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Applications of Machine Learning

• An ability that I would like you to learn is to identify how to use 
machine learning in different domains.

• Machine learning can be applied in a wide array of real-world 
applications
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Data, Big Data and Data Science

• We are going through an 
age of “Big Data”

– Humans are the only 
biological entity that can 
store more data outside 
its body than inside it
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Age of Big Data
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Our Emergent Digital Future

http://www.digitaltonto.com/2011/our-emergent-digital-future/

http://www.digitaltonto.com/2011/our-emergent-digital-future/
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Age of Big Data
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(in Mbps)

Internet users per 100 inhabitants
https://en.wikipedia.org/wiki/Global_Internet_usage

https://en.wikipedia.org/wiki/Global_Internet_usage
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Age of Big Data
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Question

• Where does the 
bottleneck lie?

– Data Analysis by Humans

– Have humans become 
smarter?

– How about we automate 
that?
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Data Science

• Use of the scientific method in 
the development of: 
– Processes

– Algorithms

– Systems

• For extraction of knowledge 
from structured or unstructured 
data

• Examples
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Applications
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Handwriting Recognition / OCR
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OCR Accuracy
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Applications: Biometrics
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Facebook Friends Tagging
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Voice Assistants
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Gmail: ML in NLP
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Recommender Systems

• Recommend movies based on user 
preferences, interests and likes

• Similar ideas for facebook…

– Find friends that share your interests
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Keyboard acoustics
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PCR in HCI/CV

• Gesture Recognition
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Synthesis
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https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark

https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark
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Machine Learning
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Applied Machine Learning

• Examples from my research
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Data Science: Hurricane Intensity Prediction

• Hurricane Intensity Prediction
• In collaboration with National 

Hurricane Center, USA

• Deep-PHURIE
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Deep-PHURIE: Deep Learning based Hurricane Intensity Estimation from Infrared Satellite Imagery, M. Dawood, A. Asif and Fayyaz Minhas, in Neural Computing and Applications. 

pp. DOI: 10.1007/s00521-019-04410-7, July 2019. 

PHURIE: Hurricane Intensity Estimation from Infrared Satellite Imagery using Machine Learning, Amina Asif, Muhammad Dawood, Bismillah Jan, Javaid Khurshid, Mark DeMaria, 
and Fayyaz ul Amir Afsar Minhas, in Neural Computing and Applications, DOI: http://dx.doi.org/10.1007/s00521-018-3874-6, 2018

http://dx.doi.org/10.1007/s00521-018-3874-6,
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Data Science: Journal Recommendation System

• Using classical NLP

• Using BERT 

End to end Learning-based Journal Recommendation System by M. Bilal and Fayyaz Minhas (in prep.)
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COVID19 Meets Machine Learning
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ECG Classification
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Medical Data Classification
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Predicting Protein interactions, interfaces and affinity

• Input: Two protein structures or sequences

• Output: What residue pairs interact

43

[1] Fayayz Minhas and Asa Ben-Hur, Multiple instance learning of Calmodulin binding sites. Bioinformatics 28, i416, 2012.

[2] Wajid Abbasi, Amina Asif, Saiqa Andleeb, and Fayyaz Minhas, CaMELS: In silico Prediction of Calmodulin Binding Proteins and their Binding Sites, in Proteins: Structure, 

Function and Bioinformatics, 2017.

[3] Issues In Performance Evaluation for Host-Pathogen Protein Interaction Prediction, Wajid A. Abbasi and Fayyaz Minhas, in Journal of Bioinformatics and Computational 
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[5] Issues In Performance Evaluation for Host-Pathogen Protein Interaction Prediction, Wajid A. Abbasi and Fayyaz Minhas, in Journal of Bioinformatics and Computational 
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Experimental Validation: SnRK1- βC1
• In Silico Prediction and Validations of Domains 

Involved in Gossypium hirsutum SnRK1 Protein 
Interaction with Cotton leaf curl Multan 
betasatellite encoded βC1

• βC1, pathogenicity determinant encoded by 
Cotton leaf curl Multan betasatellite interacts with 
calmodulin-like protein 11 (CML11) in Gossypium 
hirsutum
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In Silico Prediction and Validations of Domains Involved in Gossypium hirsutum SnRK1 Protein Interaction with Cotton leaf curl Multan betasatellite encoded βC1, Kamal, Hira, Fayyaz ul Amir Afsar Minhas, Hanu Pappu, Imran Amin et al., in Frontiers in 
Plant Science 10 (2019): 656.
Bioinformatics and molecular analysis of Gossypium hirsutum calmodulin-like protein (CML11) interaction with begomovirus-transcription activator protein C2. Hira Kamal, Fayyaz Minhas, et al., in PLoS One (In press).
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Predicting anti-CRISPR proteins

• 20 proteins for training

• Identified 3 new anti-
CRISPR proteins using a 
ranking ML model

45

Jennifer Doudna

Eitzinger, Simon, Amina Asif, Kyle E. Watters, Anthony T. Iavarone, Gavin J. Knott, Jennifer A. Doudna, and Fayyaz ul Amir Afsar Minhas. “Machine Learning Predicts New Anti-
CRISPR Proteins.” Nucleic Acids Research 48, no. 9 (May 21, 2020): 4698–4708. https://doi.org/10.1093/nar/gkaa219.

https://doi.org/10.1093/nar/gkaa219
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Current Focus: PATHLake

• PATHology data Lake, 
Analytics, Knowledge 
and Education

• UK Research and 
Innovation

• £15.7 million

• Objective: 

– Improve speed and 
accuracy of cancer 
diagnosis
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The Revolution in Pathology
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Conventional Microscope Pathology Digital Pathology

Computational Pathology
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Why?

• Shortage of Pathologists

• Quantification is difficult

• Subjectivity

• Inter-observer variability
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How much fat?
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45.9%
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R. Glodin, “The Clinical Challenge of Image Analysis and AI”, CRUK Early Detection Sandpit, 
Royal College of Pathologists, London, UK, 20 Nov. 2019



CS909: Data Mining University of Warwick 51

Deshpande, Srijay, Fayyaz Minhas, Simon Graham, and Nasir Rajpoot. “SAFRON: Stitching Across the Frontier for Generating Colorectal Cancer Histology Images.” 
ArXiv:2008.04526 [Cs, Eess], August 11, 2020. http://arxiv.org/abs/2008.04526.

http://arxiv.org/abs/2008.04526
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Steps in the development of a data science model
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Constructs of a Data Mining System for Prediction

• Identify the objective
– Identify the unit of classification (example)

• Image block, protein sequence, ….

Sensor

Feature extraction mechanism

Machine Learning

Real world 
Phenomenon

Decision
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Learning from Data

• Example Case

– Pathologists vs. Computer Scientists

• Hypothetical!

• Classify a person in their "native” environment
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Constructs

• Sensor(s)

– Camera

• Feature Extraction

– White coats or lap aprons?

– Computer Screen or microscopes?

– Income?

• Machine Learning

57
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Feature Space
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Whiteness in Dressing

Computer Screen?

3/6+0/4 = 0.5
1/6+1/4 = 0.42
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Feature Space Classification
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Whiteness in Dressing

Computer Screen? 0/6+0/4 = 0.0
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So far?
• Representation

– Represent examples in a feature space
– Define a classification function

• Line: f(x;w) = w1x(1)+w2x(2)+b = 0 

• Evaluation
– Define an error function

• Misclassifications

• Optimize
– Reduce error

• Real Test (Generalization)
– How does it perform on unseen data?
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ML Output
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Error 
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Parameter/Weight Updates

Known Target of Training Example: +1
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End of Lecture-2

We want to make a machine that will be proud of us.

- Danny Hillis


