WARWICK

THE UNIVERSITY OF WARWICK

From Lines to Perceptrons

Dr. Fayyaz Minhas

Department of Computer Science

University of Warwick
https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs909/

Fayyaz Minhas Building Linear Models


https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs909/

Another way of looking at Classification

. . . . Line-1
e We would like to minimize the number of Error: (4+1)/(14+11) = 20 %
errors a discriminant function f(x) makes .
X
« Representation: Assume we look at only S o |
linear functions N ® 0°
0‘ Lo @
fOsw) =wy + wix® +wox@ + oo wyx@ =0 " “ e ® ® o
o, . ©
 Evaluation: We need to define error that a ®e Lme_\z’\
particular f(x; w) makes Error: (1+2)/(14+11) =12 %,
o ] L Number of Examples x(1)
* Optimization: We need to minimize the ® 14
error by tuning w @ 11

Building Linear Models 2



Preliminaries Af ()
dx @)

. . of (x)
Gradients V) = 3:@

of (%)

8

L 9x (@) |

y
y=y(x
-4 : ‘ =
tﬂ.ﬂgﬂﬂt tD ,,-"‘»"\,_: ® ::_ o — i ~ - -——.~ o2 ’—') S0
- - T -« - ~ _.r". é Y "",_ — - -l
curve at point A R A I W e ™
. L I e . 3 o )
1] ‘. P {0
N T 20
10 ;' o ”___,7"“ in
slope = Ay/Ax o -8
- 2 2\/\2
= - +
https://en.wikipedia.org/wiki/Gradient X f(X'y) (COS W+ COS y)

Fayyaz Minhas Building Linear Models


https://en.wikipedia.org/wiki/Gradient

Finding minima and maxima of functions

Given a function f(w)
Take the derivative

Substitute the derivative to zero
d
ar _

Solve for x when
dw

Works when we can solve for w

f
af
dw

w) = (w — 0.5)?
= 2w —0.5) = 0
w* =0.5

f
af
dw

(w) = (w — 0.5)% + sin(4w)
= 2(w —0.5) + 4cos(4w) = 0

w* =?

Building Linear Models



Preliminaries: Gradient Descent

* |[n order to find the minima of a function, keep taking steps
along a direction opposite to the gradient of the function

wk+D) = () _ v F (W)

fw) fw)

Building Linear Models



GD Implementation

import numpy as np

def gd(fxn,dfxn,w0=0.0,1r = 0.01,eps=1e-4,nmax=1000, history = True): if __name__=='_main__ ':

e import matplotlib.pyplot as plt

Implementation of a gradient descent solver. def myfunction(w):
fxn: function returns value of the target function for a given w z = (w-0.5)**2#+np.sin(4*w)
dfxn: gradient function returns the gradient of fxn at w return z
wo: initial position [Default 0.0] def mygradient(w):
lr: learning rate [0.001] dz = 2*(w-0.5)#+4*np.cos(4*w)
eps: min step size threshold [1le-4] return dz

nmax: maximum number of iters [1000]
history: whether to store history of x or not [True]

Returns: wrange = np.linspace(-3,3,100)
w: argmin_x f(w) #tselect random initial point in the range
converged: True if the final step size is less than eps else false wo = np.min(wrange)+(np.max(wrange)-np.min(wrange))*np.random.rand()
H: history
e w,c,H = gd(myfunction,mygradient,wd=w0,1lr = 0.01,eps=1e-4,nmax=1000, history = True)
H =[]
W = wo plt.plot(wrange,myfunction(wrange)); plt.plot(wrange,mygradient(wrange));
if history: plt.legend(['f(w)', 'df(w)'])
H = [[w,fxn(w)]] plt.xlabel('w');plt.ylabel('value"')
for i in range(nmax): s = 'Convergence in "+str(len(H))+' steps’
dw = -1lr*dfxn(w) #gradient step if not c:
if np.linalg.norm(dw)<eps: # we have converged s = 'No '+s
break plt.title(s)
if history: plt.plot(H[@,0],H[0,1], 'ko',markersize=10)
H.append ([w+dw, fxn(w+dw) ]) plt.plot(H[:,0],H[:,1], 'r.-")
w = w+dw #gradient update plt.plot(H[-1,0],H[-1,1], 'k*',markersize=10)
converged = np.linalg.norm(dw)<eps plt.grid(); plt.show()

return w,converged,np.array(H)

Fayyaz Minhas Building Linear Models 6



Convex vs. non-convex functions

* |f you draw a line between “any” two
points on a function and the line always
remains above or on the function, then
that function is called convex function

— Strict Convexity p\

Is this convex?

* Convex functions will have a single
minima

Is this convex?

https://en.wikipedia.org/wiki/Convex function



https://en.wikipedia.org/wiki/Convex_function

Building Linear Discriminants

* Representation

«(2)

— Features
| | O H

— Linear Function
fEw) =wix® +wox@ + o+ wyx@ + b =0

e Evaluation
— Misclassification

* Optimization @ @

X

— Find a line that minimizes misclassifications
— How done: Visual reckoning / Constraint Satisfaction

. (1,1):  w4(1.0)+w,(1.0)+b >0

* Why Study Linear Models? (10w, (1.0)+w,(0.0)+b <0
(0,1): W,(0.0)+w,(1.0)+b <0

(0,0: W;(0.0)+w,(0.0)+b <0



A more mathematical look

(W1 ] [ (D]
w 2
:2 X = x( )
|Wq | | x (D)
-Wl- —x(l)_
L) x@)
Clxt =]
N, 1

* Linear Discriminants
w =
* The linear discriminant function is given by
fw) =wix® +wox@ + o wx@ 4 p=wix+ b
FEEW) = wix® +wox® 4o wyx@ 4 p = w'Tx w =
Linear Discriminant
Function
X2 w & b are ‘learned’

from the training data
using some error
criterion

Fayyaz Minhas

Building Linear Models



Classification Loss Function

A misclassification is an error

— If a training example has a label of y = +1,then its discriminant
function score f(x) should be

— If a training example has a label of y = —1,then its discriminant
function score f(x) should be

— Thus, we have an error whenever:

Building Linear Models 10



Classification Loss Function

A misclassification is an error

— If a training example has a label of y = +1,then its discriminant
function score f(x) should be > 0

— If a training example has a label of y = —1,then its discriminant
function score f(x) should be < 0

— Thus, we have an error whenever: yf(x) < 0

Building Linear Models 11



0-1 Loss/Error

* Consider a single example:

0 yf(x)>0

— Our error functionis: [(f(x),y) = {1 yf(x) <0

loss

Formally called the
zero-one loss function

yf(x)

Fayyaz Minhas Building Linear Models 12



0-1 Misclassification Error

* We want to find the parameters of the
discriminant that minimize the loss for all
examples in training

* [ssues with 0-1 loss
— Non Differentiable
— Leads to poor optimization
 We need a “surrogate” or approximation of the
loss
— Should be continuous

— Should be an over-approximation of the 0-1 loss
e Generates at least as much error as the 0-1 loss would
— Should be convex

* Convex loss function leads to convex optimization
problems which are easier to solve as they have a single
minima

Convexity: If a line connecting
two points on a curve lies on or
above the curves at all times

Is this convex?

Is this convex?

Is this convex?

Building Linear Models 13



Surrogate Classification Loss

- 0 yf)>1_ 0
L[(f(x),y) = {1 —yfG) yf<1 {1 — yf(x)

OR
[(f (%), y) = max(0,1 — yf(x))

1= yfe)

! yf(x)

Hinge Loss Function
— A convex over-approximation of the 0-1 loss

For positive examples
1 \ y=+1

— Adds some “margin” of error to the classification
* Prediction label can be +1 or -1 depending upon whether f(x) > 0 or f(x) < 0

1 fx)
loss
/ 1+ f(x)
For positive examples
/ 1 y=-1
-1 f(x)

* However, we incur a loss if for positive training examples f(x) < 1 or for negative examples f(x) > —1

Fayyaz Minhas

Building Linear Models

1-yf(x) <0 e
1-yf(x) =0
/// l
S [(z) = max(0,1 — 2)
// 1—2z
<
\\ 1
T B
loss \\\

14



Optimization

N
min,, L(X,Y;w) = z max{0,1—y; f(x;;w)}

=1
* How can we solve it?

— Take the derivative and substitute to zero
— How else can we solve it?

* Use gradient descent

Fayyaz Minhas Building Linear Models 15



Optimization

N N
min,, L(X,Y;w) = z L(f(x;;w), y;) = Z max{0,1—y; f(x;;w)}
i=1 i=1

N

oL E:awﬂxmmlya

%: ow

i=1

9 max{0,1—y(wlx)} =

1=yfeo 1—w

™ ™

0 1-yflew) <0 _ [—yx I(f(x;w)),y) >0
ow —yX else 0 else

1 yf(x) =yw'x) 1
For a simple example in whichx =1,y =1

Fayyaz Minhas

What happens when yf(x) = 1
where the function has a
“kink”?

There, we can choose to define
the “sub”-gradient to be the
slope of any line that lies below
or on the loss function itself (see
dotted lines below).
Consequently defining

g_va lyfx=1 = 0 should work
(slope of red line).

loss

yf(x)
al
aw
0
w
1
—1
For a simple example in whichx =1,y =1
Building Linear Models 16


https://en.wikipedia.org/wiki/Subderivative

Algorithm

 Given:
— Training Examples: {(x;,y)|li=1..N}y; € {—1,+1}
— Learning rate (step size): «
« Initialize w(® at random
* Until Convergence (k=1..K epochs)
— For i = 1..N
« Pick example x; with label y;
. Compute f(x;) = wk—D"x,
« If y;f(x;) <1 then update weight vector using gradient descent

wl) = wk=D — qui(wk-D) = wk-D — g(—y;x)) = wk™D + ay,x;

* Check for convergence to sto?///////////\\\\\\\\\\\\\

0 1-yf(x;w)<0
VwmaX{O,l—y(WTx)} = {—yx yfélse)

Fayyaz Minhas Building Linear Models 17



REO For Perceptron

* Representation
— Features

— Discriminant * Given:
— Training Examples: {(x;,y;)|i = 1..N},y; € {—1,+1}
* Linear: f(xl-; W) = wai * Initialize w® at random

. * Until Convergence
* Evaluation ~Fori=1.N

* Pick example x; with label y;

- 0/1 (Step) LOSS « Compute f(x;) —w® x4+ b

« If y;f(x;) < 1 then update your weight vector using gradient descent
- H I nge LOSS W(k) = w(k_l) — C(Vl(w(k_l)) = w(k_l) — a(_yixi) = w(k_l) + ayx;

* Optimization
— Using Gradient Descent

18



Perceptron

* Asimpler version of this algorithm is called:
Perceptron

— |t updated weights whenever an example was
misclassified (y;f(x;) < 0) instead of when
yif (x;) <1

— Rosenblatt (1962)

— Minsky and Papert (1969, 1988) S —

— This algorithm provides theoretical guarantees July 11, 1928~ July 11,1971
of convergence to a correct separating V/ )
boundary

* If the data is linearly separatable and you allow the
pereceptron algorithm to run long enough, you will
find the separating line!

* Perceptron Learning Rule Convergence Theorem

Marvin Minsky
Aug. 9, 1927 —Jan. 24, 2016

Fayyaz Minhas Building Linear Models 19



Perceptron

* One of the first “artificial” neural networks

Cendrite
| Axon Brminal

Node of
Flar"-:.'ile-l

Cell hody

Mucleus

Wy ] (D]

W,

X1 W = MZZ X = X(Z)
f(x:0=[w,b d
X, W, b (x;8=[w,b]) Wa (D]

fx;0) =wix+b

Fayyaz Minhas Building Linear Models 20



Coding Exercise

import numpy as np if __name__=='_main__':
import matplotlib.pyplot as plt from plotit import plotit
import itertools Xtr = np.array([[-1,0],[0,1],[4,4],[2,3]])
ytr = np.array([-1,-1,+1,+1])
class Perceptron: clf = Perceptron()
clf.fit(Xtr,ytr)
def __init_ (self,alpha = 0.1, epochs = 200): z = clf.score(Xtr)
self.alpha = alpha print("Prediction Scores:",z)
self.epochs = epochs y = clf.predict(Xtr)
self.W = np.array([9]) print("Prediction Labels:",y)
self.bias = np.random.randn() plotit(Xtr,ytr,clf=clf.score,conts=[0],
self.Lambda = 0.5 extent = [-5,+5,-5,+5])

def fit(self,Xtr,Ytr):
d = Xtr.shape[1]
self.W = np.random.randn(d)
for e in range(self.epochs):
finished = True
for i,x in enumerate(Xtr):
if Ytr[i]*self.predict(np.atleast 2d(x))<1:
finished = False
self.W += self.alpha*Ytr[i]*x
self.bias += self.alpha*Ytr[i]
if finished: break

def score(self,x):
return np.dot(x,self.W) + self.bias

def predict(self,x):
return np.sign(self.score(x))

Fayyaz Minhas Building Linear Models 21



epoch = 0: w=0.372, 1.140 b = -2.438

2.0 1.00
0.75
1.5 -
0.50
1.0 A ~ "
0.25
L 0.5 i < i i i "I 0.00
- —0.25
0.0 i & 1 5
- —0.50
—0.5 1
- —0.75
-1.0 . . : ; . -1.00
-1.0 -05 0.0 0.5 1.0 1.5 2.0

X1

https://github.com/foxtrotmike/CS909/blob/master/perceptron video.py

Fayyaz Minhas Building Linear Models 22



https://github.com/foxtrotmike/CS909/blob/master/perceptron_video.py

epoch = 0: w = 1.661, 0.473 b = 0.000

2.0 - 1.00
0.75
1.5
0.50
1.0
0.25
% 0.5 - 0.00
-—0.25
0.0 A
- —0.50
—0.5 -
-—0.75
=110 -1.00
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Fayyaz Minhas Building Linear Models 23



End of Lecture

We want to make a machine that will be proud of us.

- Danny Hillis

Fayyaz Minhas Building Linear Models 24



	Slide 1: From Lines to Perceptrons
	Slide 2: Another way of looking at Classification
	Slide 3: Preliminaries
	Slide 4: Finding minima and maxima of functions
	Slide 5: Preliminaries: Gradient Descent
	Slide 6: GD Implementation
	Slide 7: Convex vs. non-convex functions
	Slide 8: Building Linear Discriminants
	Slide 9: A more mathematical look
	Slide 10: Classification Loss Function
	Slide 11: Classification Loss Function
	Slide 12: 0-1 Loss/Error
	Slide 13: 0-1 Misclassification Error
	Slide 14: Surrogate Classification Loss
	Slide 15: Optimization
	Slide 16: Optimization
	Slide 17: Algorithm
	Slide 18: REO For Perceptron
	Slide 19: Perceptron
	Slide 20: Perceptron
	Slide 21: Coding Exercise
	Slide 22
	Slide 23
	Slide 24: End of Lecture

