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Fayyaz Minhas Building Linear Models

Another way of looking at Classification

• We would like to minimize the number of 
errors a discriminant function 𝑓 𝒙 makes 

• Representation: Assume we look at only 
linear functions

𝑓 𝒙; 𝒘 = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2) + ⋯ + 𝑤𝑑𝑥 𝑑 = 0

• Evaluation: We need to define error that a 
particular 𝑓 𝑥; 𝑤 makes

• Optimization: We need to minimize the 
error by tuning 𝒘
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x(1)

x(2)

Line-1

Line-2

Number of Examples

14

11

Error: (1+2)/(14+11) = 12 % 

Error: (4+1)/(14+11) = 20 % 
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Preliminaries

• Gradients
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f(x,y) = −(cos2w + cos2y)2
https://en.wikipedia.org/wiki/Gradient 

∇𝑓 𝒙 =

𝜕𝑓 𝒙

𝜕𝑥(1)

𝜕𝑓 𝒙

𝜕𝑥(2)

⋮
𝜕𝑓 𝒙

𝜕𝑥(𝑑)

https://en.wikipedia.org/wiki/Gradient
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Finding minima and maxima of functions

• Given a function f(w)

• Take the derivative

• Substitute the derivative to zero

• Solve for 𝑥 when 
𝑑𝑓

𝑑𝑤
= 0

• Works when we can solve for w
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𝑓 𝑤 = 𝑤 − 0.5 2

𝑑𝑓

𝑑𝑤
= 2 𝑤 − 0.5 = 0

𝑤∗ = 0.5

𝑓 𝑤 = 𝑤 − 0.5 2 + 𝑠𝑖𝑛(4𝑤)
𝑑𝑓

𝑑𝑤
= 2 𝑤 − 0.5 + 4cos(4𝑤) = 0

𝑤∗ =?
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Preliminaries: Gradient Descent

• In order to find the minima of a function, keep taking steps 
along a direction opposite to the gradient of the function

5

𝜕𝑓

𝜕𝑤
> 0

𝑓(𝑤)

𝑤0

𝑓(𝑤0)

−𝛼
𝜕𝑓 𝑤

𝜕𝑤

𝑤1

𝒘(𝒌+𝟏) = 𝒘(𝒌) − 𝛼∇𝑓(𝒘(𝒌))

𝑓(𝑤1)

𝑤

𝜕𝑓

𝜕𝑤
< 0

𝑓(𝑤)

𝑤0

𝑓(𝑤0)

−𝛼
𝜕𝑓(𝑤)

𝜕𝑤

𝑤1

𝑓(𝑤1)

𝑤
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GD Implementation
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import numpy as np

def gd(fxn,dfxn,w0=0.0,lr = 0.01,eps=1e-4,nmax=1000, history = True):
    """
    Implementation of a gradient descent solver.
        fxn: function returns value of the target function for a given w
        dfxn: gradient function returns the gradient of fxn at w
        w0: initial position [Default 0.0]
        lr: learning rate [0.001]
        eps: min step size threshold [1e-4]
        nmax: maximum number of iters [1000]
        history: whether to store history of x or not [True]
    Returns:
        w: argmin_x f(w)
        converged: True if the final step size is less than eps else false
        H: history
    """
    H = []
    w = w0
    if history:
        H = [[w,fxn(w)]]
    for i in range(nmax):
        dw = -lr*dfxn(w) #gradient step
        if np.linalg.norm(dw)<eps: # we have converged
            break
        if history:
            H.append([w+dw,fxn(w+dw)])
        w = w+dw #gradient update
    converged = np.linalg.norm(dw)<eps        
    return w,converged,np.array(H)

if __name__=='__main__':
    import matplotlib.pyplot as plt
    def myfunction(w):
        z = (w-0.5)**2#+np.sin(4*w)
        return z
    def mygradient(w):
        dz = 2*(w-0.5)#+4*np.cos(4*w)
        return dz
    

    wrange = np.linspace(-3,3,100)
    #select random initial point in the range
    w0 = np.min(wrange)+(np.max(wrange)-np.min(wrange))*np.random.rand()
    
    w,c,H = gd(myfunction,mygradient,w0=w0,lr = 0.01,eps=1e-4,nmax=1000, history = True) 
    
    plt.plot(wrange,myfunction(wrange)); plt.plot(wrange,mygradient(wrange));
    plt.legend(['f(w)','df(w)'])
    plt.xlabel('w');plt.ylabel('value')
    s = 'Convergence in '+str(len(H))+' steps'
    if not c:
        s = 'No '+s
    plt.title(s)
    plt.plot(H[0,0],H[0,1],'ko',markersize=10)
    plt.plot(H[:,0],H[:,1],'r.-')
    plt.plot(H[-1,0],H[-1,1],'k*',markersize=10)    
    plt.grid(); plt.show()
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Convex vs. non-convex functions

• If you draw a line between “any” two 
points on a function and the line always 
remains above or on the function, then 
that function is called convex function

– Strict Convexity

• Convex functions will have a single 
minima
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Is this convex?

Is this convex?

Is this convex?

https://en.wikipedia.org/wiki/Convex_function 

https://en.wikipedia.org/wiki/Convex_function
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Building Linear Discriminants

• Representation
– Features

– Linear Function 
𝑓 𝐱; 𝒘 = 𝑤1𝑥(1) + 𝑤2𝑥(2) + ⋯ + 𝑤𝑑𝑥 𝑑 + 𝑏 = 0

• Evaluation
– Misclassification

• Optimization
– Find a line that minimizes misclassifications

– How done: Visual reckoning / Constraint Satisfaction

• Why Study Linear Models?
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w1(1.0)+w2(1.0)+b > 0 
w1(1.0)+w2(0.0)+b < 0 
w1(0.0)+w2(1.0)+b < 0 
w1(0.0)+w2(0.0)+b < 0 

(1,1):

(1,0):

(0,1):

(0,0):

x(1)

x(2)
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A more mathematical look

• Linear Discriminants

• The linear discriminant function is given by

𝑓 𝐱; 𝒘 = 𝑤1𝑥(1) + 𝑤2𝑥(2) + ⋯ + 𝑤𝑑𝑥 𝑑 + 𝑏 = 𝐰𝑇𝐱 + 𝑏

𝑓 𝐱′; 𝒘′ = 𝑤1𝑥(1) + 𝑤2𝑥(2) + ⋯ + 𝑤𝑑𝑥 𝑑 + 𝑏 = 𝐰′𝑇
𝐱′

x1

x2

Linear Discriminant 
Function

( ) 0x w x
Tf b= + =

> 0

< 0

w & b are ‘learned’ 
from the training data  
using some error 
criterion

𝐰 =

𝑤1

𝑤2

⋮
𝑤𝑑

 𝒙 =

𝑥(1)

𝑥(2)

⋮
𝑥 𝑑

𝐰′ =

𝑤1

𝑤2

⋮
𝑤𝑑

𝑏

 𝒙′ =

𝑥(1)

𝑥(2)

⋮
𝑥 𝑑

1
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Classification Loss Function

• A misclassification is an error

– If a training example has a label of 𝑦 = +1,then its discriminant 
function score 𝑓 𝒙 should be _____

– If a training example has a label of 𝑦 = −1,then its discriminant 
function score 𝑓 𝒙 should be _____

– Thus, we have an error whenever: __________

10
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Classification Loss Function

• A misclassification is an error

– If a training example has a label of 𝑦 = +1,then its discriminant 
function score 𝑓 𝒙 should be > 0

– If a training example has a label of 𝑦 = −1,then its discriminant 
function score 𝑓 𝒙 should be < 0

– Thus, we have an error whenever: 𝑦𝑓 𝒙 < 0

11
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0-1 Loss/Error

• Consider a single example: 

– Our error function is: 𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝑥 > 0

1 𝑦𝑓 𝑥 ≤ 0
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𝑦𝑓 𝑥

𝑙𝑜𝑠𝑠

1

Formally called the 
zero-one loss function
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0-1 Misclassification Error

• We want to find the parameters of the 
discriminant that minimize the loss for all 
examples in training

• Issues with 0-1 loss
– Non Differentiable
– Leads to poor optimization

• We need a “surrogate” or approximation of the 
loss
– Should be continuous
– Should be an over-approximation of the 0-1 loss

• Generates at least as much error as the 0-1 loss would

– Should be convex
• Convex loss function leads to convex optimization 

problems which are easier to solve as they have a single 
minima
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Convexity: If a line connecting 
two points on a curve lies on or 
above the curves at all times

Is this convex?

Is this convex?

Is this convex?
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Surrogate Classification Loss

• Hinge Loss Function
– A convex over-approximation of the 0-1 loss
– Adds some “margin” of error to the classification

• Prediction label can be +1 or -1 depending upon whether 𝑓 𝑥 > 0 or 𝑓 𝑥 < 0
• However, we incur a loss if for positive training examples 𝑓 𝑥 < 1 or for negative examples 𝑓 𝑥 > −1

14

𝑦𝑓 𝑥

𝑙𝑜𝑠𝑠

1

1

1 − 𝑦𝑓 𝑥

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝑥 > 1

1 − 𝑦𝑓 𝑥  𝑦𝑓 𝑥 ≤ 1
= ቊ

0 1 − 𝑦𝑓 𝑥 < 0

1 − 𝑦𝑓 𝑥  1 − 𝑦𝑓 𝑥 ≥ 0

  OR
𝑙 𝑓(𝑥 , 𝑦) = max(0,1 − 𝑦𝑓 𝑥 )

𝑧

𝑙

1

1

𝑙 𝑧 = max(0, 1 − 𝑧)

𝑓 𝑥

𝑙𝑜𝑠𝑠

1

1

1 − 𝑓 𝑥

𝑓 𝑥

𝑙𝑜𝑠𝑠

1

-1

1 + 𝑓 𝑥

For positive examples 
𝑦 = +1

For positive examples 
𝑦 = −1

1 − 𝑧
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Optimization

• How can we solve it?

– Take the derivative and substitute to zero

– How else can we solve it?
• Use gradient descent
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min𝑤 𝐿 𝑿, 𝒀; 𝒘 = ෍

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;w)}
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Optimization
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min𝑤 𝐿 𝑿, 𝒀; 𝒘 = ෍

𝑖=1

𝑁

𝑙 𝑓(𝒙𝑖;w) , 𝑦𝑖) = ෍

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;w)}

𝜕𝐿

𝜕𝒘
= ෍

𝑖=1

𝑁
𝜕𝑙 𝑓(𝒙𝑖;w) , 𝑦𝑖)

𝜕𝒘

𝜕

𝜕𝒘
max{0,1−𝑦 𝒘𝑇𝒙 } =  ቊ

0 1−𝑦𝑓(𝒙;w) < 0
−𝑦𝒙 𝑒𝑙𝑠𝑒

= ቊ
−𝑦𝒙 𝑙 𝑓(𝒙;w) , 𝑦) > 0

0 𝑒𝑙𝑠𝑒

𝑦𝑓 𝑥 = 𝑦 𝒘𝑇𝒙

𝑙𝑜𝑠𝑠

1

1

1 − 𝑦𝑓 𝑥

𝒘

𝑙𝑜𝑠𝑠

1

1

1 − 𝑤

For a simple example in which 𝑥 = 1, 𝑦 = 1

𝒘

𝜕𝑙

𝜕𝒘

1

For a simple example in which 𝑥 = 1, 𝑦 = 1

−1

0

What happens when 𝒚𝒇 𝒙 = 𝟏 
where the function has a 
“kink”?
 There, we can choose to define 
the “sub”-gradient to be the 
slope of any line that lies below 
or on the loss function itself (see 
dotted lines below). 
Consequently defining 
𝜕𝐿

𝜕𝒘
ȁ𝒚𝒇 𝒙 =𝟏 = 𝟎 should work 

(slope of red line). 

1

1

𝑦𝑓 𝑥

𝑙𝑜𝑠𝑠

https://en.wikipedia.org/wiki/Subderivative
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Algorithm
• Given:

– Training Examples: 𝒙𝑖 , 𝑦𝑖 𝑖 = 1 … 𝑁 , yi ∈ {−1, +1}

– Learning rate (step size): 𝛼

• Initialize 𝑤(0) at random

• Until Convergence (𝑘 = 1 … 𝐾 epochs)

– For 𝑖 = 1 … 𝑁

• Pick example 𝒙𝑖 with label 𝑦𝑖

• Compute 𝑓 𝒙𝑖 = 𝒘(𝒌−𝟏)𝑻
𝒙𝒊

• If 𝑦𝑖𝑓 𝒙𝑖 < 1 then update weight vector using gradient descent

• Check for convergence to stop 

17

𝒘(𝒌) = 𝒘(𝒌−𝟏) − 𝛼∇𝒍 𝒘(𝒌−𝟏) = 𝒘(𝒌−𝟏) − 𝛼 −𝑦𝑖𝒙𝑖 = 𝒘(𝒌−𝟏) + 𝛼𝑦𝑖𝒙𝑖

∇𝒘max{0,1−𝑦 𝒘𝑇𝒙 } =  ቊ
0 1−𝑦𝑓(𝒙;w) < 0

−𝑦𝒙 𝑒𝑙𝑠𝑒
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REO For Perceptron

• Representation

– Features

– Discriminant

• Linear: 𝑓 𝒙𝑖; 𝒘 = 𝒘𝑻𝒙𝒊

• Evaluation

– 0/1 (Step) Loss

– Hinge Loss

• Optimization

– Using Gradient Descent

18
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Perceptron

• A simpler version of this algorithm is called: 
Perceptron
– It updated weights whenever an example was 

misclassified 𝑦𝑖𝑓 𝒙𝑖 < 0 instead of when 
𝑦𝑖𝑓 𝒙𝑖 < 1

– Rosenblatt (1962)

– Minsky and Papert (1969, 1988)

– This algorithm provides theoretical guarantees 
of convergence to a correct separating 
boundary
• If the data is linearly separatable and you allow the 

pereceptron algorithm to run long enough, you will 
find the separating line!

• Perceptron Learning Rule Convergence Theorem

19

Marvin Minsky
Aug. 9, 1927 – Jan. 24, 2016

Frank Rosenblatt
July 11, 1928 – July 11, 1971
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Perceptron

• One of the first “artificial” neural networks

20

𝑓 𝒙; 𝜽 = 𝒘𝑻𝒙 + 𝑏

x1

x2
b

w2

w1

f(x;θ=[w,b]) 

෍
𝐰 =

𝑤1

𝑤2

⋮
𝑤𝑑

 𝒙 =

𝑥(1)

𝑥(2)

⋮
𝑥 𝑑
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Coding Exercise

21

import numpy as np
import matplotlib.pyplot as plt
import itertools

class Perceptron:       

    def __init__(self,alpha = 0.1, epochs = 200):
        self.alpha = alpha
        self.epochs = epochs
        self.W = np.array([0])
        self.bias = np.random.randn()
        self.Lambda = 0.5
    def fit(self,Xtr,Ytr):
        d = Xtr.shape[1]
        self.W = np.random.randn(d)          
        for e in range(self.epochs):
            finished = True
            for i,x in enumerate(Xtr):
                if Ytr[i]*self.predict(np.atleast_2d(x))<1:
                    finished = False
                    self.W += self.alpha*Ytr[i]*x
                    self.bias += self.alpha*Ytr[i]            
            if finished: break
             
    def score(self,x):
        return np.dot(x,self.W) + self.bias
        
    def predict(self,x):
        return np.sign(self.score(x))    

if __name__=='__main__':
    from plotit import plotit
    Xtr = np.array([[-1,0],[0,1],[4,4],[2,3]])
    ytr = np.array([-1,-1,+1,+1])
    clf = Perceptron()
    clf.fit(Xtr,ytr)
    z = clf.score(Xtr)
    print("Prediction Scores:",z)
    y = clf.predict(Xtr)
    print("Prediction Labels:",y)
    plotit(Xtr,ytr,clf=clf.score,conts=[0],
 extent = [-5,+5,-5,+5])
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https://github.com/foxtrotmike/CS909/blob/master/perceptron_video.py 

https://github.com/foxtrotmike/CS909/blob/master/perceptron_video.py
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End of Lecture

We want to make a machine that will be proud of us.

- Danny Hillis
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