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Intuition of Linear Discriminants

• Paper Cutting
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Fold and Cut Theorem Video: 
https://www.youtube.com/watch?v=ZREp1mAPKTM

https://www.youtube.com/watch?v=ZREp1mAPKTM
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• How can we solve non-linear 
classification?

– By folding the space on which 
examples lie and then making a single 
straight cut

• Notice how folding changes the distance 
between points 

– How to achieve such folding?

• One way is to transform the data

3

The Fold-and-Cut Theorem implies that any pattern can be achieved 
with a single straight cut if the paper (or space) is folded 
appropriately. 

Thus, it is theoretically possible to partition any space into regions 
containing positive and negative training examples no matter how 
complex such a boundary is by simply folding the feature space 
appropriately and using a linear classifier (single straight cut). 

https://en.wikipedia.org/wiki/Fold-and-cut_theorem 

https://www.youtube.com/watch?v=ZREp1mAPKTM 

https://en.wikipedia.org/wiki/Fold-and-cut_theorem
https://www.youtube.com/watch?v=ZREp1mAPKTM
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Preliminaries and Intuition
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Preliminaries

• Equations of lines and their properties

5

𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 = 0

𝑥2 =
−𝑤1

𝑤2
𝑥1 +

−𝑏

𝑤2

𝑥2 = 𝑚𝑥1 + 𝑐

𝑓 𝒙; 𝒘 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 = 0

𝑓 𝒙; 𝒘 = 𝑤0 𝑤1 𝑤2

1
𝑥1

𝑥2

= 𝒘𝑇𝒙 = 0

https://foxtrotmike.github.io/CS909/lines.html 

If a point 𝑥 = 𝑥1, 𝑥2  is on the line then 𝑓 𝑥; 𝒘 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 = 0
If it is above the line then 𝑓 𝑥; 𝒘 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 > 0
If it is below the line then 𝑓 𝑥; 𝒘 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 < 0

https://foxtrotmike.github.io/CS909/lines.html
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Preliminaries
• Distance function

𝑑 𝒂, 𝒃 = 𝒂 − 𝒃 = 𝒂𝟏 − 𝒃𝟏
2 + 𝒂𝟐 − 𝒃𝟐

2

• Relation with Dot Product

 𝑑2 𝒂, 𝒃 = 𝒂 − 𝒃 2 = 𝒂𝟏 − 𝒃𝟏
2 + 𝒂𝟐 − 𝒃𝟐

2 = 𝒂𝑻𝒂 + 𝒃𝑻𝒃 − 𝟐𝒂𝑻𝒃

• If 𝒂, 𝒃 are unit vectors (i.e., 𝒂𝑻𝒂 = 𝒂 2 = 𝒃𝑻𝒃 = 𝒃 2 = 1) then: 𝑑2 𝒂, 𝒃 = 2 −
2(𝒂𝑻𝒃)

• Or the farther away or different two points are, the lower their dot product and vice-
versa

• We can also have more generalized dot products called kernel functions that can 
measure similarity between two objects in a different way
– Linear kernel: 𝑘 𝒂, 𝒃 = 𝒂𝑇𝒃
– Polynomial kernel: 𝑘 𝒂, 𝒃 = 𝒂𝑇𝒃 2

– Gaussian or Radial Basis Function (RBF) Kernel: 𝑘 𝒂, 𝒃 = exp −𝜆 𝒂 − 𝒃 2

– Mahalanobis Kernel: 𝑘 𝒂, 𝒃; 𝑴 = exp − 𝒂 − 𝒃 𝑇𝑴 𝒂 − 𝒃

– Exponential kernel: k 𝒂, 𝒃; 𝑾𝒂, 𝑾𝒃 = 𝑒𝑥𝑝
1

𝑑
𝒂𝑾𝒂, 𝒃𝑾𝒃

• Asymmetric, non-mercer kernels
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https://foxtrotmike.github.io/CS909/distance_dot.html 

https://foxtrotmike.github.io/CS909/distance_dot.html
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Preliminaries

• Gradients

7

https://en.wikipedia.org/wiki/Gradient 

∇𝑓 𝒙 =

𝜕𝑓 𝒙

𝜕𝑥(1)

𝜕𝑓 𝒙

𝜕𝑥(2)

⋮
𝜕𝑓 𝒙

𝜕𝑥(𝑑)

https://foxtrotmike.github.io/CS909/gradients.html 

𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 and ∇𝑓 𝑥, 𝑦 =

𝜕𝑓 𝑥,𝑦

𝜕𝑥
𝜕𝑓 𝑥,𝑦

𝜕𝑦

=
2𝑥
2𝑦

https://en.wikipedia.org/wiki/Gradient
https://foxtrotmike.github.io/CS909/gradients.html
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Preliminaries: Finding minima and maxima of functions

• Given a function f(w)

• Take the derivative

• Substitute the derivative to zero

• Solve for 𝑥 when 
𝑑𝑓

𝑑𝑤
= 0

• Works when we can solve for w

8

𝑓 𝑤 = 𝑤 − 0.5 2

𝑑𝑓

𝑑𝑤
= 2 𝑤 − 0.5 = 0

𝑤∗ = 0.5

𝑓 𝑤 = 𝑤 − 0.5 2 + 𝑠𝑖𝑛(4𝑤)
𝑑𝑓

𝑑𝑤
= 2 𝑤 − 0.5 + 4cos(4𝑤) = 0

𝑤∗ =?
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Preliminaries: Gradient Descent

• In order to find the minima of a function, keep taking steps 
along a direction opposite to the gradient of the function
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𝜕𝑓

𝜕𝑤
> 0

𝑓(𝑤)

𝑤0

𝑓(𝑤0)

−𝛼
𝜕𝑓 𝑤

𝜕𝑤

𝑤1

𝒘(𝒌+𝟏) = 𝒘(𝒌) − 𝛼∇𝑓(𝒘(𝒌))

𝑓(𝑤1)

𝑤

𝜕𝑓

𝜕𝑤
< 0

𝑓(𝑤)

𝑤0

𝑓(𝑤0)

−𝛼
𝜕𝑓(𝑤)

𝜕𝑤

𝑤1

𝑓(𝑤1)

𝑤
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GD Implementation

10

import numpy as np

def gd(fxn,dfxn,w0=0.0,lr = 0.01,eps=1e-4,nmax=1000, history = True):
    """
    Implementation of a gradient descent solver.
        fxn: function returns value of the target function for a given w
        dfxn: gradient function returns the gradient of fxn at w
        w0: initial position [Default 0.0]
        lr: learning rate [0.001]
        eps: min step size threshold [1e-4]
        nmax: maximum number of iters [1000]
        history: whether to store history of x or not [True]
    Returns:
        w: argmin_x f(w)
        converged: True if the final step size is less than eps else false
        H: history
    """
    H = []
    w = w0
    if history:
        H = [[w,fxn(w)]]
    for i in range(nmax):
        dw = -lr*dfxn(w) #gradient step
        if np.linalg.norm(dw)<eps: # we have converged
            break
        if history:
            H.append([w+dw,fxn(w+dw)])
        w = w+dw #gradient update
    converged = np.linalg.norm(dw)<eps        
    return w,converged,np.array(H)

if __name__=='__main__':
    import matplotlib.pyplot as plt
    def myfunction(w):
        z = (w-0.5)**2#+np.sin(4*w)
        return z
    def mygradient(w):
        dz = 2*(w-0.5)#+4*np.cos(4*w)
        return dz
    

    wrange = np.linspace(-3,3,100)
    #select random initial point in the range
    w0 = np.min(wrange)+(np.max(wrange)-np.min(wrange))*np.random.rand()
    
    w,c,H = gd(myfunction,mygradient,w0=w0,lr = 0.01,eps=1e-4,nmax=1000, history = True) 
    
    plt.plot(wrange,myfunction(wrange)); plt.plot(wrange,mygradient(wrange));
    plt.legend(['f(w)','df(w)'])
    plt.xlabel('w');plt.ylabel('value')
    s = 'Convergence in '+str(len(H))+' steps'
    if not c:
        s = 'No '+s
    plt.title(s)
    plt.plot(H[0,0],H[0,1],'ko',markersize=10)
    plt.plot(H[:,0],H[:,1],'r.-')
    plt.plot(H[-1,0],H[-1,1],'k*',markersize=10)    
    plt.grid(); plt.show()

https://github.com/foxtrotmike/CS909/blob/master/gd.py 
https://github.com/foxtrotmike/CS909/blob/master/dm_lab_2_fm.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/gd.py
https://github.com/foxtrotmike/CS909/blob/master/dm_lab_2_fm.ipynb
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Steps in the development of a data science model

11
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Constructs of a Data Mining System for Prediction

• Identify the objective
– Identify the unit of classification (example)

• Image block, protein sequence, ….

Sensor

Representation

Prediction

Real world 
Phenomenon

Decision
ML System
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Classification
• Given a set of data points (also called examples)

– In solving a classification problem, the first step is to identify the unit of 
classification or “what is an example”

• Such that each example is represented by a feature vector
– Representation of the example in terms of feature vector

• Assign a class label to each example
– Such as apple, orange or mango

• Training Data
– Set of examples for which both feature vectors and labels are available for “tuning” 

• Finding a mathematical function (called a classifier) that can be used to assign these 
labels

• Validation Data
– Set of examples (with known labels) that are used to evaluate how well the trained 

classifier is expected to generalize to novel cases

• Test Data
– Data for which the labels are not known and the ML model is used to find their 

labels

13

redness

ro
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oranges

mangoes

apples
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Classification

• The Objective of Classification is to assign 
class labels 

• to a given feature vector 𝒙 =

𝑥(1)

𝑥(2)

⋮
𝑥(𝑑)

• The classifier may use previously known 
and available training data

– Good generalization, Good memorization

• The training data comprises of classified 
data points:

 1 2, ,..., My c c c

X = 𝒙1, 𝒙2, … , 𝒙𝑁 , 𝒙𝑖(𝑑×1)
=

𝑥𝑖
(1)

𝑥𝑖
(2)

⋮

𝑥𝑖
(𝑑)

Y = 𝑦1, 𝑦2, … , 𝑦𝑁 , 𝑦𝑖 ∈ 𝑐1, 𝑐2, . . . , 𝑐𝑀

Classifier
𝒙 𝑦
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Classification Approaches: Nearest Neighbor and kNN

15

𝑥
(2

)

𝑥(1)

Positive Example

Negative Example

?

𝐷 𝒙𝒂, 𝒙𝒃 = 𝑥𝑎
(1)

− 𝑥𝑏
(1) 2

+ 𝑥𝑎
(2)

− 𝑥𝑏
(2) 2

• Python Warm-up Lab Exercise
• https://github.com/foxtrotmike/CS909/blob/master/DM_1_kNN.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/DM_1_kNN.ipynb
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Example (k=1)-Nearest Neighbor Classification

Demo: https://foxtrotmike.github.io/CS909/knn.html 

What are some issues with the k-NN 
classifier?

• Class imbalance.
• In higher-dimensions, there is essentially 

no notion of distance.

https://foxtrotmike.github.io/CS909/knn.html
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Classification Approaches: Supervised…

• Nonlinear Classification boundary
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Linear Separability

• If data points can be separated by a linear 
discriminant then that dataset/classification 
problem is called “linearly separable”

• Mathematically, 

– If there exists a linear function 
𝑓 𝒙; 𝒘 = 𝑤1𝑥 1 + 𝑤2𝑥 2 + ⋯ + 𝑤𝑑𝑥 𝑑 + 𝑏 =  0

 such that 

• If 𝑦𝑖 = +1, then 𝑓 𝒙𝒊; 𝒘 > 0 

• And If 𝑦𝑖 = −1, then 𝑓 𝒙𝒊; 𝒘 < 0 

18

x(1)

x(2)
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Classification Approaches: Supervised…
• Generalization and Memorization

• Remembering everything is not learning

• The true test of learning is handling similar but unseen 
cases, i.e., Generalization

Has great memorization but may generalize poorly 
(under certain assumptions)

Has lesser memorization but may generalize better
(under certain assumptions)
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Discriminant based classification

• In this type of classification, the objective is to learn a function or, in the case of more than 2 
classes, a set of functions from training data which can generate decisions for test data such 
that the classes in the data can be separated

– Class label assignment: 𝑐 𝒙 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘=1,…,𝑀 𝑓𝑘 𝒙

• 𝑓𝑘 𝒙  tells you the ‘k-classiness’ of an example 𝒙

– If M = 2
• Choose class-1 if 𝑓1 𝒙 ≥ 𝑓2 𝒙 , i.e., 𝑓1 𝒙 − 𝑓2 𝒙 ≥ 0

• Otherwise assign it to class-2, i.e., 𝑓1 𝒙 − 𝑓2 𝒙 < 0

• We can thus replace the two functions with a single function
𝑓 𝒙 = 𝑓1 𝒙 − 𝑓2 𝒙

Assign to positive class if 𝑓 𝒙 ≥ 0, otherwise negative

𝑓 𝒙 = 0 separates the two classes and is called the discriminant

If the function(s) are linear, the classifier is called a linear discriminant

20

x(1)

x(2)

𝑓 𝒙𝒊; 𝒘 > 0 

𝑓 𝒙𝒊; 𝒘 < 0 
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Application: Computational Pathology

Tissue 
Acquisition

Slide 
Preparation

Whole Slide 
Scanning

AI Assisted 
Clinical Decision 

Making

21

Tumor

Block preparation
Addition of dyes 

1
4

0
,0

0
0

 p
x

100,000 px

0.25 microns per pixel

Example Independent validation study of PAIGE Prostate: Kanan, Christopher, Jillian Sue, Leo Grady, Thomas J. Fuchs, Sarat Chandarlapaty, Jorge S. Reis-Filho, Paulo G O Salles, Leonard 
Medeiros da Silva, Carlos Gil Ferreira, and Emilio Marcelo Pereira. “Independent Validation of Paige Prostate: Assessing Clinical Benefit of an Artificial Intelligence Tool within a Digital 
Diagnostic Pathology Laboratory Workflow.” Journal of Clinical Oncology 38, no. 15_suppl (May 20, 2020): e14076–e14076. https://doi.org/10.1200/JCO.2020.38.15_suppl.e14076.

https://info.paige.ai/prostate 

https://info.paige.ai/prostate
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Machine Learning in Cpath with simple lines

x1 = Brown-ness

x 2
 =

 S
iz

e
Positive Tumor Cell

Negative Cell

f(x) = x1+x2+8 = 0

f(x) = -1.5x1+x2-12 = 0

f(x) = w1x1+w2x2+b = 0

Goal is to be able to generalize to unseen data
With Deep Learning – we don’t even need to define features!
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Constructs of a Data Mining System for Prediction

• Identify the objective
– Identify the unit of classification (example)

• Image block, protein sequence, ….

Sensor

Representation

Prediction

Real world 
Phenomenon

Decision
ML System
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How does ML work?

24

Wenqi Lu, Islam M Miligy, Fayyaz Minhas, Young Saeng Park, David R J Snead, Emad A Rakha, Clare Verrill, Nasir Rajpoot “Lessons from a Breast Cell Annotation 
Competition Series for School Pupils.” Scientific Reports, 2022. https://ora.ox.ac.uk/objects/uuid:9e34d4e6-c677-4380-9403-759808b349aa. 

Si
ze

Brownness
Representation or Feature Space

Positive Tumor Cell

Other Cell

?

https://ora.ox.ac.uk/objects/uuid:9e34d4e6-c677-4380-9403-759808b349aa
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Exercise

25

𝑓 𝒙; 𝒘 = 𝑤1𝑥 1 + 𝑤2𝑥 2 + ⋯ + 𝑤𝑑𝑥 𝑑 + 𝑏 =  0
 such that 

If 𝑦𝑖 = +1, then 𝑓 𝒙𝒊; 𝒘 > 0 
And If 𝑦𝑖 = −1, then 𝑓 𝒙𝒊; 𝒘 < 0 
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Exercise

26
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Exercise

27
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Doing it interactively

28

https://foxtrotmike.github.io/CS909/AND-NEURON.html 

https://foxtrotmike.github.io/CS909/AND-NEURON.html
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Example (Graphical Approach to finding the discriminant function)

29

(0,0) (1,0)

(0,1) (1,1)

f(x;w) = w1x(1)+w2x(2)+b = 0 

(1.5,0)

(0,1.5)

w1(1.5)+w2(0)+b = 0 

b = -1.5w1

w1(0)+w2(1.5)+b = 0 

b = -1.5w2

If I set w1 = 1.0

b = -1.5
w2 = 1.0

f(x;θ) = x(1)+x(2) -1.5 

(1,1)→0.5
(1,0) →-0.5, (0,1) →-0.5, (0,0) →-1.5
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Example: Another Way (Algebraic Constraint Satisfaction to find equation)

30

(0,0) (1,0)

(0,1) (1,1)

f(x;w) = w1x(1)+w2x(2)+b = 0 

w1(1.0)+w2(1.0)+b > 0 
w1(1.0)+w2(0.0)+b < 0 
w1(0.0)+w2(1.0)+b < 0 
w1(0.0)+w2(0.0)+b < 0 

(1,1):

(1,0):

(0,1):

(0,0):

w1+w2+b > 0 
w1+b < 0 
w2+b < 0 
b < 0 

b = -1.5
w1= 1.0
w2= 1.0
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Exercise

• Is this problem linearly separable?

31

(0,0): y = 1 (1,0) : y = -1

(0,1) : y = -1 (1,1) : y = -1
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What about this one?

• (0,0,0): -1

• (1,0,0): +1

• (0,1,0): -1

• (0,0,1):+1

• (1,0,1): +1

• (1,1,0): +1

• (0,1,1): +1

• (1,1,1): +1

32

f(x;w) = w1x(1)+w2x(2)+w3x(3)+b = 0 
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• What about this one?

33

w1(1.0)+w2(1.0)+b > 0 
w1(1.0)+w2(0.0)+b < 0 
w1(0.0)+w2(1.0)+b < 0 
w1(0.0)+w2(0.0)+b > 0 

(1,1):

(1,0):

(0,1):

(0,0):
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Machine learning and deep learning involve discovering 
meaningful representations of input data and then using 
these representations to partition data for various tasks

34
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Another way of looking at Classification

• We would like to minimize the number of 
errors a discriminant function 𝑓 𝒙  makes 

• Representation: Assume we look at only 
linear functions

𝑓 𝒙; 𝒘 = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2) + ⋯ + 𝑤𝑑𝑥 𝑑 = 0

• Evaluation: We need to define error that a 
particular 𝑓 𝑥; 𝑤  makes

• Optimization: We need to minimize the 
error by tuning 𝒘

35

x(1)

x(2)

Line-1

Line-2

Number of Examples

14

11

Error: (1+2)/(14+11) = 12 % 

Error: (4+1)/(14+11) = 20 % 
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Building Linear Discriminants

• Representation
– Features

– Linear Function 
𝑓 𝐱; 𝒘 = 𝑤1𝑥(1) + 𝑤2𝑥(2) + ⋯ + 𝑤𝑑𝑥 𝑑 + 𝑏 = 0

• Evaluation
– Misclassification Error

• Optimization
– Find a line that minimizes misclassifications

– How done: Visual reckoning / Constraint Satisfaction

• Why Study Linear Models?

36

w1(1.0)+w2(1.0)+b > 0 
w1(1.0)+w2(0.0)+b < 0 
w1(0.0)+w2(1.0)+b < 0 
w1(0.0)+w2(0.0)+b < 0 

(1,1):

(1,0):

(0,1):

(0,0):

x(1)

x(2)
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A more mathematical look

• Linear Discriminants

• The linear discriminant function is given by

𝑓 𝐱; 𝒘 = 𝑤1𝑥(1) + 𝑤2𝑥(2) + ⋯ + 𝑤𝑑𝑥 𝑑 + 𝑏 = 𝐰𝑇𝐱 + 𝑏

𝑓 𝐱′; 𝒘′ = 𝑤1𝑥(1) + 𝑤2𝑥(2) + ⋯ + 𝑤𝑑𝑥 𝑑 + 𝑏 = 𝐰′𝑇
𝐱′

x1

x2

Linear Discriminant 
Function

( ) 0x w x
Tf b= + =

> 0

< 0

w & b are ‘learned’ 
from the training data  
using some error 
criterion

𝐰 =

𝑤1

𝑤2

⋮
𝑤𝑑

 𝒙 =

𝑥(1)

𝑥(2)

⋮
𝑥 𝑑

𝐰′ =

𝑤1

𝑤2

⋮
𝑤𝑑

𝑏

 𝒙′ =

𝑥(1)

𝑥(2)

⋮
𝑥 𝑑

1
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Classification Loss Function

• A misclassification is an error

– If a training example has a label of 𝑦 = +1,then its discriminant 
function score 𝑓 𝒙  should be _____

– If a training example has a label of 𝑦 = −1,then its discriminant 
function score 𝑓 𝒙  should be _____

– Thus, we have an error whenever: __________
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Classification Loss Function

• A misclassification is an error

– If a training example has a label of 𝑦 = +1,then its discriminant 
function score 𝑓 𝒙  should be > 0

– If a training example has a label of 𝑦 = −1,then its discriminant 
function score 𝑓 𝒙  should be < 0

– Thus, we have an error whenever: 𝑦𝑓 𝒙 < 0

39
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0-1 Loss/Error

• Consider a single example: 

– Our error function is: 𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝑥 > 0

1 𝑦𝑓 𝑥 ≤ 0

40

𝑦𝑓 𝑥

𝑙𝑜𝑠𝑠

1

Formally called the 
zero-one loss function
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0-1 Misclassification Error

• We want to find the parameters of the 
discriminant that minimize the loss for all 
examples in training

• Issues with 0-1 loss
– Non Differentiable
– Leads to poor optimization

• We need a “surrogate” or approximation of the 
loss
– Should be continuous
– Should be an over-approximation of the 0-1 loss

• Generates at least as much error as the 0-1 loss would

– Should be convex
• Convex loss function leads to convex optimization 

problems which are easier to solve as they have a single 
minima

41

Convexity: If a line connecting 
two points on a curve lies on or 
above the curves at all times

Is this convex?

Is this convex?

Is this convex?
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Surrogate Classification Loss

• Hinge Loss Function
– A convex over-approximation of the 0-1 loss
– Adds some “margin” of error to the classification

• Prediction label can be +1 or -1 depending upon whether 𝑓 𝑥 > 0 or 𝑓 𝑥 < 0
• However, we incur a loss if for positive training examples 𝑓 𝑥 < 1 or for negative examples 𝑓 𝑥 > −1 
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𝑦𝑓 𝑥

𝑙𝑜𝑠𝑠

1

1

1 − 𝑦𝑓 𝑥

𝑙 𝑓(𝒙 , 𝑦) = ቊ
0 𝑦𝑓 𝑥 > 1

1 − 𝑦𝑓 𝑥  𝑦𝑓 𝑥 ≤ 1
= ቊ

0 1 − 𝑦𝑓 𝑥 < 0

1 − 𝑦𝑓 𝑥  1 − 𝑦𝑓 𝑥 ≥ 0

  OR
𝑙 𝑓(𝑥 , 𝑦) = max(0,1 − 𝑦𝑓 𝑥 )

𝑧

𝑙

1

1

𝑙 𝑧 = max(0, 1 − 𝑧)

𝑓 𝑥

𝑙𝑜𝑠𝑠

1

1

1 − 𝑓 𝑥

𝑓 𝑥

𝑙𝑜𝑠𝑠

1

-1

1 + 𝑓 𝑥

For positive examples 
𝑦 = +1

For positive examples 
𝑦 = −1

1 − 𝑧
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Optimization

• How can we solve it?

– Take the derivative and substitute to zero

– How else can we solve it?
• Use gradient descent

43

min𝑤 𝐿 𝑿, 𝒀; 𝒘 = ෍

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;w)}
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Optimization

44

min𝑤 𝐿 𝑿, 𝒀; 𝒘 = ෍

𝑖=1

𝑁

𝑙 𝑓(𝒙𝑖;w) , 𝑦𝑖) = ෍

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;w)}

𝜕𝐿

𝜕𝒘
= ෍

𝑖=1

𝑁
𝜕𝑙 𝑓(𝒙𝑖;w) , 𝑦𝑖)

𝜕𝒘

𝜕

𝜕𝒘
max{0,1−𝑦 𝒘𝑇𝒙 } =  ቊ

0 1−𝑦𝑓(𝒙;w) < 0
−𝑦𝒙 𝑒𝑙𝑠𝑒

= ቊ
−𝑦𝒙 𝑙 𝑓(𝒙;w) , 𝑦) > 0

0 𝑒𝑙𝑠𝑒

𝑦𝑓 𝑥 = 𝑦 𝒘𝑇𝒙

𝑙𝑜𝑠𝑠

1

1

1 − 𝑦𝑓 𝑥

𝒘

𝑙𝑜𝑠𝑠

1

1

1 − 𝑤

For a simple example in which 𝑥 = 1, 𝑦 = 1

𝒘

𝜕𝑙

𝜕𝒘

1

For a simple example in which 𝑥 = 1, 𝑦 = 1

−1

0

“sub”-gradient

What happens when 𝒚𝒇 𝒙 = 𝟏 
where the function has a 
“kink”?
 There, we can choose to define 
the “sub”-gradient to be the 
slope of any line that lies below 
or on the loss function itself (see 
dotted lines below). 
Consequently defining 
𝜕𝐿

𝜕𝒘
ȁ𝒚𝒇 𝒙 =𝟏 = 𝟎 should work 

(slope of red line). 

1

1

𝑦𝑓 𝑥

𝑙𝑜𝑠𝑠

https://en.wikipedia.org/wiki/Subderivative
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Algorithm
• Given:

– Training Examples: 𝒙𝑖 , 𝑦𝑖 𝑖 = 1 … 𝑁 , yi ∈ {−1, +1}

– Learning rate (step size): 𝛼

• Initialize 𝑤(0) at random

• Until Convergence (𝑘 = 1 … 𝐾 epochs)

– For 𝑖 =  1 … 𝑁

• Pick example 𝒙𝑖 with label 𝑦𝑖

• Compute 𝑓 𝒙𝑖 = 𝒘(𝒌−𝟏)𝑻
𝒙𝒊

• If 𝑦𝑖𝑓 𝒙𝑖 < 1 then update weight vector using gradient descent

• Check for convergence to stop 
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𝒘(𝒌) = 𝒘(𝒌−𝟏) − 𝛼∇𝒍 𝒘(𝒌−𝟏) = 𝒘(𝒌−𝟏) − 𝛼 −𝑦𝑖𝒙𝑖 = 𝒘(𝒌−𝟏) + 𝛼𝑦𝑖𝒙𝑖

∇𝒘max{0,1−𝑦 𝒘𝑇𝒙 } =  ቊ
0 1−𝑦𝑓(𝒙;w) < 0

−𝑦𝒙 𝑒𝑙𝑠𝑒
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REO For Perceptron
• Representation

– Features
– Discriminant

• Linear

• Evaluation
– 0/1 (Step) Loss

– Hinge Loss

– Overall Loss

• Optimization
– Using Gradient Descent

46

∇𝑳 =
1

𝑁
෍

𝑖=1

𝑁

∇𝒘𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)

𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝛼∇𝒍 𝒘(𝒌−𝟏)

𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝜶I(𝑙 𝑓(𝒙;w) , 𝑦))(−𝑦𝒙) = 𝒘 𝒌−𝟏 + 𝛼I(𝑙 𝑓(𝒙;w) , 𝑦))(𝑦𝒙)

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝒙 > 1

1 − 𝑦𝑓 𝒙  𝑦𝑓 𝒙 ≤ 1
= max{0,1−𝑦 𝒘𝑇𝒙 }

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝑥 > 0

1 𝑦𝑓 𝑥 ≤ 0

𝑓 𝐱 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 + 𝑏 = 𝐰𝑇𝐱

∇𝒘max{0,1−𝑦 𝒘𝑇𝒙 } =  ቊ
0 1−𝑦𝑓(𝒙;w) < 0

−𝑦𝒙 𝑒𝑙𝑠𝑒
= ቊ

−𝑦𝒙 𝑙 𝑓(𝒙;w) , 𝑦) > 0
0 𝑒𝑙𝑠𝑒

= I(𝑙 𝑓(𝒙;w) , 𝑦))(−𝑦𝒙)

𝐿 =
1

𝑁
෍

𝑖=1

𝑁

𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)
𝑖𝑖𝑑

𝐸[𝑙 𝑓(𝒙;w) , 𝑦)]

𝑦𝑓 𝑥 = 𝑦𝑤𝑇𝑥

𝑙 𝑓(𝑥 , 𝑦; 𝑤)

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ×  𝑤𝑤(𝑘−1) 𝑤(𝑘)
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Perceptron

• A simpler version of this algorithm is called: 
Perceptron
– It updated weights whenever an example was 

misclassified 𝑦𝑖𝑓 𝒙𝑖 < 0  instead of when 
𝑦𝑖𝑓 𝒙𝑖 < 1

– Rosenblatt (1962)

– Minsky and Papert (1969, 1988)

– This algorithm provides theoretical guarantees 
of convergence to a correct separating 
boundary
• If the data is linearly separatable and you allow the 

pereceptron algorithm to run long enough, you will 
find the separating line!

• Perceptron Learning Rule Convergence Theorem

47

Marvin Minsky
Aug. 9, 1927 – Jan. 24, 2016

Frank Rosenblatt
July 11, 1928 – July 11, 1971
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Perceptron

• One of the first “artificial” neural networks

48

𝑓 𝒙; 𝜽 = 𝒘𝑻𝒙 + 𝑏

x1

x2
b

w2

w1

f(x;θ=[w,b]) 

෍
𝐰 =

𝑤1

𝑤2

⋮
𝑤𝑑

 𝒙 =

𝑥(1)

𝑥(2)

⋮
𝑥 𝑑
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Coding Exercise

49

import numpy as np
import matplotlib.pyplot as plt
import itertools

class Perceptron:       

    def __init__(self,alpha = 0.1, epochs = 200):
        self.alpha = alpha
        self.epochs = epochs
        self.W = np.array([0])
        self.bias = np.random.randn()
        self.Lambda = 0.5
    def fit(self,Xtr,Ytr):
        d = Xtr.shape[1]
        self.W = np.random.randn(d)          
        for e in range(self.epochs):
            finished = True
            for i,x in enumerate(Xtr):
                if Ytr[i]*self.predict(np.atleast_2d(x))<1:
                    finished = False
                    self.W += self.alpha*Ytr[i]*x
                    self.bias += self.alpha*Ytr[i]            
            if finished: break
             
    def score(self,x):
        return np.dot(x,self.W) + self.bias
        
    def predict(self,x):
        return np.sign(self.score(x))    

if __name__=='__main__':
    from plotit import plotit
    Xtr = np.array([[-1,0],[0,1],[4,4],[2,3]])
    ytr = np.array([-1,-1,+1,+1])
    clf = Perceptron()
    clf.fit(Xtr,ytr)
    z = clf.score(Xtr)
    print("Prediction Scores:",z)
    y = clf.predict(Xtr)
    print("Prediction Labels:",y)
    plotit(Xtr,ytr,clf=clf.score,conts=[0],
 extent = [-5,+5,-5,+5])

https://github.com/foxtrotmike/CS909/blob/master/dm_lab_2_fm.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/dm_lab_2_fm.ipynb
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https://github.com/foxtrotmike/CS909/blob/master/perceptron_video.py 

https://github.com/foxtrotmike/CS909/blob/master/perceptron_video.py
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End of Lecture

We want to make a machine that will be proud of us.

- Danny Hillis
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