in that?
	Slide 75: Now the interesting question
	Slide 76: Example
	Slide 77: How can this be done?
	Slide 78: Let’s try to learn a 3x3 filter
	Slide 79: Let’s solve this
	Slide 80: Results
	Slide 81: Another way of looking at this
	Slide 82: Most basic convolutional neural network
	Slide 83: Classification with Multilayer Perceptron
	Slide 84: REO for a convolution neural network
	Slide 85
	Slide 86: Convolutional Neural Networks for ML
	Slide 87: Structure
	Slide 88: See Coding
	Slide 89: Padding
	Slide 90: Pooling
	Slide 91: Why do CNNs work?
	Slide 92
	Slide 93
	Slide 94: Deep Learning: Learning Hierarchical Representations
	Slide 95: [ConvNetJS demo: training on CIFAR-10]

	Regularization Approaches
	Slide 96: Risk minimization and generalization
	Slide 97: Risk Minimization in Neural Networks
	Slide 98: Important Concepts
	Slide 99: Regularization Mechanisms
	Slide 100: Understanding Drop-out in training
	Slide 101: Effect of Dropout
	Slide 102: Does drop out help with overfitting and underfitting?
	Slide 103: Dropout in testing: MCDropout
	Slide 104: Understanding Batch-Normalization
	Slide 105: Effect of Batch Normalization
	Slide 106: Batch Normalization Coding
	Slide 107: What can you do with just training batch norm parameters?
	Slide 108: What can you do without batch normalization?
	Slide 109: Data Augmentation
	Slide 110: Data Augmentation
	Slide 111: What is my model doing? What is my model learning?
	Slide 112: Famous CNN
	Slide 113: Transfer Learning and Fine Tuning
	Slide 114
	Slide 115: Advanced: Adapters
	Slide 116: Predicting Hurricane Intensities
	Slide 117: Deep-PHURIE Robustness Analysis
	Slide 118: Types of Neural Networks
	Slide 119
	Slide 120

	Residual Networks
	Slide 121: Networks with skip connections
	Slide 122: Spectrum of Depth
	Slide 123: Increasing Depth (10-100 Layers)
	Slide 124: Simply Stacking Layers?
	Slide 125: Residual Learning: skip connections
	Slide 126: ResNet Models
	Slide 127: A residual/skip block in code
	Slide 128: CIFAR-10 Experiments
	Slide 129
	Slide 130
	Slide 131: ResNet Results
	Slide 132: Reasons for adding skip connections
	Slide 133: U-Net for Segmentation
	Slide 134: YOLO
	Slide 135: Residual Networks

	Transformers
	Slide 136: Transformers
	Slide 137: Transformers
	Slide 138: Background
	Slide 139
	Slide 140
	Slide 141: What is attention and why do you need it?
	Slide 142: General Attention Building Blocks
	Slide 143
	Slide 144: Non-learnable attention
	Slide 145: Learnable Attention as (asymmetric, non-Mercer) kernel transformations
	Slide 146: Output of a single attention layer
	Slide 147: Attention gives transformations
	Slide 148: Multi-headed Attention
	Slide 149: What happens at the end of the Training phase?
	Slide 150: Transformers
	Slide 151: How is an attention layer used in Chat-GPT?
	Slide 152: What do transformers see?
	Slide 153: Are convolutions and attention really necessary?
	Slide 154: Using Transformers
	Slide 155: Another way of thinking about GPTs Modeling XOR as a “next token” problem or FSM or turing machine

	Graph Neural Networks
	Slide 157: Graph neural networks
	Slide 158: Graph Neural Networks
	Slide 159: Graphs
	Slide 160: Examples of graphs
	Slide 161: Graph Neural Networks
	Slide 162: How does a graph neural network layer work?
	Slide 163: Implementing Different Graph Neural Network Layers
	Slide 164: Message Passing Based Graph Neural Networks
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170: IGUANA
	Slide 171
	Slide 172: Are Transformers (secretly) GNNs?
	Slide 173: Reading on Graph Neural Networks

	Autoencoders
	Slide 174: autoencoders
	Slide 175: REO For Auto-Encoders
	Slide 176: Unsupervised Learning - Autoencoders
	Slide 177: Autoencoder
	Slide 178: How to Train Autoencoders?
	Slide 179: Refresher PCA: Reconstruction
	Slide 180: Deep Auto-encoder
	Slide 181
	Slide 182: Other types of autoencoders

	Generative Modelling
	Slide 190: Generative machine learning
	Slide 191: Background: Introduction to Sampling
	Slide 192: Background: Generating samples
	Slide 193: Background: Generating samples
	Slide 194: A generative look at Machine Learning
	Slide 195: Generating data with machine learning
	Slide 196: Generating Data with Autoencoders
	Slide 197: Generative Models
	Slide 199: A Simple Generative Machine Learning Example
	Slide 200: REO for Generative Models
	Slide 201: Generative Adversarial Networks
	Slide 202: Adversarial Training in a GAN
	Slide 203: GAN Tutorial
	Slide 204: How to go from generating coin flips to images?
	Slide 205: Performance Assessment of Generative Models
	Slide 206: Unconditional vs Conditional Generation
	Slide 207: Unconditional vs Conditional Generation
	Slide 209: GANs Applications
	Slide 210: The GAN Zoo
	Slide 211: Text-to-Image Synthesis
	Slide 212: Text to Image – Results
	Slide 213: Image-to-image Translation
	Slide 214: Unpaired Transformation – Cycle GAN, Disco GAN
	Slide 215: TurbuGAN
	Slide 216: Diffusion Models
	Slide 217: Diffusion Models
	Slide 218: Diffusion Models
	Slide 219: SORA: Diffusion Transformer
	Slide 221: Seeing without seeing

	Conclusion
	Slide 224: Conclusions
	Slide 225: Issues
	Slide 226: The Rise of Vector Databases
	Slide 227: Other Topics
	Slide 228: Books
	Slide 229: Assignment 1 Grades
	Slide 230: THE END (2024) Any Slides After This Are Optional and not included in the 2024 exam

