Classification & Linear Discriminants

Dr. Fayyaz Minhas

Department of Computer Science
University of Warwick

https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs909/
Classification

• Given a set of data points (also called examples)
 – In solving a classification problem, the first step is to identify the unit of classification or “what is an example”
• Such that each example is represented by a feature vector
 – Representation of the example in terms of feature vector
• Assign a class label to each example
 – Such as apple, orange or mango

• Training Data
 – Set of examples for which both feature vectors and labels are available for “tuning”
 • Finding a mathematical function (called a classifier) that can be used to assign these labels
• Validation Data
 – Set of examples (with known labels) that are used to ensure that the classifier is expected to generalize to novel cases
• Test Data
 – (Ideally) Data for which the labels are not known and the ML model is used to find their labels
Classification

• The Objective of Classification is to assign class labels
 \[y \in \{c_1, c_2, ..., c_M\} \]

to a given feature vector
\[x = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(d)} \end{bmatrix} \]

• The classifier may use previously known and available training data
 – Good generalization, Good memorization

• The training data comprises of classified data points:
 \[X = \{x_1, x_2, ..., x_N\}, x_i \in \mathbb{R}^{d \times 1} \]
 \[Y = \{y_1, y_2, ..., y_N\}, y_i \in \{c_1, c_2, ..., c_M\} \]
REO

- **Representation**
 - Represent examples in a feature space
 - Represent features: x
 - Define a classification function
 - Line: $f(x; w) = w_1x^{(1)} + w_2x^{(2)} + b = 0$

- **Evaluation**
 - Define an error function
 - Misclassifications

- **Optimize**
 - Reduce error by adjusting the parameters of the ML model (w)

- **Real Test (Generalization)**
 - How does it perform on unseen data?
Discriminant based classification

• In this type of classification, the objective is to learn a function or, in the case of more than 2 classes, a set of functions from training data which can generate decisions for test data such that the classes in the data can be separated
 – Class label assignment: \(c(x) = \arg\max_{k=1,\ldots,M} f_k(x) \)
 • \(f_k(x) \) tells you the ‘\(k \)-classiness’ of an example \(x \)
 – If \(M = 2 \)
 • Choose class-1 if \(f_1(x) \geq f_2(x) \), i.e., \(f_1(x) - f_2(x) \geq 0 \)
 • Otherwise assign it to class-2, i.e., \(f_1(x) - f_2(x) < 0 \)
 • We can thus replace the two functions with a single function
 \[f(x) = f_1(x) - f_2(x) \]
 Assign to positive class if \(f(x) \geq 0 \), otherwise negative
 \(f(x) = 0 \) separates the two classes and is called the discriminant
 If the function(s) are linear, the classifier is called a linear discriminant
Classification Approaches: Supervised...

• Linear Classifier
Classification Approaches: Supervised

- Example (k=3)-Nearest Neighbor Classification

Classification Approaches: Supervised...

- Nonlinear Classification boundary
Linear Separability

• If data points can be separated by a linear discriminant then that dataset/classification problem is called “linearly separable”

• Mathematically,

 – If there exists a linear function

 \[f(x; w) = w_1 x^{(1)} + w_2 x^{(2)} + \cdots + w_d x^{(d)} + b = 0 \]

 such that

 • If \(y_i = +1 \), then \(f(x_i; w) > 0 \)
 • And if \(y_i = -1 \), then \(f(x_i; w) < 0 \)
Classification Approaches: Supervised...

• Generalization vs. Memorization
 – A particular issue in classification is the tradeoff between memorization vs. generalization
 • Remembering everything is not learning
 • The true test of learning is handling similar but unseen cases

Has great memorization but may generalize poorly

Has lesser memorization but may generalize better
\[f(x) > 0 \]

\[0/6 + 0/4 = 0.0 \]

\[x = \begin{bmatrix} 6 \\ 2 \end{bmatrix}, y = -1 \]

\[x = \begin{bmatrix} x^{(1)} \\ x^{(2)} \end{bmatrix} \]

\[f(x) = 0 \]

\[x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, y = -1 \]

\[f(x) < 0 \]

Whiteness in Dressing
Another example

\[f(x; w) = w_1 x^{(1)} + w_2 x^{(2)} + b = 0 \]
Example (Graphical Approach)

\[f(x; w) = w_1 x^{(1)} + w_2 x^{(2)} + b = 0 \]

\[w_1(1.5) + w_2(0) + b = 0 \]
\[b = -1.5w_1 \]

\[w_1(0) + w_2(1.5) + b = 0 \]
\[b = -1.5w_2 \]

If I set \(w_1 = 1.0 \)
\[b = -1.5 \]
\[w_2 = 1.0 \]

\[f(x; \theta) = x^{(1)} + x^{(2)} - 1.5 \]

(1,1) \(\rightarrow \) 0.5
(1,0) \(\rightarrow \) -0.5, (0,1) \(\rightarrow \) -0.5, (0,0) \(\rightarrow \) -1.5
Example: Another Way (Algebraic Constraint Satisfaction)

\[f(x; w) = w_1 x^{(1)} + w_2 x^{(2)} + b = 0 \]

- \((1,1): w_1(1.0) + w_2(1.0) + b > 0\)
- \((1,0): w_1(1.0) + w_2(0.0) + b < 0\)
- \((0,1): w_1(0.0) + w_2(1.0) + b < 0\)
- \((0,0): w_1(0.0) + w_2(0.0) + b < 0\)

\[w_1 + w_2 + b > 0 \]
\[w_1 + b < 0 \]
\[w_2 + b < 0 \]
\[b < 0 \]

\[b = -1.5 \]
\[w_1 = 1.0 \]
\[w_2 = 1.0 \]
Exercise

• Is this problem linearly separable?
Let’s talk about: Linear Separability

• What about this one?

(1,1): \(w_1(1.0) + w_2(1.0) + b > 0 \)
(1,0): \(w_1(1.0) + w_2(0.0) + b < 0 \)
(0,1): \(w_1(0.0) + w_2(1.0) + b < 0 \)
(0,0): \(w_1(0.0) + w_2(0.0) + b > 0 \)
What about this one?

- (0,0,0): -1
- (1,0,0): +1
- (0,1,0): -1
- (0,0,1): +1
- (1,0,1): +1
- (1,1,0): +1
- (0,1,1): +1
- (1,1,1): +1

\[f(x;w) = w_1 x^{(1)} + w_2 x^{(2)} + w_3 x^{(3)} + b = 0 \]
End of Lecture

We want to make a machine that will be proud of us.

- Danny Hillis