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Biological Neurons and Networks
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Single Neuron: Representation

• An abstraction of the biological neuron
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Activation Functions

4

• Can use any activation function
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Neural Networks

• Evaluation

– Error between predicted and target output

• Predicted output: 𝑦 = 𝑎(𝑢) = 𝑎(𝑤𝑇𝑥)

• Target output: 𝑡

• Error: 𝑡 − 𝑦 2

• Optimization

– Whenever the weights change, the output will change

– Optimize the weights so that the output matches the target

– Gradient Descent

5
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How to implement Neurons?

• Remember: 
– If you can define a loss function

– And a regularizer

– The rest can be automated For 
any ML problem*!
• Using Automatic Differentiation 

Libraries
– Autograd

– PyTorch

– TensorFlow

– JAX

– Zygote.jl

6*Terms and conditions apply

Go through this exercise:

https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb

REO and SRM are all you need!

• Representation
• How does the model produce its output given its input

• 𝒇 𝒙; 𝒘 = 𝒘𝑻𝒙
• Evaluation (SRM/Definition of Optimization Problem)

• Define a loss function and a regularization strategy write the 
optimization problem 

• 𝑚𝑖𝑛𝒘𝑃 𝒘; 𝑿, 𝒚 =
𝜆

2
𝒘𝑻𝒘 + ∑𝑖=1

𝑁 𝑚𝑎𝑥 0, 1 − 𝑦𝑖𝑓(𝒙; 𝒘)

• Optimization

• Obtain gradient ∇𝑤𝑃(𝑤) =
𝜕𝑃(𝑤)

𝜕𝑥
 through an automatic 

differentiation method
• Apply gradient descent (or other optimization) updates until 

convergence
• 𝑤 ← 𝑤 − 𝛼∇𝑤𝑃(𝑤)

• Successful optimization is necessary for generalization (but not 
sufficient). Must check for successful optimization!

𝑃 𝒘

P(w) dP(w)

𝑃′ 𝒘

def P_fun(w):
      return w**2 w = 1.0 # a value of w

out = P_fun(w)
out.backward() #generates
w.grad #equal to 2*w

#manual implement or use sympy
def dP_symbolic(w):
   return 2*w
#numeric differentiation 
def dP_numeric(w,d):
   return (P_fun(w+d)-P_fun(w))/d

𝑃 𝑤 = 𝑤2 𝜕𝑃

𝜕𝑤
= 2𝑤

https://en.wikipedia.org/wiki/Automatic_differentiation
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb
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MULTILAYER PERCEPTRONS
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A network of neurons
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Single to Multiple Neurons

9
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Multilayer Perceptron: Representation

• Consists of multiple layers of neurons
– Multi-Input Multi-Output

• Layers of units other than the input and 
output are called hidden units

• Unidirectional weight connections and 
biases (Feed-Forward)

• Activation functions
– Use of activation functions

• Sigmoidal activations
– Nonlinear Operation: Ability to solve practical problems
– Differentiable
– Derivative can be expressed in terms of functions 

themselves: Computational Efficiency

• Other activation functions also possible

– Activation function is the same for all 
neurons in the same layer
• Not a strict requirement though

– Input layer just passes on the signal 
without processing (linear operation)

𝑧𝑗 = 𝑎 𝑧_𝑖𝑛𝑗

 𝑧_𝑖𝑛𝑗 = ෍

𝑖=0

𝑛

𝑥𝑖𝑣𝑖𝑗 ,  𝑥0 = 1, 𝑗 = 1. . . 𝑝

𝑦𝑘 = 𝑎 𝑦_𝑖𝑛𝑘

 𝑦_𝑖𝑛𝑘 = ෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘 , 𝑧0 = 1, 𝑘 = 1. . . 𝑚
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Multilayer Perceptron: Evaluation

• Compute the error between 
prediction and target

– SSE Loss:

loss = ෍

𝑖

෍

𝑘=1

𝑚

𝑦𝑘
𝑖 − 𝑡𝑘

𝑖 2

Can use other loss terms. 
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Multilayer Perceptron: Optimization

• Non-convex optimization
– Because: 

𝑦𝑖𝑛𝑘
= ෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘

𝑦𝑘 = 𝑎 𝑦_𝑖𝑛𝑘

• Weighted combination of activation function outputs

• Compute the gradient of the error/loss 
function with respect to each weight of the 
neural network

• Update weights using gradient descent or 
other methods

12
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𝜕𝑙

𝜕𝑣𝑖𝑗
𝑜𝑙𝑑

w1w2

Error



Data Mining University of Warwick

REO for MLPs
• Representation 

– Defined by the architecture
• Number of inputs and outputs, Interconnection of neurons, number of neurons in 

layers, activation functions, etc.

ℎ 𝒙 = ෍

𝑖=1

𝑃

𝒗𝑖𝑎 𝒘𝑖
𝑇𝒙 + 𝑏𝑖 + 𝑣0 = 𝑽𝑎 𝑾𝒙 + 𝒃 + 𝑣0

– Modern DL libraries require you to define “Representation”

• Evaluation
– Defined by the ML problem
– Can use any loss function

• Square Error Loss
• Hinge Loss
• Cross-Entropy Loss

• Optimization
– Solve for weights that reduce error over training data and (hopefully!) 

generalize to test data
– Using any optimization method

• Stochastic Gradient Descent
• Adaptive Learning Rate with Momentum (Adam)
• So many other

13

𝒗1

𝒗2

𝒗𝑝

𝒘11

𝒘12
𝒘21

𝒘22

𝒘𝑝1

𝒘𝑝𝑑

𝒙1

𝒙𝑑=2

ℎ 𝒙

𝑏1
𝑏2𝑏𝑝

𝑥0 = 1

1

𝑣0

https://playground.tensorflow.org

𝒉 𝒙 = 𝑽𝑎 𝑾𝒙 + 𝒃 + 𝑣0

Important: 
The output of a fully connected layer of weights 

𝑾 can be viewed as a transformation  z: Rd → Rp 
involving a matrix-vector product and an 
activation function

𝑧 𝒙 = 𝑎 𝑾𝒙 + 𝒃

https://playground.tensorflow.org/
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Multilayer Perceptron

14
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Backpropagation training cycle

Feed forward

BackpropagationWeight Update



Data Mining University of Warwick 16

Training

• During training we are presented with input patterns 
and their targets

• At the output layer we can compute the error between 
the targets and actual output and use it to compute 
weight updates through the Delta Rule

• But the Error cannot be calculated at the hidden input 
as their targets are not known

• Therefore we propagate the error at the output units 
to the hidden units to find the required weight 
changes (Backpropagation)

• 3 Stages
– Feed-forward of the input training pattern
– Calculation and Backpropagation of the associated 

error
– Weight Adjustment

• Based on minimization of SSE (Sum of Square Errors)
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Proof for the Learning Rule

Use of Gradient Descent Minimization

We can use the chain rule to compute the gradient of 𝐸  

𝑧𝑗 = 𝑎 𝑧_𝑖𝑛𝑗 , 𝑧𝑖𝑛𝑗
= ∑𝑖=0

𝑛 𝑥𝑖𝑣𝑖𝑗 , 𝑥0 = 1, 𝑗 = 1. . . 𝑝

𝑦𝑘 = 𝑎 𝑦_𝑖𝑛𝑘 , 𝑦𝑖𝑛𝑘
= ෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘 , 𝑧0 = 1, 𝑘 = 1. . . 𝑚

𝐸 = 0.5 ෍
𝑘

𝑡𝑘 − 𝑦𝑘
2

How much does 𝐸 change with change in 𝑤𝑗𝑘

𝜕𝐸

𝜕𝑤𝑗𝑘
=

𝜕

𝜕𝑤𝑗𝑘
0.5 ෍

𝑘
𝑡𝑘 − 𝑦𝑘

2 =
𝜕

𝜕𝑤𝑗𝑘
0.5 𝑡𝑘 − 𝑦𝑘

2

= − 𝑡𝑘 − 𝑦𝑘

𝜕

𝜕𝑤𝑗𝑘
𝑦𝑘 = − 𝑡𝑘 − 𝑦𝑘

𝜕

𝜕𝑤𝑗𝑘
𝑎 𝑦_𝑖𝑛𝑘

= − 𝑡𝑘 − 𝑦𝑘 𝑎′ 𝑦_𝑖𝑛𝑘

𝜕

𝜕𝑤𝑗𝑘
𝑦_𝑖𝑛𝑘

= − 𝑡𝑘 − 𝑦𝑘 𝑎′ 𝑦_𝑖𝑛𝑘

𝜕

𝜕𝑤𝑗𝑘
෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘

= − 𝑡𝑘 − 𝑦𝑘 𝑎′ 𝑦_𝑖𝑛𝑘 𝑧𝑗 = −𝛿𝑘𝑧𝑗

Take away lesson:
The change in 𝑤𝑗𝑘  is proportional to

•  The error 𝑡𝑘 − 𝑦𝑘

•  Output 𝑧𝑗   

•  The derivative of the activation function 𝑎′ 𝑦_𝑖𝑛𝑘  
Weight update will be zero if any of these terms is zero! With 𝛿𝑘 = 𝑡𝑘 − 𝑦𝑘 𝑎′ 𝑦_𝑖𝑛𝑘Δ𝑤𝑗𝑘 = −𝛼

𝜕𝐸

𝜕𝑤𝑗𝑘
= 𝛼𝛿𝑘𝑧𝑗

Change in wjk 

affects only yk

𝛿𝑘

𝑡1 𝑡𝑘 𝑡𝑚

𝐸𝑟𝑟𝑜𝑟:  𝐸

𝑇𝑎𝑟𝑔𝑒𝑡
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The Learning Rule…

Change in vij 

affects all Y1..m

Change in vij 

affects only zj

Use of Gradient Descent Minimization

𝑣𝑖𝑗

𝑍𝑗

𝑌𝑘

𝑤𝑗𝑘

𝑌𝑚

𝑍𝑝

𝑋𝑛𝑋𝑖

How much does 𝐸 change with change in 𝑣𝑖𝑗  :
𝜕𝐸

𝜕𝑣𝑖𝑗
=

𝜕

𝜕𝑣𝑖𝑗
0.5 ෍

𝑘
𝑡𝑘 − 𝑦𝑘

2 = 0.5 ෍
𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑡𝑘 − 𝑦𝑘

2

= ෍
𝑘

𝑡𝑘 − 𝑦𝑘

𝜕

𝜕𝑣𝑖𝑗
−𝑦𝑘 = − ෍

𝑘
𝑡𝑘 − 𝑦𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑎 𝑦𝑖𝑛𝑘

= − ෍
𝑘

𝑡𝑘 − 𝑦𝑘 𝑎′ 𝑦𝑖𝑛𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑦𝑖𝑛𝑘

= − ෍
𝑘

𝛿𝑘

𝜕

𝜕𝑣𝑖𝑗
෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘 = − ෍
𝑘

𝛿𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑧𝑗𝑤𝑗𝑘

= − ෍
𝑘

𝛿𝑘𝑤𝑗𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑎 𝑧𝑖𝑛𝑗

= − ෍
𝑘

𝛿𝑘𝑤𝑗𝑘𝑎′ 𝑧𝑖𝑛𝑗

𝜕

𝜕𝑣𝑖𝑗
𝑧𝑖𝑛𝑗

= − ෍
𝑘

𝛿𝑘𝑤𝑗𝑘𝑎′ 𝑧𝑖𝑛𝑗

𝜕

𝜕𝑣𝑖𝑗
෍

𝑖=0

𝑛

𝑥𝑖𝑣𝑖𝑗

= − ෍
𝑘

𝛿𝑘𝑤𝑗𝑘𝑎′ 𝑧𝑖𝑛𝑗
𝑥𝑖 = − መ𝛿𝑗𝑥𝑖

Take away message: The change in 𝑣𝑖𝑗  is proportion to:

• The input 𝑥𝑖

• መ𝛿𝑗: The backprop term which contains product of activation 

function derivatives

Δ𝑣𝑖𝑗 = −𝛼
𝜕𝐸

𝜕𝑣𝑖𝑗
= 𝛼 መ𝛿𝑗𝑥𝑖

𝑧𝑗 = 𝑎 𝑧_𝑖𝑛𝑗 , 𝑧𝑖𝑛𝑗
= ∑𝑖=0

𝑛 𝑥𝑖𝑣𝑖𝑗 , 𝑥0 = 1, 𝑗 = 1. . . 𝑝

𝑦𝑘 = 𝑎 𝑦_𝑖𝑛𝑘 , 𝑦𝑖𝑛𝑘
= ෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘 , 𝑧0 = 1, 𝑘 = 1. . . 𝑚

With 𝛿𝑘 = 𝑡𝑘 − 𝑦𝑘 𝑎′ 𝑦_𝑖𝑛𝑘

With: መ𝛿𝑗 = ∑𝑘 𝛿𝑘𝑤𝑗𝑘𝑎′ 𝑧𝑖𝑛𝑗
𝑥𝑖  or 

መ𝛿𝑗 = ෍
𝑘

𝑡𝑘 − 𝑦𝑘 𝑤𝑗𝑘𝑎′ 𝑦_𝑖𝑛𝑘 𝑎′ 𝑧𝑖𝑛𝑗
𝑥𝑖

𝛿𝑘𝛿1 𝛿𝑚

መ𝛿𝑗

𝑡1 𝑡𝑘 𝑡𝑚

𝐸𝑟𝑟𝑜𝑟:  𝐸

𝑇𝑎𝑟𝑔𝑒𝑡
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Understanding Backpropagation

• Pass the input and compute the output

• Compute Error

• Compute Gradient of error wrt weights

• Compute weight updates

– Compute 𝛿𝑘

– “Backpropagate” these 𝛿𝑘 through the 

network to Compute መ𝛿𝑗

– Compute Δ𝑤𝑗𝑘 and Δ𝑣𝑖𝑗

• Update weight updates

19

Δ𝑤𝑗𝑘 = −𝛼
𝜕𝐸

𝜕𝑤𝑗𝑘
= 𝛼𝛿𝑘𝑧𝑗

𝛿𝑘 = 𝑡𝑘 − 𝑦𝑘 𝑓′ 𝑦_𝑖𝑛𝑘

Δ𝑣𝑖𝑗 = −𝛼
𝜕𝐸

𝜕𝑣𝑖𝑗
= 𝛼𝛿𝑗𝑥𝑖

መ𝛿𝑗 = ෍
𝑘

𝛿𝑘𝑤𝑗𝑘𝑎′ 𝑧𝑖𝑛𝑗
𝑥𝑖

𝜹𝒌

෡𝜹𝒋

𝛿𝑘

መ𝛿𝑗መ𝛿1
መ𝛿𝑝

𝛿1 𝛿𝑚
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Training 
Algorithm

xi

zj

yk
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Training Algorithm…

δk
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Training Algorithm…

δj
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Training Algorithm…

Taken from: 
Fausett, Laurene V. Fundamentals of Neural Networks: Architectures, Algorithms And Applications: United States 
Edition. US Ed edition. Englewood Cliffs, NJ: Pearson, 1993.
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Optimization in minibatches

• We can do a full-scale optimization across all examples in each 
step or take a few examples at a time to determine the 
gradients and perform an update

– Mini-batches

• Stochastic gradient descent

• Reduces memory consumption

• Faster convergence

24
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Coding

25

• Using Keras

• https://github.com/foxtrotmike/CS909/blob/master/keras_barebones.ipynb

• PyTorch

• Barebones code in PyTorch

• https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb

• Using nn-module

• https://github.com/foxtrotmike/CS909/blob/master/pytorch_nn_barebones.ipynb

• Universal Approximation code: 

• https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb 

• Digit Classification Exercise

• https://github.com/foxtrotmike/CS909/blob/master/pytorch_mlp_mnist.ipynb

https://playground.tensorflow.org

https://github.com/foxtrotmike/CS909/blob/master/keras_barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/keras_barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_nn_barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_nn_barebones.ipynb
https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_mlp_mnist.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_mlp_mnist.ipynb
https://playground.tensorflow.org/
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Libraries

• All Neural Network/Deep Learning Libraries Do three things

– Automatic Differentiation (Efficient Algorithms such as Reverse mode autodiff!)

– Implement Optimizers

– Use efficient hardware for multiprocessing (GPUs)

• Support efficient representation / abstraction

26

TensorFlow
Static Computing Graphs

Build before you go (new version has dynamic graphs too!)
Compile then run/fit

Good Documentation
Distributed Computing / Delivery
TensorFlow.js

pyTorch
Dynamic Computing Graphs

Graph built at run time
Build as you go

Good for research 

using Zygote

# Define a simple function
f(x) = 3x^2 + 2x + 1
# derivative of f at x = 2
gradient(f, 2)
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NN/Deep Learning Libraries

• Essentially Automatic Differentiation Tools with optimization packages
– Represent a neural network loss calculation as a computational graph and then compute the 

gradients
• Have rules for each operator on how to differentiate “through” that operator

• Can use GPU

27

import torch
import numpy as np
from torchviz import make_dot
a = torch.from_numpy(np.array([2.0])); a.requires_grad_(True)
b = torch.from_numpy(np.array([1.0])); b.requires_grad_(True)
e = (a+b)*(b+1)
e.backward()
print(a.grad) # 2
print(b.grad) # 5 
make_dot(e)

a b

c d

e

1

+ +

*

• 𝑒 = 𝑎 + 𝑏 𝑏 + 1 = 𝑎𝑏 + 𝑎 + 𝑏2 + 𝑏

• ቚ
𝜕𝑒

𝜕𝑎 𝑎=2,𝑏=1
= 𝑏 + 1 = 2

• ቚ
𝜕𝑒

𝜕𝑏 𝑎=2,𝑏=1
= 𝑎 + 2𝑏 + 1 = 5

!pip install torchviz
from torchviz import make_dot
make_dot(tloss,params=dict(model.named_parameters()))
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Computation Graph of a two-layer 
network

28

model = torch.nn.Sequential(
          torch.nn.Linear(2, 2),
          torch.nn.Sigmoid(),
          torch.nn.Linear(2, 1),
          torch.nn.Sigmoid()
        ).to(device)

z = model(x)

model.zero_grad()
e.backward()

with torch.no_grad():
for param in model.parameters():
  param.data -= learning_rate * param.grad

e = loss_fn(z, y)

# optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
model.zero_grad()
e.backward()
optimizer.step()
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Manual Gradient Descent

Using Built-in Optimizer

Loss y
z

e
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𝒙,𝒚
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Optimization Methods
• Gradient Descent: Go down!

• Stochastic Gradient Descent

• Mini-batch Gradient Descent

• SGD with momentum: accelerate if going downhill for a long 
time

• Nesterov momentum: accelerate but not indefinitely 

• Adagrad: Adaptive Learning Rate by accumulating past 
gradients

• AdaDelta/RMSProp: Adaptive Learning rate but does not 
accumulate all past gradients

• Adam: Adaptive learning rate with momentum

• Learning rate scheduling
– Changing Learning rates at different times in the learning

– https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.One
CycleLR.html 

29

An overview of gradient descent optimization algorithms by Sebastian Ruder, 20-16
http://sebastianruder.com/optimizing-gradient-descent/ , https://arxiv.org/abs/1609.04747 

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
http://sebastianruder.com/optimizing-gradient-descent/
https://arxiv.org/abs/1609.04747
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Softmax Used for multi-
class 
classification

𝑓 𝑥𝑖 = 𝑝𝑖 =
𝑒𝑥𝑖

∑𝑗 𝑒𝑥𝑗

𝜕𝑓(𝑥𝑖)

𝜕𝑥𝑘
= ቊ

𝑝𝑖(1 − 𝑝𝑖) 𝑖 = 𝑘
−𝑝𝑖𝑝𝑘 𝑒𝑙𝑠𝑒

30

sigmoid

Bipolar sigmoid

Minhas, Fayyaz ul Amir Afsar, and Amina Asif. “Learning Neural Activations.” arXiv:1912.12187 [Cs, Stat], December 27, 2019. http://arxiv.org/abs/1912.12187.

Here 𝑥 is not an example, 
rather the input to an 
activation function 𝑓

Some functions like the 
“Softmax” take a vector as 
input and produce a 
vector output. The 
softmax function takes a 
vector of “logits” as input 
and produces pseudo-
probability values as 
output. 

Readmore: 
https://en.wikipedia.org/
wiki/Softmax_function 

http://arxiv.org/abs/1912.12187
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function
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Does the brain do backpropagation?

• Short 
answer:

– No

• Long answer:

– Not enough 
evidence

31

Lillicrap, Timothy P., et al. "Backpropagation and the brain." Nature Reviews 

Neuroscience 21.6 (2020): 335-346.
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HOW TO IMPROVE NEURAL NETWORK 
TRAINING

32
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Parameter Selection

• A MLP has a large number of parameters
– Number of Neurons in Each Layer
– Number of Layers
– Activation Function for each neuron: ReLU, 

logsig…
– Layer Connectivity: Dense, Dropout…

• Objective function
– Loss Function: MSE, Entropy, Hinge loss, …
– Regularization: L1, L2…

• Optimization Method
– SGD, ADAM, RMSProp, LM …
– Parameters for the Optimization method

• Weight initialization
• Momentum, weight decay, etc.

33
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Issues with Neural Networks with non-linear activations

• Unlike an SVM, which has a single global 
optimum due to its convex loss function, 
the error surface of  a neural network is 
not as smooth

• This complicates the optimization

• A number of “tricks” are used to make 
the neural network learn

34

Examples showing that combinations and 
compositions (such as those that can arise in a 
multilayer perceptron) of even convex functions are 
not convex 
 Given convex functions

𝑔1 𝑥 = −𝑥
𝑔2 𝑥 = 𝑥2

Following are NOT convex:
𝑔1 𝑥 − 𝑔2 𝑥 = −𝑥 − 𝑥2

𝑔1(𝑔2 𝑥 ) = −𝑥2

Loss Landscape of a neural network

Li, Hao, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. “Visualizing the Loss Landscape of Neural Nets.” In Advances 
in Neural Information Processing Systems, Vol. 31. Curran Associates, Inc., 2018. 
https://papers.nips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html.

https://papers.nips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
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How to improve MLP?

• For successful optimization

– Don’t let the network stop learning 
prematurely!

• For example: Don’t let the neurons 
saturate!
– If the input or the gradient goes to zero, the 

learning stops!

– Here is the gradient descent based 
weight update formula for a 2 layer 
MLP
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∆𝑣𝑖𝑗 = 𝛼𝑥𝑖𝑎′ 𝒗𝒋
𝑻𝒙 ෍

𝑘=1

𝑚

𝑤𝑗𝑘 𝑡𝑘 − 𝑎 ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑎 𝒗𝒋
𝑻𝒙 𝑎′ ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑎 𝒗𝒋
𝑻𝒙

Δ𝑤𝑗𝑘 = −𝛼
𝜕𝐸

𝜕𝑤𝑗𝑘
= 𝛼𝛿𝑘𝑧𝑗

𝛿𝑘 = 𝑡𝑘 − 𝑦𝑘 𝑓′ 𝑦_𝑖𝑛𝑘

Δ𝑣𝑖𝑗 = −𝛼
𝜕𝐸

𝜕𝑣𝑖𝑗
= 𝛼 መ𝛿𝑗𝑥𝑖

𝛿𝑖𝑛𝑗 = ෍
𝑘

𝛿𝑘𝑤𝑗𝑘

መ𝛿𝑗 = 𝛿𝑖𝑛𝑗𝑎′ 𝑧𝑖𝑛𝑗

𝑧𝑗 = 𝑎 𝑧_𝑖𝑛𝑗 , 𝑧𝑖𝑛𝑗
= ∑𝑖=0

𝑛 𝑥𝑖𝑣𝑖𝑗

𝑦𝑘 = 𝑎 𝑦_𝑖𝑛𝑘 , 𝑦𝑖𝑛𝑘
= ෍

𝑗=0

𝑝

𝑧𝑗𝑤𝑗𝑘

Final layer weight update 

Final layer backprop term

Hidden layer weight update

Hidden layer backprop

Hidden layer output

Final layer output
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Understanding optimization stalls in neural networks

Why can optimization stall or slow down
1. When 𝑥𝑖 = 0 (input is zero or too small)

2. Activation gradient 𝑎′(∙) is small for a given input

3. Weights are close to zero 𝑤𝑗𝑘 = 0

4. When weight updates  get too large, the next weights are 
going to be large leading to saturation (exploding 
gradients)

5. When the neural network output range cannot match the 
range of the target

How to fix / Good practice
1. Don’t use zero inputs (scale neuron inputs appropriately)

Scale neuron outputs appropriately too as they become inputs to other neurons. 

2. Either large inputs or large weights can push the activation 
function into saturation
– Don’t use “saturating” activation functions (leaky-RelU better than ReLU or sigmoid)
– Don’t use very large inputs (use appropriate input and output scaling)
– Don’t let weights get large 
– Each layer in a neural network introduces an additional product term of gradients of 

the activation function. If a neural network has many layers, there will be many 
products of activation function gradients and as the product of small numbers is 
even smaller, small gradients will just vanish and lead to a learning stall

• Vanishing gradients problem
• Don’t use too many layers!

3. Don’t start with zero weights (use proper weight initialization 
with small random weights – implicit regularization)

4. Choose the learning rate/optimizer appropriately. Plot the 
convergence plot. Use gradient clipping. 

5. Choose an appropriate activation in the output layer

36

∆𝑣𝑖𝑗 = 𝛼𝑥𝑖𝑎′ 𝒗𝒋
𝑻𝒙 ෍

𝑘=1

𝑚

𝑤𝑗𝑘 𝑡𝑘 − 𝑎 ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑎 𝒗𝒋
𝑻𝒙 𝑎′ ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑎 𝒗𝒋
𝑻𝒙

Sigmoid activation 
and its derivative

Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”.

Weight updates: 
When do we want them to be zero?
 When all outputs target: 𝑡𝑘 − 𝑦𝑘 = 0
When can they unwantedly be zero?
 Leading to learning stall!



Data Mining University of Warwick

Improving MLP
• Improving optimization

– Different optimizers
• Adaptive Momentum based optimization 
• Learning rate cycling strategies

• Improving generalization
– Use Early Stopping

• Keep track of generalization error and stop if the generalization error does 
not improve enough even when the error on training data is going down

– Using regularization
• Explicit regularization

– Weight norms
– Gradient clipping

• Data Augmentation
– Create artificial examples

» Addition of noise
» Translation of images or other transforms

• Drop-Off
• Batch Normalization

• The loss function has a significant impact on learning (both 
optimization and regularization)
– For example cross-entropy loss and softmax work well for 

classification tasks

37

# Early stopping parameters
patience = 10  # How many epochs to wait after last time validation 
loss improved.
best_loss = None
epochs_no_improve = 0
early_stop = False

for epoch in range(100):  # epochs
    model.train()
    for inputs, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
    
    model.eval()
    val_loss = 0
    with torch.no_grad():
        for inputs, labels in val_loader:
            outputs = model(inputs)
            val_loss += criterion(outputs, labels).item()
    
    val_loss /= len(val_loader)
    print(f'Epoch {epoch}, Validation Loss: {val_loss}')
    
    # Check for early stopping
    if best_loss is None:
        best_loss = val_loss
    elif val_loss < best_loss:
        best_loss = val_loss
        epochs_no_improve = 0
    else:
        epochs_no_improve += 1
        if epochs_no_improve == patience:
            print('Early stopping!')
            early_stop = True
            break  # Exit from the loop

if not early_stop:
    print('Training completed without early stopping.')
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Home/Lab Exercise!

• Solve the XOR using a single hidden layer BPNN with sigmoid 
activations

– See what is the effect of different parameters on the convergence 
characteristics of the neural network

38
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UNIVERSAL FUNCTION APPROXIMATION WITH 
NEURAL NETWORKS

39
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Universal Function Approximation

• A neural network with a single hidden layer is a universal 
approximator

• Universal Approximation
– Any function g 𝒙  over 𝒙 ∈ 𝑹𝒎 can be represented as follows:

ℎ 𝒙 = ෍

𝑖=1

𝑃

𝒗𝑖𝑎 𝒘𝑖
𝑇𝒙 + 𝑏𝑖 + 𝑣0 = ෍

𝑖=1

𝑃

𝒗𝑖𝑧𝑖 + 𝑣0

• 𝑎 ∙  is a non-constant, bounded and monotonically-increasing continuous 
“basis” function

• P is the number of functions

• ℎ 𝒙  is an approximation of 𝑔 𝒙 , i.e., 𝑔 𝒙 − ℎ 𝒙 < 𝜖

40

𝒗1

𝒗2

𝒗𝑝

𝒘11

𝒘12
𝒘21

𝒘22

𝒘𝑝1

𝒘𝑝𝑑

𝒙1

𝒙𝑑=2

ℎ 𝒙

𝑧𝑖 = 𝑎 𝒘𝑖
𝑇𝒙 + 𝑏𝑖

𝑏1
𝑏2𝑏𝑝

𝑥0 = 1

1

𝑣0

https://en.wikipedia.org/wiki/Universal_approximation_theorem 

https://en.wikipedia.org/wiki/Universal_approximation_theorem
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Universal Function Approximation Example

• Let’s try to approximate the 
function g(x) by a NN

• Let’s build a neural network with 
sigmoid activations in the hidden 
layer

• The output of a single neuron 
depends on its net input which is a 
weighted summation of its inputs 
(with bias)

• The output is the sum of the 
outputs of all hidden neurons

• We want to find weights which sum 
up to produce the target function 

41

CODE: https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb

With no hidden layer neuron (P=0)

https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb
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Universal Function Approximation Example

• With no hidden layer neuron (P=1)

42
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Universal Function Approximation Example

• With no hidden layer neuron (P=2)
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Universal Function Approximation Example

• With no hidden layer neuron (P=3)
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Universal Function Approximation Example

• With no hidden layer neuron (P=5)
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Universal Function Approximation Example

• With no hidden layer neuron (P=50)

46
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Practical Issues in Universal Approximation

• The universal approximation theorem means that regardless of what 
function we are trying to learn, we know that a large MLP will be able to 
represent this function. 

• However, we are not guaranteed that the training algorithm will be able 
to “learn” that function.

– Optimization can fail

– Learning is different from optimization
• The primary requirement for learning is generalization

– Representability alone does not guarantee learning

48
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Universal Function Approximation

• A neural network with one 
hidden layer can be used to 
approximate any shape
– However, the approximation might 

require exponentially many neurons

– How can we reduce the number of 
computations?

49

Wang, Haohan, and Bhiksha Raj. “On the Origin of Deep Learning.” arXiv:1702.07800 [Cs, Stat], February 24, 2017. 
http://arxiv.org/abs/1702.07800. 

The number of required straight cuts to approximate a given shape

ℎ 𝒙 = ෍

𝑖=1

𝑝

𝒗𝑖𝑎 𝒘𝑖
𝑇𝒙 + 𝑏𝑖

A single hidden layer NN with 
step activation is a 
combination of straight cuts
Total number of learnable 
parameters: pd+p+p

𝒗1

𝒗2

𝒗𝑝

𝒘11

𝒘12
𝒘21

𝒘22

𝒘𝑝1

𝒘𝑝𝑑

𝒙1

𝒙𝑑=2

ℎ 𝒙

𝒘1

𝒘2

𝒘𝑝

𝒗

http://arxiv.org/abs/1702.07800
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WHY GO DEEP?

50
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How many cuts?

• Remember: Classification can be thought 
of as partitioning of the feature space

• How can we reduce the number of 
required cuts?
– By folding: which is equivalent to: 

• Applying a transformation 𝝓 𝒙
– Neural networks

• Changing the distance metric
– Distance metric learning

• Kernelization
– SVM

51



Data Mining University of Warwick

Each layer is a transformation of the input data

• In the transformed space

• We can implement a learnable feature transformation through neurons!

52

Montufar (2014) 

ℎ 𝒙 = ෍

𝑖=1

𝑝′

𝒗𝑖𝑎 𝒘𝑖
𝑇𝝓 𝒙 + 𝑏𝑖

ℎ 𝒙 = ෍

𝑖=1

𝑝′

𝒗𝑖𝑎 ෍

𝑗=1

𝑑′

𝒘𝑖𝑗𝑔 𝒖𝑗
𝑇𝒙 + 𝑐𝑗 + 𝑏𝑖

𝒗1

𝒗2

𝒗𝑝′

𝒘11

𝒘12
𝒘21

𝒘22

𝒘𝑝′1

𝒘𝑝′𝑑′

𝒙1

𝒙𝑑=2

ℎ 𝒙

𝒘1

𝒘2

𝒘𝑝′

𝒗

𝝓1 𝒙

𝝓𝑑′=2 𝒙

𝒖11
𝒖12

𝒖21
𝒖22

𝒖1

𝒖2

Transformation
𝒙 ⟶ 𝝓 𝒙

Total number of learnable parameters: dd’+d’+p’d’+p’+p’

Fold and Cut Theorem: https://www.youtube.com/watch?v=ZREp1mAPKTM

https://www.youtube.com/watch?v=ZREp1mAPKTM
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Width vs. Depth

• An MLP with a single hidden layer is sufficient to represent any function

– But the layer may be infeasibly large

– May fail to learn and generalize correctly

• Using a deeper model can reduce the number of units required to represent the desired 
function and can reduce the amount of generalization error
– Thus a deeper representation is more efficient!

– A function that could be expressed with O(n) neurons on a network of depth k required at least O(2√n) and O((n 
-1)k) neurons on a two-layer neural network: Delalleau and Bengio (2011) 

– Functions representable with a deep rectifier net can require an exponential number of hidden units with a 
shallow (one hidden layer) network: Montufar (2014) 

– For a shallow network, the representation power can only grow polynomially with respect to the number of 
neurons, but for deep architecture, the representation can grow exponentially with respect to the number of 
neurons: Bianchini and Scarselli (2014)

– Depth of a neural network is exponentially more valuable than the width of a neural network, for a standard MLP 
with any popular activation functions: Eldan and Shamir (2015) 
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Comparison of Depth

• Both have approximately the same number of parameters (tunable weigths)
– Deeper is better
– But is difficult to optimize

54

CODE: https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb

  nn.Sequential(

    nn.Linear(input_size, 128),

    nn.Sigmoid(),

    nn.Linear(128, output_size))

    nn.Sequential(

    nn.Linear(input_size, 32),

    nn.Sigmoid(),

    nn.Linear(32, 8),

    nn.Sigmoid(),

    nn.Linear(8, output_size))

https://github.com/foxtrotmike/CS909/blob/master/uniapprox.ipynb
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Width vs. Depth

• Empirical results for some data showed that depth increases 
generalization performance in a variety of applications 

55
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Shallow vs. Deep Networks

• Adding more layers increases the representation power of the neural 
network

• A deep network requires exponentially fewer parameters to get to the 
same error rate in comparison to a wide neural network

– More efficient

• However, adding layers leads to a more difficult optimization problem

– Vanishing and Exploding Gradients

57

∆𝑣𝑖𝑗 = 𝛼𝑥𝑖𝑎′ 𝒗𝒋
𝑻𝒙 ෍

𝑘=1

𝑚

𝑤𝑗𝑘 𝑡𝑘 − 𝑎 ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑓 𝒗𝒋
𝑻𝒙 𝑎′ ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑓 𝒗𝒋
𝑻𝒙



Data Mining University of Warwick

CONVOLUTIONAL NEURAL NETWORKS
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Where’s Waldo?

59
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Neural 
Network
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Let’s solve it using a neural network

• Input image: 256x256x3

– Flatten it: 196, 608 dimensional input

• Target: 256x256x3

– Flatten it: 196, 608 dimensional output

• Let’s use a single hidden layer network

– Very large number of parameters will be needed

• Let’s use a deep(er) network

– Still a very large number of parameters will be needed
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Important conceptual note

• Correlation vs. convolution

64

𝑦 𝑛 = 𝑓 ∗ 𝑔 = ෍

𝑘=−∞

+∞

𝑓 𝑘 𝑔[𝑛 − 𝑘] 𝑦 𝑛 = 𝑓 ⋆ 𝑔 = ෍

𝑘=−∞

+∞

𝑓 𝑘 𝑔[𝑛 + 𝑘]

𝑦 𝑛
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Convolutional Networks

• A feed-forward network inspired from visual cortex and the 
ideas of correlation

• Used for image or signal recognition tasks

• Objective

– Find a set of filters which, when convolved with image, lead to the 
solution of the desired image recognition task 

• Invariant wrt translation

• Hierarchical
– Increasing feature complexity

– Increasing “Globality”
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Basics

• The convolution operation

– Shows how a function (image) is modified by another (filter)

67

𝐼

𝐾

𝐻 = 𝐼 ⋆ 𝐾

Input Image

Kernel/Filter

Output

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Technically, this is 
“correlation” and not 
convolution but we can ignore 
this for now. You can also use 
different edge handling or 
padding strategies.

𝐻 𝑖, 𝑗 = ෍

𝑘=−𝑚/2

𝑚/2

෍

𝑙=−𝑛/2

𝑛/2

𝐼 𝑖 + 𝑘, 𝑗 + 𝑙 𝐾(𝑘, 𝑙)

https://en.wikipedia.org/wiki/Kernel_(image_processing)
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Examples of filters

• Identity Filter

68

⋆ =

Muntjac
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Examples of filters

• Edge filters

69

1 1 1
1 1 10
1 1 10

1 1
10 10
10 10

1
1

1
1

10
10

10 10
10 10

∗ K =
9 −18 −9
9 −9 0
9 −9 0

import numpy as np
I = np.array([[1,1,1,1,1],[1,1,10,10,10],[1,1,10,10,10],[1,1,10,10,10],[1,1,10,10,10]])
from scipy.ndimage.filters import convolve
K = np.array([[0,1,0],[1,-4,1],[0,1,0]])
H = convolve(I,K)
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Example Filters

• Reducing noise using a smoothing filter

70
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Convolution*

• If you think about it

– Convolution is a sum of products

• Can be expressed as a dot product

72

𝐻𝐼 𝐾

Input Image Kernel/Filter Output

𝐻 𝑖, 𝑗 = ෍

𝑘=−𝑚/2

𝑚/2

෍

𝑙=−𝑛/2

𝑛/2

𝐼 𝑖 + 𝑘, 𝑗 + 𝑙 𝐾(𝑘, 𝑙)

*Strictly speaking, this is cross-correlation.
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How to apply filters?

• The easy way

– Use skimage filters

73

import numpy as np

import matplotlib.pyplot as plt

from skimage.data import camera

from scipy.ndimage import convolve

K = np.array([[0,1,0],[1,-4,1],[0,1,0]])/4 # our filter. 

I = camera()/255.0 #so that values are in the range 0-255

H = convolve(I,K)

plt.figure();plt.subplot(1,2,1); plt.imshow(I,cmap='gray')

plt.subplot(1,2,2); plt.imshow(H,vmin=-0.05,vmax=+0.05,cmap = 'gray')

print(f"sizes of images are: {I.shape} and {H.shape}")

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
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But what’s the fun in that?

74

import torch

import torch.nn as nn

import torch.nn.functional as F

import matplotlib.pyplot as plt

import numpy as np

class Filter(nn.Module):

  def __init__(self,K):

    super(Filter, self).__init__()

    K = torch.from_numpy(K).float()

    self.K = K.unsqueeze(0).unsqueeze(0) #convert image to NCHW from HW by adding two 

extra dimensions in the beginning

  def forward(self, x):

    return F.conv2d(x, self.K) #this is the convolution of the kernel

  def __repr__(self):

   return f"Convolution filter of dimensions: {self.K.shape}"

plt.close('all')

from skimage import data

X = data.camera()/255.0;

plt.subplot(1,2,1); plt.imshow(X,cmap='gray')

K = np.array([[0 ,1, 0],[1,-4,1], [0, 1 ,0]])/4.0

X_torch = torch.from_numpy(X).float().unsqueeze(0).unsqueeze(0) #convert image to NCHW from 

HW by adding two extra dimensions in the beginning

#move image to torch

f = Filter(K)

#set the kernel in Filter object

Z_torch = f(X_torch)

#convolution

Z = Z_torch.squeeze().detach().numpy()

#move back to numpy

plt.subplot(1,2,2); plt.imshow(Z,vmin=-0.05,vmax=+0.05,cmap = 'gray')

print(f)

print(f"sizes of images are: {X.shape} and {Z.shape}")

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb 
https://github.com/foxtrotmike/CS909/blob/master/pytorch_conv.py

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/pytorch_conv.py
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Now the interesting question

• Can we learn filters to do something we want to do?

– Let’s say we have an image and it’s output after a certain operation

– Can we learn a filter that produces the output given the input?

75

Filter?
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Example

• Let’s say, we have an image and we want to design a filter that 
when convolved with the image leads to the desired output. 
How?

76
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How can this be done?

• Let’s try to build a multi-layer perceptron

– Input image size: (32,32)

• This means the number of input neurons will be 1024

– Target image size: (32,32)

• This means the number of output neurons will be 1024

– Number of weights: 

• 1024*1024 = 1,048,576

– Add hidden layers!

– Good luck!

77
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Let’s try to learn a 3x3 filter

• Representation

• Evaluation

• Optimization

– Solve the following problem: min
𝐾

𝐸(𝐾)

78

𝐻 = 𝐼 ⋆ 𝐾 𝐻 𝑖, 𝑗 = ෍

𝑘=−1

𝑚=1

෍

𝑙=−1

𝑛=1

𝐼 𝑖 + 𝑘, 𝑗 + 𝑙 𝐾(𝑘, 𝑙)

𝐸(𝐾) = ෍

𝑘=1

𝑀

෍

𝑙=1

𝑁

𝐻 𝑖, 𝑗 − 𝑇 𝑖, 𝑗
2

∗

𝐾

=
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Let’s solve this
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import torch

import torch.nn as nn

import matplotlib.pyplot as plt

import numpy as np

class Filter(nn.Module):

  def __init__(self, ksize = 3):

    super(Filter, self).__init__()

    self.conv1 = nn.Conv2d(1,1, ksize) #torch allows creating a convolution filter using a conv2d layer object which applies 

conv2d internally for a given input

  def forward(self, x):

    x = self.conv1(x) #perform convolution

    x = torch.tanh(x) #apply activation

    return x

# let's use a convolution filter of size ksize

ksize = 3

bsize = int(ksize/2) #size of broder region

f = Filter(ksize)

optimizer = torch.optim.Adam(f.parameters(), lr=1e-2)

T_torch = torch.from_numpy(T[bsize:-bsize,bsize:-bsize]).float()# reduce target filter size to compensate for border loss in 

convolution

X_torch = torch.from_numpy(X).float().unsqueeze(0).unsqueeze(0) #convert image to NCHW from HW by adding two extra dimensions in 

the beginning

L = []

for _ in range(1000):

  optimizer.zero_grad() #optimization

  Z_torch = f(X_torch).squeeze()

  loss = torch.sum(torch.abs((T_torch-Z_torch)**2)) #error

  loss.backward()

  optimizer.step()

  L.append(loss.item())

output = Z_torch.squeeze().detach().numpy()

output = (output-np.min(output))/(np.max(output)-np.min(output)) #rescale so that the lowest value in the input image is 0 and the 

highest is 1 so we can threshold it

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
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Results

80

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb 
https://github.com/foxtrotmike/CS909/blob/master/learn_filters.py

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/learn_filters.py
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Another way of looking at this

• We learned a convolution filter kernel based on an input and a 
target image

• The filter will act as a + detector when convolved with a new 
image (hopefully!)

81

Filter?
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Most basic convolutional neural network

• Acts as a “detection” or “feature extraction” unit

82

∗ −

𝐸𝑟𝑟𝑜𝑟

𝑈𝑝𝑑𝑎𝑡𝑒

𝐼𝑛𝑝𝑢𝑡 𝐹𝑖𝑙𝑡𝑒𝑟

𝑂𝑢𝑡𝑝𝑢𝑡
(Feature Map) 𝑇𝑎𝑟𝑔𝑒𝑡

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛
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Classification with Multilayer Perceptron
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𝑇𝑎𝑟𝑔𝑒𝑡

−𝑦 𝑡

𝐿𝑜𝑠𝑠

𝑈𝑝𝑑𝑎𝑡𝑒𝑈𝑝𝑑𝑎𝑡𝑒

∑

∑

∑

∑

∑

∑



Data Mining University of Warwick

REO for a convolution neural network

• Representation
– Input: a k-dimensional tensor 𝒙

• k = 1: signal of length n 
• k = 2: (grayscale) image of size 𝑙 × 𝑤

– RGB channel image: 𝑙 × 𝑤 × 3

• k = 3: 𝑙 × 𝑤 × 𝑡 video of frame size 𝑙 × 𝑤 with duration 𝑡

– Output: A decision score y = 𝑓(𝑥; 𝜽) (can be multi-dimensional as well)
– Structure

• Layers of Learnable filters each of which is correlated (or convolved) with the input tensor in parallel followed by convolution with other filters
– A single convolution is indicated by 𝒛 = 𝒂(𝒙 ⋆ 𝜽) where 𝜽 is the representation of a single filter and 𝒂(⋅) is an activation function. Filters are much smaller than 𝒙.
– Implemented as layers: Conv1d, Conv2d, Conv3d (in PyTorch)

• The correlation output is then pooled (optional)
• Nonlinear activation functions are applied 
• Aggregated to produce the final output (depending upon application)
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𝐿𝑜𝑠𝑠

𝑈𝑝𝑑𝑎𝑡𝑒

𝐼𝑛𝑝𝑢𝑡 𝐹𝑖𝑙𝑡𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 𝑇𝑎𝑟𝑔𝑒𝑡

−𝑦 𝑡

𝑈𝑝𝑑𝑎𝑡𝑒

Detector Classifier

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝 𝑃𝑜𝑜𝑙𝑒𝑑 𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑

∗
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𝐼𝑛𝑝𝑢𝑡 𝐹𝑖𝑙𝑡𝑒𝑟𝑠

𝑂𝑢𝑡𝑝𝑢𝑡 𝑇𝑎𝑟𝑔𝑒𝑡

𝐿𝑜𝑠𝑠

−𝑦 𝑡

𝑈𝑝𝑑𝑎𝑡𝑒

Detector Classifier

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝
𝑃𝑜𝑜𝑙𝑒𝑑 𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑

∗

∗

∗

𝐹𝑖𝑙𝑡𝑒𝑟𝑠

∗

𝑃𝑜𝑜𝑙𝑒𝑑
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Convolutional Neural Networks for ML

• If we want to use the output of 
convolution filters for learning to 
classify or regress or rank or for any 
other task
– We can use a multilayer perceptron but:

• We will need to “flatten” the output of the 
correlation filter (aka feature/filter map)
– Convert an image to a vector e.g., (8x8 to 64)

• We will also need to reduce the dimensions 
of the output
– Done through “Pooling”

» Average or max

– And/Or “Striding”

» How we move the convolution filter

86

Stride: 1

Stride: 3

2x2 Output Volume
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Structure

• Increasing “globality”

– Input → Convolution → 
Non-linearity → Sub-
sampling … → Fully 
Connected Layer (for 
classification) 

87
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See Coding

• https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb 

• https://github.com/foxtrotmike/CS909/blob/master/cnn_mnist_pytorch.ipynb 

88

https://github.com/foxtrotmike/CS909/blob/master/learn_filters.ipynb
https://github.com/foxtrotmike/CS909/blob/master/cnn_mnist_pytorch.ipynb
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Padding

89

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/ 

Multiple Channels

Multiple IO Channels 1x1 Convolution

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/
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Pooling

• Average

• Max

• Adaptive Pooling
– Produces a fixed (specified) sized output 

despite the size of the input by changing 
the window size adaptively

– Allows us to have convolutional neural 
networks take arbitrary image sizes as 
input
• nn.AdaptiveMaxPool2d

• nn.AdaptiveAvgPool2d

• Learnable pooling

90

pool = nn.AdaptiveAvgPool2d(3)

input = torch.randn(1, 64, 8, 8)

output = pool(input)

print(output.shape)#3,3

input = torch.randn(1, 64, 6, 6)

output = pool(input)

print(output.shape) #3,3

Pool Window

Pool 
Window

Output
“Learning Pooling for Convolutional Neural Network.” Neurocomputing 224 (February 8, 2017): 96–104. 
https://doi.org/10.1016/j.neucom.2016.10.049.

https://doi.org/10.1016/j.neucom.2016.10.049
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Why do CNNs work?

• There are three major reasons why CNN’s work better than 
fully connected MLPs

– Local weight connectivity

• In contrast to a fully connected neural network like a multilayer perceptron, a 
filter in a CNN operates over an image at the local level

– Shared weights

• No separate weights for each pixel

– Hierarchical representations

91
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Deep Learning: Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable  

Classifier

Low-Level  

Feature

Mid-Level  

Feature

High-Level  

Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

[ConvNetJS demo: training on CIFAR-10]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

95

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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RISK MINIMIZATION AND GENERALIZATION

96
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Risk Minimization in Neural Networks

• Structural Risk 

– Empirical Error Minimization via Loss minimization

– Regularization

97
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Important Concepts
• Differences from fully connected nets

– 3D volume of neurons
– Local connectivity
– Shared weights

• Hyper-parameter
– Number of filters
– Filter shape (receptive field)
– Pooling type and shape
– Regularization

• Dropout
• Early Stopping
• Data Augmentation
• Early Stopping
• Norm constraints
• L1/L2 regularization

– Use performance over a validation set 
to pick hyperparameters
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Regularization Mechanisms

• L2 penalty to weights

– Weight_decay parameter

• sgd = torch.optim.SGD([w_torch], lr=lr, weight_decay=0.9)

• Handling vanishing (or exploding) gradients

– Pre-training (old!)

– Layerwise training

– Drop-out

– Batch Normalization

– Normalization free architectures with weight and gradient clipping

99

nn.Dropout(0.5)

nn.BatchNorm2d(6)



Data Mining University of Warwick

Understanding Drop-out in training

• “Dropout: A Simple Way to Prevent Neural Networks from Overfitting” by Srivastava 
et al., 2014.
– Randomly drop units (along with their connections) from the neural network during training

– Average weights across all “thinned” networks

– Replaces explicit regularization and produces faster learning

100
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Effect of Dropout

101
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Does drop out help with overfitting and underfitting?

102
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Dropout in testing: MCDropout

• Quantifying uncertainty in 
neural network predictions

– Use drop-out at test time and 
average the results (and compute 
error bounds)

103

Consider a model with L layers with the 
weights of each obtained through a drop-
out in T trials

Gal, Yarin, and Zoubin Ghahramani. “Dropout as a Bayesian Approximation: Representing 
Model Uncertainty in Deep Learning.” arXiv, October 4, 2016. 
https://doi.org/10.48550/arXiv.1506.02142.

https://doi.org/10.48550/arXiv.1506.02142
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Understanding Batch-Normalization
• Given a batch of N examples, each dimension 

of each example is normalized to zero mean 
and unit variance

• Minimizes “covariate shift”
– a change in the distribution of a function’s 

domain
– Input changes and now the function cannot 

deal with it
– Layer to layer changes

• Accelerates learning by preventing learning 
stalls

• Important Note: Keep batch norm parameter 
learning active only in training

104

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167v3, 2015. 

https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html 

https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
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Effect of  Batch Normalization

105
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Batch Normalization Coding

• See: 
https://github.com/foxtrotmike/CS909/blob/master/xornet_ba
tch_normalization.ipynb 

• Compare the distributions of data before and after batch normalization: 
Better range of data after batch normalization

– Both positive and negative values in outputs
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https://github.com/foxtrotmike/CS909/blob/master/xornet_batch_normalization.ipynb
https://github.com/foxtrotmike/CS909/blob/master/xornet_batch_normalization.ipynb
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What can you do with just training batch norm parameters?

107
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What can you do without batch normalization?

• Batch normalization requires a sufficient 
large batch size to allow effective 
estimation of mean and variance of each 
batch which can be a problem for large 
input data or low memory machines
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Data Augmentation

109

Shorten, Connor, and Taghi M. Khoshgoftaar. “A Survey on Image Data Augmentation for Deep 
Learning.” Journal of Big Data 6, no. 1 (July 6, 2019): 60. https://doi.org/10.1186/s40537-019-0197-
0.

https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
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Data Augmentation

110

Libraries

https://pytorch.org/vision/stable/transforms.html
https://albumentations.ai/ 
https://kornia.readthedocs.io/en/latest/augmentation.html 

Zhang, Hongyi, Moustapha Cisse, Yann N. Dauphin, and David 
Lopez-Paz. “Mixup: Beyond Empirical Risk Minimization.” arXiv, 
April 27, 2018. https://doi.org/10.48550/arXiv.1710.09412.

MixUp

https://albumentations.ai/
https://albumentations.ai/
https://kornia.readthedocs.io/en/latest/augmentation.html
https://doi.org/10.48550/arXiv.1710.09412
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What is my model doing? What is my model learning?

• Interpretability
– Interpret why a certain model is producing a 

certain output for a given input
– “What is the model doing?”

• Explainable
– Explaining the “behavior” of the model or “What 

is the model learnin?”

• Model Agnostic Methods
• Permutation Feature Invariance
• LIME Analysis
• SHAP Analysis

• For CNNs
– Pixel Attribution (Saliency Maps)

• Score-CAM
• Grad-CAM

– Testing with Concept Activation Vectors (TCAV)
– DeepSHAP

111

Great Resource on interpretable machine learning: 
https://christophm.github.io/interpretable-ml-book/

https://github.com/marcoancona/DeepExplain 

https://christophm.github.io/interpretable-ml-book/
https://github.com/marcoancona/DeepExplain
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Famous CNN

• LeNet (Le Cunn 1990, 1998)

• AlexNet

• VGG19

• Inception

• Xception

• EfficientNet

112
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Transfer Learning and Fine Tuning

• Use a pretrained network for one 
task

• Keep the convolutional layers fixed 
(frozen)

• Freezing layers
– for param in vgg.features.parameters(): 

param.requires_grad = False

• Transfer Learning: Train the last 
layers (fully connected) for your 
task and/or add more layers as 
needed

• Fine tuning: Modify the weights of 
a few convolutional layers too 

113

https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 
https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6# 

Conventional ML

Transfer Learning

https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6
https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6
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𝐼𝑛𝑝𝑢𝑡 𝐹𝑖𝑙𝑡𝑒𝑟𝑠

𝑂𝑢𝑡𝑝𝑢𝑡 𝑇𝑎𝑟𝑔𝑒𝑡

𝐿𝑜𝑠𝑠

−𝑦 𝑡

𝑈𝑝𝑑𝑎𝑡𝑒

Detector / Automated Feature Extractor Classifier

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝
𝑃𝑜𝑜𝑙𝑒𝑑

𝐹𝑙𝑎𝑡𝑡𝑒𝑛

∗

∗

∗

𝐹𝑖𝑙𝑡𝑒𝑟𝑠

∗

𝑃𝑜𝑜𝑙𝑒𝑑

𝐹𝑟𝑜𝑧𝑒𝑛

We can choose which layers to freeze depending upon the application and the level of similarity between tasks
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Advanced: Adapters

• Generalize the concept of transfer learning

115

Rebuffi, Sylvestre-Alvise, Hakan Bilen, and Andrea Vedaldi. “Learning Multiple Visual Domains with Residual Adapters.” arXiv, November 27, 2017. 
https://doi.org/10.48550/arXiv.1705.08045.

https://doi.org/10.48550/arXiv.1705.08045
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Predicting Hurricane Intensities

• Deep-PHURIE

116

https://link.springer.com/article/10.1007/s00521-019-04410-7
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https://link.springer.com/article/10.1007/s00521-019-04410-7
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Deep-PHURIE Robustness Analysis

117

Activation Maps for Deep PHURIE



Data Mining University of Warwick

Types of Neural Networks

• “Fully Connected”/Dense Feed Forward Backpropagation multi-
layer perceptrons

• Convolutional neural networks

• Residual Neural networks

• Recurrent neural networks

• Auto-encoders

• Adversarial Networks

• Transformers

• Graph Neural Networks

118
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NETWORKS WITH SKIP CONNECTIONS

121
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Spectrum of Depth

122
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Increasing Depth (10-100 Layers)

• What if we keep on stacking layers?

– 56-layer net has higher training error and test error than 20-layer net 

123

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for 
Image Recognition”. CVPR 2016 
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Simply Stacking Layers?

• “Overly deep” plain nets have higher training error 

• A general phenomenon, observed in many datasets 

• Reasons

– Optimization failure

124
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Residual Learning: skip connections

125

H(x) is any desired mapping 
Hope the 2 weight layers fit H(x)

Plain Network

H(x) is any desired mapping 
Hope the 2 weight layers fit F(x)

The network learns fluctuations F(x)=H(x)-x
Easier!

Residual Network

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016. 
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ResNet Models

• No Dropout

• With Batch 
Normalization

• Use Data 
Augmentation

126
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A residual/skip block in code

127

class ResidualBlock(nn.Module):

    def __init__(self, in_channels, out_channels, stride=1, downsample=None):

        super(ResidualBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)

        self.bn1 = nn.BatchNorm2d(out_channels)

        self.relu = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)

        self.bn2 = nn.BatchNorm2d(out_channels)

        self.downsample = downsample

    def forward(self, x):

        residual = x

        out = self.conv1(x)

        out = self.bn1(out)

        out = self.relu(out)

        out = self.conv2(out)

        out = self.bn2(out)

        # downsample only if dimensions of x and F(x) don’t match

        if self.downsample: 

            residual = self.downsample(x)

        out += residual

        out = self.relu(out)

        return out

Strongly recommended: How to use a minimalistic residual network for MNIST Classification
https://github.com/foxtrotmike/CS909/blob/master/resnet_mnist.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/resnet_mnist.ipynb
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CIFAR-10 Experiments

• Deep ResNets can be trained without difficulties

• Deeper ResNets have lower training error, and also lower test error 

128
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ResNet Results

• 1st places in all five main tracks
• ImageNet Classification: “Ultra-deep” 152-layer nets 
• ImageNet Detection: 16% better than 2nd
• ImageNet Localization: 27% better than 2nd
• COCO Detection: 11% better than 2nd
• COCO Segmentation: 12% better than 2nd 

• Can also concatenate outputs rather than 
sum

– ResNeXT

131
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Reasons for adding skip connections

• Making gradients flow more easily

– If you work out the weight update equation for the neural 
network with skip connections, it will have fewer multiplicative 
terms of gradients thus reducing the chances of gradient based 
problems

• Making information flow more easily
– Directly Preserving information learned in earlier layers

• Have a regularization effect

132

∆𝑣𝑖𝑗 = 𝛼𝑥𝑖𝑓′ 𝒗𝒋
𝑻𝒙 ෍

𝑘=1

𝑚

𝑤𝑗𝑘 𝑡𝑘 − 𝑓 ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑓 𝒗𝒋
𝑻𝒙 𝑓′ ෍

𝑗=0

𝑝

𝑤𝑗𝑘𝑓 𝒗𝒋
𝑻𝒙

V W Loss

𝑡

V W Loss

𝑡

𝑦𝑥

+
𝑦

Oyedotun, Oyebade K., Kassem Al Ismaeil, and Djamila Aouada. “Training Very Deep Neural Networks: Rethinking the Role of Skip Connections.” 
Neurocomputing 441 (June 21, 2021): 105–17. https://doi.org/10.1016/j.neucom.2021.02.004.

https://doi.org/10.1016/j.neucom.2021.02.004
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U-Net for Segmentation

133
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YOLO

• Convolution

• Residual Architecture

• Reversible function to allow preservation of relevant 
information

• Programmable gradient information

134

Wang, Chien-Yao, I.-Hau Yeh, and Hong-Yuan Mark Liao. “YOLOv9: Learning What You Want 
to Learn Using Programmable Gradient Information.” arXiv, February 21, 2024. 
https://doi.org/10.48550/arXiv.2402.13616.

https://doi.org/10.48550/arXiv.2402.13616
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Residual Networks

• Required Reading 
• Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for 

Image Recognition”. CVPR 2016.

• Many third-party implementations 
– list in https://github.com/KaimingHe/deep-residual-networks 

– Torch ResNet: 
https://github.com/pytorch/examples/tree/master/imagenet 

– Transfer Learning with ResNet: 
https://www.pluralsight.com/guides/introduction-to-resnet 

135

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016. 

https://github.com/KaimingHe/deep-residual-networks
https://github.com/pytorch/examples/tree/master/imagenet
https://www.pluralsight.com/guides/introduction-to-resnet
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TRANSFORMERS

136
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Transformers
• Very useful and popular architecture for vision tasks though originally built for natural language processing
• Use “attention mechanism” to integrate information from different components of an input in a weighted 

manner to produce an output representation for the input that can be passed to predictor to generate 
predictions

137

https://twitter.com/rasbt/status/1634564282535878661/photo/1 

Figure from the Generative Pre-trained Transformer (GPT)  paper
Radford, Alec, et al (OpenAI). “Improving Language Understanding by Generative Pre-Training,” 2018. 

https://twitter.com/rasbt/status/1634564282535878661/photo/1
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Background
• Transformations: 𝑇 𝑥; 𝜃

– Explicitly transform a point to a different feature space

• A kernel 𝑘 𝒂, 𝒃  is a generalized dot-product or a way of 
quantifying the degree of similarity between two examples or 
objects

– If we can change the definition of how similar (or distant) two things 
are (by switching to a different kernel), this results in a folding of the 
feature space which is the same effect as we would achieve from an 
explicit transformation of the feature space

138

Kernel Transform (for 2D Input)

Linear: 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃 𝜙 𝒖 = 𝒖 = 𝑢 1  𝑢 2 𝑻

Polynomial degree 2: 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃
2

 (Homogeneous) 𝜙 𝒖 = 𝑢 1 2
𝑢 2 2

2𝑢 1 𝑢 2 𝑇

Polynomial degree 2: 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃 + 1
2

𝜙 𝒖 = 1 2𝑢 1  2𝑢 2  𝑢 1 2
𝑢 2 2

2𝑢 1 𝑢 2
𝑇

RBF Kernel: 𝑘 𝒂, 𝒃 = exp(−𝛾 𝒂 − 𝒃 2) Infinite dimensional (depending upon hyperpameter 𝛾 > 0
See: https://en.wikipedia.org/wiki/Radial_basis_function_kernel 

For Review see notes on Kernels in SVMs

𝑥𝑞

Input After Applying transformation

𝑥1
𝑥2

𝑥3

𝑥𝑚

𝑇(𝑥𝑞) 𝑇(𝑥1)

𝑇(𝑥2)
𝑇(𝑥3)

𝑇(𝑥𝑚)

https://en.wikipedia.org/wiki/Radial_basis_function_kernel
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𝐿𝑜𝑠𝑠
𝑈𝑝𝑑𝑎𝑡𝑒

𝐼𝑛𝑝𝑢𝑡
𝐹𝑖𝑙𝑡𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 𝑇𝑎𝑟𝑔𝑒𝑡

−𝑦 𝑡

Feature Detection or Representation Building Predictor

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝 𝑃𝑜𝑜𝑙𝑒𝑑 𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑

∗

𝑊𝑒𝑖𝑔ℎ𝑡 
𝑈𝑝𝑑𝑎𝑡𝑒

Build Patch
“Embedding”  

Representation

𝑆𝑥 = 𝒙𝒊 ∈ 𝑅𝑑|𝑖 = 1 … 𝑛

Transformer 
Encoding via 

Attention Blocks
Predictor

Optimus Prime

Bumblebee

Jazz

⋮
Ironhide

Ratchet

𝒙𝒊 ≡ 𝜙 𝒇𝒊, 𝒕𝒊
Feature Embedding: What is it?
Positional Embedding: Where is it?

Output Target

Optimus Prime

Bumblebee

Jazz

⋮
Ironhide

Ratchet

𝐿𝑜𝑠𝑠

−

Convolutional 
Neural Network

(Vision) Transformers

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al. “An Image Is Worth 16x16 
Words: Transformers for Image Recognition at Scale.” arXiv, June 3, 2021. https://doi.org/10.48550/arXiv.2010.11929.

https://doi.org/10.48550/arXiv.2010.11929
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𝑊𝑒𝑖𝑔ℎ𝑡 
𝑈𝑝𝑑𝑎𝑡𝑒

Build Patch
“Embedding”  

Representation

𝑆𝑥 = 𝒙𝒊 ∈ 𝑅𝑑|𝑖 = 1 … 𝑛

Transformer 
Encoding via 

Attention Blocks
Predictor

Optimus

Bumblebee

Jazz

⋮
Ironhide

Ratchet

𝒙𝒊 ≡ 𝜙 𝒇𝒊, 𝒕𝒊
Feature Embedding: What is it?
Positional Embedding: Where is it?

Output Target

Optimus

Bumblebee

Jazz

⋮
Ironhide

Ratchet

𝐿𝑜𝑠𝑠

−

(Vision) Transformers (for classification)

𝑊𝑒𝑖𝑔ℎ𝑡 
𝑈𝑝𝑑𝑎𝑡𝑒

Build Token/Word
“Embedding”  

Representation

𝑆𝑥 = 𝒙𝒊 ∈ 𝑅𝑑|𝑖 = 1 … 𝑛

Transformer 
Encoding via 

Attention Blocks
Predictor

Optimus

Bumblebee

Jazz

⋮
Ironhide

Ratchet

𝒙𝒊 ≡ 𝜙 𝒇𝒊, 𝒕𝒊
Feature Embedding: What is it?
Positional Embedding: Where is it?

Output Target

Optimus

Bumblebee

Jazz

⋮
Ironhide

Ratchet

𝐿𝑜𝑠𝑠

−

(NLP) Transformers (for next word prediction)

A transformer that can transform into 
a yellow car is called ____________.

Building an integrated 
representation of how 
components form the overall 
object

Simplest: 𝜙 𝒇𝒊, 𝒕𝒊 = 𝒇𝒊 + 𝒕𝒊

1 2 ⋯

𝑛 tokens/patches
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What is attention and why do you need it?

141

We are going to have a no gobbledygook introduction to attention (using the paper below)!

Tsai, Yao-Hung Hubert, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhutdinov. “Transformer 
Dissection: A Unified Understanding of Transformer’s Attention via the Lens of Kernel.” ArXiv:1908.11775 [Cs, Stat], 
November 11, 2019. http://arxiv.org/abs/1908.11775.

http://arxiv.org/abs/1908.11775
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General Attention Building Blocks

142

Input: 
A “query” token 𝑥𝑞 ∈ 𝑅𝑑𝑞 representation of a component (patch or token)  which will be transformed. In turn, all tokens will take the role of the query token in classical attention. 

A set of “key” tokens 𝑆𝑥𝑘
= {𝑥1, 𝑥2, … , 𝑥𝑚}. Can come from a different source (e.g., as in cross-attention). 

Output: 
𝑥𝑞

′ ∈ 𝑅𝑑′
 Transformed representation of 𝑥𝑞 which is based on the transformed representations of other tokens and the degree of association of 𝑥𝑞 to those other tokens

Attention Parameters
• A “value” or transformation function 𝑣 𝑥 : 𝑅𝑑 → 𝑅𝑑′

 that produces a vector for a given token (For simplicity, assume, 𝑑 = 𝑑′)

• A “Masking” function 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
 which gives a subset of tokens from 𝑆𝑥𝑘

to which a given query can be compared, e.g., text upto a certain point. For simplicity, assume, for all 𝑥𝑞, 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
= 𝑆𝑥𝑘

)

• A “kernel” function k(𝑥𝑖 , 𝑥𝑗) that gives us the association between two tokens. Used to determine the attention scores that tell us how associated are 𝑥𝑞 and 𝑥𝑘  relative to similarity of 𝑥𝑞 to all tokens

• Different formulations for k(𝑥𝑖 , 𝑥𝑗), 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
 and 𝑣 𝑥  give you different flavours of attentions. Learnable parameters denoted by 𝜽.

𝑥𝑞
′ = 𝐴 𝑥𝑞; 𝑀 𝑥𝑞 , 𝑆𝑥𝑘

; 𝜽 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

a 𝑥𝑞 , 𝑥𝑘 ; 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
, 𝜽𝒌 𝑣 𝑥𝑘; 𝜽𝒗 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞 , 𝑥𝑘; 𝜽𝒌

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞 , 𝑥𝑘′; 𝜽𝒌

𝑣 𝑥𝑘; 𝜽𝒗

k

[𝜽𝑘]

k 𝑥𝑞, 𝑥𝑘 ∈ 𝑅≥0
𝑥𝑞 ∈ 𝑅𝑑𝑞  

𝑥𝑘 ∈ 𝑅𝑑 

Learnable “attention” kernel

k: 𝑅𝑑𝑞 × 𝑅𝑑 → 𝑅≥0

𝑣

[𝜃𝑣]

𝑥 ∈ 𝑅𝑑 𝑣(𝑥) ∈ 𝑅𝑑′
 

Transformation

𝑣: 𝑅𝑑 → 𝑅𝑑′

Attention Layer
𝑥𝑞 ∈ 𝑅𝑑𝑞  𝑥𝑞

′ ∈ 𝑅𝑑′
 

𝑆𝑥𝑘
= {𝑥1, 𝑥2, … , 𝑥𝑚}

A: 𝑅𝑑 → 𝑅𝑑′

𝑀 𝑥𝑞 , 𝑆𝑥𝑘

Let simplify and understand transformers
(Masked out)

How similar are 𝑥𝑞 and 

𝑥𝑘 relative to similarity of 𝑥𝑞 to 

all tokens



Data Mining University of Warwick

• Input: 
– A “query” token 𝑥𝑞 ∈ 𝑅𝑑 representation of a component (patch or token) 

– A set of “key” tokens 𝑆𝑥𝑘

• Attention Parameters
– A value function 𝑣 𝑥 : 𝑅𝑑 → 𝑅𝑑′

 that produces a vector for a given token (For simplicity, 
assume, 𝑑 = 𝑑′ = 𝑑𝑞)

– A “Masking” function 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
 which gives a subset of tokens from 𝑆𝑥𝑘

to which a 
given query can be compared (For simplicity, assume, for all 𝑥𝑞, 𝑀 𝑥𝑞 , 𝑆𝑥𝑘

= 𝑆𝑥𝑘
)

– A kernel function k(𝑥𝑖 , 𝑥𝑗) that can give us a degree of similarity between two tokens

– Different formulations for k(𝑥𝑖 , 𝑥𝑗), 𝑀 𝑥𝑞, 𝑆𝑥𝑘
 and 𝑣 𝑥  give you different flavours of 

attentions but once chosen they remain the same for a given attention block

143

𝑥𝑞

Legend:
All circles are Points in 𝑆𝑥𝑘

Filled circles are in 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
 and will be used in the layer

Note that points in 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
 will change depending upon 𝑥𝑞

Thickness of solid lines indicates attention scores 𝑎𝑞𝑘 ∈ [0,1] 

which is a obtained by dividing k 𝑥𝑞 , 𝑥𝑘  by the sum of all kernel 

values involving 𝑥𝑞.

Input and defining 
attention scores

After transformation/value 
function v(x)

𝑥1
𝑥2

𝑥3

𝑥𝑚

k(𝑥𝑞 , 𝑥𝑞)

k(𝑥𝑞 , 𝑥1)

k(𝑥𝑞 , 𝑥2)

k(𝑥𝑞 , 𝑥3)

k(𝑥𝑞 , 𝑥𝑚)

𝑣(𝑥𝑞) 𝑣(𝑥1)

𝑣(𝑥2)
𝑣(𝑥3)

𝑣(𝑥𝑚)

𝑣(𝑥𝑞) 𝑣(𝑥1)

𝑣(𝑥2)
𝑣(𝑥3)

𝑣(𝑥𝑚)

𝐴 𝑥𝑞; 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
= ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

𝑎𝑞𝑘𝑣(𝑥𝑘)

𝑎𝑞𝑘 =
k 𝑥𝑞 , 𝑥𝑘

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞 , 𝑥𝑘′

Output of Attention

𝑥𝑞
′ = 𝐴 𝑥𝑞; 𝑀 𝑥𝑞 , 𝑆𝑥𝑘

; 𝜽  

= ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

a 𝑥𝑞 , 𝑥𝑘; 𝜽𝒂 𝑣 𝑥𝑘; 𝜽𝒗

= ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞 , 𝑥𝑘; 𝜽𝒌

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞 , 𝑥𝑘′; 𝜽𝒌

𝑣 𝑥𝑘; 𝜽𝒗

Note change in space (blue 
to red dotted arrows and 

shifting of the points)

• Output:
– A new representation for the query token (patch)  

The new representation of the token (indicated by star) is based on the 
“pulls” (attention values 𝑎𝑞𝑘) of different points on the query token or 

the weighted combination of all transformed points. 
This process can be applied for all tokens in the input one by one so if 
there are 𝑛 tokens in the input, there would be 𝑛 tokens in the output 

(with transformed representation). 

attention values 
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Non-learnable attention

• Note that if we pick a fixed k 𝑥𝑞 , 𝑥𝑘  and 𝑣 𝑥𝑘 , such as:

▪ k 𝑥𝑞 , 𝑥𝑘; 𝜽𝒌 = 𝒆𝒙𝒑 −𝜽𝟐 𝒙𝒒 − 𝒙𝒌
𝟐

▪ 𝑣 𝒙𝒌; 𝜽𝒗 = 𝒙𝒌

▪ This leads to the following expression which expresses 𝑥𝑞  

in terms of other points in 𝑀 𝑥𝑞 , 𝑆𝑥𝑘
. This is similar, in 

concept, to locally linear embeddings. 
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𝑥𝑞
′ = 𝐴 𝑥𝑞; 𝑀 𝑥𝑞, 𝑆𝑥𝑘

; 𝜽 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

a 𝑥𝑞, 𝑥𝑘; 𝜽𝒂 𝑣 𝑥𝑘; 𝜽𝒗 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞, 𝑥𝑘; 𝜽𝒌

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞, 𝑥𝑘′; 𝜽𝒌

𝑣 𝑥𝑘; 𝜽𝒗

𝑥𝑞
′ = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

𝒆𝒙𝒑 −𝜽𝟐 𝒙𝒒 − 𝒙𝒌
𝟐

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

𝒆𝒙𝒑 −𝜽𝟐 𝒙𝒒 − 𝒙𝒌′
𝟐

𝒙𝒌 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(−𝜽𝟐 𝒙𝒒 − 𝒙𝒌
𝟐

) 𝒙𝒌

𝑥𝑞

𝑥1
𝑥2

𝑥3

𝑥𝑚

k(𝑥𝑞 , 𝑥𝑞)

k(𝑥𝑞 , 𝑥1)

k(𝑥𝑞 , 𝑥2)

k(𝑥𝑞 , 𝑥3)

k(𝑥𝑞 , 𝑥𝑚)
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Learnable Attention as (asymmetric, non-Mercer) kernel transformations

• We can introduce learnable parameters
– We can learn which input tokens should associate 

more with other tokens to produce a representation 
that when passed to the predictor should produce 
the target output

– For example, “Attention Is All You Need” paper uses 
the following functions with three learnable weight 
matrices 𝑾𝒒, 𝑾𝒌 and 𝑾𝒗
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𝑥𝑞
′ = 𝐴 𝑥𝑞; 𝑀 𝑥𝑞, 𝑆𝑥𝑘

; 𝜽 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

a 𝑥𝑞, 𝑥𝑘; 𝜽𝒂 𝑣 𝑥𝑘; 𝜽𝒗 = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞, 𝑥𝑘; 𝜽𝒌

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞, 𝑥𝑘′; 𝜽𝒌

𝑣 𝑥𝑘; 𝜽𝒗

k 𝑥𝑞, 𝑥𝑘 = 𝑒𝑥𝑝
1

𝑑
𝑥𝑞𝑾𝒒, 𝑥𝑘𝑾𝒌

𝑣 𝑥𝑘 = 𝑥𝑘𝑾𝒗

𝑥𝑞
′ = 𝐴 𝑥𝑞; 𝑀 𝑥𝑞, 𝑆𝑥𝑘

; 𝜽

𝑥𝑞
′ = 𝐴 𝑥𝑞; 𝑀 𝑥𝑞 , 𝑆𝑥𝑘

=

∑
𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

𝑒𝑥𝑝
1

𝑑
𝑥𝑞𝑾𝒒,𝑥𝑘𝑾𝒌

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

𝑒𝑥𝑝
1

𝑑
𝑥𝑞𝑾𝒒,𝑥𝑘′𝑾𝒌

𝑥𝑘𝑾𝒗 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
1

𝑑
𝑥𝑞𝑾𝒒 𝑥𝑘𝑾𝒌

𝑇 𝑥𝑘𝑾𝒗 = 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
1

𝑑
𝑞𝐾𝑇 𝑉

Dot Product

k 𝑥𝑞 , 𝑥𝑘 ∈ 𝑅≥0
𝑥𝑞 ∈ 𝑅𝑑𝑞  

𝑥𝑘 ∈ 𝑅𝑑 

k: 𝑅𝑑𝑞 × 𝑅𝑑 → 𝑅≥0

𝑾𝒒

𝑾𝒌

⊙
𝑄𝐾𝑇𝑒𝑥𝑝

√𝑑 𝑣

[𝑊𝑣]

𝑥 ∈ 𝑅𝑑 𝑣(𝑥) ∈ 𝑅𝑑′
 

𝑣: 𝑅𝑑 → 𝑅𝑑′

https://en.wikipedia.org/wiki/
Softmax_function 

https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function
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Output of a single attention layer
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Build Patch
“Embedding”  

Representation

𝑆𝑥 = 𝒙𝒊 ∈ 𝑅𝑑|𝑖 = 1 … 𝑛

Attention Layer

𝒙𝒊 ≡ 𝜙 𝒇𝒊, 𝒕𝒊
Feature Embedding: What is it?
Positional Embedding: Where is it?

A total of n tokens (small grid 
squares)

 in output

Note that the representation of each patch (or token) at the output of attention is dependent upon the 
representation of all other patches in a end-to-end learnable manner so that when this representation is used for a 

prediction task, the loss is minimized

1 2 ⋯

𝑛 tokens Representation of n tokens 
(small grid squares)

𝑥𝑞

𝑥1
𝑥2

𝑥3

𝑥𝑚

𝑣(𝑥𝑞) 𝑣(𝑥1)

𝑣(𝑥2)
𝑣(𝑥3)

𝑣(𝑥𝑚)

“Learnable”
Feature Transformation 

via attention

(shown for a single token as a 
scatter plot but this is applied to 

each point in the input)
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Attention gives transformations

• Another way of looking at an attention operation

• But a classic neural network layer also “learns” to “transform”
𝐹 𝑥; 𝜃 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝜃𝑑′×𝑑𝑥𝑑×1)

• Where is the extra information coming from?
– From comparing against all tokens and using a supervisory signal to learn the 

transform
– Weight sharing across all patches is still there like in a convolutional neural 

network
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𝐴 𝑥𝑞; 𝑀 𝑥𝑞, 𝑆𝑥𝑘
= ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞, 𝑥𝑘

∑𝑥
𝑘′∈𝑀 𝑥𝑞,𝑆𝑥𝑘

k 𝑥𝑞, 𝑥𝑘

𝑣 𝑥𝑘 = ෍

𝑥𝑘∈𝑆𝑥𝑘

𝑎(𝑥𝑞, 𝑥𝑘; 𝑊) 𝑣 𝑥𝑘; 𝑊′

Learnable “attention” values

Learnable data transformation
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Multi-headed Attention

148

d-dimensional Patch
“Embedding”  

Representation of n 
tokens

Attention Head 1

Attention Head 2

Attention Head M
C

o
n

cate
n

ate

W
e

igh
t Laye

r

A total of n tokens (small 
grid squares) in output

𝑀
×

𝑑
′

 d
im

en
si

o
n

al
 r

ep
re

se
n

ta
ti

o
n

 o
f 

ea
ch

 t
o

ke
n

A total of n tokens (small grid 
squares) in output

A total of n tokens (small 
grid squares) in output

A total of n tokens (small 
grid squares) in output
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What happens at the end of the Training phase?

• We learn

– [For NLP] The representation or 
embedding of different tokens only in 
reference to representations of other 
tokens

– The association between different 
tokens

– How to transform different tokens
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https://github.com/jessevig/bertviz 

https://github.com/jessevig/bertviz
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Transformers Key Components

• Multiple Multi-headed Attention 
Blocks

• Layer Normalization
– standardization across features of the 

same input

• Skip Connections
• Various types of positional 

encodings
• “Class” tokens

– Add global features to each example to 
enable global sharing of information 
across examples

• Masking strategies
– Needed for training in sentence 

completion or related problems where 
the next work cannot be used for 
generating the output

• Computational Complexity
– As we compare each token against 

every other, transformers can be quite 
complex

– Performer architectures
• Uses kernel approximation to reduce 

complexity
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My PyTorch tutorial: https://github.com/foxtrotmike/CS909/blob/master/mnist_transformer.ipynb 
Another Tutorial: https://medium.com/mlearning-ai/vision-transformers-from-scratch-pytorch-a-step-by-step-guide-96c3313c2e0c 
Figure from : Bazi, Yakoub, Laila Bashmal, Mohamad M. Al Rahhal, Reham Al Dayil, and Naif Al Ajlan. “Vision Transformers for Remote 
Sensing Image Classification.” Remote Sensing 13, no. 3 (January 2021): 516. https://doi.org/10.3390/rs13030516.
Krzysztof, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, et al. “Rethinking Attention with 
Performers.” arXiv, November 19, 2022. https://doi.org/10.48550/arXiv.2009.14794
Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al. “An 
Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale.” arXiv, June 3, 2021. 
https://doi.org/10.48550/arXiv.2010.11929.

https://github.com/foxtrotmike/CS909/blob/master/mnist_transformer.ipynb
https://medium.com/mlearning-ai/vision-transformers-from-scratch-pytorch-a-step-by-step-guide-96c3313c2e0c
https://doi.org/10.3390/rs13030516
https://doi.org/10.48550/arXiv.2009.14794
https://doi.org/10.48550/arXiv.2010.11929
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How is an attention layer used in Chat-GPT?
• GPTs are essentially sophisticated auto-complete 

mechanisms
– Predict next word

• Training Principle
• Taken each “document” as a set of tokens: 𝑆𝑥𝑘

=
{𝑥1, 𝑥2, … , 𝑥𝑚}

1. Take a single next-word prediction task from the 
document (see bold text on the right)

a. For each token in the input, apply the attention layers 
to a single token
i. Take a single “query” token 𝑥𝑞 in the input for which we want to 

generate a representation
ii. For the given “example” input, mask the next token, i.e., set 

𝑀 𝑥𝑞 , 𝑆𝑥𝑘
 to be a subset of only those tokens that are available 

as inputs

iii. Pass 𝑥𝑞  and 𝑀 𝑥𝑞, 𝑆𝑥𝑘
 to the attention layer to generate 𝑥𝑞

′

2. Pass the updated representation through other 
downstream layers until you generate the output 
probability of the target token

3. Maximize the probability of the target token while 
minimizing the probability of all other (non-target) 
tokens
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Input Next Token

How Does

How does Chat

How does Chat GPT

How does Chat GPT Work

… all setences in the internet corpus …

Attention Layer
𝑥𝑞 ∈ 𝑅𝑑𝑞  𝑥𝑞

′ ∈ 𝑅𝑑′
 

𝑆𝑥𝑘
= {𝑥1, 𝑥2, … , 𝑥𝑚}

A: 𝑅𝑑 → 𝑅𝑑′

𝑀 𝑥𝑞 , 𝑆𝑥𝑘

How Does Chat GPT Work
(Masked out)

GPT

https://github.com/karpathy/nanoGPT  

GPT

https://github.com/karpathy/nanoGPT
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What do transformers see?

152



Data Mining University of Warwick

Are convolutions and attention really necessary?

• MLP Mixer Paper: “In this paper we 
show that while convolutions and 
attention are both sufficient for 
good performance, neither of them 
are necessary. ”

• gMLP: “self-attention is not critical 
for Vision Transformers”

• Attention with Convolution may be 
more useful ☺
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Tolstikhin, Ilya, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, et al. “MLP-Mixer: An All-MLP 
Architecture for Vision.” arXiv, June 11, 2021. https://doi.org/10.48550/arXiv.2105.01601.
Liu, Hanxiao, Zihang Dai, David R. So, and Quoc V. Le. “Pay Attention to MLPs.” arXiv, June 1, 2021. https://doi.org/10.48550/arXiv.2105.08050.

“Similar to fully-connected networks, the ViT architecture (and transformer 
architecture in general) lacks the inductive bias for spatial 
invariance/equivariance that convolutional networks have. Consequently, 
ViTs require more data for pretraining to acquire useful "priors" from the 
training data.” (S. Raschka)

https://twitter.com/rasbt/status/1636371712467177472 

https://doi.org/10.48550/arXiv.2105.01601
https://doi.org/10.48550/arXiv.2105.08050
https://twitter.com/rasbt/status/1636371712467177472
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Using Transformers

• Hugging Face Transformers Library

– Examples: https://huggingface.co/docs/transformers/model_doc/vit 

– Tutorial notebook on finetuning: 
https://github.com/NielsRogge/Transformers-
Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Tr
ansformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb 
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https://huggingface.co/docs/transformers/model_doc/vit
https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb
https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb
https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb
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Another way of thinking about GPTs

Modeling XOR as a “next token” problem or FSM or turing machine 

155

Input Next “Target” 
Token

Target Probability

P(0) P(1)

0,0 0 1 0

0,1 1 0 1

1,0 1 0 1

1,1 0 1 0

0 10

1

0

https://github.com/foxtrotmike/CS909/blob/master/gpt_finite_state.ipynb

1

NN

P(0)

P(1)

00

https://github.com/foxtrotmike/CS909/blob/master/gpt_finite_state.ipynb
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GRAPH NEURAL NETWORKS
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Graph Neural Networks

• The Need
– Example

• Classifying chemical compounds

– It is difficult to model arbitrary 
input data structures with 
SVMs, MLPs, CNNs and 
Transformers
• Images and text have “Linear 

Structure”
– Text is 1-dimensional

– Image is 2-dimensional

– But each can be mapped onto a grid

158

Cancer Drugs

Other Drugs
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Graphs

• Graph Modelling

– Very flexible data structure

• Components of a graph
– Vertices/Node Set: 𝑉 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}

• Each element of the set can have a vector 
descriptor of its properties 

– Edge Set: 𝐸 = 𝑒1,2, 𝑒1,3, 𝑒3,2, 𝑒3,4, 𝑒4,3 ⊆ 𝑉 × 𝑉

• Each element of the set can have a vector 
descriptor of its properties
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3

7 1

5

8

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Adjacency_matrix  

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Adjacency_matrix
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Examples of graphs

    This  is   a  graph
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Graph Neural Networks

• Simple Graph Classification Example

– Node and edge level prediction problems also possible
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𝑊𝑒𝑖𝑔ℎ𝑡 
𝑈𝑝𝑑𝑎𝑡𝑒

Build
“Embedding”  

Representation of 
each node and edge

Graph Message 
Passing Layers

Predictor Cancer Drug

Not Cancer Drug

Output Target

𝐿𝑜𝑠𝑠

−

Cancer Drug

Not Cancer Drug

0
1
0
0
0

𝑥𝑖 =

𝐶
𝐻
𝑂
𝑁
𝑆

=

1
0
0
0
0

Input: Graph consisting of
Node set: what are things (each node has feature representation)
Edge set: how are they connected (each edge can have a feature representation but, in the very least, it tells us what nodes are connected by an edge)



Data Mining University of Warwick

How does a graph neural network layer work?
• Just like any other neural network layer, the goal of a 

graph layer is to transform the representation of the 
input to a new representation in a learnable/trainable 
fashion so that we can optimize the parameters in the 
layer to reduce our loss or error function

• Input: A Graph with node and edge level features
• Output: A Graph with (transformed) node and edge 

features
• The GNN layer transforms the feature representation 

of each node as follows:
– Where am I? Generate context for each input node

• Node pair transform: Transform features of each node 
connected to an input node while taking pairwise edge 
information into account (using a neural network)

• Aggregation: Aggregate information of neighbors of the node 
to provide the local context in the form of a fixed dimensional 
feature vector (max, sum, average, etc.)

– What should I become? Transform each node in the  context 
of its neighbors (using a neural network)

• Each GNN layer thus incorporates information from 
one hop away of each node thus multiple GNN layers 
in series can be used to incorporate information from 
multiple layers

162

𝜙(𝑙) NN
Transform pairwise 

neighbor information

⨁
Aggregation
Mechanism

𝛾(𝑙) NN
Transform in context

𝒙𝑖
(𝑙−1)

𝒆𝑗,𝑖

𝑁 𝑖 =

𝒙𝑗
(𝑙−1)

𝒙𝑖
(𝑙)

∀𝑗 ∈ 𝑁(𝑖)

𝒙𝑖
(𝑙)

= 𝛾(𝑙) 𝒙𝑖
𝑙−1 , ⨁𝑗∈𝑁(𝑖)𝜙(𝑙) 𝒙𝑖

(𝑙−1)
, 𝒙𝑗

𝑙−1 , 𝒆𝑗,𝑖

GNN
Layer 𝑙

𝑖

𝑗

𝑒𝑗,𝑖
𝑖

𝑗

𝑒𝑗,𝑖

𝒙𝑖
(𝑙)

𝒙𝑖
(𝑙−1)

Input feature 
representation 
of node 𝑖 

Output feature 
representation 
of node 𝑖 

Neighbor set 
of node 𝑖 

Edge features

Neighbor 
nodes

https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html 

𝑖

𝑗
𝑒𝑗,𝑖

Local context

https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html
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Implementing Different Graph Neural Network Layers
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𝒙𝑖
(𝑙)

= ෍

𝑗∈𝑁(𝑖) 

𝜙(𝑙) 𝒙𝑖
(𝑙−1)

 ቛ𝒙𝑗
(𝑙−1)

 − 𝒙𝑖
(𝑙−1)

 

⨁
∑

𝒙𝑖
(𝑙−1)

𝑁(𝑖)

𝒙𝑗
(𝑙−1) 𝒙𝑖

(𝑙)
∀𝑗 ∈ 𝑁(𝑖)

𝜙(𝑙)

−

https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html 

𝜙(𝑙) NN ⨁
Agg

𝛾(𝑙) NN𝒙𝑖
(𝑙−1)

𝒆𝑗,𝑖

𝑁(𝑖)

𝒙𝑗
(𝑙−1)

𝒙𝑖
(𝑙)

∀𝑗 ∈ 𝑁(𝑖)

𝒙𝑖
(𝑙)

= 𝛾(𝑙) 𝒙𝑖
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https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html
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Message Passing Based Graph Neural Networks
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Base 
Net

GMPL
2

GMPL
1

GMPL
L

pool

+

pool poolpool

linear linear linear linear

Graph Message 
Passing Layer 

(GMPL)…

Edge
 Connectivity
& Features 

Input Node
 Features

Graph Level Output

Node level 
predictive scores

Latent Node 
Representations

Conventional Methods
Simple Averaging of 

Node  predictions

𝒙

𝒆

𝒙(𝑳−𝟏)𝒙(𝟐)𝒙(𝟏)𝒙(𝟎) 𝒙(𝑳)

Skip-connected 
Layer-wise 

Graph-level Outputs

𝑓𝟎(𝒙) 𝑓𝟏(𝒙) 𝑓𝟐(𝒙) 𝑓𝑳(𝒙)

𝑭𝟎(𝑮) 𝑭𝟏(𝑮) 𝑭𝟐(𝑮) 𝑭𝑳(𝑮)

𝐹(𝐺)

Incorporating extra information

Fayyaz Minhas, Whole Slide Images Are Graphs, 2020. https://www.youtube.com/watch?v=Of1u0i7roS0.

Code: https://tia-toolbox.readthedocs.io/en/latest/_notebooks/jnb/inference-pipelines/slide-graph.html  

Readout: Converting multi-level node level feature representation to a graph 
level output

Averaging 
across all nodes 

in a graph

𝐺

https://www.youtube.com/watch?v=Of1u0i7roS0
https://tia-toolbox.readthedocs.io/en/latest/_notebooks/jnb/inference-pipelines/slide-graph.html
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IGUANA

170

Graham, Simon, Fayyaz Minhas, Mohsin Bilal, Mahmoud Ali, Yee Wah Tsang, Mark Eastwood, Noorul Wahab, et al. “Screening of Normal Endoscopic Large Bowel Biopsies with Interpretable 
Graph Learning: A Retrospective Study.” Gut, May 12, 2023. https://doi.org/10.1136/gutjnl-2023-329512.
Demo: https://tiademos.dcs.warwick.ac.uk/bokeh_app?demo=iguana 

https://doi.org/10.1136/gutjnl-2023-329512
https://tiademos.dcs.warwick.ac.uk/bokeh_app?demo=iguana
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Are Transformers (secretly) GNNs?

Assume 
▪ We have a set of “nodes” 𝑆𝑥𝐾

 and for a given “query” node 𝑥𝑞, we have a 

masking set set 𝑀 𝑥𝑞 , 𝑆𝑥𝐾
  (for simplicity assume 𝑀 𝑥𝑞 , 𝑆𝑥𝐾

= 𝑆𝑥𝐾
)

▪ Each node is connected to all other nodes including itself (i.e., neighborhood 
𝑁 𝑥𝑞 = 𝑀 𝑥𝑞 , 𝑆𝑥𝐾

) (Fully Connected Graph)

Now consider a specific graph neural network layer in which

▪ 𝛾 𝑘 a, b = b

▪ 𝜙(𝑙) 𝒙𝑖
(𝑙−1)

, 𝒙𝑗
𝑙−1

, 𝒆𝑗,𝑖 = a 𝒙𝑖
(𝑙−1)

, 𝒙𝑗
𝑙−1

; 𝜽𝒂 𝑣 𝒙𝑗
𝑙−1

; 𝜽𝒗

▪ ⨁𝑗∈𝑁(𝑞)(⋅) = ∑
𝒙𝒌∈𝑀 𝒙𝒒,𝑆𝑥𝑘

(⋅)

▪ Then the output of the GNN layer: 

▪ 𝒙𝑖
(𝑙)

= 𝛾(𝑙) 𝒙𝑖
𝑙−1

, ⨁𝑗∈𝑁(𝑖)𝜙(𝑙) 𝒙𝑖
(𝑙−1)

, 𝒙𝑗
𝑙−1

, 𝒆𝑗,𝑖

▪ Becomes (with notation 𝒙𝑖
(𝑙−1)

= 𝑥𝑞, 𝒙𝑗
𝑙−1

= 𝑥𝑘 and 𝒙𝑖
(𝑙)

= 𝒙𝑞
′ )

▪ 𝒙𝑞
′ = ∑

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

a 𝑥𝑞 , 𝑥𝑘; 𝜽𝒂 𝑣 𝑥𝑘; 𝜽𝒗

▪ Which is an attention layer (assuming position encoding is built into node 
features)

▪ An attention layer is a special case of a GNN layer!
▪ Attention scores can be viewed as pairwise weights of edges between nodes
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𝒙𝑖
(𝑙)

= 𝛾(𝑙) 𝒙𝑖
𝑙−1 , ⨁𝑗∈𝑁(𝑖)𝜙(𝑙) 𝒙𝑖

(𝑙−1)
, 𝒙𝑗

𝑙−1 , 𝒆𝑗,𝑖

𝜙(𝑙) NN
Transform pairwise 

neighbor information

⨁
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𝛾(𝑙) NN
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𝒙𝑗
(𝑙−1)

𝒙𝑖
(𝑙)
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𝒙𝒌

𝒙𝑞
′

∀𝑘 ∈ 𝑀 𝒙𝒒, 𝑆𝑥𝐾

𝒙𝑞
′ = ෍

𝑥𝑘∈𝑀 𝑥𝑞,𝑆𝑥𝑘

a 𝑥𝑞 , 𝑥𝑘; 𝜽𝒂 𝑣 𝑥𝑘; 𝜽𝒗

Input 
features of 
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𝑎𝑞,𝑞
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Reading on Graph Neural Networks

• Xu*, Keyulu, Weihua Hu*, Jure Leskovec, and Stefanie Jegelka. “How Powerful Are Graph Neural 
Networks?,” 2023. https://openreview.net/forum?id=ryGs6iA5Km.

• Kanatsoulis, Charilaos I., and Alejandro Ribeiro. “Graph Neural Networks Are More Powerful Than We 
Think.” arXiv, October 2, 2022. https://doi.org/10.48550/arXiv.2205.09801.

• Bronstein, Michael M., Joan Bruna, Taco Cohen, and Petar Veličković. “Geometric Deep Learning: 
Grids, Groups, Graphs, Geodesics, and Gauges.” arXiv, May 2, 2021. 
https://doi.org/10.48550/arXiv.2104.13478.

• http://web.stanford.edu/class/cs224w/ 

• Libraries
– PyTorch Geometric

– DGL

– Topological Neural Networks
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https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.48550/arXiv.2205.09801
https://doi.org/10.48550/arXiv.2104.13478
http://web.stanford.edu/class/cs224w/
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AUTOENCODERS
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REO For Auto-Encoders

• Goal
– Get an embedding (usually a compressed encoding) of a data sample such that 

the embedding can be used for reconstruction of data. 
– Used for dimensionality reduction, feature extraction, compression, visualization 

and generative learning

• Representation
– Input: 𝒙 ∈ 𝑅𝒅   Output: Reconstruction ෝ𝒙 = 𝑫(𝑬 𝒙; 𝜽𝑬 ; 𝜽𝑫)

• Encoder 𝑬 𝒙; 𝜽𝑬 : 𝑅𝑑 → 𝑅𝑑𝐸  (Usually 𝑑𝐸 < 𝑑)
• Decode 𝑫 𝒙′; 𝜽𝑬 :𝑅𝑑𝐸 → 𝑅𝑑

• Evaluation: 
– Mean Square Error Loss (Other losses such as KL Divergence etc)

• 𝒎𝒊𝒏𝜽𝑫,𝜽𝑬

1

𝑁
∑𝒊 𝒙𝒊 − ෝ𝒙𝒊

𝟐 =
1

𝑁
∑𝒊 𝒙𝒊 − 𝑫(𝑬 𝒙; 𝜽𝑬 ; 𝜽𝑫) 𝟐

• Optimization
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Unsupervised Learning - Autoencoders

176

AutoEncoder
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Autoencoder

NN
Encoder

NN
Decoder

code

Compact 
representation of 
the input object

reconstruct the 
original object

28 X 28 = 784 

Usually <784 

Unsupervised approach for learning a lower-dimensional feature 
representation  from unlabelled training data

Q: Why dimensionality reduction?

A: Want features to capture meaningful factors of variation in data
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How to Train Autoencoders?

𝑥

Input layer

𝑊𝐸

ො𝑥

𝑊𝐷

output layer
hidden layer

(linear)

𝑐

As close as possible

Minimize 𝑥 − ො𝑥 2

Bottleneck later

Output of the hidden layer is the code

encode decode

Train such that features can be used to reconstruct original data  
“Autoencoding” – encoding itself
Equivalent to PCA*

178

*Under the assumptions that the data is mean-centered and mean squared error is used as a loss function along with an orthogonality constraint 𝑊𝐸𝑊𝐷 = 𝐼
  .
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Refresher PCA: Reconstruction
• We know that 𝒛 = 𝑾𝑇𝒙 (assuming 

𝒙 is centered) therefore 

• The reconstruction error is given by 

• Another way of interpreting PCA is 
that it finds orthogonal direction 
vectors such that after projecting 
data onto to them, the 
reconstruction error is minimal.

ෝ𝒙 = 𝑾𝑇 −1𝒛
⇒ ෝ𝒙 = 𝑾(𝑑×𝑘)𝒛  ∵ 𝑾𝑾𝑻 = 𝑰

𝐸𝑟𝑒𝑐 = ෍

𝑖=1

𝑁

ෝ𝒙𝒊 − 𝒙𝒊

min
𝑾

෍

𝑖=1

𝑁

ෝ𝒙𝒊 − 𝒙𝒊  𝒔. 𝒕𝒉. 𝑾𝑾𝑻 = 𝑰

𝒙 𝑾𝑇 𝒛 𝑾 ෝ𝒙

𝑃𝐶𝐴
ℝ𝑑 → ℝ𝑘

𝐼𝑃𝐶𝐴
ℝ𝑘 → ℝ𝑑

−

flatten Un-flatten

See Tutorial: https://github.com/foxtrotmike/PCA-
Tutorial/blob/master/pca-lagrange.ipynb 

https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
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Reference: Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural 
networks." Science 313.5786 (2006): 504-507

Deep Auto-encoder

• Of course, the auto-encoder can be deep
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“Latent Space” Representation

Tutorial Implementation: https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb
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Other types of autoencoders

• Vanilla Auto-encoder

• Denoising Auto-encoders

• Variational Auto-encoder (VAE)

• Vector-Quantized Variational Autoencoders (VQ-VAE)

182

Further notes: https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb
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GENERATIVE MACHINE LEARNING

190

Creating noise from data is easy; creating data from noise is generative modeling.*

[*] Song, Yang, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. “Score-Based Generative 
Modeling through Stochastic Differential Equations.” arXiv, February 10, 2021. https://doi.org/10.48550/arXiv.2011.13456.

https://doi.org/10.48550/arXiv.2011.13456


Data Mining University of Warwick

Background: Introduction to Sampling

• Empirical distribution Modelling: Making a distribution from 
observations (Density Estimation)
– Example: 

• Observations: {H,T,H,T,H}
• P(H) = 3/5 = 0.6, P(T) = 2/5 = 0.4
• Shown as probability distribution (normalized histogram)

• Sampling from a distribution
– Assume you are given a probability distribution p(x), then if you “sample” 

from it, you will be generating samples x which when observed will give 
you p(x)

– Example
• Given: P(H) = 0.6, P(T) = 0.4
• Generated Samples: {H,T,H,T,H,T,H,H,T,H}

191

H,T,H,T,T,H H
T

p(x)

H
T

p(x)

H,T,H,H,T,H,H,H,T,T,H
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Background: Generating samples 

• Can we generate samples of a target distribution using 
samples from a source distribution as input?

192

Generator
𝑥~𝑆(𝑥) 𝑧~𝑇(𝑧)

X = np.random.rand(N) Z = np.random.randn(N)+0.5

𝑥~𝑈(𝑎 = 0, 𝑏 = 1) 𝑧~𝑁(𝜇 = 0.5, 𝜎 = 1)
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Background: Generating samples 

• We can use inverse transform sampling

– But that requires the knowledge of the formula for both probability 
distributions which may not be available for the target distribution

193

https://en.wikipedia.org/wiki/Inverse_transform_sampling 

𝑧~𝑁(𝜇 = 0.5, 𝜎 = 1)
X = np.random.rand(N)

𝑥~𝑈(𝑎 = 0, 𝑏 = 1)

Input 
Samples

Output 
Samples

https://en.wikipedia.org/wiki/Inverse_transform_sampling
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A generative look at Machine Learning

194

Lex Fridman. Complete Statistical Theory of Learning (Vladimir Vapnik) | MIT Deep Learning Series, 2020. 
https://www.youtube.com/watch?v=Ow25mjFjSmg.

𝑝(𝑦|𝑥)

𝑓(𝑥; 𝜃)

𝑝(𝑥)

Generative Process in Nature Label Assignment

Learning Machine

𝑥𝑖
𝑦𝑖

𝑦

𝑥𝑖

𝑥

𝑦𝑖

Noise

Fundamental aim of a discriminative model
Learn a model of p(y|x) from observations

Fundamental aim of a Generative Model
Learn a model of 𝑝(𝑥) or 𝑝(𝑥|𝑦) from observations to generate 

samples from random noise input

Training input

Training input

https://www.youtube.com/watch?v=Ow25mjFjSmg
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Generating data with machine learning

• Can we generate examples that 
follow the same distribution as a 
given set of examples using noise 
as input?

• Sampling from the multi-
dimensional distribution of data

• How?
– Density Modelling

• Modelling the Probability of observing 
a given point 𝑝(𝑥)

• Once I have an explicit or implicit 𝑝(𝑥), 
I can sample from that distribution to 
generate an example

195
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Generating Data with Autoencoders

196
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Tutorial Implementation: https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb 
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https://github.com/foxtrotmike/CS909/blob/master/autoenncoders.ipynb
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Generative Models

• Can we build a model to approximate a data distribution 
from given examples?

Lecture 12 -

Density estimation: a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for pmodel(x)

- Algorithms: Gaussian Mixture Models, Kernel Density Estimation, Variational Autoencoders

- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it

- Algorithms: Vanilla autoencoder, Generative adversarial networks (GANs), Diffusion Models, Normalizing Flows

https://openai.com/blog/generative-models/ 197

Real image (training data) ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)
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A Simple Generative Machine Learning Example

• Nature
– A coin with p(x=H)=0.7 and  p(x=T)=0.3

– Generates data

• Given Data
– {H,H,H,T,T,H,T,H,H,T}

• Goal of Generative Learning
– Make a machine learning model that can generate data (heads or tails) 

that follows the same distribution as data from the real world or natural 
process. 

– The difference between the probability distributions of real and generated 
samples should be small

199

Noise

{H,H,H,T,T,H,T,H,H,T}
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REO for Generative Models
• Goal

– Given a set of real-world examples: 𝑥~𝑝 𝑥 . 𝑝 𝑥  is not explicitly 
known.

– Learn parameters 𝜃 of the model 𝑓(𝑧; 𝜃) so that the examples 
generated by the model follow the same distribution as the real-
world examples 𝑥~𝑝(𝑥) 

• Representation: 𝑥 =  𝑓(𝑧; 𝜃) with 𝑧~𝑁𝑜𝑖𝑠𝑒
– Let’s denote the distribution of examples generated by this model 

as 𝑝𝜃(𝑥). 
– Note that the model may not have an explicit internal formula for 

this distribution.

• Evaluation: 
– Differences between the probability distribution of 𝑥 in nature 

𝑝(𝑥) and of the generated samples 𝑝𝜃(𝑥) from 𝑓(𝑧; 𝜃)
• That is, if I sample from 𝑝 𝑥  or if I sample from𝑝𝜃(𝑥), the real and 

generated samples are similar

• Optimization
– Use gradient descent to optimize for 𝜃

200

𝑧~𝑁(𝟎, 𝑰)

𝑓(𝑧; 𝜃)

Real image (training data) ~ 𝑝 𝑥
𝑝 𝑥  is not given. 

Generated samples ~ 𝑝𝜃(𝑥) 
𝑝𝜃(𝑥) may be implicit.
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Generative Adversarial Networks

• Use “Adversarial Training” to train a generator and 
discriminator simultaneously

• Generator: Generate samples from noise

• Discriminator: Detect “fake” or generated samples

201
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Adversarial Training in a GAN

• GAN Training the goal is to:
– Train the discriminator to be good at detecting fakes

• Simple classification: Discriminator should produce 1 for real and 0 
for generated 

▪ min
𝜽𝑫

∑𝑥𝑖∈𝑅 𝑙(𝐷(𝒙𝑖; 𝜽𝑫), 1) + ∑𝑧𝑗~𝑁 𝑙(𝐷(𝐺 𝒛𝑗; 𝜽𝑮 ; 𝜽𝑫), 0) 

– Train the generator to be so good that the discriminator 
labels generated samples as “Real”
• The generator exploits the discriminator’s ability or knowledge to 

distinguish between real and generated samples to its advantage

• The generator is optimized such that the discriminator produces 1 
for generated examples

▪ min
𝜽𝑮

∑𝒛𝑗~𝑁 𝑙(𝐷(𝐺 𝒛𝒋; 𝜽𝑮 ; 𝜽𝑫), 1) 

▪ OR equivalently, the generator is optimized such that the 
discriminator generates errors in classifying generated examples 
(note the max below)

▪ max
𝜽𝑮

∑𝒛𝒋~𝑁 𝑙(𝐷(𝐺 𝑧𝑗; 𝜽𝑮 ; 𝜽𝑫), 0)

▪ Can also add additional loss terms for quality/realism etc.
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GAN Tutorial
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https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
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How to go from generating coin flips to images?

• Assume you are given B&W images for training 
a GAN to generate more images like that. 

• Let’s look at a single pixel location in each 
image
– We have a distribution of pixel values across all 

images at that location
• We would like our GAN to generate data according to 

that distribution at that pixel location

• Naïve idea: Have multiple GANs – one for each pixel 
location

– Assumes each pixel is independent of the other

– Computationally intensive

• We can train a single GAN to generate a multi-
dimensional probability distribution by using a multi-
output generator.
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Performance Assessment of Generative Models

205

Goal Metrics

Measure difference in probability distribution of 
generated and real samples

Earth Mover Distances
Maximum Mean Discrepancy
Kernel Inception Distance (KID)
Wasserstein Distance

Diversity: Evaluate whether the model can generate a 
wide variety of outputs:

Diversity Score
Mode Score

Coverage: Measure how well the generated samples 
cover the variety of the dataset

Coverage Score

Stability and Robustness: Consistency of good results
Adversarial robustness measures

Quality Inception score
Fréchet Inception Distance and KID
Structural Similarity Index Measure 
Learned Perceptual Image Patch Similarity (LPIPS)

Task Specific metrics NLP: BLEU, ROUGE
Drug Discovery: Quantitative Structure-Activity 
Relationship (QSAR) Metrics
Subjective Assessment
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Unconditional vs Conditional Generation

• Unconditional Generative Modelling

– Simple model the probability distribution of the data p(x)

• Example: Generating images without paying any regard to the digit
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Unconditional vs Conditional Generation

• Conditional Generative Modelling

– Model the distribution p(x|y) of data x conditioned on a variable y

• Example: Generating images for a given digit

207

Generative Model 
Training 

Trained Model
Used 

for

gives

Random Noise

produces

co
n

d
itio

n
in

g

𝑦 =  1

conditioning

Class Labels



Data Mining University of Warwick

GANs Applications

• GANs have some impressive applications

– Synthetic Image Generation

– Speech Generation

– Image to Image Translation

– Style Transfer

– Deep Fakes
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Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks.  https://arxiv.org/abs/1701.00160
https://github.com/eriklindernoren/PyTorch-GAN
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://affinelayer.com/pixsrv/ 

Raevskiy, Mikhail. “Write Your First Generative Adversarial Network 
Model on PyTorch.” Medium, August 31, 2020. 
https://medium.com/dev-genius/write-your-first-generative-
adversarial-network-model-on-pytorch-7dc0c7c892c7.

Barebones GAN 
https://github.com/foxtrotmike/CS909/blob/mas
ter/simpleGAN.ipynb 

https://arxiv.org/abs/1701.00160
https://github.com/eriklindernoren/PyTorch-GAN
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://affinelayer.com/pixsrv/
https://medium.com/dev-genius/write-your-first-generative-adversarial-network-model-on-pytorch-7dc0c7c892c7
https://medium.com/dev-genius/write-your-first-generative-adversarial-network-model-on-pytorch-7dc0c7c892c7
https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
https://github.com/foxtrotmike/CS909/blob/master/simpleGAN.ipynb
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https://github.com/hindupuravinash/the-gan-zoo 12

8

The GAN Zoo
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https://github.com/hindupuravinash/the-gan-zoo
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Text-to-Image Synthesis

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, “Generative Adversarial Text-to-Image Synthesis”, ICML 2016
H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, D. Metaxas, “StackGAN: Text to Photo-realistic Image Synthesis with 
Stacked Generative Adversarial Networks”, arXiv prepring, 2016
S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, H. Lee, “Learning What and Where to Draw”, NIPS 2016
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Text to Image – Results
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Image-to-image Translation

P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks”, 

arXiv preprint, 2016 
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Unpaired Transformation – Cycle GAN, Disco GAN

Transform an object from one domain to another without paired data 

photo van Gogh

Domain X Domain Y

214



Data Mining University of Warwick

TurbuGAN

215

Feng, Brandon Yushan, Mingyang Xie, and Christopher A. Metzler. “TurbuGAN: An Adversarial Learning Approach to Spatially-Varying Multiframe Blind 
Deconvolution with Applications to Imaging Through Turbulence.” arXiv, August 22, 2022. https://doi.org/10.48550/arXiv.2203.06764.

https://doi.org/10.48550/arXiv.2203.06764
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Diffusion Models
• What is diffusion?

• Can we learn to reverse it?

216

High EntropyLow Entropy

https://en.wikipedia.org/wiki/Maxwell%27s_demon 

1925

Maxwell’s Demon

https://en.wikipedia.org/wiki/Maxwell%27s_demon
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Diffusion Models

• Main idea: Learn to reverse a “diffusion” process

217

Tutorial: https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
Dhariwal, Prafulla, and Alex Nichol. “Diffusion Models Beat GANs on Image Synthesis.” arXiv, June 1, 2021.  https://doi.org/10.48550/arXiv.2105.05233.
Nichol, Alex, and Prafulla Dhariwal. “Improved Denoising Diffusion Probabilistic Models.” arXiv, February 18, 2021. https://doi.org/10.48550/arXiv.2102.09672.

https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
https://doi.org/10.48550/arXiv.2105.05233
https://doi.org/10.48550/arXiv.2102.09672
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Diffusion Models

• Generation by learning to reverse entropy
• Forward Process: Generate noisy signals 

from data
– Data distribution gets gradually 

converted to noise
• Reverse Process: Learn to denoise

– Using a neural network  𝜖𝜃 𝑥𝑡 , 𝑡  with 
weights  𝜃 which takes the noisy 
data 𝑥𝑡 as input along with the time 
step 𝑡 (and possibly other 
"conditioning" variables) to output an 
estimate of the noise 𝜖𝑡  that has been 
added to  𝑥0 to generate  𝑥𝑡. This is 
achieved by solving the following 
optimization problem:

• Generation: Once the neural network is 
trained, we can generate data using:

• Can be improved by operating in a 
compressed or latent space: Latent 
diffusion
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Simplest Diffusion Tutorial: https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb 

minθ 𝐸𝑡,𝑥0𝜖 𝜖𝑡 − 𝜖𝜃 𝑥𝑡, 𝑡 2

𝑥 = 𝑥𝑇 − 𝜖𝜃 𝑥𝑇 , 𝑇  with 𝑥𝑇~𝑁(0,1)
NN

𝜖𝜃 𝑥𝑡, 𝑡𝑇
𝑥~𝑃𝑚𝑜𝑑𝑒𝑙

𝒙𝑻~𝑁𝑜𝑖𝑠𝑒

-

𝑥𝑇

Generation

Trained

NN
𝜖𝜃 𝑥𝑡, 𝑡

𝑡

𝜖𝑡~𝑁𝑜𝑖𝑠𝑒

+𝑥0~𝑝(𝑥)
𝑥𝑡

-

𝜖𝑡

loss

Estimated  noise

Noisy 
sample

Training

Original 
sample

https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb
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SORA: Diffusion Transformer
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https://openai.com/research/video-generation-models-as-world-simulators 

https://openai.com/research/video-generation-models-as-world-simulators
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Seeing without seeing
• Takagi, Yu, and Shinji Nishimoto. “High-Resolution Image Reconstruction with Latent Diffusion Models from Human Brain Activity.” bioRxiv, 

December 1, 2022. https://doi.org/10.1101/2022.11.18.517004.
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CONCLUSIONS
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Issues

• Deep Neural Networks are Easily Fooled
– https://arxiv.org/abs/1412.1897v4

• Failures of deep learning
– https://arxiv.org/abs/1703.07950

• To understand deep learning we need to understand kernel learning
– https://arxiv.org/abs/1802.01396 

• Understanding deep learning requires rethinking generalization
• Steps toward deep kernel methods from infinite neural networks

– https://arxiv.org/abs/1508.05133

• Do Deep Neural Networks Really Need to be Deep?
• One pixel attack for fooling deep neural networks

– https://www.youtube.com/watch?v=SA4YEAWVpbk 
– https://github.com/Hyperparticle/one-pixel-attack-keras 

• Adversarial Examples that Fool both Computer Vision and Time-Limited 
Humans

• Alchemy? https://www.youtube.com/watch?v=ORHFOnaEzPc 
– Ali Rahimi
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https://arxiv.org/abs/1412.1897v4
https://arxiv.org/abs/1703.07950
https://arxiv.org/abs/1802.01396
https://arxiv.org/abs/1508.05133
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https://github.com/Hyperparticle/one-pixel-attack-keras
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The Rise of Vector Databases

• Flowise, langchain

226

https://www.pinecone.io/ https://github.com/pinecone-io/examples/blob/master/docs/gpt-4-langchain-docs.ipynb
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Other Topics• Recurrent Neural Networks

• Reinforcement Learning

– Learning from experience

– Example: Learning to levitate or helping a mouse escape from a cat

– https://github.com/foxtrotmike/RL-MagLev/blob/master/RL.ipynb 

– https://github.com/foxtrotmike/RL-MagLev/blob/master/cat_mouse.ipynb 

• Learning Paradigms

– Multi-task Learning

– Multi-Label Learning

– Self-Supervised Learning

• Learn a task to learn a feature representation and adapt it to other tasks

• Contrastive Learning

– Zero Shot and Few Shot Learning

• Bayesian Neural Networks and Uncertainty Quantification (Conformal Prediction)

• Neural Ordinary Differential Equations (NODE)

– https://github.com/foxtrotmike/NODE-Tutorial/blob/main/node_tutorial%20(2).ipynb 

• Data Efficient Learning

• Symbolic Regression

• Learning to Learn

• Quantum ML

• Domain Generalization

• Robustness

• Building invariances into machine learning models

• Link between Causality, Symmetry, Invariance and Generalization

• Prompt Engineering, Retrieval Augmented Generation
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My RL Tutorial Video: https://youtu.be/N20h6vpR13Y 

https://astroautomata.com/paper/symbolic-neural-nets/ 

https://github.com/foxtrotmike/RL-MagLev/blob/master/RL.ipynb
https://github.com/foxtrotmike/RL-MagLev/blob/master/cat_mouse.ipynb
https://github.com/foxtrotmike/NODE-Tutorial/blob/main/node_tutorial%20(2).ipynb
https://youtu.be/N20h6vpR13Y
https://astroautomata.com/paper/symbolic-neural-nets/
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Books

Understanding Deep Learning 
by Simon J.D. Prince
https://udlbook.github.io/udlbook/ 
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Backpropagation and MLPsSVMs and Kernels Deep LearningFoundations

https://udlbook.github.io/udlbook/
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Assignment 1 Grades
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THE END (2024)

Any Slides After This Are Optional and not included in the 
2024 exam
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