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Biological Neurons and Networks
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Single Neuron: Representation

* An abstraction of the biological neuron
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Activation Functions

e Can use any activation function

Activation Functions

Siamoid Leaky RelLU )
J 1 max(0.1x, x)
O'(.’E) = Tfe—7 ’
tanh Maxout
tanh(x) a0 ° max(wi © + by, wa x + by)
RelLU / ELU N_J/
0 T x>0
maX( ’ 'CU) ~ ) {a(em ~1) z<0 - - T
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Neural Networks

 Evaluation

— Error between predicted and target output
e Predicted output: y = a(u) = a(w’x)
* Target output: t
e Error: (t — y)*
* Optimization
— Whenever the weights change, the output will change
— Optimize the weights so that the output matches the target

— Gradient Descent

Data Mining University of Warwick



How to implement Neurons?

* Remember:
— If you can define a loss function
— And a regularizer

— The rest can be automated For
any ML problem™!
* Using Automatic Differentiation

REO and SRM are all you need!

Representation
* How does the model produce its output given its input
 flxw) =wlx
Evaluation (SRM/Definition of Optimization Problem)
* Define a loss function and a regularization strategy write the
optimization problem

* min,Pw;X,y) = %wTw + YN max(0,1 -y, f(x;w))
Optimization

* Obtain gradient V,,P(w) =
differentiation method

* Apply gradient descent (or other optimization) updates until
convergence

s wew—aV,P(w)

* Successful optimization is necessary for generalization (but not

sufficient). Must check for successful optimization!

dP(w)
d0x

through an automatic

Automatic w=1.0 # a value of w

Libraries
— Autograd
def P_fun(w):
— PyTorch return w**2
— TensorFlow
_ JAX human
. programmer
— Zygote.jl
Go through this exercise: P(w) = w?

https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb

differentiation out = P_fun(w)
>_ out.backward() #generates
w.grad #equal to 2*w
#manual implement or use sympy
def dP_symbolic(w):
return 2*w

(human/computer) oP #numeric differentiation

% = 2W  def dP_numeric(w,d):

symbolic differentiation

Data Mining

*Terms and conditions apply University of Warwick

return (P_fun(w+d)-P_fun(w))/d
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A network of neurons
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Single to Multiple Neurons
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Multilayer Perceptron: Representation

e Consists of multiple layers of neurons
— Multi-Input Multi-Output
* Layers of units other than the input and
output are called hidden units

* Unidirectional weight connections and
biases (Feed-Forward)

e Activation functions

— Use of activation functions

e Sigmoidal activations

— Nonlinear Operation: Ability to solve practical problems
— Differentiable

— Derivative can be expressed in terms of functions
themselves: Computational Efficiency

e Other activation functions also possible

— Activation function is the same for all
neurons in the same layer

* Not a strict requirement though

— Input layer just passes on the signal
without processing (linear operation)

Data Mining
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Multilayer Perceptron: Evaluation

e Compute the error between
prediction and target

— SSE Loss:

m
loss = z E(y}( — t,"{)z
i k=1

Can use other loss terms.

Data Mining

L1 loss:

L2 loss :

Expectation loss :
Regularised expectation loss :

Chebyshev loss :

Hinge loss :
Squared hinge loss :
Cubed hinge loss :
Log loss :

Squared log loss :

Tanimoto loss :

Cauchy-Schwarz Divergence :
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Multilayer Perceptron: Optimization

05

* Non-convex optimization . il
— Because: Error o .
p N 0
Ying = 2 ZjWjk . L =
]=0 —058 \ : Cr // 50
yk = a(y_ing) W s —— /
* Weighted combination of activation function outputs 2 W1
* Compute the gradient of the error/loss ol 0l
function with respect to each weight of the  9Wjk 0vyj

neural network

* Update weights using gradient descent or
other methods

new old al al
W; — W3 —a—-5 or Awy, = —a—-
Jk Jk 6WJQ,£d Jk 6W;?,£d
new old al al
. «— L. —_ P e _—
Vi Vi aav;}‘d or Av;; aav;’j‘d

Data Mining

University of Warwick

12



REO for MLPs

* Representation

— Defined by the architecture

* Number of inputs and outputs, Interconnection of neurons, number of neurons in
layers, activation functions, etc.
P

h(x) = Z via(wlx + b;) + vy = Va(Wx + b) + v,
i=1
— Modern DL libraries require you to define “Representation”
e Evaluation
— Defined by the ML problem

— Can use any loss function
* Square Error Loss
* Hinge Loss
* Cross-Entropy Loss

* Optimization
— Solve for weights that reduce error over training data and (hopefully!)
generalize to test data
— Using any optimization method
* Stochastic Gradient Descent
* Adaptive Learning Rate with Momentum (Adam)
* So many other

https://playground.tensorflow.org

Data Mining

h(x) =Va(Wx + b) + v,

Important:

The output of a fully connected layer of weights
W can be viewed as a transformation z: R4 — RP
involving a matrix-vector product and an

activation function
z(x) =a(Wx + b)

University of Warwick 13
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Backpropagation training cycle

Feed forward

Backpropagation

Data Mining University of Warwick 15



Training

During training we are presented with input patterns
and their targets

At the output layer we can compute the error between
the targets and actual output and use it to compute
weight updates through the Delta Rule

But the Error cannot be calculated at the hidden input
as their targets are not known

Therefore we propagate the error at the output units
to the hidden units to find the required weight
changes (Backpropagation)
3 Stages

— Feed-forward of the input training pattern

— Calculation and Backpropagation of the associated
error

— Weight Adjustment
Based on minimization of SSE (Sum of Square Errors)

Data Mining
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. Target O O O
Proof for the Learning Rule — Y

RS
__--7Error: E<__

We can use the chain rule to compute the gradient of E /'ﬁ{{ /}w%\
E =05 zk(tk — yk)z b \ ok Wik  Wg W ;o Wim  Wim  Wpm

How much does E change with change in wjy, 0
oE 0

0 ’ <
= 0.52 t, — V)2 = 0.5(t, — Vi)? / ‘
owj, 0wy k( e~ Vi) OWjp, (e = %) Change in w, ' <] A
affects only y, o e

9 9 ,

= —(tx = yi) W Vi = —(te = yi) W a(y_iny) \ / /
. Ja . :

= —(tx —yr)a’ (y_ing) W y_in

0 p
= —(t, — / 1 AT
( k YR)a (y—lnk) 0ij § i=0 Z]W]k

= —(tx —yr)a' (y_ing)z; = =6y z;

Take away lesson:

— 7 — n — P
zj = a(z_mj), Zin; = YicoXiVij,xo=1,j=1...p

The change in wj is proportional to . P

. The error te — Vi Vi = a(y_ing), Yin, = Z(:)ijjk,zo =1,k=1...m

. Output z; Use of Gradient Descent Minimization

. The derivative of the activation function a’(y_in;) OF

Weight update will be zero if any of these terms is zero! Aij = —q 3 — “5ij With 8, = (t, — yi)a' (v_ing)
jk
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The Learning Rule... ey Brrers B

How much does E change with change in v;; :

oF _ 0 05) (te—y)? =05 ) 7t — 3
avij avij . k ek . kavij k= Vk Change in v,

0 0 affects all Y, ,
E USSD avij( Vi) E RUSSD 7or a(Yin, )
d

= — Zk(tk — i)@' (Vin,,) Fur in

==X e 2y =0, e,
= . kav i Zjok_ . kaviijij

tj Change in v;

0
z s ad ( s , ad affects only z,
= — ijk_Cl Zin. | = — ijka Zin: | = Zin.
k avij J k J avij J

0 n zj = a(z_inj), Zin; = YicoXiVij,xo=1,j=1...p
k J J avu i=0 J Vi = a(y_ing), Yin, = szwjk,zo =1k=1...m
A j=0
= — Opwira' (z- )x = —0;X
N With 6, = (t ~ yi)a'(y_in)

Use of Gradient Descent Minimization

Take away message: The change in v;; is proportion to:
. TAhe input x; Avj; =
* 0j: The backprop term which contains product of activation

function derivatives

oFE . |
—a avu = a5]xl With: 5] = Zk 6ijka (Zinj) X; or

5 = Zk(tk — yiowja' (y_ing)a’ (Zinj) Xi
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Understanding Backpropagation

Pass the input and compute the output
Compute Error

Compute Gradient of error wrt weights
Compute weight updates

— Compute 9y,

— “Backpropagate” these 0j, through the
network to Compute S]-

— Compute Awjy, and Av;;

Update weight updates

Data Mining

0F
¢ aW]k

Aij = — = a5ij

6 = (tx — yi)f (y_iny)
oF

Avij = —Qa = a5jxi

avij

S /
5] = zk 5ijk(l (Zinj) Xi
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Step 0. Training
Initialize weights. (Set to small random values). Algo rit h m
Step 1.

While stopping condition is false, do Steps 2-9. ' o

Step 2. »O

=)0 ’
For each training pair, do Steps 3-8. o
Feedforward: *
Step 3. *
Each input unit (X@,?Z =1,... ,'n,) receives input signal x; and broadcasts this signal to all units in the layer above (the hidden units).
X >
Step 4. *
Each hidden unit (Z;,j = 1,...,p) sums its weighted input signals, *
T Z
Zin; = Vo + Z T;V;; J
i=1
applies its activation function to compute its output signal, >

Zj = a(zinj)

and sends this signal to all units in the layer above (output units).

Step 5.

Each output unit Yz, k = 1,...,m sums its weighted input signals,

P
Yin;, = Wok + Z 2j Wk,
7=1

‘v

Q0000000 ~ ~ - -

and applies its activation function to compute its output signal,

_ Yt = a(Yin,)- University of Warwick 20



Training Algorithm...

Backpropagation of error:

Step 6.

Each output unit Y.,k = 1, ..., m receives a target pattern corresponding to the input training pattern, computes its

error information term,
!
or = (tr — yr)a (Yin,)
calculates its weight correction term (used to update w j later),

Awjr = adrz;,

Q000

calculates its bias correction term (used to update wy;, later),
A'LU[]_IC e 0:(5;6,

and sends 4}, to units in the layer below.

Data Mining University of Warwick 21



Training Algorithm...

Step /.

Each hidden unit Z;,7 = 1,. .., p sums its delta inputs (from units in the layer above),

m
‘5inj — E 6kwjka
k=1

multiplies by the derivative of its activation function to calculate its error information term,

A

!
5;,-' — 5injil (zinj)r
calculates its weight correction term (used to update w;; later),
Av;j = ad jz;,
and calculates its bias correction term (used to update v later),

A’Uﬂj = {]553;.

Data Mining
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Training Algorithm...

Update weights and biases:

Step 8.

Each output unit Yz, k=1, ...

Each hidden unit Z;,7 = 1,..

Step 9.

Test stopping condition.

Taken from:

, M updates its bias and weights (7 = 0, ..., p):

., p updates its bias and weights (z = 0, ..., n):

(new)

(old)
i — Ut'j —|— A'Uz;

Fausett, Laurene V. Fundamentals of Neural Networks: Architectures, Algorithms And Applications: United States
Edition. US Ed edition. Englewood Cliffs, NJ: Pearson, 1993.

Data Mining
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Optimization in minibatches

 We can do a full-scale optimization across all examples in each
step or take a few examples at a time to determine the
gradients and perform an update
— Mini-batches
 Stochastic gradient descent

e Reduces memory consumption
* Faster convergence

Data Mining University of Warwick 24



https://playground.tensorflow.org COd | ng

e Using Keras
* https://github.com/foxtrotmike/CS909/blob/master/keras barebones.ipynb

 PyTorch
 Barebones code in PyTorch

e https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb

e Using nn-module
e https://github.com/foxtrotmike/CS909/blob/master/pytorch nn barebones.ipynb

e Universal Approximation code:
e https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb

 Digit Classification Exercise
* https://github.com/foxtrotmike/CS909/blob/master/pytorch mlp mnist.ipynb

Data Mining University of Warwick 25



https://github.com/foxtrotmike/CS909/blob/master/keras_barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/keras_barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_nn_barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_nn_barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_mlp_mnist.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_mlp_mnist.ipynb
https://playground.tensorflow.org/

Libraries

* All Neural Network/Deep Learning Libraries Do three things

— Automatic Differentiation (Efficient Algorithms such as Reverse mode autodiff!)

— Implement Optimizers
— Use efficient hardware for multiprocessing (GPUs)

» Support efficient representation / abstraction

Caffe Scaffez 4o Chainer @;cgﬁgg 4\ @xnet
Toolkit

Keras MATLAB
4 PaddiePaddle O PyTorch  Tensorflow | tOrCh il
TensorFIoYv . pyTorch
Static Computing Graphs Dynamic Computing Graphs
Build I?efore you go (new version has dynamic graphs too!) Graph built at run time
Compile ther\ run/fit Build as you go
Good Documentation Good for research

Distributed Computing / Delivery
TensorFlow.js

Data Mining

st=flux
] ...
julia
using Zygote

# Define a simple function
f(x) = 3x"2 + 2x + 1

# derivative of f at x = 2
gradient(f, 2)

University of Warwick
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NN/Deep Learning Libraries

» Essentially Automatic Differentiation Tools with optimization packages

— Represent a neural network loss calculation as a computational graph and then compute the
gradients

* Have rules for each operator on how to differentiate “through” that operator

* (Can use GPU
c e=(a+b)(b+1)=ab+a+b*+b

. 2 =b+1=2
ga (a=2,b=1) (n (1
e
¢ — =a+2b+1=5
dbl(a=2,p=1)
AddBackward( AddBackward(

MulBackward()

import torch

import numpy as np

from torchviz import make_dot
a = torch.from_numpy(np.array([2.0])); a.requires_grad_(True)

b = torch.from_numpy(np.array([1.0])); b.requires_grad_(True)

e = (a+b)*(b+1) Ipip install torchviz

e.backward() from torchviz import make_dot

print(a.grad) # 2 make_dot(tloss,params=dict(model.named_parameters()))

print(b.grad) # 5
make_dot(e)

Data Mining University of Warwick 27



Computation Graph of a two-layer

network

S model = torch.nn.Sequential(
e torch.nn.Linear(2, 2),
S torch.nn.Sigmoid(),
5 torch.nn.Linear(2, 1),
§ torch.nn.Sigmoid()
o ).to(device)
(]
('

z = model(x)
c
(=]
S
€ | e = loss_fn(z, y)
©
>
w

Manual Gradient Descent

model.zero_grad()
e.backward()

with torch.no_grad():
for param in model.parameters():
param.data -= learning_rate * param.grad

Using Built-in Optimizer

Optimization

# optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
model.zero_grad()

e.backward()

optimizer.step()

Data Mining

de
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Optimization Methods

* Gradient Descent: Go down! 6 =06 —1n-V,J(0)
* Stochastic Gradient Descent =6 —n-V,J(6;2");y")

* Mini-batch Gradient Descent 6 — 6 — 1. VJ(6; 2(F017), ) (E047)

e SGD with momentum: accelerate if going downhill for a long
time
* Nesterov momentum: accelerate but not indefinitely

* Adagrad: Adaptive Learning Rate by accumulating past
gradients

* AdaDelta/RMSProp: Adaptive Learning rate but does not
accumulate all past gradients

 Adam: Adaptive learning rate with momentum

e Learning rate scheduling
— Changing Learning rates at different times in the learning

— https://pytorch.org/docs/stable/generated/torch.optim.Ir scheduler.One

CycleLR.html

An overview of gradient descent optimization algorithms by Sebastian Ruder, 20-16

http://sebastianruder.com/optimizing-gradient-descent/ , https://arxiv.org/abs/1609.04747

: '\??\R\Q&'\‘x\ B

=y = 5SGD

— Momentum

— NAG
Adagrad
Adadelta

>>> data_loader = torch.utils.data.DatalLoadex(...)

>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1,
momentum=0.9)

>>> scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer,
max_1lr=0.01, steps_per_epoch=len(data_loader), epochs=10)

>>> for epoch in range(10):

T rrr

Data Mining

>>>
>>>
>>>
>>>

for batch in data_loadex:
train_batch(...)
optimizexr.step()
schedulex.step()

29


https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
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https://arxiv.org/abs/1609.04747

Here x is not an example,

rather the input to an
activation function f

Some functions like the

“Softmax” take a vector as

input and produce a
vector output. The
softmax function takes a

vector of “logits” as input

and produces pseudo-
probability values as
output.

Readmore:

https://en.wikipedia.org/

wiki/Softmax function

Hame Plot Equation Derivative

Identity / Gl = Flx)=1

_ v J 0 for x<0 o v J 0 for x#0
FhneTy sten fla)= { 1 for >0 “I)b“-*{ ? for x=0
Logistic (a.k a 1 ' _ - -
Soft step) flx)= 1 +e= sigmoid f@) = f@){1 - f(z))

L 2
TarH i f(z) = tanh(z) = ———= — () = 1 — f(z)?
Bipolar sigmoid = : 1 te€ 2 f ( ) f{ )
- , 1

dreTan S f{r] = tan (I) f (I’) = 241
i..ectifizd.t / f(z) { 0 for <0 { 0 for <0

1near Um Tr) — —

ReLT) r for >0 1 for 20
Farameteric
Rectified f(z) = ar for <0 - for <0
Linear Unit B x for >0 B for >0

(PReLI) 2]
ilflﬂonm;ii f(z) = { afe* —1) for <0 _ { (x)+a for <0
— ' r for 20 1 for 220
SoftPlus : f(z) =log.(1+ €") fl(z)= e

Softmax Used for multi- ) eXi af (x;) {Pi(l -p) i=k

class Xi) =Dp; = ; o —D:
classification ' ' Zj eX Oxy PiPk else

Minhas, Fayyaz ul Amir Afsar, and Amina Asif. “Learning Neural Activations.” arXiv:1912.12187 [Cs, Stat], December 27, 2019. http://arxiv.org/abs/1912.12187.

Data Mining
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Does the brain do backpropagation?

Y S h a No feedback  Scalar fged back Vector fleedback
ort

p ~ . N Synapse undergoing learning
Feedback signal (e.g. gradient)
Feedforward Hebbian Perturbation  Backpropagation Backprop-like learning Feedback neuron (required for learning)
a n Swe r : network learning learning with feedback network Feedforward neuron (required for learning)
oLl Diffuse scalar reinforcement signal
@ Q o O @) Q @)
—No LoD 900 go0n o @ ® o QP
C Error landscape
OO O oo o holeod 2Ne O Q O 0 O Perturbation learning
=gl e -
o C o © o O o O g O @0 = |
° Input - /
[ ] = ,’
Long answer: '
= -
o ~—
b s
—_— N Ot e n O u g h B Scalar feedback Vector feedback R a P
N ” —
Weight perturbation Backpropagation / \_.,\ Hebbian
. d | 1 learning
EVI e n Ce | educing error . \
| Backpropagation
Node perturbation

Backpropagation approximations Parameter 2

Lillicrap, Timothy P., et al. "Backpropagation and the brain." Nature Reviews
Neuroscience 21.6 (2020): 335-346.

Data Mining
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HOW TO IMPROVE NEURAL NETWORK
TRAINING
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Parameter Selection

* A MLP has alarge number of parameters
— Number of Neurons in Each Layer
— Number of Layers
— Activation Function for each neuron: RelLU,

logsig...

— Layer Connectivity: Dense, Dropout...

* Objective function
— Loss Function: MSE, Entropy, Hinge loss, ...
— Regularization: L1, L2...

* Optimization Method
— SGD, ADAM, RMSProp, LM ...

— Parameters for the Optimization method
* Weight initialization
* Momentum, weight decay, etc.

Data Mining University of Warwick 33



Issues with Neural Networks with non-linear activations

Starting here

* Unlike an SVM, which has a single global
optimum due to its convex loss function,
the error surface of a neural network is
not as smooth

to here

* This complicates the optimization

e A number of “tricks” are used to make
the neural network learn

Li, Hao, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. “Visualizing the Loss Landscape of Neural Nets.” In Advances

in Neural Information Processing Systems, Vol. 31. Curran Associates, Inc., 2018.
https://papers.nips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html.

Data Mining

We want to get

|

st

Loss Landscape of a neural network

Examples showing that combinations and
compositions (such as those that can arise in a
multilayer perceptron) of even convex functions are
not convex
Given convex functions

g1(x) = —x

g2(x) = x?
Following are NOT convex:

91(x) — go(x) = —x — x?
91(g2(x)) = —x?

University of Warwick
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How to improve MLP?

OF
. . . Aw;, = —a—— = ad,z; Final layer weight update
* For successful optimization T Towye Y
. O, = (tx —yi)f'(y_ing)  Final layer backprop term
— Don’t let the network stop learning e “
OF ]
prematu rE|y! Avij = —q Fr = aiji Hidden layer weight update
tj
* For example: Don’t let the neurons 55 als Hidden laver backoron
saturate! SR S
— If the input or the gradient goes to zero, the Sin . = Z SKWik
learning stops! !
. . — i - . =yn .17.. Hidden |
— Here is the gradient descent based 7 = a(zin;), Zin, Sodivy TR
weight update formula for a 2 layer Vi = a(y_ing), Yin, = zzjwjk Final layer output
MLP J=0

m p p
dviy = axia' (%) D wie| te—al Y wpa(vfx) | || ) wia(vfx)
k=1 j=0 j=0

Data Mining
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Understanding optimization stalls in neural networks

. Weight updates:
T P T P r When do we want them to be zero?
_ ! !
Avij = ax;a (vj x) z Wik ty —a Z ija(v]- x) a Z ija(vj x) When all outputs target: t;, —y, = 0
k=1 j=0 j=0 When can they unwantedly be zero?

Leading to learning stall!

Why can optimization stall or slow down  How to fix / Good practice

1.  When x; = 0 (input is zero or too small) 1. Don’t use zero inputs (scale neuron inputs appropriately)
Scale neuron outputs appropriately too as they become inputs to other neurons.

2. Activation gradient a’(+) is small for a given input 2. Either large inputs or large weights can push the activation
function into saturation

) — Don’tuse “saturating” activation functions (leaky-RelU better than ReLU or sigmoid)

dfdeote) — Don’tuse very large inputs (use appropriate input and output scaling)

— Don’tlet weights get large

: S —  Each layer in a neural network introduces an additional product term of gradients of
and its derivative o the activation function. If a neural network has many layers, there will be many

o products of activation function gradients and as the product of small numbers is
even smaller, small gradients will just vanish and lead to a learning stall

*  Vanishing gradients problem
e Don’t use too many layers!

3.  Weights are close to zero w;, = 0 3.  Don't start with zero weights (use proper weight initialization
with small random weights — implicit regularization)

0.8

Sigmoid activation *°

0.0
—10.0 =75 =50 =235 00 25 5.0 5 10.0

4. When weight update§ get too Iargr_—:, the next Yveights are 4.  Choose the learning rate/optimizer appropriately. Plot the
going to be large leading to saturation (exploding convergence plot. Use gradient clipping.
gradients)

5.  When the neural network output range cannot match the 5. Choose an appropriate activation in the output layer
range of the target

Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”. Data Mining University of Warwick 36



Improving MLP

# Early stopping parameters

d ImprDVlng Optlmlzatlon patier)ce = 10 # How many epochs to wait after last time validation
loss improved.
— Different optimizers best_loss » done
* Adaptive Momentum based optimization early_stop = False

* Learning rate cycling strategies for epoch in range(100): # epochs

H 1 1 model.train()
¢ ImprOVIng generallzatlon for inputs, labels in train_loader:
_ Use Early Stopplng optimizer‘.zero_gr.‘ad()
outputs = model(inputs)
* Keep track of generalization error and stop if the generalization error does loss = criterion(outputs, labels)
: o : H loss.backward()
not improve enough even when the error on training data is going down optinizer step()
— Using regularization Firros
. . . . model.eval()
* Explicit regularization val_loss = @

with torch.no_grad():
Krror on test data for inputs, labels in val_loader:
outputs = model(inputs)
val _loss += criterion(outputs, labels).item()

— Weight norms
— Gradient clipping
* Data Augmentation
— Create artificial examples

»  Addition of noise val loss /= len(val_loader)

»  Translation of images or other transforms | Error on training data print(f'Epoch {epoch}, Validation Loss: {val_loss}')
. Drop_Off ]nstalnr when Training Time  # Check for early stopping
. h I . error on test data if best_loss is None:
Batch Normalization begins to worsen best_loss = val_loss
. Y . - 1if val_l best_loss:
* The loss function has a significant impact on learning (both S et Toee ~ val Tooe
optimization and regularization) . Pochs_ho_tmprove = @
— For example cross-entropy loss and softmax work well for epochs_no_improve +=1
.. . if epochs_no_improve == patience:
classification tasks print('Early stopping!’)

early stop = True
break # Exit from the loop

if not early_stop:
print('Training completed without early stopping.')
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Home/Lab Exercise!

* Solve the XOR using a single hidden layer BPNN with sigmoid
activations

— See what is the effect of different parameters on the convergence
characteristics of the neural network
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Universal Function Approximation

* A neural network with a single hidden layer is a universal
approximator

* Universal Approximation

— Any function g(x) over x € R™ can be represented as follows:
P P

h(x) = 2 via(w!x + b;) + vy = Z v;z; + v

i=1 =1
* a(-) is a non-constant, bounded and monotonically-increasing continuous
“basis” function

* Pisthe number of functions
* h(x) is an approximation of g(x), i.e., |[g(x) — h(x)| < €

z; = a(wlx+b;)

https://en.wikipedia.org/wiki/Universal approximation theorem
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Universal Function Approximation Example

e Let’s try to approximate the

function g(X) by a NN With no hidden layer neuron (P=0)

e Let’s build a neural network with 5 Teobt racion
sigmoid activations in the hidden 10 S ral Approximation
layer

* The output of a single neuron 05

depends on its net input which is a
weighted summation of its inputs
(with bias)

 The output is the sum of the
outputs of all hidden neurons

 We want to find weights which sum
up to prOduce the target function -1.00 -0.75 -0.50 -025 000 025 050 075 100

x

0.0

Value

—-1.0 1

CODE: https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb
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Universal Function Approximation Example

 With no hidden layer neuron (P=1)
1.0 0.2 7
0.0
0.5
0.2
| ¢
Q ——8— Target Function W —0.4 7
§ 0.07 Neural Approximation E
, -0.6
0.5 —0.8
_J_D_
AR
vy
_1.2_
—ll.DEI —D:}'E —{]I.ED —{]:25 D.f:}[]' CI.I25 CI.:':-D CI.L.-‘S 1.60 —ll.[}{] —{]f}'ﬁ —{]I.ECI —{]:25 CI.E)D 0.125 Cl.l':r[]' CI.IT-‘S l.é)ﬂ
X X
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Universal Function Approximation Example

* With no hidden layer neuron (P=2)

—8— Target Function 1.00 A
1.0 J.\ Neural Approximation
¢ ¢ e } 0.75 -
0.50
0.5

* 0.25

g aQ

e ﬂ.ﬂ_ =
= 0.00 -

s L o
' —0.25

_DE_
—0.50
] »
~1.0 - VV —0.75 -
—1ID{] —{]I}'E —0'54:1 —0'25 m'm 0:25 05[} 0";’5 160 ~100 1 ' ' ' ' ' ' ' '
: ' ' ' : : : . . -1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00

X

x
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Universal Function Approximation Example

* With no hidden layer neuron (P=3)
o] A ) ,

0.5 - 1 -

| —8— Target Function

i
3 -
S | Neural Approximation | 04
i
—0.5 1 .
—1.0 ~ v V ]

T T T T T T T T T T T
=1.00 -0.75 —CI 30 —CI 25 0. GD 0. 25 0. 5[]' 0. T5 L UD -1.00 -0.75 -0.50 -=0.25 0.00 0.25 0.50 0.75 1.00
X

value
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Universal Function Approximation Example

* With no hidden layer neuron (P=5)

i
2_
0.5 1
l_
i
S oo- | —®— TargetFunction | g | _//
z Neural Approximation | § 0
b
-1
_.DE_
_2—
=1.0 i .\‘ ’\'
_3—
T T T T T T I I I T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100 -1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100
X X
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Universal Function Approximation Example

* With no hidden layer neuron (P=50)

z,
\

value
J
}

o L ——8— Target Function
= 0.0 : -
I —— Neural Approximation

—0.5 - —17 \

_2 —
—=1.0 A
T T T T I I ) ) ) T T T T I I I I I
-1.00 -0.75 -=0.50 -=-0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -=0.25 0.00 0.25 0.50 0.75 1.00
X X
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Practical Issues in Universal Approximation

* The universal approximation theorem means that regardless of what

function we are trying to learn, we know that a large MLP will be able to
represent this function.

 However, we are not guaranteed that the training algorithm will be able
to “learn” that function.
— Optimization can fail

— Learning is different from optimization

* The primary requirement for learning is generalization

— Representability alone does not guarantee learning

Data Mining

University of Warwick
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Universal Function Approximation

* A neural network with one
hidden layer can be used to

approximate any shape A single hidden layer NN with

— However, the approximation might step activation is a

require exponentially many neurons combination of straight cuts

Total number of learnable
parameters: pd+p+p

h(x) = ’Ul’a(W’{x + bl)

e

=1

— How can we reduce the number of
computations?

The number of required straight cuts to approximate a given shape

Wang, Haohan, and Bhiksha Raj. “On the Origin of Deep Learning.” arXiv:1702.07800 [Cs, Stat], February 24, 2017.
http://arxiv.org/abs/1702.07800.

Data Mining
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How many cuts?

» Remember: Classification can be thought
of as partitioning of the feature space

* How can we reduce the number of
required cuts?

— By folding: which is equivalent to:
 Applying a transformation ¢p(x)
— Neural networks
* Changing the distance metric
— Distance metric learning

* Kernelization
— SVM
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Each layer is a transformation of the input data

!

p
* |n the transformed space h(x) = Evia(winb(x) + b;)

. =1 ..
e We can implement a learnable feature transformation through neurons!

4
i=1 j=

p a’ X1 .?
h(X) = Z v;a (2 wl]g(u]Tx + C]) + bl) .4

Transformation

x — ¢(x)

Montufar (2014)
Fold and Cut Theorem: https://www.youtube.com/watch?v=ZREp1mAPKTM
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Width vs. Depth

 An MLP with a single hidden layer is sufficient to represent any function
— But the layer may be infeasibly large

— May fail to learn and generalize correctly

* Using a deeper model can reduce the number of units required to represent the desired
function and can reduce the amount of generalization error

Thus a deeper representation is more efficient!

A function that could be expressed with O(n) neurons on a network of depth k required at least O(2"") and O((n
-1)¥) neurons on a two-layer neural network: Delalleau and Bengio (2011)

Functions representable with a deep rectifier net can require an exponential number of hidden units with a
shallow (one hidden layer) network: Montufar (2014)

For a shallow network, the representation power can only grow polynomially with respect to the number of

neurons, but for deep architecture, the representation can grow exponentially with respect to the number of
neurons: Bianchini and Scarselli (2014)

Depth of a neural network is exponentially more valuable than the width of a neural network, for a standard MLP
with any popular activation functions: Eldan and Shamir (2015)

Data Mining University of Warwick
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Comparison of Depth

Comparison of Model Approximations

1.00
0.75 -
0.50 -
0.25 -

2 0.00-
-0.25
-0.50

—0.75 ~

—1.00 -

{ A
\
[
|
‘,f i
# \ |
.1" %l ,’H
f Kgg v
j nn.
% j —— Original Function -

nn.Sequential (

nn.Sigmoid (),

nn.Sequential (

nn.Sigmoid(),
nn.Linear (32,

nn.Linear (input size,

nn.Linear (input size,

128),

nn.Linear (128, output size))

32),

=== Shallow Model Parameters: 385
Deep Model Parameters: 337

2 3 4 5 6
X

— Deeper is better
— But is difficult to optimize

CODE: https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb

Data Mining

Sigmoid(),
Linear (8, output size))

Both have approximately the same number of parameters (tunable weigths)

University of Warwick
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Width vs. Depth

* Empirical results for some data showed that depth increases
generalization performance in a variety of applications

95.5
95.0
94.5
94.0

93.5

Test accuracy (percent)

93.0

92.5

92.0 | | | | 1 | |
3 4 D 6 T 8 9 10 11

Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from

( ). The test set accuracy consistently increases with increasing depth. See
figure 6.7 for a control experiment demonstrating that other increases to the model size
do not yield the same effect.
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97 | I 1 | |
= 96 e—e 3, convolutional
= YO ' L
g +—+ 3, fully connected
2 iy V¥ 11, convolutional
g o4l :
S o3t — B :
1w ™ 1
E 92 .

01 | | | | |

0.0 0.2 0.4 0.6 0.5 1.0

108
Number of parameters x10

Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow ef (201 1) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network nsed to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This sugeests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g..
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize

them).
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Shallow vs. Deep Networks

* Adding more layers increases the representation power of the neural
network

* A deep network requires exponentially fewer parameters to get to the
same error rate in comparison to a wide neural network

— More efficient

 However, adding layers leads to a more difficult optimization problem
— Vanishing and Exploding Gradients

m p p
Avij = axia'(vfx) z ij <tk —a <z W]kf(v]TX)>> a’ <z ijf(v]Tx)>
k=1 j=0 j=0

Data Mining University of Warwick
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CONVOLUTIONAL NEURAL NETWORKS
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Where’s Waldo?
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_WHERE'S
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Let’s solve it using a neural network

* |Input image: 256x256x3
— Flatten it: 196, 608 dimensional input

* Target: 256x256x3
— Flatten it: 196, 608 dimensional output

* Let’s use a single hidden layer network

— Very large number of parameters will be needed

e Let’s use a deep(er) network
— Still a very large number of parameters will be needed
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Key elements of a radar system. Like other lii E

echo location systems, radar transmits a
short pulse of energy that is reflected by X[Il] |
objects being examined. This makes the

received waveform a shifted version of the @ b
transmitted waveform, plus random noise. . P i
Detection of a known waveform in a noisy o 10 220 30 40 s & T =
signal is the fundamental problem in echo
location. The answer to this problem is (
correlation. R T X

z

TRANSMIT RECEIVE I
(i tn]

%
=

-

200 1 ] 1 ] ] 1 ] 1
e 5
§ b A :
= e ' . -1 —
B 100 - : . 0 1 2
E i [ 1 i 1 ' .
N R R ! '
B e H
‘é‘ A .
| 1 | | | | 1 .
e R B R R : G
i i i i i i :
= i R R R i .
H [ i e
100+— ——t——t r : ’
-0 0 10 20 30 40 50 0 TO 8O . 3
Sample number (or time) . A
5 T
E y[n] - E —
¢ : oMl H i
=2 : Y =
[~ H i |
E i -1 |: f
-8 3 o 10 20 30 40 30 &0 T 20
3 |
o ! The correlation machine. This is a flowchart showing how the cross-correlation of two signals is calculated. In this
i example, v[#] is the cross-correlation of x[x] and #[»]. The dashed box is moved left or right so that its output points at
01 ! [ the sample being calculated in y[»]. The indicated samples from x [»] are multiplied by the corresponding samples in ¢[],
. I T T

-10 (I) 1IIJ 2[0 3:0 4|o 50 60 70 80 and the products added.
Sample number (or time)



Important conceptual note
e Correlation vs. convolution

Convolution Cross-correlation
L T

9 I\, AN
f*g

f+g
yln]
lin%yNull
al i x| Im
_d_ NI
yln] = f +g = Z flk ylnl = fxg= ) flklgln+k
k=—o0 k=—o0
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Convolutional Networks

e A feed-forward network inspired from visual cortex and the
ideas of correlation

e Used for image or signal recognition tasks
* Objective

— Find a set of filters which, when convolved with image, lead to the
solution of the desired image recognition task

* |nvariant wrt translation
* Hierarchical

— Increasing feature complexity
— Increasing “Globality”
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Basics

 The convolution operation

— Shows how a function (image) is modified by another (filter)

(4 x0)

X
Center element of the kernel is placed over the zg X g;

source pixel. The source pixel is then replaced

with a weighted sum of itself and nearby pixels. gg : ?;
Input Image (0x1)
) (0x0)
Source plxel (0 X 1)
Kernel/Filter + (-4x2)
-8
Technically, this is
: “correlation” and not
Convolution ] convolution but we can ignore
-":Out ut this for now. You can also use
3 5 ; il P different edge handling or
New pixel value (destination pixel) H —_ I * K padding strategies.

m/2 n/2

H(i, ) = z Z IG+k,j+ DKk, D)

https://en.wikipedia.org/wiki/Kernel (image processing) k=—m/2 l=—n/2
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Examples of filters

* |dentity Filter

Muntjac

o O O
o = O
o O O

0 0 O
10 1 0 ii
0 0 0
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Examples of filters

* Edge filters

1 0 -1
0
-1 0 1
1 0
111 1 1
1 —4 1 1 1 10 10 10 9 —-18 -9
1 1 10 10 10[*K=]|9 -9 o]
1 0 1 1 10 10 10 9 -9 0
1 1 10 10 10
-1 -1 -1
-1 8 —1
-1 -1 -1

import numpy as np
I=np.array([[1,1,2,1,1],[2,1,10,10,10],[1,1,10,10,10],[1,1,10,10,10],[1,1,10,10,10]])
from scipy.ndimage.filters import convolve

K np.array([[@,l,@],[1,—4,1],[@,1,0]])

H = convolve(I,K)
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Example Filters

* Reducing noise using a smoothing filter

1 1 1
Box blur 1l
_ —(1 1 1
(normalized)
1 1 1
1 2 1
Gaussian blur 3 x 3 Il
: ] 16 2 4 2
approximation
PP 12 1
1 4 6 4 1]
4 16 24 16 4
Gaussian blur5x 5 1
o — |6 24 36 24 6
(approximation) 256
4 16 24 16 4
1 4 6 4 1

o
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(g) Random kernel 1

%

(h) Random kernel 2

'sity of Warwick

71



Convolution™

Input Image Kernel/Filter Output
22 15 1
42 5 38 0 0 1 H
22 9 4 * 0O 0 O 5
1 0 0
I K H

m/2 n/2
H(i, ) = z z IG+k,j+ DKk, D)
k=—m/2 l=—n/2

* |f you think about it

— Convolution is a sum of products
* Can be expressed as a dot product

*Strictly speaking, this is cross-correlation.
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How to apply filters?

0

 The easy way

— Use skimage filters

300 1%

400
import numpy as np
import matplotlib.pyplot as plt
from skimage.data import camera 8  ao ot = -
from scipy.ndimage import convolve
K = np.array([[0,1,01,([1,-4,11,1[0,1,011)/4 # our filter. 0
I = camera()/255.0 #so that values are in the range 0-255
H = convolve (I, K)

plt.figure () ;plt.subplot(l,2,1); plt.imshow(I,cmap="'gray') 100

plt.subplot(l,2,2); plt.imshow (H,vmin=-0.05,vmax=+0.05,cmap = 'gray')

print (f"sizes of images are: {I.shape} and {H.shape}") 200 =54
300
400
500

https://github.com/foxtrotmike/CS909/blob/master/learn filters.ipynb

Data Mining
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But what’s the fun in that?

import torch

import torch.nn as nn

import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np

class Filter (nn.Module) :
def init (self,K):
super (Filter, self). init ()
K = torch.from numpy (K).float ()
self.K = K.unsqueeze (0) .unsqueeze (0) #convert image to NCHW from HW by adding two
extra dimensions in the beginning
def forward(self, x):
return F.conv2d(x, self.K) #this is the convolution of the kernel
def  repr (self):
return f"Convolution filter of dimensions: {self.K.shape}"

plt.close('all'")

from skimage import data

X = data.camera()/255.0;

plt.subplot(1l,2,1); plt.imshow (X,cmap='gray')

K = np.array([[(0 ,1, 0],11,-4,11, [0, 1 ,0]11)/4.0

X torch = torch.from numpy (X).float ().unsqueeze (0).unsqueeze (0) #convert image to NCHW from
HW by adding two extra dimensions in the beginning

#move image to torch

f = Filter (K)

#set the kernel in Filter object

Z torch = f(X torch)

#convolution

7Z = Z torch.squeeze () .detach () .numpy ()

#move back to numpy

plt.subplot(l,2,2); plt.imshow(Z,vmin=-0.05,vmax=+0.05,cmap = 'gray')
print (f)

print (f"sizes of images are: {X.shape} and {Z.shape}l")

https://github.com/foxtrotmike/CS909/blob/master/learn filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch conv.py

100

200

300

400

500

0 100 200 300 400 500

100
200
300

400

500
0 200 400
University of Warwick

74


https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_conv.py

Now the interesting question

* Can we learn filters to do something we want to do?
— Let’s say we have an image and it’s output after a certain operation
— Can we learn a filter that produces the output given the input?

IR A"

i WHERE'S |,
k. zf' ~ WALDO? %

¥ SOCIAL DISTANCING EDITION §

“w m‘.,

Filter?
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Example

e Let’s say, we have an image and we want to design a filter that
when convolved with the image leads to the desired output.
How?

Input Image Target Image

10
15
20
25

30
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How can this be done?

e Let’s try to build a multi-layer perceptron
— Input image size: (32,32)
* This means the number of input neurons will be 1024
— Target image size: (32,32)
* This means the number of output neurons will be 1024

— Number of weights:
 1024*1024 = 1,048,576

— Add hidden layers!
— Good luck! N

20

Input Image

5

25

30

0 10 20 30 " X 10 20 30

§ H
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Let’s try to learn a 3x3 filter

* Representation

m=1 n=1

H=I1xK H(,j) = z Zl(i+k,j+l)K(k,l)
k=—11=-1

* Evaluation
M N
E@) =) ) (HG) = TGD)’
k=11=1
* Optimization

— Solve the following problem: mKin E(K)

Input Image Target Image

5

10

15

20

25

30

0 10 20 30 K
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Let’s solve this

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
class Filter(nn.Module) :
def init (self, ksize = 3):
super (Filter, self). init ()
self.convl = nn.Conv2d (1,1, ksize) #torch allows creating a convolution filter using a conv2d layer object which applies
conv2d internally for a given input
def forward(self, x):
x = self.convl (x) #perform convolution
X torch.tanh (x) #apply activation
return x
# let's use a convolution filter of size ksize
ksize = 3
bsize = int(ksize/2) #size of broder region
f = Filter (ksize)
optimizer = torch.optim.Adam(f.parameters (), lr=le-2)
T torch = torch.from numpy (T [bsize:-bsize,bsize:-bsize]).float()# reduce target filter size to compensate for border loss in
convolution
X torch = torch.from numpy(X).float().unsqueeze (0).unsqueeze (0) #convert image to NCHW from HW by adding two extra dimensions in
the beginning
L = 1]
for in range(1000):
optimizer.zero grad() #optimization
Z torch = f (X torch) .squeeze()
loss = torch.sum(torch.abs ((T torch-Z torch)**2)) #error
loss.backward ()
optimizer.step ()
L.append(loss.item())

output = Z torch.squeeze () .detach () .numpy ()
output = (output-np.min (output))/ (np.max (output)-np.min (output)) f#rescale so that the lowest value in the input image is 0 and the

highest is 1 so we can threshold it . . . .
https://github.com/foxtrotmike/CS909/blob/master/learn filters.ipynb
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Results

loss function

Log loss

T T T T T T
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learned filter
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0.000
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https://github.com/foxtrotmike/CS909/blob/master/learn filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/learn filters.py
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Another way of looking at this

 We learned a convolution filter kernel based on an input and a
target image

* The filter will act as a + detector when convolved with a new
image (hopefully!)

IR A"

e WHERE'S |,
k. zf' i WAI.DO? ;.

J‘, SOCIAL DISTANCING EDITION §
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Most basic convolutional neural network

Output
Input Filter (Feature Map) Target
Update \
\
=== Error

e Acts as a “detection” or “feature extraction” unit
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Classification with Multilayer Perceptron

Input Hidden Layer Output

Layer @ Layer

Target
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Representation N

REO for a convolution neural network
Detector

Input Filter Feature Map Pooled Flattened Output Target

%
_,. B .
\
\
\
\
\
\

\
Input: a k-dimensional tensor x Update  \

* k=1:signal of length n \
* k=2:(grayscale) image of size [ X w

— RGBchannelimage: L X w X 3
* k=3:1Xw Xt video of frame size [ X w with duration t

Output: A decision score y = f(x; @) (can be multi-dimensional as well)
Structure

* Layers of Learnable filters each of which is correlated (or convolved) with the input tensor in parallel followed by convolution with other filters

— Asingle convolution is indicated by z = a(x * 8) where 8 is the representation of a single filter and a(+) is an activation function. Filters are much smaller than x.
— Implemented as layers: Convld, Conv2d, Conv3d (in PyTorch)

* The correlation output is then pooled (optional)
* Nonlinear activation functions are applied
* Aggregated to produce the final output (depending upon application

Data Mining University of Warwick
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Feature Map

\ Filters Pooled filters Pooled Flattened
N sl 4 4
\\ A Output Target
A
*||\ |
\\ A 1
\ I I
\ : :
\ I :
\ I '
\ ' I v
N e e e e e e e e e oo I |
————————————————————— Loss
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Convolutional Neural Networks for ML

* |f we want to use the output of
convolution filters for learning to
classify or regress or rank or for any
other task

— We can use a multilayer perceptron but:

* We will need to “flatten” the output of the
correlation filter (aka feature/filter map)

— Convert an image to a vector e.g., (8x8 to 64)
* We will also need to reduce the dimensions
of the output
— Done through “Pooling”
» Average or max
— And/Or “Striding”
» How we move the convolution filter

Data Mining

Flattening

max pooling
20|30

12

20

30

/112 37

12

34

70

37

average pooling

112

100

25

13| 8

79| 20

5 x 5 Output Volume

2x2 Output Volume

-
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Stride: 1

Stride: 3
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Structure

* Increasing “globality”
— Input - Convolution - Single depth slice

Non-linearity - Sub- x| : : : -
sampling ... =& Fully 31 1 0 s a
Connected Layer (for HE - -
classification) Y
C1: feature maps Mk maps16@10x1so4.f ps 16@5x5
INPUT : v (1. maps X
32x32 i, gé 1f.4r;11afs rr rr ?go layer Fsa;layer ?BJTPUT
e
[
I Fullconrl»ection | Gatlxssian connections

Convolutions Subsampling Convolutions Subsampling Full connection
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See Coding

* https://github.com/foxtrotmike/CS909/blob/master/learn filters.ipynb
* https://github.com/foxtrotmike/CS909/blob/master/cnn mnist pytorch.ipynb
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* Average
* Max
* Adaptive Pooling

Pooling

— Produces a fixed (specified) sized output
despite the size of the input by changing
the window size adaptively

— Allows us to have convolutional neural
networks take arbitrary image sizes as

input
* nn.AdaptiveMaxPool2d
* nn.AdaptiveAvgPool2d

* Learnable pooling

pool = nn.AdaptiveAvgPool2d(3)
input = torch.randn (1, 64, 8, 8)
output = pool (input)

print (output.shape) #3, 3

input = torch.randn(l, 64, 6, 6)
output = pool (input)

print (output.shape) #3,3

“Learning Pooling for Convolutional Neural Network.” Neurocomputing 224 (February 8, 2017): 96—-104.

https://doi.org/10.1016/j.neucom.2016.10.049.

Data Mining

Pool Window

Pool
Window

Output
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Why do CNNs work?

 There are three major reasons why CNN’s work better than
fully connected MLPs

— Local weight connectivity

* In contrast to a fully connected neural network like a multilayer perceptron, a
filter in a CNN operates over an image at the local level

— Shared weights
* No separate weights for each pixel

— Hierarchical representations
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Filter 1

1§0[0|0]0
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Shared weights

Even less parameters!
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Deep Learning: Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Low-Level Mid-Level
Feature Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Data Mining

High-Level
Feature

Trainable
Jdassifier
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[ConvNetJS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

Description

This demo trains a Convolutional Neural Network on the CIFAR-10 dataset in your browser, with nothing but
Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94%
(not perfect as the dataset can be a bit ambiguous). | used this python script to parse the original files (python
version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping
and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we
don't have to worry about changing learning rates or momentum over time. However, | still included the text fields
for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

input (32x32x3)
max activation: 0.34313, min: -0.49608
max gradient: 0.04754, min: -0.0368

Activations:

conv (32x32x16)

filter size 5x5x3, stride 1
max activation: 1.42613, min: -1.28123
max gradient: 0.03521, min: -0.03962
parameters: 16x5x5x3+16 = 1216

Activations:

SN - Oo
- HONE - =
¥

Activation Gradients:

Weights:
FRYNEEAAEEEONREEE
Weight Gradients:

L LLTbl Ll T T LA ]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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RISK MINIMIZATION AND GENERALIZATION
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Risk Minimization in Neural Networks

e Structural Risk

— Empirical Error Minimization via Loss minimization

— Regularization

Data Mining University of Warwick
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Important Concepts

* Differences from fully connected nets
— 3D volume of neurons
— Local connectivity
— Shared weights
* Hyper-parameter
Number of filters
Filter shape (receptive field)
Pooling type and shape
Regularization

Dropout

Early Stopping

Data Augmentation
Early Stopping
Norm constraints
L1/L2 regularization

— Use performance over a validation set
to pick hyperparameters

Data Mining

Original

Flip

Rotation

Random crop

- Image without

any modification

- Flipped with respect
to an axis for which
the meaning of the
image is preserved

- Rotation with

a slight angle

- Simulates incorrect
horizon calibration

- Random focus
on one part of
the image

- Several random
crops can be

done in a row

Color shift

Noise addition

Information loss

Contrast change

S

[

- Nuances of RGB
is slightly changed
- Captures noise
that can occur
with light exposure

- Addition of noise
- More tolerance to
quality variation of

inputs

- Parts of image
ignored
- Mimics potential

loss of parts of image

- Luminosity changes
- Controls difference
in exposition due

to time of day

F 3
Error

Validation

Training

-

early stopping

Epochs
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Regularization Mechanisms

* L2 penalty to weights
— Weight_decay parameter
e sgd = torch.optim.SGD([w_torch], Ir=Ir, weight_decay=0.9)
* Handling vanishing (or exploding) gradients
— Pre-training (old!)
— Layerwise training
— Drop-out nn.Dropout(0.5)
— Batch Normalization nn.BatchNorm2d(6)

— Normalization free architectures with weight and gradient clipping
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Understanding Drop-out in training

 “Dropout: A Simple Way to Prevent Neural Networks from Overfitting” by Srivastava
et al., 2014.

— Randomly drop units (along with their connections) from the neural network during training
— Average weights across all “thinned” networks

— Replaces explicit regularization and produces faster learning

at
7

\\\"w
P\
e
A

\

N

(A 25 ;‘.; \\‘h\\\
409090 o
NSNS 225,
SRR
SARIERIIAN

G
7

(a) Standard Neural Net

Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:

An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.
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Effect of Dropout

6.1.1 MNIST
Method Unit Architecture Error
Type %

Standard Neural Net (Simard et al., 2003) Logistic 2 layers, 800 units 1.60
SVM Gaussian kernel NA NA 1.40
Dropout NN Logistic 3 layers, 1024 units 1.35
Dropout NN ReLU 3 layers, 1024 units 1.25
Dropout NN + max-norm constraint ReLU 3 layers, 1024 units 1.06
Dropout NN + max-norm constraint ReLU 3 layers, 2048 units 1.04
Dropout NN + max-norm constraint ReLU 2 layers, 4096 units 1.01
Dropout NN + max-norm constraint ReLLU 2 layers, 8192 units 0.95
Dropout NN 4+ max-norm constraint (Goodfellow Masxout 2 layers, ('5 x 240) 0.94
et al., 2013) units

DBN + finetuning (Hinton and Salakhutdinov, 2006) Logistic 500-500-2000 1.18
DBM + finetuning (Salakhutdinov and Hinton, 2009) Logistic 500-500-2000 0.96
DBN + dropout finetuning Logistic 500-500-2000 0.92
DBM + dropout finetuning Logistic 500-500-2000 0.79

Data Mining
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Does drop out help with overfitting and underfitting?

without dropout

«— whole-dataset gradient ~«— mini-batch gradient =~ 4 gradient error

Figure 1. Dropout in early training helps the model produce
mini-batch gradient directions that are more consistent and aligned
with the overall gradient of the entire dataset.

Dropout Reduces Underfitting

Zhuang Liu ' Zhigiu Xu "> Joseph Jin> Zhigiang Shen® Trevor Darrell >

Abstract

Introduced by Hinton et al. in 2012, dropout has
stood the test of time as a regularizer for pre-
venting overfitting in neural networks. In this
study, we demonstrate that dropout can also mit-
igate underfitting when used at the start of train-
ing. During the early phase, we find dropout re-
duces the directional variance of gradients across
mini-batches and helps align the mini-batch gra-
dients with the entire dataset’s gradient. This
helps counteract the stochasticity of SGD and
limit the influence of individual batches on model
training. Our findings lead us to a solution for
improving performance in underfitting models -
early dropout: dropout is applied only during
the initial phases of training, and turned off af-
terwards. Models equipped with early dropout
achieve lower final training loss compared to their
counterparts without dropout. Additionally, we
explore a symmetric technique for regularizing
overfitting models - late dropout, where dropout
is not used in the early iterations and is only
activated later in training. Experiments on Im-
ageNet and various vision tasks demonstrate that
our methods consistently improve generalization
accuracy. Our results encourage more research on
understanding regularization in deep learning and
our methods can be useful tools for future neural
network training, especially in the era of large
data. Code is available at https://github.
com/facebookresearch/dropout.

tially reduce its overfitting, which played a critical role in
its victory at the ILSVRC 2012 competition. Without the
invention of dropout, the advancements we currently see in
deep learning might have been delayed by years.

Dropout has since become widely adopted as a regular-
izer to mitigate overfitting in neural networks. It randomly
deactivates each neuron with probability p, preventing dif-
ferent features from co-adapting with each other (Hinton
et al., 2012; Srivastava et al., 2014). After applying dropout,
training loss typically increases, while test error decreases,
narrowing the model’s generalization gap.

Deep learning evolves at an incredible speed. Novel tech-
niques and architectures are continuously introduced, appli-
cations expand, benchmarks shift, and even convolution can
be gone (Dosovitskiy et al., 2021) — but dropout has stayed.
It continues to function in the latest Al achievements, in-
cluding AlphaFold’s protein structure prediction (Jumper
etal., 2021), and DALL-E 2’s image generation (Ramesh
et al., 2022), demonstrating its versatility and effectiveness.

Despite the sustained popularity of dropout, its strength,
represented by the drop rate p, has generally been decreasing
over the years. In the original dropout work (Hinton et al.,
2012), a default drop rate of 0.5 was used. However, lower
drop rates, such as 0.1, have been frequently adopted in
recent years. Examples include training BERT (Devlin et al.,
2018) and Vision Transformers (Dosovitskiy et al., 2021).

The primary driver for this trend is the exploding growth
of available training data, making it increasingly difficult
to overfit. In addition, advancements in data augmentation
techniques (Zhang et al., 2018; Cubuk et al., 2020) and

University of Warwick
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Dropout in testing: MCDropout

1

* Quantifying uncertainty in Bty ey () ~

neural network predictions

T
Z?*(X*,WL e WE)

t=1

. Consider a model with L layers with the
— Use drop-out at test time and weights of each obtained through a drop-

out in T trials

average the results (and compute
error bounds)

20 T T T T T T
2 i 1 5 ! ()
o | | 13 < SEUBLBS
0 MAANAAMNNANNANV NAAANV VY g N ! ’ g.\\vésai‘«,f)‘i"
_sl ; i _g WW\/V\/\/\/\/\/\/V\/\/V\/\/\/V\/\/V‘ ,4}'4‘5"‘4%&\45\
Zief 1 -10} : //*”/‘\3&’%‘&.
-20 . . . L ) i | -15} . [
-1 0 1 2 3 x  —20 ! ] ] 1 ) AW, N N
' L 0 ! 2 3 NRRISALTK
(a) Standard dropout with weight averaging (b) Gaussian process with SE covariance function "b’f)‘%ﬁ\ﬁg
20 . , , . . 20 ) 4?)"35‘}’\\‘\"#&
151 I 4 15} i . \
10 o 5 10 = 1 .
0 W S ! ]
or i | PV 1 (a) Standard Neural Net
-10} f 4-10} 2 1
-15} ) 41-15} . . .
-20 : ; . L : 20 L . L - L Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
-1 - L 5 3 -1 0 ! 2 3 An example of a thinned net produced by applying dropout to the network on the left.
(c) MC dropout with ReLLU non-linearities (d) MC dropout with TanH non-linearities

Crossed units have been dropped.

Figure 2. Predictive mean and uncertainties on the Mauna Loa CO- concentrations dataset, for various models. In red is the

observed function (left of the dashed blue line); in blue is the predictive mean plus/minus two standard deviations (8 for fig. 2d). Gal, Yarin, and Zoubin Ghahramani. “Dropout as a Bayesian Approximation: Representing
Different shades of blue represent half a standard deviation. Marked with a dashed red line is a point far away from the data: standard Model Uncertainty in Deep Learning.” arXiv, October 4, 2016.

dropout confidently predicts an insensible value for the point; the other models predict insensible values as well but with the additional https://doi.org/10.48550/arXiv.1506.02142.

information that the models are uncertain about their predictions. University of Warwick 103
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Understanding Batch-Normalization

Given a batch of N examples, each dimension
of each example is normalized to zero mean
and unit variance

Minimizes “covariate shift”

— achange in the distribution of a function’s
domain

— Input changes and now the function cannot
deal with it

— Layer to layer changes

Accelerates learning by preventing learning
stalls

Important Note: Keep batch norm parameter
learning active only in training

Input: Values of . over a mini-batch: B = {x1. m};
Parameters to be learned: ~,

Output: {-y.i = BNT,IB(LE’E)}

m

1
B — — E €T
m

1=1

1 i
o — — Z(J-‘i — up)?

m =

1=1

. i — [IB

i < \/W

yi 75+ 8= BN, 5(z)

|

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167v3, 2015.

https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html

Data Mining
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Effect of Batch Normalization

0.8

best of w/ BN

dCCuracy

- = = Inception
----- BN-Baseline
veroas BN=x5
BN-x30
-+ 4+ BN-x5-Sigmoid
4 Steps to match Inception

5M 10M 15M

Data Mining

20M 25M som  Ler.

Figure taken from [S. loffe & C. Szegedy]
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* See:

https://github.com/foxtrotmike/CS909/blob/master/xornet ba

Batch Normalization Coding

tch normalization.ipynb

e Compare the distributions of data before and after batch normalization:
Better range of data after batch normalization

— Both positive and negative values in outputs

Layer-1 BN 0
Layer-1 BN 0 Out

Input
put

0.0 T T T T T
-1.0 —0.5 0.0 0.5 1.0 0.0 '
Data Mining
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What can you do with just training batch norm parameters?

o O W VO
R N W B

Test Accuracy (%)

o W
O O

14 32 56 110 218 434 866
CIFAR-10 ResNet

=== Al| Parameters Trainable

=== Al|l Parameters Trainable (y and 8 Disabled)

Data Mining

Published as a conference paper at ICLR 2021

TRAINING BATCHNORM AND ONLY BATCHNORM:
ON THE EXPRESSIVE POWER OF RANDOM FEATURES
IN CNNs

Jonathan Frankle* David J. Schwab Ari S. Morcos
MIT CSAIL CUNY Graduate Center, ITS Facebook Al Research
jfrankle@mit.edu Facebook Al Research arimorcos@fb.com

dschwab@fb.com

ABSTRACT

A wide variety of deep learning techniques from style transfer to multitask learning
rely on training affine transformations of features. Most prominent among these
is the popular feature normalization technique BatchNorm, which normalizes
activations and then subsequently applies a learned affine transform. In this paper,
we aim to understand the role and expressive power of affine parameters used to
transform features in this way. To isolate the contribution of these parameters from
that of the learned features they transform, we investigate the performance achieved
when training only these parameters in BatchNorm and freezing all weights at
their random initializations. Doing so leads to surprisingly high performance
considering the significant limitations that this style of training imposes. For
example, sufficiently deep ResNets reach 82% (CIFAR-10) and 32% (ImageNet,
top-5) accuracy in this configuration, far higher than when training an equivalent
number of randomly chosen parameters elsewhere in the network. BatchNorm
achieves this performance in part by naturally learning to disable around a third of
the random features. Not only do these results highlight the expressive power of
affine parameters in deep learning, but—in a broader sense—they characterize the
expressive power of neural networks constructed simply by shifting and rescaling
random features.
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What can you do without batch normalization?

e Batch normalization requires a sufficient
large batch size to allow effective
estimation of mean and variance of each
batch which can be a problem for large
input data or low memory machines

High-Performance Large-Scale Image Recognition Without
Normalization

Andrew Brock, Soham De, Samuel L. Smith, Karen Simonyan

Batch normalization is a key component of most image classification models, but it has many undesirable properties
stemming from its dependence on the batch size and interactions between examples. Although recent work has
succeeded in training deep ResNets without normalization layers, these models do not match the test accuracies of
the best batch-normalized networks, and are often unstable for large learning rates or strong data augmentations. In
this work, we develop an adaptive gradient clipping technique which overcomes these instabilities, and design a
significantly improved class of Normalizer-Free ResNets. Our smaller models match the test accuracy of an
EfficientNet-B7 on ImageNet while being up to 8.7x faster to train, and our largest models attain a new state-of-the-
art top-1 accuracy of 86.5%. In addition, Normalizer-Free models attain significantly better performance than their
batch-normalized counterparts when finetuning on ImageNet after large-scale pre-training on a dataset of 300 million
labeled images, with our best models obtaining an accuracy of 89.2%. Our code is available at this https URL

deepmind-research/tree/master/nfnets
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Figure 1. ImageNet Validation Accuracy vs Training Latency.
All numbers are single-model, single crop. Our NFNet-F1 model
achieves comparable accuracy to an EffNet-B7 while being 8.7 %
faster to train. Our NFNet-F5 model has similar training latency to
EffNet-B7, but achieves a state-of-the-art 86.0% top-1 accuracy
on ImageNet. We further improve on this using Sharpness Aware
Minimization (Foret et al., 2021) to achieve 86.5% top-1 accuracy.
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Data Augmentation

Image Data

Augmentation

Basic Image Deep Learning
Manipulations Approaches

Color Space

Kernel Filters Transformations

A

GAN Data

Geometric Adversarial Training Neural Style Transfer Augmentation

Mixing Images

Transformations

—_— -
Meta Learning
Neural Augmentation AutoAugment Smart Augmentation

Shorten, Connor, and Taghi M. Khoshgoftaar. “A Survey on Image Data Augmentation for Deep
Learning.” Journal of Big Data 6, no. 1 (July 6, 2019): 60. https://doi.org/10.1186/s40537-019-0197-

Data Mining

image classification

person re-ID

Table 1 Results of Taylor and Nitschke’s Data Augmentation experiments on Caltech101

[63]
Top-1 accuracy (%) Top-5 accuracy (%)

Baseline 48.134+042 64.50£0.65
Flipping 4973+£1.13 67.36+138
Rotating 50.80£0.63 6941£048
Cropping 61.95+1.01 79.10+0.80

Color Jittering 49.57£053 67.18+£042

Edge Enhancement 49294 1.16 66.49 + 0.84

Fancy PCA 49414£084 6754+ 1.01



https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0

Data Augmentation

MixUp
# v1, y2 should be one-hot vectors ERM mixup
for (x1, vyl), (x2, y2) in zip(loaderl, loaderZ2): codd
XY ..- “-" ...-
lam = numpy.random.beta (alpha, alpha) £ ‘n £ o~ o
o o | "
x = Variable(lam + x1 + (1. — lam) * x2) g »% e
& . e = .
y = Variable(lam » yl + (1. — lam) =* y2) - s ] ¥ s
Ly [
optimizer.zero_grad/() u'.'.'._-.g-' : “-.'.-._-4-' ‘
loss (net (x .backward
_ (. (x), ¥) Q (b) Effect of mixup (¢ = 1) on a
optimizer.step () toy problem. Green: Class 0. Or-

ange: Class 1. Blue shading indicates

(a) One epoch of mixup training in PyTorch. ply = 1|z).

Figure 1: llustration of mixup, which converges to ERM as o« — 0.

Libraries

https://pytorch.org/vision/stable/transforms.html
https://albumentations.ai/
https://kornia.readthedocs.io/en/latest/augmentation.html

Data Mining

Zhang, Hongyi, Moustapha Cisse, Yann N. Dauphin, and David
Lopez-Paz. “Mixup: Beyond Empirical Risk Minimization.” arXiy,
April 27, 2018. https://doi.org/10.48550/arXiv.1710.09412.

Linear Methods

University of Warwick
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What is my model doing? What is my model learning?

* Interpretability

— Interpret why a certain model is producing a
certain output for a given input

— “What is the model doing?”
* Explainable

— Explaining the “behavior” of the model or “What
is the model learnin?”

Original (label: "garter snake") Saliency maps Grad * Input Integrated Gradients

* Model Agnostic Methods
* Permutation Feature Invariance
e LIME Analysis
e SHAP Analysis

° FOr CNNS . 7 DeepLIFT (Rescale) ;1 e-LRP Occlusion-10x10
— Pixel Attribution (Saliency Maps) i
* Score-CAM £
* Grad-CAM T el =¥ a-f
— Testing with Concept Activation Vectors (TCAV) %
— DeepSHAP =l

Great Resource on interpretable machine learning:
https://christophm.gi

https://github.com/marcoancona/DeepExplain
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Famous CNN
* LeNet (Le Cunn 1990, 1998)

Canv Sarnpling Sa mp| %
20 50 -
p-

RBF 500x10

* AlexNet

* VGGI19 f{:;l S sampin Cony
* Inception

e Xception

e EfficientNet

Sampl
31:3
256 384
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Transfer Learning and Fine Tuning

Task 1

* Use a pretrained network for one
taSk | Data1 46 Model1 —»[E

* Keep the convolutional layers fixed

Conventional ML
(froze n) Task 2
° l ,
Freezing layers =3
— for param in vgg.features.parameters/(): '
param.requires grad = False

* Transfer Learning: Train the last Task 1

layers (fully connected) for your E \

task and/or add more layers as | pa vead H—{ predtons |

needed /

* Fine tuning: MOdlfy the Welghts of Knowledge transfer [ Transfer Learning
a few convolutional layers too

l Data2 Model1 Predictions2
https://pytorch.org/tutorials/beginner/transfer learning tutorial.html

https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6#
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Detector / Automated Feature Extractor

Feature Map
_ Pooled Filters
x Filters A X
\ *|_/ \\ ¢
\ A | Pooled Output Target
\
\
- K LS o y
| L1
kN 1
\ A A ' |
\ \ : |
\\ \ I |
\ \ : I
\ \ I I
\ \\ : | 4
Frozen R e T g R — - - Loss

We can choose which layers to freeze depending upon the application and the level of similarity between tasks
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Advanced: Adapters

* Generalize the concept of transfer learning

Figure 1: Visual Decathlon. We explore deep architectures that can learn 51multaneously different
tasks from very different visual domains. We experiment with ten representative ones: (a) Aircraft, (b)
CIFAR-100, (c) Daimler Pedestrians, (d) Describable Textures, (e) German Traffic Signs, (f) ILSVRC
(ImageNet) 2012, (g) VGG-Flowers, (h) OmniGlot, (i) SVHN, (j) UCF101 Dynamic Images.

! / ’ ’

w1 (af,af) of (af ,al) w2 (a3, ay) ay (a3, ab)

| do, | At |
- SN K '&-[BN]-—{ 1) |-

* S

Figure 2: Residual adapter modules. The figure shows a standard residual module with the inclusion
of adapter modules (in blue). The filter coefficients (w;, ws) are domain-agnostic and contains the
vast majority of the model parameters; («v;, cvo) contain instead a small number of domain-specific
parameters.

Rebuffi, Sylvestre-Alvise, Hakan Bilen, and Andrea Vedaldi. “Learning Multiple Visual Domains with Residual Adapters.” arXiv, November 27, 2017.
https://doi.org/10.48550/arXiv.1705.08045.
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Predicting Hurricane Intensities

116

Output (1)

Hidden units
64

Hidden units
512

Pooling (3 x 3)

Feature maps
stride =1

128@3x 3

Conv_6 (3 x3)
kernel

Feature maps
128@7 x7

Pooling (3 x 3)
stride=1

Feature maps
128@9x9

=X
o
]
S
']
(-]
)
=
(7]
1
Q
2
[
=2

Feature maps

Conv_5(3x3)
128@19 x 19

kernel

Feature maps

64@21 x 21 Pooling (3 x 3)

stride =1

ard Pass

TN LR

Conv_4 (3 x3)
kernel

Feature maps
b4@23 x 23

B PHURIE m Deep-PHURIE

Bacl
Dackw

Forward pass

Feature maps
64@25 x 25

Pooling (3x 3)
stride =1

Feature maps

64@51 x 51 Conv_3(3x3)

kernel

PHURIE vs Deep-PHURIE Comparisions

Feature maps

64@53 x 53 Pooling (3 x 3)

stride = 2

Feature maps

64@107 x 107 Conv_2 (3 x3)

kernel

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Mean

Feature maps © < ~ o (<] © < o~ o
32@109 x 109 Pooling (5 x 5) — — - -~
stride = 2
ISNY
A4
32@220x 220
kernel

Input image

* Deep-PHURIE
//link.springer.com/article/10.1007/s00521-019-04410-7

https



https://link.springer.com/article/10.1007/s00521-019-04410-7

Deep-PHURIE Robustness Analysis

0
0
25
25
RMSE VS PIXEL SHIFT (r) 50
2 $- PHURIE » 50
28 | —§- DEEP-PHURE I —— 5 7
7 e 100
¥ 100
% -
25 - 125 o
2 prasl 150
- 150
- 175
21 175
200
21 = 200
20
= i
18 4
17 . .
16
15 A ,x' 25 25
1 0 &
i -3
B J‘J ’..J'-
738 WU SN S (S N N A AN — - 5 75
1 eI = s oo Woomont n i ¥ 100 100
——"*--‘
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Activation Maps for Deep PHURIE
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Types of Neural Networks

* “Fully Connected”/Dense Feed Forward Backpropagation multi-
layer perceptrons

e Convolutional neural networks

e Residual Neural networks
* Recurrent neural networks
e Auto-encoders

* Adversarial Networks

* Transformers

 Graph Neural Networks
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A mostly complete chart of

o NEUral Networks ...

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org .
N/AN
A YAN

http://www.asinovinstitute.org/neural-network-zoo/
()

D
e 9,
S X

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF) )
%
R/
/0

@ Hidden Cell a - o _/ “\VM
© Probablistic Hidden Cell » - - B

/\ Noisy Input Cell

\
X\

. Spiking Hidden Cell

. Output Cell

‘ Match Input Output Cell

. Recurrent Cell

© wemory ceu Auto Encoder (AE) ~ Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
. Different Memory Cell ) A

—~

—

Kernel
X

\V " “' "‘
RRR
A

-

e

y

AN 0

Convolution or Pool

>

£
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Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

/3

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

O Backfed Input Cell

O Backfed Input Ce Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
~ Input Cell

g Noisy Input Cell

N NN N
@ Hidden Cell 'ﬁ"“‘"‘"’“"{“"

9,
© Probablistic Hidden Cell ‘X';‘X';‘X""{';‘X"‘
@ spiking Hidden Cell

. Output Cell

. Match Input Output Cell

. Recurrent Cell am e
. Memory Cell o
. Different Memory Cell e -

" Kernel

Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)

6 Convolution or Pool
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NETWORKS WITH SKIP CONNECTIONS
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Spectrum of Depth

— 5 layers: easy

» >10 layers: initialization, Batch Normalization

—» >30 layers: skip connections

—» >100 layers: identity skip connections
>1000 layers: ?

shallower deeper
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Increasing Depth (10-100 Layers)

 What if we keep on stacking layers?

— 56-layer net has higher training error and test error than 20-layer net

CIFAR-10
train error (%)

56-layer

20-layer

o0 [ 2 3 4 5 6
iter. (1e4)

20r

]

test error (%)

uyer

20-layer

0

1

2

3 3 3 5
iter. (1e4)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for

Image Recognition”. CVPR 2016

Data Mining

University of Warwick
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Simply Stacking Layers?

* “Overly deep” plain nets have higher training error

* A general phenomenon, observed in many datasets
* Reasons

— Optimization failure

CIFAR-10 ImageNet-1000

w

[l SRR ""':":f"l‘:"l'."‘"“rﬁ"“"'“"“'"""""""""""""""“'“'"""“"“""'""'“"“'"""""""'

/ 56-layer
i & 32-layer

Tall -"'J'-ﬂ-}m_q
o

: lain-18
solid: test/val — lin 34 18-layer
iter. (led) dashed:train 0 10 20 30 40 50

Data Mining
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Residual Learning: skip connections

Plain Network Residual Network
X l x
weight layer weight layer
any two l I | |
stacked layers l relu F(x) identity
: ' X
weight layer weight layer

H(x)=F(x)+x

|
H() l relu

H(x) is any desired mapping H(x) is any desired mapping
Hope the 2 weight layers fit H(x) Hope the 2 weight layers fit F(x)

The network learns fluctuations F(x)=H(x)-x
Easier!

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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ResNet Models

* No Dropout

 With Batch
Normalization

* Use Data
Augmentation

plain net

7x7 conv, 64, /2

I

7x7 conv, 64, /2 |

pool, /2 poal, /2
| 3x3 conv, 64 | | 3x3 conv, 64 |
¥ h 2
[ 3aconves | | 3x3conv, 64
4
3x3conv, 64| [ 33conv,ea |
A1 ¥
I 3x3 conv, 64 | | 3x3 conv, 64 J
¥
[ 3aconv,6s | [ 3x3conv,64
¥ ¥
[ 33conv,64 | | 3x3conv,64
[ 2, el

3x3 conv, 128, /2

¥ Y
[ 3x3conv, 128 ] [ 33conv128 | .
. 2
| 3x3 conv, 128 | | 3x3 conv, 128
¥

3x3 conv, 128

3x3 conv, 128

3x%3 conv, 128

3x3 conv, 128

¥
| 3x3 conv, 128 | ‘ 3x3 conv,
¥ \

3x3 conv, 128

3x3 conv,

3x3 conv, 256, /2

¥

3x3 conv, 256

3x3 conv, 256

3x3 conv,

¥
I 3x3 conv, 256 | | 3x3 conv,
I 3x3 conv, 256 | I 3x3 conv,
| 3x3 conv, 256 | | 3x3 conv,
¥

3x3 conv, 256

3x3 cony,

h 2

3x3 conv, 256

3x3 conv,

I 3x3 conv, 256 | | 3x3 conv,
I 3x3 conv, 256 I I 3x3 conv,
¥

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

¥

3x3 conv, 512, /2

| 2

3x3 conv, 512

I 3x3 conv, 512 ] [ 3x3 conv, 512
¥ A
[ 3x3 conv, 512 ] { 3x3 conv, 512
¥
[ 33conv512 | [ 3x3cony,512
¥ ¥
[ 3x3conv,512 | [ 3x3conv, 512
A\
avg pool avg pool
[ fc 1000 ] [ fc 1000 ]

ResNet
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A residual/skip block in code

class ResidualBlock (nn.Module) :
def  init (self, in channels, out channels, stride=1, downsample=None) :

super (ResidualBlock, self). i1init ()
self.convl = nn.Conv2d(in channels, out channels, kernel size=3, stride=stride, padding=1l, bias=False)
self.bnl = nn.BatchNorm2d(out channels)
self.relu = nn.RelLU(inplace=True)
self.convZ2 = nn.Conv2d(out channels, out channels, kernel size=3, stride=1, padding=1l, bias=False)
self.bn2 = nn.BatchNorm2d (out channels)
self.downsample = downsample

def forward(self, x):
residual = x
out = self.convl (x) X
out = self.bnl (out)
out = self.relu(out)
out = self.conv2 (out) WEight |ayer
out = self.bn2 (out)
# downsample only if dimensions of x and F(x) don’t match F(x) - lrE|u
if self.downsample:

residual = self.downsample (x) Wreightlayer

out += residual
out = self.relu(out)
return out

identity
X

H(x)=F(x)+x

Strongly recommended: How to use a minimalistic residual network for MNIST Classification
https://github.com/foxtrotmike/C5909/blob/master/resnet_mnist.ipynb
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CIFAR-10 plain nets

CIFAR-10 ResNets
20 20-- (
A ResNet-20
Y-/ ResNet-32
56-layer — ResNot.44
— ResNet-56
44-|aye r . — Reshet 114 |
< k 20- r
S 32-layer £ O-laye
= 10| i~ 10~ ‘\ _
g 20-layer 2 e 32-layer
NN A 44-layer
L - et KA LA O
5 "}“?“'i N 5 A § 56-layer
plain-3] — s . b
—_Plain-i ¢ solid: test s 110-layer
plain- . , , , , . --‘ng"_._ "y .
% 1 2 3 4 5 6 dashed: train % 1 2 3 4 5 6
iter. (le4) iter. (1ed)
ImageNet plain nets ImageNet ResNets
34-layer o ob e 18-layer
30 ey R
n s500a: tes i R S .
lain-18 . ResNet-18 e “
_21:::_34 dashed: train 18-'3?‘9[‘ — ResNet.34 v 34-'3?9['
= 10 20 30 40 50 =0 10 20 30 40 50
iter. (led) iter. (led)
°

Deep ResNets can be trained without difficulties

Deeper ResNets have lower training error, and also lower test error

Data Mining
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* Deeper ResNets have lower error 7.4
this model has .

lower time complexity
than VGG-16/19 6.7

4

5.7

=]

(%3}

ResNet-152 ResNet-101 ResNet-50 ResNet-34
10-crop testing, top-5 val error (%)
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ImageNet experiments 28.2
[152 Iayers] '

\ 16.4

\ 11.7
l 22 Iayers ‘ 19 Iayers

ILSVRC'15  ILSVRC'14  ILSVRC'14 ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

3.57

ImageNet Classification top-5 error (%)
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ResNet Results

e 1st places in all five main tracks

e ImageNet Classification: “Ultra-deep” 152-layer nets

e ImageNet Detection: 16% better than 2nd

e ImageNet Localization: 27% better than 2nd
e COCO Detection: 11% better than 2nd

e COCO Segmentation: 12% better than 2nd

* Can also concatenate outputs rather thgn

S u m hix)"? l
Hidden layer: Wi
— ResNeXT ol |
Hidden layer: w

hix)'

Data Mining

Hidden layer: W,/

hix)™ l

Hidden layer: W/

hix)" E—\

T

&

!

hix)

hix)'

University of Warwick

hix)" 5\\\
/ \'\
Path / / \ Path
Hidden layer: W31 |**®| Hidden layer: W,/
he) ' |
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Reasons for adding skip connections

* Making gradients flow more easily

m p p
Av;; = axif’(vfx) z Wikl tk = f <z ijf(”]Tx)) f (2 ijf(”f")) X
k=1 Jj=0 j=0

— If you work out the weight update equation for the neural
network with skip connections, it will have fewer multiplicative
terms of gradients thus reducing the chances of gradient based
problems

* Making information flow more easily

— Directly Preserving information learned in earlier layers

* Have a regularization effect

Oyedotun, Oyebade K., Kassem Al Ismaeil, and Djamila Aouada. “Training Very Deep Neural Networks: Rethinking the Role of Skip Connections.”
Neurocomputing 441 (June 21, 2021): 105-17. https://doi.org/10.1016/j.neucom.2021.02.004.
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U-Net for Segmentation

64 64
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input
ime?ge > NN output
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YOLO

Convolution
Residual Architecture

Reversible function to allow preservation
information

Programmable gradient information

Performance on MS COCO Object Detection Dataset
56 RT DETR:
ImageNet pretrained SOTA.

—

o—YOLOV9 (Ours) —e—GELAN (Ours)

wh
'S

th

'S
@

=
a

)CO Object Detection AP (%)

L g
=

YOLO MS PPYOLOE [74 ——YOLOv5r7.0 [14]
&~ Depth-wis¢ cpnv: ion SOTA.
o4l YOLOV6 v3 .0 [30] YOLOV7 [63]
Z;
/'4() ——YOLOvS8 [15] —-—DAMO YOLO [75]

- ——Gold YOLO [61] ——RTMDet [44]

——RT DETR [43] ——YOLO MS [7]
36
0 10 20 30 40 50 60 70 80 90 100

Number of Parameters (M)

Figure 1. Comparisons of the real-time object detecors on MS
COCO dataset. The GELAN and PGI-based object detection
method surpassed all previous train-from-scratch methods in terms
of object detection performance. In terms of accuracy, the new
method outperforms RT DETR [43] pre-trained with a large
dataset, and it also outperforms depth-wise convolution-based de-
sign YOLO MS [7] in terms of parameters utilization.

Wang, Chien-Yao, |.-Hau Yeh, and Hong-Yuan Mark Liao. “YOLOV9: Learning What You Want
to Learn Using Programmable Gradient Information.” arXiv, February 21, 2024.
https://doi.org/10.48550/arXiv.2402.13616.
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Residual Networks

* Required Reading

* Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for
Image Recognition”. CVPR 2016.

 Many third-party implementations

— list in https://github.com/KaimingHe/deep-residual-networks

— Torch ResNet:
https://github.com/pytorch/examples/tree/master/imagenet

— Transfer Learning with ResNet:
https://www.pluralsight.com/guides/introduction-to-resnet

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.
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TRANSFORMERS
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Transformers

* Very useful and popular architecture for vision tasks though originally built for natural language processing

* Use “attention mechanism” to integrate information from different components of an input in a weighted
manner to produce an output representation for the input that can be passed to predictor to generate

predictions
Pre-I;ﬁz:ion C|;—:SSilf(ier Classification | Start ‘ Text | Extract H——{ Transformer H Linear |
Layer Norm Entailment | Start ‘ Premise | Delim | Hypothesis | Extract ‘+| Transformer H Linear |
Start Text 1 Delim Text 2 Extract Transformer
reed o Similarity | | | | | ‘:_bl )
12x | Start ‘ Text 2 | Delim | Text 1 | Extract ‘ +| Transformer
Layer Norm i
Maske!d o | Start ‘ Context | Delim | Answer 1 | Extract ‘_+| Transformer H Linear
Self Attention -
i Multiple Choice | Start ‘ Context | Delim | Answer 2 | Extract ‘_ﬁ Transformer H Linear
Text & Position Embed | Start ‘ Context | Delim | Answer N | Extract ‘7ﬂ Transformer H Linear

Figure from the Generative Pre-trained Transformer (GPT) paper
Radford, Alec, et al (OpenAl). “Improving Language Understanding by Generative Pre-Training,” 2018.

Convolutional neural networks still dominate computer vision

Neural Net Architectures for Computer Vision

h _

EfficientNet is the most popular pretrained architecture
for computer vision

Pre-Trained Model Families for Computer Vision

EfficientNet

3 3 d c 2 g
‘s 2 3 z 5 3
PR g g 3 ]

https://twitter.com/rasbt/status/1634564282535878661/photo/1
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Background

e Transformations: T (x; 8) Input After Applying transformation

 Akernel k(a, b) is a generalized dot-product or a way of

— Explicitly transform a point to a different feature space 4 Xy N
quantifying the degree of similarity between two examples or PR S

___T_—_ moTTTmToes _’
objects .. !
— If we can change the definition of how similar (or distant) two things 1 i O
are (by switching to a different kernel), this results in a folding of the | 'xm @ | T (x3) () T (x2)
feature space which is the same effect as we would achieve from an v T(xm) v

explicit transformation of the feature space

Kemel ____________________|Transform (for 2D Input

Polynomial degree 2: k(a, b) = (aTb)2 (Homogeneous) p(w) = [ L@ ﬁu(l)u(z)]T
Polynomial degree 2: k(a, b) = (a’b + 1)2 pw) = [1 V2u® V2u® 2 @2 \/Eu(l)u(Z)]T
RBF Kernel: k(a, b) = exp(—y|la — b||?) Infinite dimensional (depending upon hyperpameter y > 0

See: https://en.wikipedia.org/wiki/Radial basis function kernel

For Review see notes on Kernels in SVMs
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Feature Detection or Representation Building

Filter Feature Map Pooled Flattened Output Target

Convolutional
Neural Network

NN

Optimus Prime  Optimus Prime
Build Patch Transformer

Bumblebee Bumblebee
o . ” - - . \] J
Embedding Encoding via Predictor ;azz ;azz
Representation Attention Blocks Ironhide Ironhide
dr: Ratchet Ratchet
Sy={x;€R%i=1..n}
Output —  Target
Weilght _ [oss
— Feature Embedding: What is it? Update
x; = ¢(fity) €

Positional Embedding: Where is it?

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al. “An Image Is Worth 16x16
Words: Transformers for Image Recognition at Scale.” arXiv, June 3, 2021. https://doi.org/10.48550/arXiv.2010.11929.
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(Vision) Transformers (for classification)

Optimus Optimus
Build Patch Transformer Bumblebee Bumblebee
“" 4] ”n = = . \] \]
Embedding Encoding via Predictor Lo L
Representation Attention Blocks Ironhide Ironhide
S, ={x; € Rdli =1..n} Ratchet Ratchet
x — l —_— aen
Output —  Target
Weight
xX: = ¢(f t-) Feature Embedding: What is it? Update Loss
L L "7 positional Embedding: Where is it?
Building an integrated
representation of how
components form the overall
object
v, v, .
Optimus Optimus
A transformer that can transform into Build Token/Word Transformer Bumblebee Bumblebee
“ . ” . . . Jazz Jazz
a yellow car is called : Embedding Encoding via Predictor : :
Representation Attention Blocks Ironhide Ironhide
T S, ={x; € Rd|i =1..n} Ratchet Ratchet
x — l —_— aen
. Feature Embedding: What is it? Output —  Target
Xi = ¢(fir ti) Positional Embedding: Where is it? \\ \\ \ ;
S e e e Nl _ > _weignt _ Loss
Update
. (NLP) Transformers (for next word prediction)
Simplest: ¢(f, £;) = fi + ¢
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What is attention and why do you need it?

[Submitted on 12 Jun 2017 (v1), last revised 6 Dec 2017 (this version, v5)]

Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, lllia Polosukhin

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an
encoder-decoder configuration. The best performing models also connect the encoder and decoder through an
attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention
mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks

show these models to be superior in quality while being more parallelizable and requiring significantly less time to
train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the
existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our
model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs,
a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes
well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

We are going to have a no gobbledygook introduction to attention (using the paper below)!

Tsai, Yao-Hung Hubert, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhutdinov. “Transformer
Dissection: A Unified Understanding of Transformer’s Attention via the Lens of Kernel.” ArXiv:1908.11775 [Cs, Stat],
November 11, 2019. http://arxiv.org/abs/1908.11775.
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General Attention Building Blocks

Transformation Learnable “attention” kernel

A: R4 - R¥

dq
xq € R v(x) € RY AL k(xq, xx) € Rxo
Attention Layer %), € R4 >
v: R4 » R k:R% x R4 - R,

How similar are Xq and

Let 5|mpl|fy and understand transformers X relative to similarity of x, to
(Masked out) all tokens

k(xq1 xk; ek)
) k(xq, X! Bk)

Xy = Alxg M(xq,S6)i0) = ) aliq e M(xq,Sy,), 61) v 6,) = v(x; 0,)

X1
xKEM (xq,Sx xkE€M(xq,Sx k'eM(xq,Sx;,
Input: ( k) ( k)
A “query” token x, € R% representation of a component (patch or token) which will be transformed. In turn, all tokens will take the role of the query token in classical attention.
A set of “key” tokens Sxk = {x4, X3, ..., Xm }. Can come from a different source (e.g., as in cross-attention).
Output:

x(’l € RY Transformed representation of x; which is based on the transformed representations of other tokens and the degree of association of x, to those other tokens
Attention Parameters
* A “value” or transformation function v(x): R¢ — R® that produces a vector for a given token (For simplicity, assume, d = d’)
* A “Masking” function M(xq,Sxk) which gives a subset of tokens from S, to which a given query can be compared, e.g., text upto a certain point. For simplicity, assume, for all x, M(xq,Sxk) =S¢
* A “kernel” function k(x;, x;) that gives us the association between two tokens. Used to determine the attention scores that tell us how associated are x, and x, relative to similarity of x, to all tokens
* Different formulations for k(x;, x;), M(xq, Sxk) and v(x) give you different flavours of attentions. Learnable parameters denoted by 6.
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Input and defining After transformation/value Output of Attention
attention scores function v(x)

xl 4 xz T 4

v(xq). v(xl) v(xq)i v(xl)

attention values

-------- » A (xq; M(xq,Sxk)) = Z gV (Xr)

x€M(xq,5x, )

k(xq,x4)

O i Xm ®

P @ v(x2)
V(X 2
U(X3) ( 2) v(x3) k(x ,xk)
Legend: v(xXm) — q
. L m v Aqk
All circles are Points in Sy, Zxk, M(xgsx,) k(xq,xk/)
€ )
Filled circles are in M(xq,Sxk) and will be used in the layer The new representation of the token (indicated by star) is based on the FaSxk
Note that points in M(x,, Sy, ) will change depending upon x, Note change in space (blue “pulls” (attention values agy) of different points on the query token or

to red dotted arrows and

the weighted combination of all transformed points.
shifting of the points)

This process can be applied for all tokens in the input one by one so if
there are n tokens in the input, there would be n tokens in the output
(with transformed representation).

Thickness of solid lines indicates attention scores a4 € [0,1]
which is a obtained by dividing k(x,, x; ) by the sum of all kernel
values involving x,.

* Input: e Output:

“« ” d .
— A“query” token x,; € R® representation of a component (patch or token) — A new representation for the query token (patch)

— Asetof “key” tokens Sy,

. I . .
Attention Parameters xg = A(xg; M(xg, 5x,); )
; . pd d’ : o
— Avalue fuimctlo_n v(x):R% - R% that produces a vector for a given token (For simplicity, — a(xq’ Xy} ea) v(xk; ev)
assume, d =d' =d,)
— A “Masking” function M(xq,Sxk) which gives a subset of tokens from S, to which a xkEM(xq'Sxk)
given query can be compared (For simplicity, assume, for all x4, M(xg, Sy, ) = S;) k(xq, Xp; gk)
—  Akernel function k(x;, x;) that can give us a degree of similarity between two tokens = z k(x X 0 ) V(xki 017)
y XK/
—  Different formulations for k(x;, x;), M(xq,Sxk) and v(x) give you different flavours of xkEM(xq.Sxk) xk’EM(xq,Sxk) QK Tk

attentions but once chosen they remain the same for a given attention block
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Non-learnable attention

k(x,,x;,:0
Xq = A(xq;M(xQ’SXk); 9) = 2 a(xq,xk; Ha) v(xy; 0,) = Z 5 ( 1 lf(x k)x 0 )v(xk; 0,)
xkEM(xq,Sxk) xkEM(xq,Sxk) xk’EM(xquxk) @k Tk

Note that if we pick a fixed k(xq,xk) and v(xy,), such as:

. k(xq,xk; Hk) = exp (—92||xq — xk”z)

k(xg,x1)

- v(xk; Hv) = Xk Y
" This leads to the following expression which expresses x,, . )Cz
in terms of other points in M(xq,Sxk). This is similar, in O

concept, to locally linear embeddings.

2
exp (—0?%||x, — x
Xq = z ( ” 1 k” ) Xy = Z softmax(—BZ”xq —xk”z) Xk

—02||x. — 2)
xkEM(xq,Sxk)Zxk’EM(xq,sxk) exp( 0 ”xq Xk/“ xkEM(xq»Sxk)
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Learnable Attention as (asymmetric, non-Mercer) kernel transformations

Xy = A(igM(xg Sy ) 0) = )

a(xq,xk; Ha) v(xy; 0,) =

X

 We can introduce learnable parameters

— We can learn which input tokens should associate

more with other tokens to produce a representation

that when passed to the predictor should produce

the target output

— For example, “Attention Is All You Need” paper uses
the following functions with three learnable weight

matrices W, Wy and W,,

Dot Product
A

[

1

k(xq, X)) = exp (\/_E (quq, kak)> 7(@): = YK e

v(xy) = x, W,
xq = A(xg; M(xq, Sy, ); 0)

|

e’

d
quRq

xkERd

Z k(xq, Xk, Bk)

https://en.wikipedia.org/wiki/
Softmax_function

Data Mining

»
»

10
)k(Xq,xkr; Ok) v(xk V)

k(xq, xk) € Ry
_’

x € R? v(x) € RY

k:R% x R% - R, ,
v: R% - R4

Xg=A (xq; M(xq,Sxk)) =

exp (\/%(xqwq,kak))

xkEM(xq,Sxk) Zxk’eM(xq 5 ) exp(\/%(xqwq,xkr Wk))
Ak

softmax (\/iE

1

Vd

quq(kak)T) x W, =
softmax ( qKT) 1%

University of Warwick 145


https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function

Output of a single attention layer

Feature Transformation
via attention !

X '
«---@---1----F > > €----——-- 2 GabhELE >
(shown for a single token as a
scatter plot but this is applied to
each point in the input)

Build Patch
“Embedding” Attention Laye >
Representation
e N R s e ] Y
> S
o &
(\5\ ,5{.\0 o : \((\Q/ (\\\"b \(‘Q‘(\
= | | ! (QQ’ 7@ RG2S
Lo | . ! RS ) ¥ &
qy 4 l F~L | | n tokens Representation of n tokens G&Q@‘;@e}‘& At°ta|°f:;zl;":2:)(sma” grid @Q&e?c
(small grid squares) & :
in output
— Feature Embedding: What is it?
x; = ¢(fi, t; 1 X
l ¢(fl' l) Positional Embedding: Where is it? X1 | ' 2 T
® v(xg) v(x1)
1 “« ” q 1
| Learnable O ‘
:
I
1

X |
i m vitm)
Note that the representation of each patch (or token) at the output of attention is dependent upon the

representation of all other patches in a end-to-end learnable manner so that when this representation is used for a
prediction task, the loss is minimized
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Attention gives transformations

 Another way of looking at an attention operation

Learnable “attention” values

k(xg,
A (xq;M(xq,Sxk)) = Z 5 (xq xk) v(xy) = Z a(xg, X W) v(xy; W)

k(x X )

X Ak

xkEM(xq;Sxk) K'eM(xq.Sxy) K Xk ESxy, _
Learnable data transformation

e But a classic neural network layer also “learns” to “transform”
F(x;0) = activation(8 4y 3Xax1)

* Where is the extra information coming from?

— From comparing against all tokens and using a supervisory signal to learn the
transform

— Weight sharing across all patches is still there like in a convolutional neural
network
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d-dimensional Patch
“Embedding”

Representation of n
tokens

N |
| HE NN |

A total of n tokens (small grid b@Q‘
squares) in output

Multi-headed Attention

Attention Head 1

Attention Head 2

Attention Head M

A total of n tokens (small
grid squares) in output

Data Mining

ojeusaleduo)

(M x d") dimensional representation of each token

A total of n tokens (small
grid squares) in output

9.
(T
>
(o
-
Q
<
®
ﬂ

A total of n tokens (small
grid squares) in output
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What happens at the end of the Training phase?

* We learn
— [For NLP] The representation or | B = a
embedding of different tokens only in - | .
reference to representations of other ~ “i. -

tokens

— The association between different
tokens

— How to transform different tokens

v = W

https://github.com/jessevig/bertviz
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Key Components

Transformers

 Multiple Multi-headed Attention Class Label .,
A L x Layers
Blocks 1 ) \
* Layer Normalization | Classifier +)— —
. . FC (fully connected layer)
— standardization across features of the 2 MLP | = 7
same input t . g

Transformer Encoder

* Skip Connections  Layer Nom (LN | £SOM

e Various types of positional (aas) Jotien (+)e L :Jmask
ncodin P e

€ COd gs Multi-Head Self ]H ]%

Linear Embedding (E)

* “Class” tokens At (MAY

=
)
Z
=

Scaled Dot-Product Attention 4 r_,L?

— Add global features to each example to ”;,; \%W/\ 17 ; 1 PlIEgy NNy r P 1
enable global sharing of information R LS o Y m 9 KV unear |1 (‘unear - ['unear | § B
across examples A . \\ Layer Norm (LN) ’ ] l ‘ ’

. . Flattening $ a . | (d)
° Masklng strategles -

— Needed for training in sentence ]( Zo
completion or related problems where / (b) ©
the next work cannot be used for ‘Z‘
generating the output .

 Computational Complexity (a)

— As we compare each token against My PyTorch tutorial: https://github.com/foxtrotmike/CS909/blob/master/mnist_transformer.ipynb
every other, transformers can be quite Another Tutorial: https://medium.com/mlearning-ai/vision-transformers-from-scratch-pytorch-a-step-by-step-guide-96¢3313c2e0c
complex Figure from : Bazi, Yakoub, Laila Bashmal, Mohamad M. Al Rahhal, Reham Al Dayil, and Naif Al Ajlan. “Vision Transformers for Remote

. Sensing Image Classification.” Remote Sensing 13, no. 3 (January 2021): 516. https://doi.org/10.3390/rs13030516.
— Performer archltectur.es ) Krzysztof, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, et al. “Rethinking Attention with
* Uses kerhe| approximation to reduce Performers.” arXiv, November 19, 2022. https://doi.org/10.48550/arXiv.2009.14794
complexity Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al. “An
Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale.” arXiv, June 3, 2021.
https://doi.org/10.48550/arXiv.2010.11929.
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How is an attention layer used in Chat-GPT?

 GPTs are essentially sophisticated auto-complete
mechanisms

— Predict next word
* Training Principle
* Taken each “document” as a set of tokens: S, =

{xl, X2y ey xm}
1. Take a single next-word prediction task from the
document (see bold text on the right)

a. For each token in the input, apply the attention layers
to a single token

i. Take a single “query” token x, in the input for which we want to
generate a representation

ii. For the given “example” input, mask the next token, i.e., set

M(xq,Sxk) to be a subset of only those tokens that are available

How Does
How does Chat
How does Chat GPT
How does Chat GPT Work

... all setences in the internet corpus ...

as inputs , d’
iii.  Passx, and M(xq,Sxk) to the attention layer to generate x('l xq € qu xq ER
- Attention Layer
2.  Pass the updated representation through other
downstream layers until you generate the output GPT
probability of the target token
3. Maximize the probability of the target token while M(xq,Sxk) Sy, = {x1, %2, oo, X }
minimizing the probability of all other (non-target)
tokens .
https://github.com/karpathy/nanoGPT How Does Chat ﬂ(h\,,/xk?dr!ft)
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What do transformers see?

Understanding Robustness of Transformers for Image Classification

Do Vision Transformers See Like Convolutional

9 Srinadh Bhojanapalli*, Ayan Chakrabarti*, Daniel Glasner*, Daliang Li*, Thomas Unterthiner*, Andreas Veit*
Neural Networks? Google Resourch

{bsrinadh, ayanchakrab, dglasner, daliangli, unterthiner, aveit}@gooqle.com

Maithra Raghu Thomas Unterthiner Simon Kornblith
Google Research, Brain Team  Google Research, Brain Team  Google Research, Brain Team
maithrar@gmail.com unterthiner@google.com kornblith@google.com

Chiyuan Zhang Alexey Dosovitskiy
Google Research, Brain Team Google Research, Brain Team
chiyuan@google.com adosovitskiy@google.com

Abstract

Convolutional neural networks (CNNs) have so far been the de-facto model for
visual data. Recent work has shown that (Vision) Transformer models (ViT) can
achieve comparable or even superior performance on image classification tasks.
This raises a central question: how are Vision Transformers solving these tasks?
Are they acting like convolutional networks, or learning entirely different visual

representations? Analyzing the internal representation structure of ViTs and CNNs F lgure 1. Transfor mers Vvs. ResNets. Whlle they achieve simi-
on image classification benchmarks, we find striking differences between the two ar- - : >

chitectures, such as ViT having more uniform representations across all layers. We lar performance for 1mage ClaSSlﬁcatlon’ Transformer and ResNet
explore how these differences arise, finding crucial roles played by self-attention, architectures process their inputs very d iﬂ-‘erent]y. Shown here
which enables early aggregation of global information, and ViT residual connec- . ’

tions, which strongly propagate features from lower to higher layers. We study are adversarial perturbatlons Computed for a Transformer and a
the ramifications for spatial localization, demonstrating ViTs successfully preserve . : . . .

input spatial information, with noticeable effects from different classification meth- RCSNet mOdel, Wthh are qualltathely qute dlﬂ:erent-

ods. Finally, we study the effect of (pretraining) dataset scale on intermediate
features and transfer learning, and conclude with a discussion on connections to
new architectures such as the MLP-Mixer.
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Are convolutions and attention really necessary?

[Submitted on 12 Jun 2017 (v1), last revised 6 Dec 2017 (this version, v5)]

 MLP Mixer Paper: “In this paper we attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz

show that while convolutions and (== v
atte nt i O n a re b Ot h S u ffi C i e nt fo r The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an

encoder-decoder configuration. The best performing models also connect the encoder and decoder through an
attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention

go O d p e rfo r m a n Ce’ n e it h e r Of t h e m mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks

show these models to be superior in quality while being more parallelizable and requiring significantly less time to
train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the

14
a re n e C e S S a ry. existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our

model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs,
a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes

® g IVI L P : IIS e If_ a tte n t i O n i S n Ot C r i t i C a | well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
for Vision Transformers”

“Similar to fully-connected networks, the ViT architecture (and transformer

i Atte ntiO N Wlt h CO nVO| UtiO nm ay be architecture in general) lacks the inductive bias for spatial

invariance/equivariance that convolutional networks have. Consequently,

more u SEfU I @ ViTs require more data for pretraining to acquire useful "priors" from the
training data.” (S. Raschka)

https://twitter.com/rasbt/status/1636371712467177472

Tolstikhin, Ilya, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, et al. “MLP-Mixer: An All-MLP
Architecture for Vision.” arXiv, June 11, 2021. https://doi.org/10.48550/arXiv.2105.01601.
Liu, Hanxiao, Zihang Dai, David R. So, and Quoc V. Le. “Pay Attention to MLPs.” arXiv, June 1, 2021. https://doi.org/10.48550/arXiv.2105.08050.
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Using Transformers

* Hugging Face Transformers Library

— Examples: https://huggingface.co/docs/transformers/model doc/vit

— Tutorial notebook on finetuning:
https://github.com/NielsRogge/Transformers-
Tutorials/blob/master/VisionTransformer/Fine tuning the Vision Tr
ansformer on CIFAR 10 with the %FO%9F%A4%97 Trainer.ipynb
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Another way of thinking about GPTs

Modeling XOR as a “next token” problem or FSM or turing machine

Next “Target” | Target Probability

Token P(O) P(l)
1 0

0,0
0,1
1,0

GPT is becoming a Turing machine: Here are some ways to program it
Ana Jojic, Zhen Wang, Nebojsa Jojic 1r 1

S » B, O

0 1
0 1
1 0

We demonstrate that, through appropriate prompting, GPT-3 family of models can be triggered to perform iterative behaviours
necessary to execute (rather than just write or recall) programs that involve loops, including several popular algorithms found in
computer science curricula or software developer interviews. We trigger execution and description of Iterations by Regimenting Self-
Attention (IRSA) in one (or a combination) of three ways: 1) Using strong repetitive structure in an example of an execution path of a

P(0)

target program for one particular input, 2) Prompting with fragments of execution paths, and 3) Explicitly forbidding (skipping) self- >
attention to parts of the generated text. On a dynamic program execution, IRSA leads to larger accuracy gains than replacing the 00
model with the much more powerful GPT-4. IRSA has promising applications in education, as the prompts and responses resemble >

student assignments in data structures and algorithms classes. Our findings hold implications for evaluating LLMs, which typically P( 1)
target the in-context learning: We show that prompts that may not even cover one full task example can trigger algorithmic behaviour,
allowing solving problems previously thought of as hard for LLMs, such as logical puzzles. Consequently, prompt design plays an

even more critical role in LLM performance than previously recognized.

https://github.com/foxtrotmike/CS909/blob/master/gpt finite state.ipynb
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GRAPH NEURAL NETWORKS
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Graph Neural Networks

* The Need )
— Example WQ
e Classifying chemical compounds
— It is difficult to model arbitrary Cancer Drugs
input data structures with
SVMs, MLPs, CNNs and
Transformers Fi}@ @é a
* Images and text have “Linear Cosnne Hmf
Structure”
— Text is 1-dimensional @% @I@\ } }N\

Methylphenidate Meperidin Hydrocodone Oxycodor

— Image is 2-dimensional

— But each can be mapped onto a grid {@"j{ E’*g )\/@)Y

Aspirin

Other Drugs
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Graphs
* Graph Modelling

— Very flexible data structure

e Components of a graph

— Vertices/Node Set: V = {x{, x5, X3, X4}
import torch

 Each element of the set can have a vector from tor il R
descriptor of its properties e S = R, L & 2.

[1, @, 2, 1]], dtype=torch.long)

— Edge Set: E — {81'2, 61,3, 83'2, 63’4, 84'3} g V X V x = torch.tensor([[-1], [@], [1]], dtype=torch.float)
data = Data(x=x, edge_index=edge_index)
* Each element of the set can have a vector +>> Data(edge_index-[2, 41, x=[3, 11)

descriptor of its properties

331:()

https://en.wikipedia.org/wiki/Graph (discrete mathematics)
https://en.wikipedia.org/wiki/Adjacency matrix
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Examples of graphs

This is a graph Barbie

RERTTRIE o
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Graph Neural Networks

* Simple Graph Classification Example

— Node and edge level prediction problems also possible

C 1

H 0
xi=0=0
N 0

0

N
O\ Build
“Embedding” Graph Message

Predictor Cancer Drug Cancer Drug
0 Representation of Passing Layers Not Cancer Drug  Not Cancer Drug
1 each node and edge
g Output —  Target
0 \ \ *
\ Weight
————————————————————————— Todae — LoSs

Input: Graph consisting of
Node set: what are things (each node has feature representation)
Edge set: how are they connected (each edge can have a feature representation but, in the very least, it tells us what nodes are connected by an edge)
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How does a graph neural network layer work?

Just like any other neural network layer, the goal of a
graph layer is to transform the representation of the
input to a new representation in a learnable/trainable
fashion so that we can optimize the parameters in the
layer to reduce our loss or error function

Input: A Graph with node and edge level features

Output: A Graph with (transformed) node and edge
features

The GNN layer transforms the feature representation
of each node as follows:

— Where am I? Generate context for each input node

* Node pair transform: Transform features of each node
connected to an input node while taking pairwise edge
information into account (using a neural network)

» Aggregation: Aggregate information of neighbors of the node
to provide the local context in the form of a fixed dimensional
feature vector (max, sum, average, etc.)

— What should | become? Transform each node in the context
of its neighbors (using a neural network)
Each GNN layer thus incorporates information from
one hop away of each node thus multiple GNN layers
in series can be used to incorporate information from
multiple layers

Neighbor set
of node i

d@D NN )
Transform pairwise Aggregation
neighbor information Mechanism

https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create gnn.html

Data Mining

(1-1) Y NN l
® xi Transform_in context xg ) ®
Input feature folloys
representation ¥ Output feature
of node i representation
of node i
o _ -1 (-1 (-1
x =y® (xi  Djeniyd® (xi ' Xj 'ej,i))
University of Warwick 162
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Implementing Different Graph Neural Network Layers

N(©)
c
o 2
MO 5 0o
_ L 33
3 3
> -1) O
—1 )
= <
Z Neighbor set
o _ l (-1 (-1 (1-1)
Q) X = Z o0 (= |27 =)
- JEN(D)
(0]
| - Neighbor set of node i
Q
C
Q 5 =
o >
O 55
33
: 2
1-1) ()
X xl@ c 2
| -
/nputfeaturg Output feature _S- °>J.
represen.tat/on represen.tation (-1 O] 2 8
of node i of node i X; X; ©
l (1-1) -1 _(-1)
% =y® (xi  Djenp (xf )'xj 'ej,i))
xgl) = 1 - (Wx]+b)
https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create gnn.html jenufi) Vdeg(i) deg(j)
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Message Passing Based Graph Neural Networks

Edge e Incorporating extra information
Connectivity
& Features
G : Graph Message
: Passing Layer
Input Node i, Base x@
Features X : Net (GMPL)

Latent Node
Representations

|
|
£,(x) Node level I
g predictive scores I
Averaging I
across all nodes :
|

|

|

|

|

Conventional Methods
Simple Averaging of
Node predictions

in a graph

Skip-connected
Layer-wise
Graph-level Outputs

—-—e e e e e e e e e o -

Readout: Converting multi-level node level feature representation to a graph
level output F(G)

Graph Level Output

Code: https://tia-toolbox.readthedocs.io/en/latest/ notebooks/jnb/inference-pipelines/slide-graph.html
Fayyaz Minhas, Whole Slide Images Are Graphs, 2020. https://www.youtube.com/watch?v=0f1u0i7roS0.
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S
TR
=t L1

IGUANA

165



Gland Size

ick 166



167

] Lumen Shape Irregularity



J Vs, |
VPR o SR
O NS p

TN @
";\“’l—:“ ‘.A
7 »

S A
S
% T

s
J i A
!, o

[\ .’“\' X
\® 7 Al
XYY

\ A
\" ‘
v

¥

e il AVZ
LN/

[
\
‘__':1"4&' Vv};’\:’

168



=

b %
AR 1S S TR S 1)
NS TR W
ST Az AR A

"

DOACAN Y
2Nl

X W=
R

p<N

)

R SPTAEANY . :
N AT IR ST
Vo SRl VAN S e AR
V"/‘ ST OB ORIXN "/" \ R
S \v\" B'!”"@’%%'A"'éf(“!},'?‘ ""\\\\A §. 4\v§\\
Y % aZina\ "\ AN
fald'~ ) \

A\ N \> ‘

ick

169



Input WSIs

Tissue Region

IGUANA
prediction @

[ =)

F> Reduce
Gland-Graph workload
Graph Neural Network

Construction

! °
Explainability N
Node =
N
. Feature Decision
Graph Explanation I Explanation \ support tool

~
N

Clinically-Meaningful
Features

\. ¥ 4

.

Histological Edge Generation and
Segmentation Feature Extraction /

UHCW

Sensitivity

1.0

o
o

o
'S

0.2

0.0

= IGUANA: AUC-ROC = 0.9783 = 0.0036

— IDaRS: AUC-ROC = 0.9738 = 0.0035

= CLAM: AUC-ROC = 0.9658 + 0.0098
Gland RF: AUC-ROC = 0.9581 + 0.0011

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

% Reduction in Normal Slide Reviews (Specificity)

0.0 0.2 0.4 0.6 0.8 13
1-Specificity

0.0

0 0.97 0.98
Sensitivity

! Gland RF

IGUANA
IDaRsS
CLAM

0.99

Graham, Simon, Fayyaz Minhas, Mohsin Bilal, Mahmoud Ali, Yee Wah Tsang, Mark Eastwood, Noorul Wahab, et al. “Screening of Normal Endoscopic Large Bowel Biopsies with Interpretable
Graph Learning: A Retrospective Study.” Gut, May 12, 2023. https://doi.org/10.1136/gutjnl-2023-329512.
Demo: https://tiademos.dcs.warwick.ac.uk/bokeh app?demo=iguana
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Normal

Adenocarcinoma

GESV {® LC ®
GES {® GEO{ ®
GECV |® GD{®
GEO {® GESt1 ®
LM e ICD{ ®
LPPP (@ GECV | ®
LPNP {® LPPP | ®
LPLP |@ LPLP{®
GEOV {® LPCP | ®
LEOV {® GEOV | ®
0 0.5 0 0.5 1
LPEOP| ® GED{ ® ‘
GD | e GEC | ® "
GEO |® IcD{"®
cie GLD{"®
LPNP |® GES{ ®
GS (@ LPPP|{ ®
Mie B, M e
GESV (@ P ats X LEOV|®
GECV |® n LPCP{®
GEoD {® GEOV {®@
0 0.5 0 05 1

Contribution to being predicted as -

o

Contribution to being predicted as =

o

abnormal

abnormal
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Are Transformers (secretly) GNNs?

Assume

* We have a set of “nodes” Sy, and for a given “query” node x,, we have a

masking set set M(xq,SxK) (for simplicity assume M(xq, SxK) = Sxx)

= Each node is connected to all other nodes including itself (i.e., neighborhood

N(xq) = M(x4, Sx,)) (Fully Connected Graph)
Now consider a specific graph neural network layer in which
= y®(@b)=b

. qb(l) (xgl_l),xg_l), e]_’i) . (xgl_l),x](l_l); Ha) v (x(z—1); 0,

]
®]EN(C[)() - ZxkeM(xq,Sxk)(')
= Then the output of the GNN layer:
© o=y (x L@ ey (xgl_l)'xjgl_l)lef.i))
=  Becomes (with notation xgl_1)= Xq» x}l_l) = X, and xgl) = xg)

)a(xq,xk; Ba)v(xk; 0,)

J

[
" X = ZxkEM(xq,Sxk

=  Which is an attention layer (assuming position encoding is built into node

features)

= An attention layer is a special case of a GNN layer!

= Attention scores can be viewed as pairwise weights of edges between nodes

Data Mining

NG = it

Neighbor set
of node i

¢(l) NN - D

Transform pairwise Aggregation

neighbor information Mechanism

@
(1-1) y® NN ®
X : D
L Transform in context xi
Input features e
of node i Ve Output
) (1-1) (-1) _(-1) features
X, = ]/(l) (xi , GBjEN(i)(p(l) (xi ) Xj , ej,i)) of node i
N() = M(x,, Sy, )
Masking set
of token x,
2.
Aggregation
® Mechanism
Xq
Input

features of
query token

features of
Xg = Z a(xq, Xks Ga)v(xk; 0,) query token
xk€M(xg,5, ) University of Warwick 172



Reading on Graph Neural Networks

* Xu*, Keyulu, Weihua Hu*, Jure Leskovec, and Stefanie Jegelka. “How Powerful Are Graph Neural
Networks?,” 2023. https://openreview.net/forum?id=ryGs6iA5Km.

e Kanatsoulis, Charilaos I., and Alejandro Ribeiro. “Graph Neural Networks Are More Powerful Than We
Think.” arXiv, October 2, 2022. https://doi.org/10.48550/arXiv.2205.09801.

* Bronstein, Michael M., Joan Bruna, Taco Cohen, and Petar Velickovi¢. “Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges.” arXiv, May 2, 2021.
https://doi.org/10.48550/arXiv.2104.13478.

* http://web.stanford.edu/class/cs224w/
e Libraries

— PyTorch Geometric
— DGL
— Topological Neural Networks
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REO For Auto-Encoders

e Goal

— Get an embedding (usually a compressed encoding) of a data sample such that
the embedding can be used for reconstruction of data.

— Used for dimensionality reduction, feature extraction, compression, visualization
and generative learning

* Representation

— Input: x € R Output: Reconstruction X = D(E(x; 0g); 0p)
 Encoder E(x;0f): R —» R%E (Usually dp < d)
 Decode D(x’; 0g):R* — R“

* Evaluation:
— Mean Square Error Loss (Other losses such as KL Divergence etc)

. 1 . 1
* ming, o, +Xillxi — %il1* = - Xillx; — D(E(x; 6g); 0p) ||

* Optimization
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Unsupervised Learning - Autoencoders

L2 Loss function:

lz —2[* <

T

Reconstructed 7
input data
I Decoder
Features -
I Encoder
Input data T

Data Mining

Reconstructed data

ol i = I
2 BY R
Tl S P A
-EH: iRy

AutoEncoder

ut data

o N T
l!&h.ﬁ
| LR [
sl < N6

University of Warwick
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Autoencoder

Unsupervised approach for learning a lower-dimensional feature
representation from unlabelled training data

Usually <784
|:> NN |:> code NN |f‘>
Encoder — Decoder
28 X 28 = 784 Compact
representation of reconstruct the
the input object original object

Q: Why dimensionality reduction?

A: Want features to capture meaningful factors of variation in data

Data Mining

University of Warwick
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How to Train Autoencoders?

Train such that features can be used to reconstruct original data
“Autoencoding” — encoding itself
Equivalent to PCA*

Minimize (x — % )?

l As close as possible l
encode decode
X > C > X q
Wg Wy
hidden layer
Input layer (linear) output layer

Bottleneck later

Output of the hidden layer is the code

*Under the assumptions that the data is mean-centered and mean squared error is used as a loss function along with an orthogonality constraint Wy W, =1
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Refresher PCA: Reconstruction pea 1 1pca

 We know thatz = WT'x (assuming
X is centered) therefore

x=WT")"1z
=>X=Wysnz ~WW'H =1
 The reconstruction error is given by

N
Frec = ) || =«

* Another way ofl ir%terpreting PCA s Reconstruction Error
that it finds orthogonal direction
vectors such that after projecting
data onto to them, the
reconstruction error is minimal.

flatten
Original

Un-flatten
Reconstruction

min ||5el — xi|| sthwwT =1 See Tutorial: https://github.com/foxtrotmike/PCA-
W 4 Tutorial/blob/master/pca-lagrange.ipynb
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https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb

Deep Auto-encoder

e Of course, the auto-encoder can be deep

As close as possible

_ @)
= S
e

[®)
S 2
o -
= 2
® =

0

Reference: Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural
networks." Science 313.5786 (2006): 504-507
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“Latent Space” Representation

Tutorial Implementation: https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb
DEVEN T University of Warwick 181



https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb

Other types of autoencoders

* Vanilla Auto-encoder

* Denoising Auto-encoders

* Variational Auto-encoder (VAE)

e Vector-Quantized Variational Autoencoders (VQ-VAE)

Further notes: https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb
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GENERATIVE MACHINE LEARNING

Creating noise from data is easy; creating data from noise is generative modeling.*

[*] Song, Yang, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. “Score-Based Generative
Modeling through Stochastic Differential Equations.” arXiv, February 10, 2021. https://doi.org/10.48550/arXiv.2011.13456.
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Background: Introduction to Sampling

* Empirical distribution Modelling: Making a distribution from
observations (Density Estimation)
— Example:
e Observations: {H,T,H,T,H}
e P(H)=3/5=0.6, P(T) =2/5=0.4
* Shown as probability distribution (normalized histogram)

 Sampling from a distribution

— Assume you are given a probability distribution p(x), then if you “sample”
from it, you will be generating samples x which when observed will give

p(x)

H,T,H,T,T,H

you p(x)
— Example p(x)
e Given: P(H)=0.6,P(T)=0.4 > HTHHTHHHTTH
* Generated Samples: {H,T,H,T,H,T,H,H,T,H}
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Background: Generating samples

* Can we generate samples of a target distribution using
samples from a source distribution as input?

L — Z
: x~S(x) z~T(2) y
0 é b X = Dllloz | e I w Izll :.1%
x~U(a=0,b=1) z~N(u = 0.5,0 = 1)
X = np.random.rand(N) Z = np.random.randn(N)+0.5
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Background: Generating samples

* We can use inverse transform sampling

— But that requires the knowledge of the formula for both probability
distributions which may not be available for the target distribution

1.0 N=20
F(x)
0.8
1 S
m ........ T—. -
| — :
Input 0.4 N
Samples .
0 a b X . Z 01% 2.1% 2.1% 0.1%
XNU(a = O’b = 1) ° ul3cr u‘—Zcr uLo Iu u-‘m u-ero p+‘3cx
0.0
z~N(u =0.5,0=1
X = np.random.rand(N) (u ’ )
Output
Samples

0.0 0.2 0.4 0.6 0.8 1.0

https://en.wikipedia.org/wiki/Inverse transform sampling
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A generative look at Machine Learning

Learning Machine

Training input

Fundamental aim of a discriminative model

Fundamental aim of a Generative Model

Learn a model of p(y|x) from observations Learn a model of p(x) or p(x|y) from observations to generate
samples from random noise input

Training Samples Prediction Training Samples

.
o

> Discriminative Model
Label: 9 Label: 1 Label: 2 Label: 0

H (g H o
Label: 4 Label: 2 Label: 9 Label: 3 I t

EINC] P 2 9
Label: 1 Label: 1 Label: 7 Label:7

= VARRVIRENt ]
Label: 6 Label: 6 Label: 6 Label: 0

0 bl el &l O

Lex Fridman. Complete Statistical Theory of Learning (Vladimir Vapnik) | MIT Deep Learning Series, 2020.
https://www.youtube.com/watch?v=0w25mjFjSmg.

Data Mining

Generative Model

Generated Sample g,

Input

Random Noise
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Generating data with machine learning

* Can we generate examples that
follow the same distribution as a
given set of examples using noise
as input?

* Sampling from the multi-
dimensional distribution of data

e How?

— Density Modelling

* Modelling the Probability of observing
a given point p(x)

* Once | have an explicit or implicit p(x),
| can sample from that distribution to
generate an example

Data Mining
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Generating Data with Autoencoders

As close as possible

@)

o i

— N o _g
. —p = — =
) ® ) —
- - Q)
<

1))

=

@)
c
—t
O
c
—t
—
Q
<<
)
-

J9Ae7 1ndu|
J9AeT
9|109

0.1 }Q[ 0.2
—0.1 —0.2

Tutorial Implementation: https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb
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Generative Models

* Can we build a model to approximate a data distribution
from given examples?

. ," v : 4
|
Ve 7 -k Wl
2 ) it .

Real image (training data) ~ pg,.(X) Generated samples ™~ p,.,gei(X)

Want to learn p ., 40(X) similar to pg,..(X)
Density estimation: a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for p__,.,(X)
- Algorithms: Gaussian Mixture Models, Kernel Density Estimation, Variational Autoencoders
- Implicit density estimation: learn model that can sample from p_,.,(X) w/o explicitly defining it
- Algorithms: Vanilla autoencoder, Generative adversarial networks (GANs), Diffusion Models, Normalizing Flows

Data Mining https://openai.com/blog/generative-models/ University of Warwick
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A Simple Generative Machine Learning Example

* Nature
— A coin with p(x=H)=0.7 and p(x=T)=0.3
— Generates data Training Samples Generated Sample

> Generative Model
{H,H,H,T,T,H,T,H,HT}

* Given Data
— {H,H,H,T,T,H,T,H,H,T}
* Goal of Generative Learning

— Make a machine learning model that can generate data (heads or tails)
that follows the same distribution as data from the real world or natural
process.

— The difference between the probability distributions of real and generated
samples should be small

Input

Noise
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REO for Generative Models

Goal f(z:0)
e ) e : - Generated Sampl
(kﬁrz\gev\r:na set of real-world examples: x~p(x). p(x) is not explicitly Cenerative Model enerated Sample

— Learn parameters 6 of the model f(z; 0) so that the examples
generated by the model follow the same distribution as the real- Input
world examples x~p(x)
z~N(0,I)
Representation: x = f(z; 6) with z~Noise s A Ny L

V@2l E|

— Let’s denote the distribution of examples generated by this model

as g (x). J

— Note that the model may not have an explicit internal formula for
this distribution.

Evaluation:

— Differences between the probability distribution of x in nature
p(x) and of the generated samples py(x) from f(z; 0)

* Thatis, if | sample from p(x) or if | sample frompg (x), the real and
generated samples are similar

1 0

Optimization p_— training d )vﬁ ' ;
) o Real image (training data) ~ p(x Generated samples ~ pg (x)
— Use gradient descent to optimize for 6 p(x) is not given. pe (x) may be implicit.
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Generative Adversarial Networks

e Use “Adversarial Training” to train a generator and
discriminator simultaneously

* Generator: Generate samples from noise
* Discriminator: Detect “fake” or generated samples

Training set V Discriminator

i

—p
noise = I Fake

Generator /Fake image

Data Mining
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Adversarial Training in a GAN

* GAN Training the goal is to:

— Train the discriminator to be good at detecting fakes

* Simple classification: Discriminator should produce 1 for real and O

for generated

" minYyer [(D(%i;0p), 1) + Xz,-n LD (G(2); 66); 6p), 0)

— Train the generator to be so good that the discriminator

labels generated samples as “Rea

|II
The generator exploits the discriminator’s ability or knowledge to

distinguish between real and generated samples to its advantage

The generator is optimized such that the discriminator produces 1
for generated examples

min %,y [(D(G(2}; 66); 6p), 1)

OR equivalently, the generator is optimized such that the
discriminator generates errors in classifying generated examples
(note the max below)

max YN I(D(G(z;;0¢);0p),0)

= Can also add additional loss terms for quality/realism etc.

Data Mining

Generator

Random
Number
Generator

Label: 1

Real x;

Label: O

G(;0¢) | L/

/ —>»|D(+;0p) [

N
| S—

Minimization
Updates

Generated G(z;; 6¢)

Label: 1

G(;0¢) L/ / —>{D(-;0p)

\

Minimization Updates
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GAN Tutorial

Z€C Open in Colab

A Barebones GAN in PyTorch for generating coin flips

By Fayyaz Minhas

Let's consider a very simple coing toss as a process that generates coin flips with a probability of 0.3 of producing heads. We can describe the underlying probability
distribution for this generative process (coin toss) as p(z) where z € {H = 1,T = 0} is sampled from p(z), e, z — p(z). We would like to use a Generative Adversarial
Network (GAN) to model this process using a number of data samples or observations from the original process for training. Specifically, we would like to have a GAN with
such a generator that you (and its discriminator) wouldn't be able to tell if a series of coin tosses has been generated using the GAN or the underlying true process! In more
mathematical terms, we would like to train a generative model z = G(z; 8¢) that can generate samples x using Normally distributed random input (= -~ IN(0, 1)) such that
the probability distribution of these generated samples pe(z) is close to p(z) without knowing p(z) in advance or explicitly modelling pe(z).

Using a GAN is an overkill for this simple task and there are much simpler and more effective ways of modelling this simple problem. However, this GAN based solution is

intended to help you understand how GANs can model complex densities implicitly and can be used to generate samples that mimic the true or natural generative process.

We first simulate the coin toss and generate 1024 training samples below. The histogram shows the (sample estimate of) the true density.

wnn Histogram
A toy GAN to generate coin tosses 700 Tue
o 600
# Let's model the natural density and generate some data using that 500

% 400
import torch g 00
from torch import nn

200
import math 100
import matplotlib.pyplot as plt
import numpy as np 0 T 5 0 3 2
train_data_length = 1824 x
def cointoss(t): Example Data tensor([[e., ©., 8., ..., ©.,
phead = 6.3 1., 1.11)

ratiirn 1 A% (+

https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
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* Assume you are given B&W images for training
a GAN to generate more images like that.

&
* Let’s look at a single pixel location in each -
image &

4

— We have a distribution of pixel values across all
images at that location

 We would like our GAN to generate data according to
that distribution at that pixel location

* Naive idea: Have multiple GANs — one for each pixel
location

— Assumes each pixel is independent of the other N

— Computationally intensive 00

* We can train a single GAN to generate a multi- g
dimensional probability distribution by using a multi- o
output generator.
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Performance Assessment of Generative Models
Goal | Metrics

Measure difference in probability distribution of Earth Mover Distances

generated and real samples Maximum Mean Discrepancy
Kernel Inception Distance (KID)
Wasserstein Distance

Diversity: Evaluate whether the model can generate a Diversity Score
wide variety of outputs: Mode Score
Coverage: Measure how well the generated samples Coverage Score

cover the variety of the dataset

Stability and Robustness: Consistency of good results
Adversarial robustness measures

Quality Inception score
Fréchet Inception Distance and KID
Structural Similarity Index Measure
Learned Perceptual Image Patch Similarity (LPIPS)

Task Specific metrics NLP: BLEU, ROUGE
Drug Discovery: Quantitative Structure-Activity
Relationship (QSAR) Metrics
Subjective Assessment
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Unconditional vs Conditional Generation

* Unconditional Generative Modelling

— Simple model the probability distribution of the data p(x)
* Example: Generating images without paying any regard to the digit

Random Noise

Generative Model [EAES produces ;
Training '

Trained Model
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Unconditional vs Conditional Generation

* Conditional Generative Modelling
— Model the distribution p(x|y) of data x conditioned on a variable y

* Example: Generating images for a given digit

Class Labels
a5

Random Noise

3uluonipuod

Generative Mode

gives produces
I Trained Model ’

Training

conditioning
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GANs Applications

* GANs have some impressive applications

— Synthetic Image Generation Barebones GAN
https://github.com/foxtrotmike/CS909/blob/mas
— Speech Generation ter/simpleGAN.ipynb
. Raevskiy, Mikhail. “Write Your First Generative Adversarial Network
— |mage to |mage Translation Model on PyTorch.” Medium, August 31, 2020.

https://medium.com/dev-genius/write-your-first-generative-
adversarial-network-model-on-pytorch-7dcOc7c892c7.

— Style Transfer

Output

— Deep Fakes

Input labels

lan Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. https://arxiv.org/abs/1701.00160
https://github.com/eriklindernoren/PyTorch-GAN
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://affinelayer.com/pixsrv/
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https://medium.com/dev-genius/write-your-first-generative-adversarial-network-model-on-pytorch-7dc0c7c892c7
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https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb

The GAN Zoo

» Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
* C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

¢ GAN - Generative Adversarial Networks

* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling ¢ CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

* acGAN - Face Aging With Conditional Generative Adversarial Networks ¢ CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

» AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs « CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

« AdaGAN - AdaGAN: Boosting Generative Models ¢ DTN - Unsupervised Cross-Domain Image Generation

o AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets * DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

x : » DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
e AffGAN - Amortised MAP Inference for Image Super-resolution ; g ; , : <
* DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

» AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts . DtislSAN - DislGAN: Unstibeiaad Diial Leakring 1o¢ imsga-to-image Thanaldtion

* ALI - Adversarially Learned Inference » EBGAN - Energy-based Generative Adversarial Network

* AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization » f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery ¢ FF-GAN - Towards Large-Pose Face Frontalization in the Wild

» ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs » GAWWN:~Leashing Whatand Whese to Uraw

* GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
* Geometric GAN - Geometric GAN
¢ GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

e b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks

» Bayesian GAN - Deep and Hierarchical Implicit Models

* BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks « GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
» BiGAN - Adversarial Feature Learning « |AN - Neural Photo Editing with Introspective Adversarial Networks
« BS-GAN - Boundary-Seeking Generative Adversarial Networks » iGAN - Generative Visual Manipulation on the Natural Image Manifold

e CGAN - Conditional Generative Adversarial Nets ¢ IcGAN - Invertible Conditional GANs for image editing

" . . . . . . . * ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
¢ CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters 9 ¢ v

2 4 . « Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks o . . "

; : y ' - " < * InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks ¢ LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

* CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis
* CoGAN - Coupled Generative Adversarial Networks * LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo
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Text-to-Image Synthesis

This flower has small, round violet This flower has small, round violet
petals with a dark purple center I = petals with a dark puirple center
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Generator Network Discriminator Network

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, “Generative Adversarial Text-to-Image Synthesis”, ICML 2016
H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, D. Metaxas, “StackGAN: Text to Photo-realistic Image Synthesis with
Stacked Generative Adversarial Networks”, arXiv prepring, 2016

S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, H. Lee, “Learning What and Where to Draw”, NIPS 2016
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Text to Image — Results

Caption

Image

a pitcher is about to throw the ball to the batter

' n K m R
: e A . 2 P '\ ;

a group of people on skis stand in the snow

i [ e Y

a man in a wet suit riding a surfboard on a wave
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Image-to-image Translation

BW to Color

Labels to Facade

Labels to Street Scene

output

input ) output
i Aerial to Map x
: input output input
Edges to Photo
TQ
|‘I'-JIl h
;
A
[ ) 'l \
[ 1\:} k_ i
R I
|
|5
| n '
b
i \
output output input output

P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks”,

arXiv preprint, 2016
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Unpaired Transformation — Cycle GAN, Disco GAN

Transform an object from one domain to another without paired data

Do ain X

summer —» winter

winter —» summer

photo —»Monet

ck
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—————— —

Unknown / \
'Ihrblilence
Physical Scene —  Capturing —
Observed Measurements
Generator  — Differentiable ___| (a) Typical Observation (b) Lucky Frame
' ' Rendering
Slmjlated \lmulated Measurements ~ ‘
'I‘mbl:lence.
|
I .
______ A%ve_rs_anal — — — —+ Discriminator
Taiing (c) Mao et al. (d) Ours
- - e B - R . —
- P N—— —
(a) Typical (b) Lucky (c) Mao et al. (d) Ours-IN (e) Ours-DIP

Feng, Brandon Yushan, Mingyang Xie, and Christopher A. Metzler. “TurbuGAN: An Adversarial Learning Approach to Spatially-Varying Multiframe Blind
Deconvolution with Applications to Imaging Through Turbulence.” arXiv, August 22, 2022. https://doi.org/10.48550/arXiv.2203.06764.
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Diffusion Models

What is diffusion?

Time

)
High Entropy

Low Entropy

% O

Equilibrium

Low

Maxwell’s Demon

https://en.wikipedia.org/wiki/Maxwell%27s demon

Data Mining

Animate
Inanimate

William James Sidis

PREFACE

This work sets forth a theory which is speculative in
nature, there being no verifying experiments. It is based on
the idea of the reversibility of everything in time; that is,
that every type of process has its time-image, a
corresponding process which is its exact reverse with
respect to time. This accounts for all physical laws but
one, namely, the second law of thermodynamics. This law
has been found during the nineteenth century to be a
source of a great deal of difficulty. The eminent physicist,
Clerk-Maxwell, in the middle of the nineteenth century,
while giving a proof of that law, admitted that reversals
are possible by imagining a "sorting demon" who could
sort out the smaller particles, and separate the slower ones
from the faster ones. This second law of thermodynamics
brought in the idea of energy-level, of unavailable energy
(or "entropy" as it was called by Clausius) which was
constantly increasing.

University of Warwick
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Diffusion Models

* Main idea: Learn to reverse a “diffusion” process

Forward Process

q(x11x0) q(xelxe—1) q(xslxioq)

XT-1 XT

N/

p(xe—qlxe) p(er_qlxr)

Reverse Process

Tutorial: https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
Dhariwal, Prafulla, and Alex Nichol. “Diffusion Models Beat GANs on Image Synthesis.” arXiv, June 1, 2021. https://doi.org/10.48550/arXiv.2105.05233.
Nichol, Alex, and Prafulla Dhariwal. “Improved Denoising Diffusion Probabilistic Models.” arXiv, February 18, 2021. https://doi.org/10.48550/arXiv.2102.09672.
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Diffusion Models

Values

* Generation by learning to reverse entropy

*  Forward Process: Generate noisy signals
from data

— Data distribution gets gradually
converted to noise

* Reverse Process: Learn to denoise

— Using a neural network €g(x;,t) with
weights 68 which takes the noisy
data x; as input along with the time
step t (and possibly other
"conditioning" variables) to output an
estimate of the noise €; that has been
added to x, to generate x;. Thisis
achieved by solving the following
optimization problem:

Values

ming E¢ x.cl€r — €g(x¢, t)|?

* Generation: Once the neural network is
trained, we can generate data using:

x = xp — €g(xp, T) with x;~N(0,1)

* Can be improved by operating in a
compressed or latent space: Latent
diffusion

Forward Process

i

T T T T
14 16 15 20

T
22

T T T T
24 26 28 30
Timestep t

Reverse Process

334042444643

il

it

1111
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Original
sample
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T T
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N

T T T T
36 LU v 30

A\ 4

€;~Noise

Xt

Noisy

sample

Training

T
28
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Timestep t

xy~Noise

Simplest Diffusion Tutorial: https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
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SORA: Diffusion Transformer
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https://openai.com/research/video-generation-models-as-world-simulators
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Seeing without seeing

*  Takagi, Yu, and Shinji Nishimoto. “High-Resolution Image Reconstruction with Latent Diffusion Models from Human Brain Activity.” bioRxiv,
December 1, 2022. https://doi.org/10.1101/2022.11.18.517004.

Iz N— | Presented Images

Image

Presented Encoder Reconstructedi

Image 1 Image
/fé%’j Image
B J‘J Decoder

Reconstructed Images

Semantic /

Decoder Semantic
Vector
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Issues

* Deep Neural Networks are Easily Fooled
—  https://arxiv.org/abs/1412.1897v4
*  Failures of deep learning
—  https://arxiv.org/abs/1703.07950
* Tounderstand deep learning we need to understand kernel learning
—  https://arxiv.org/abs/1802.01396
* Understanding deep learning requires rethinking generalization
*  Steps toward deep kernel methods from infinite neural networks
—  https://arxiv.org/abs/1508.05133
* Do Deep Neural Networks Really Need to be Deep?
*  One pixel attack for fooling deep neural networks
—  https://www.youtube.com/watch?v=SA4YEAWVpbk
—  https://github.com/Hyperparticle/one-pixel-attack-keras
*  Adversarial Examples that Fool both Computer Vision and Time-Limited
Humans
*  Alchemy? https://www.youtube.com/watch?v=ORHFOnaEzPc
— Ali Rahimi

Data Mining
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The Rise of Vector Databases

* Flowise, langchain

Data source Embedding Pinecone Search
Vector Database application

Data source Embedding Pinecone GenAl
model Vector Database application

httpS //WWW pl necone. IO/ https://github.com/pinecone-io/examples/blob/master/docs/gpt-4-langchain-docs.ipynb
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*  Recurrent Neural Networks :

. Reinforcement Learning Ot h e r TO p I CS
— Learning from experience

— Example: Learning to levitate or helping a mouse escape from a cat

— https://github.com/foxtrotmike/RL-MagLev/blob/master/RL.ipynb

— https://github.com/foxtrotmike/RL-MagLev/blob/master/cat mouse.ipynb

. Learning Paradigms
— Multi-task Learning
— Multi-Label Learning
— Self-Supervised Learning
* Learn atask to learn a feature representation and adapt it to other tasks
* Contrastive Learning
— Zero Shot and Few Shot Learning
*  Bayesian Neural Networks and Uncertainty Quantification (Conformal Prediction)
*  Neural Ordinary Differential Equations (NODE)
—  https://github.com/foxtrotmike/NODE-Tutorial/blob/main/node tutorial%20(2).ipynb
*  Data Efficient Learning

*  Symbolic Regression

. Learning to Learn

. Quantum ML

. Domain Generalization

*  Robustness z
*  Building invariances into machine learning models

*  Link between Causality, Symmetry, Invariance and Generalization -Lo-
. Prompt Engineering, Retrieval Augmented Generation 00

Data Mining

The Cat and Mouse Puzzle
A Neural Solution

My RL Tutorial Video: https://youtu.be/N20h6vpR13Y

Model with
Graph Neural Network

Extract to
Symbolic Equation

Dataset

Predict Dynamics ! ,’,‘9

é @ % # s = % ;(1 — Tig i
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Known spring law

Simple Particles

Encourage Low-Dimensionality

https://astroautomata.com/paper/symbolic-neural-nets/
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Books

HINBAMENTAI.S
Learning with Kernels "E“RA'. “ETWORKS

ARCHITECTURES, ALGORITHMS,
AND APPLICATIONS

Support Vector Machines, Regularization,

Machine Learning Opumizaton and By

Lourene Fausett

Model Evaluation, Model Selection, and Algorithm
Selection in Machine Learning

Kernel Methods
for Pattern Analysis

Sebastian Raschka
University of Wisconsin—Madison
Department of Statistics
November 2018
sraschka@wisc.edu

Learning ) R

* Machines e e P2y Understanding Deep Learning
D == by Simon J.D. Prince

https://udlbook.github.io/udlbook/

Simon Haykin

Foundations SVMs and Kernels  Backpropagation and MLPs Deep Learning
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