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Fayyaz Minhas Perceptron to SVMs

Classification

• Given 

– A set of labelled training examples

• Find

– A mathematical function that generalizes 
well to unseen cases

• Discriminant function
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𝑓 𝐱 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 + 𝑏 = 𝐰𝑇𝐱 + 𝑏

Training Data



Fayyaz Minhas Perceptron to SVMs

REO For Perceptron
• Representation

– Features
– Discriminant

• Linear

• Evaluation
– 0/1 (Step) Loss

– Hinge Loss

– Overall Loss

• Optimization
– Using Gradient Descent
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∇𝑳 =
1

𝑁


𝑖=1

𝑁

∇𝒘𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)

𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝛼∇𝒍 𝒘(𝒌−𝟏)

𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝜶I(𝑙 𝑓(𝒙;w) , 𝑦))(−𝑦𝒙) = 𝒘 𝒌−𝟏 + 𝛼I(𝑙 𝑓(𝒙;w) , 𝑦))(𝑦𝒙)

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝒙 > 1

1 − 𝑦𝑓 𝒙  𝑦𝑓 𝒙 ≤ 1
= max{0,1−𝑦 𝒘𝑇𝒙 }

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝑥 > 0

1 𝑦𝑓 𝑥 ≤ 0

𝑓 𝐱 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 + 𝑏 = 𝐰𝑇𝐱

∇𝒘max{0,1−𝑦 𝒘𝑇𝒙 } =  ቊ
0 1−𝑦𝑓(𝒙;w) < 0

−𝑦𝒙 𝑒𝑙𝑠𝑒
= ቊ

−𝑦𝒙 𝑙 𝑓(𝒙;w) , 𝑦) > 0
0 𝑒𝑙𝑠𝑒

= I(𝑙 𝑓(𝒙;w) , 𝑦))(−𝑦𝒙)

𝐿 =
1

𝑁


𝑖=1

𝑁

𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)
𝑖𝑖𝑑

𝐸[𝑙 𝑓(𝒙;w) , 𝑦)]

𝑦𝑓 𝑥 = 𝑦𝑤𝑇𝑥

𝑙 𝑓(𝑥 , 𝑦; 𝑤)

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ×  𝑤𝑤(𝑘−1) 𝑤(𝑘)
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Coding in Python
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import numpy as np
import matplotlib.pyplot as plt
import itertools

class Perceptron:       

    def __init__(self,alpha = 0.1, epochs = 200):
        self.alpha = alpha
        self.epochs = epochs
        self.W = np.array([0])
        self.bias = np.random.randn()
        self.Lambda = 0.5
    def fit(self,Xtr,Ytr):
        d = Xtr.shape[1]
        self.W = np.random.randn(d)          
        for e in range(self.epochs):
            finished = True
            for i,x in enumerate(Xtr):
                if Ytr[i]!=self.predict(np.atleast_2d(x)):
                    finished = False
                    self.W += self.alpha*Ytr[i]*x
                    self.bias += self.alpha*Ytr[i]            
            if finished: break
             
    def score(self,x):
        return np.dot(x,self.W) + self.bias
        
    def predict(self,x):
        return np.sign(self.score(x))    

if __name__=='__main__':
    from plotit import plotit
    Xtr = np.array([[-1,0],[0,1],[4,4],[2,3]])
    ytr = np.array([-1,-1,+1,+1])
    clf = Perceptron()
    clf.fit(Xtr,ytr)
    z = clf.score(Xtr)
    print("Prediction Scores:",z)
    y = clf.predict(Xtr)
    print("Prediction Labels:",y)
    plotit(Xtr,ytr,clf=clf.score,conts=[0],
 extent = [-5,+5,-5,+5])

from sklearn.linear_model import Perceptron
clf = Perceptron()
clf.fit(X, y)
clf.predict(X)

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html 

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
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Empirical Risk Minimization

• So far, our machine learning models look like the following 
(empirical error) minimization:

• This is called ERM: 

– Learning only from training data
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𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝐿 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒀𝒕𝒓𝒂𝒊𝒏; 𝑓

x1

x2

𝒘∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘𝐿 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒀𝒕𝒓𝒂𝒊𝒏; 𝑓
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Issues with empirical risk parameters

• There are a large number of lines (or in general ‘hyperplanes’) 
separating the two classes

x1

x2

( ) 0x w x
Tf b= + =

> 0

< 0

Which separator is the best?
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Limitations of Empirical Risk Minimization

x1

x2 > 0

< 0

The boundary which lies at the 
maximum distance from data 
points of both classes gives better 
tolerance to noise and better 
“generalization”*

The boundary which lies closer to 
data points has low margin for error: 
A small change in the input can 
change the prediction label

*Under the assumption that:
 Test data is “identically distributed” as the training data
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Margin of a linear classifier

• The width by which the boundary of a linear classifier can be 
increased before hitting a data point is called the margin of the 
linear classifier

x1

x2 > 0

< 0

x1

x2 > 0

< 0

Linear Classifiers 
with larger margins 
are better
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Margin and Regularization

• Large Margin

• Classifiers with large margin have a property

– Small changes in x should cause small changes in output: Regularization

• How can we achieve regularization?
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x1

x2 > 0

< 0

𝑓 𝐱 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 + 𝑏 = 𝐰𝑇𝐱 + 𝑏



Fayyaz Minhas Perceptron to SVMs

Structural Risk Minimization

• In order to produce better generalization, 
we need to do both empirical error 
minimization but also reduce “Structural 
Risk”

• Formally, minimizing “structural risk” puts 
an upper bound on your generalization 
error
– Structural risk control, in essence, controls the 

structure of your prediction model in addition 
to empirical error minimization

10

Vladimir Vapnik
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Support Vector Machines (SVM)

• Support Vector Machines are linear classifiers that produce the 
optimal separating boundary (hyper-plane)

– Find w and b in a way so as to:

• Minimize misclassification error over training data (Empirical Risk 
Minimization)

• Maximize the margin 
– Or equivalently, maximize regularization

– Or equivalently, minimize the individual absolute weights

x1

x2 > 0

< 0

𝑓 𝐱 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 + 𝑏 = 𝐰𝑇𝐱 + 𝑏
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Understanding Regularization

• If w is too large (positive or negative)
– Then a small change in x (e.g., due to noise) 

will cause a large change in the output 𝒘𝑻𝒙 +
𝑏

– Can lead to errors
– Controlling for this is called “Regularization”

• Achieved by minimizing: 
𝑅 𝑓 = 𝒘𝟏

𝟐 + 𝒘𝟐
𝟐 + ⋯ + 𝒘𝒅

𝟐 = 𝒘𝑻𝒘 = 𝒘 𝟐

More important than understanding margin 
based explanations as the concept of margin 
gets a bit difficult when moving from 
classification to other types of machine learning 
problems. 
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Small  weights limit “the butterfly effect”

• Let’s quantify how sensitive the model is to a 
perturbation of its input

• 𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏
• 𝒇 𝒙 + 𝜹𝒙 = 𝒘𝑻 𝒙 + 𝜹𝒙 + 𝒃 = 𝒘𝑻𝒙 + 𝒃 + 𝒘𝑻𝜹𝒙 =

𝒇 𝒙 + 𝒘𝑻𝜹𝒙
• 𝒇 𝒙 + 𝜹𝒙 − 𝒇 𝒙 = 𝒘𝑻𝜹𝒙

• 𝒇 𝒙 + 𝜹𝒙 − 𝒇 𝒙 = 𝒘𝑻𝜹𝒙 ≤ 𝒘 𝜹𝒙  (using 
Cauchy-Schwarz inequality)

• Therefore, 
𝒇 𝒙+𝜹𝒙 −𝒇 𝒙

𝜹𝒙
≤ 𝒘

Change in model output per unit additive change in input 
is upper bounded by 𝑤 . Consequently, minimizing the 
norm of the weight vector (or its square) would lead to a 

regularization effect as it would limit the effect of any 
change in the input on the output.

Vapnik showed that minimizing “structural risk” 
(combination of empirical error over training examples 

and the norm of the weight vector) leads to minimization 
of the upper bound on generalization error.

𝑅 𝑤 ≤ 𝑅𝑒𝑚𝑝 𝑤 + Ω
1

𝑁
,

1

𝒘
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SRM to SVM

• Representation

f(x) = w1x(1)+w2x(2)+…+w2x(d)+b = 𝒘𝑻𝒙 + 𝑏

• Evaluation & Optimization
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min𝒘 𝑅 𝑓 + 𝐶𝐿 𝑿, 𝒀; 𝒘

Empirical Error/Loss over 
Training Data

(Inverse of) Margin
AKA
Regularization term

C > 0 is a weighting factor that 
controls the relative contribution 
of both 

𝑅 𝑓 =
1

2
𝒘𝟏

𝟐 + 𝒘𝟐
𝟐 + ⋯ + 𝒘𝒅

𝟐 =
1

2
𝒘𝑻𝒘 =

1

2
𝒘 𝟐 𝐿 𝑿, 𝒀; 𝒘 =

1

𝑁


𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;w)}

min𝒘,𝑏

1

2
𝒘𝑻𝒘 +

𝐶

𝑁


𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖)}
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SVM Optimization
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min𝑤 𝑃 𝒘 =
𝜆

2
𝒘𝑻𝒘 +

1

𝑁


𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;w)}

𝒘𝑘 ← 𝒘𝒌−𝟏 − 𝛼∇𝑃 𝒘𝒌−𝟏

∇𝑷 = 𝜆𝒘 −
𝜕

𝜕𝒘
max{0,1−𝑦 𝒘𝑇𝒙 }

𝜕

𝜕𝒘
max{0,1−𝑦 𝒘𝑇𝒙 } =  ቊ

0 𝑦𝑓(𝒙;w) > 1
−𝑦𝒙 𝑒𝑙𝑠𝑒

= 𝟏 𝑦𝑓(𝒙) < 1 −𝑦𝒙

∇𝑷 = 𝜆𝒘 − 1 𝑦𝑓(𝒙) < 1 −𝑦𝒙 = 𝜆𝒘 + 𝟏 𝑦𝑓(𝒙) < 1 𝑦𝒙

𝒘𝑘 ← 𝒘𝒌−𝟏 − 𝛼𝜆𝒘𝒌−𝟏 − 𝛼𝟏 𝑦𝑓(𝒙) < 1 𝑦𝒙

min𝒘,𝑏

1

2
𝒘𝑻𝒘 +

𝐶

𝑁


𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖)}

Alternatively, we can use a weighting hyperparameter with the regularization term

𝜕

𝜕𝒘

𝜆

2
𝒘𝑻𝒘 = 𝜆𝒘

Gradient Descent Update Rule: 

Gradient calculation: 

Final Weight Update Rule:
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Support Vector Machines
• Support Vector Machines, in their basic form, are 

linear classifiers that give maximum margin or 
regularization

• Principles of Operation
– Minimize the number of training errors

• Achieved by minimizing hinge loss
– Maximize margin

• Allows noise tolerance
• Allows Regularization

– Perform Nonlinear Classification
• Achieved through feature 

transformations/kernels

• The points that determine the margin are called 
Support Vectors

x1

x2

> 0< 0
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REO For Perceptron
• Representation

– Features
– Discriminant

• Linear

• Evaluation
– 0/1 (Step) Loss

– Hinge Loss

– Overall Loss

• Optimization
– Using Gradient Descent
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∇𝑳 =
1

𝑁


𝑖=1

𝑁

∇𝒘𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)

𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝛼∇𝒍 𝒘(𝒌−𝟏)

𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝜶I(𝑙 𝑓(𝒙;w) , 𝑦))(−𝑦𝒙) = 𝒘 𝒌−𝟏 + 𝛼𝐈(𝑙 𝑓(𝒙;w) , 𝑦) > 0)(𝑦𝒙)

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝒙 > 1

1 − 𝑦𝑓 𝒙  𝑦𝑓 𝒙 ≤ 1
= max{0,1−𝑦 𝒘𝑇𝒙 }

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝑥 > 0

1 𝑦𝑓 𝑥 ≤ 0

𝑓 𝐱 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 + 𝑏 = 𝐰𝑇𝐱

∇𝒘max{0,1−𝑦 𝒘𝑇𝒙 } =  ቊ
0 1−𝑦𝑓(𝒙;w) < 0

−𝑦𝒙 𝑒𝑙𝑠𝑒
= ቊ

−𝑦𝒙 𝑙 𝑓(𝒙;w) , 𝑦) > 0
0 𝑒𝑙𝑠𝑒

= 𝐈 𝑙 𝑓(𝒙;w) , 𝑦 > 0)(−𝑦𝒙)

𝐿 =
1

𝑁


𝑖=1

𝑁

𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)
𝑖𝑖𝑑

𝐸[𝑙 𝑓(𝒙;w) , 𝑦)]

𝑦𝑓 𝑥 = 𝑦𝑤𝑇𝑥

𝑙 𝑓(𝑥 , 𝑦; 𝑤)

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ×  𝑤𝑤(𝑘−1) 𝑤(𝑘)

(Ignoring Explicit Bias for Simplicity)
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REO For SVM
• Representation

– Features

– Discriminant

• Linear

• Evaluation
– Hinge Loss

• Minimize training error (Empirical Risk Minimization)

– Regularization  
• Minimize Impact of small changes in examples

– Structural Risk Minimization:

• Optimization
– Using Gradient Descent
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∇𝑷 = ∇𝒘

𝜆

2
𝑤𝑇𝑤 +

1

𝑁


𝑖=1

𝑁

∇𝒘𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝛼∇𝑷 𝒘(𝒌−𝟏)

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝒙 > 1

1 − 𝑦𝑓 𝒙  𝑦𝑓 𝒙 ≤ 1
= max{0,1−𝑦 𝒘𝑇𝒙 }

𝑓 𝐱; 𝒘 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 = 𝐰𝑇𝐱

∇𝒘max{0,1−𝑦 𝒘𝑇𝒙 } =  ቊ
0 1−𝑦𝑓(𝒙;w) < 0

−𝑦𝒙 𝑒𝑙𝑠𝑒

𝑦𝑓 𝑥 = 𝑦𝑤𝑇𝑥

𝒘𝑘 ← 𝒘𝒌−𝟏 − 𝛼𝜆𝒘𝒌−𝟏 − 𝛼𝑰 𝑦𝑓(𝒙) < 1 𝑦𝒙∇𝒘

𝜆

2
𝑤𝑇𝑤 = 𝜆𝑤

min𝑤 𝑃 𝒘 =
𝜆

2
𝒘𝑻𝒘 +

1

𝑁


𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝑥𝑖; 𝒘)}

min𝑤 𝑃 𝒘 =
1

2
𝒘𝑻𝒘 +

𝐶

𝑁


𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;w)}

Empirical Error Regularization
Hyperparameter 𝜆 or 𝐶: Control the relative 

weighting of the Regularization and Empirical Error 
Minimization terms 

(Ignoring Explicit Bias for Simplicity)

𝑅 𝑓 = 𝑅 𝑤 =
1

2
𝒘𝑻𝒘

min
𝑓

𝑅 𝑓 + 𝐿(𝑓; 𝑋, 𝑌)

𝑤

For a single training example

𝑅 𝑤
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Coding in Python
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import numpy as np
import matplotlib.pyplot as plt
import itertools

class RegularizedPerceptron:
    def __init__(self,Lambda = 0.0, margin = 0.0, alpha = 0.1, epochs = 1000):
        self.alpha = alpha
        self.epochs = epochs
        self.W = np.array([0])
        self.bias = np.random.randn()
        self.Lambda = Lambda #not used in perceptron
        self.Margin = margin #0.0 in Perceptron
    def fit(self,Xtr,Ytr):
        d = Xtr.shape[1]
        self.W = np.random.randn(d)          
        for e in range(self.epochs):
            finished = True
            for i,x in enumerate(Xtr):
                if self.score(np.atleast_2d(x))*Ytr[i]<self.Margin:
                    self.W += self.alpha*Ytr[i]*x
                    self.bias += self.alpha*Ytr[i]
                    
            self.W = self.W-self.alpha*self.Lambda*self.W #Regularization update      
             
    def score(self,x):
        return np.dot(x,self.W) + self.bias
        
    def predict(self,x):
        return np.sign(self.score(x))

if __name__=='__main__':
    from plotit import plotit
    Xtr = np.array([[-1,0],[0,1],[4,4],[2,3]])
    ytr = np.array([-1,-1,+1,+1])
    clf = RegularizedPerceptron(Lambda = 0.1, margin = 1.0)
    clf.fit(Xtr,ytr)
    z = clf.score(Xtr)
    print("Prediction Scores:",z)
    y = clf.predict(Xtr)
    print("Prediction Labels:",y)
    plotit(Xtr,ytr,clf=clf.score,conts=[0],extent = [-5,+5,-5,+5])

https://github.com/foxtrotmike/CS909/blob/master/regper.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/regper.ipynb
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Difference between Perceptron and SVM
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SVM in Sklearn

20

import numpy as np
from sklearn.svm import LinearSVC as Classifier

X = np.array([[0,0],[0,1],[1,0],[1,1]])
y =np.array([-1,1,1, 1])
clf = Classifier(class_weight='balanced',C=100)
clf.fit(X, y)
f = clf.predict(X)
print('Coefficients before adding additional feature:', clf.coef_,clf.intercept_)
print('Predictions before adding additional feature:',f)
plotit(X,y,clf = clf.decision_function,conts=[0],extent=[-2,+2,-2,+2])

C=1000
w=[2,2],b=-1

C=1
w = [0.84 0.84],b=-0.465
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Wanna Play?

• Use the Java Applet at:

• https://www.csie.ntu.edu.tw/~cjlin/libsvm/

• Set “-t 0 -c 100”
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https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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SVMs up till now

• Vapnik and Chervonenkis: 
– Theoretical foundations for SVMs
– Structural Risk Minimization

• Corinna Cortes
– Soft SVM (1995)

• Bernard Scholkopf (1997)
– Representer Theorem
– Complete Kernel trick!
– Kernels not only allow nonlinear boundaries but also 

allow representation of non-vectoral data
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How to achieve non-linear classification boundaries?

• So far we have only discussed linear 
classification

• How can we solve non-linear 
classification?

– By folding the space on which examples 
lie and then making a single straight cut
• Notice how folding changes the distance 

between points 

– How to achieve such folding?
• One way is to transform the data
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The Fold-and-Cut Theorem implies that any pattern can be achieved 
with a single straight cut if the paper (or space) is folded 
appropriately. 

Thus, it is theoretically possible to partition any space into regions 
containing positive and negative training examples no matter how 
complex such a boundary is by simply folding the feature space 
appropriately and using a linear classifier (single straight cut). 

https://en.wikipedia.org/wiki/Fold-and-cut_theorem 

https://www.youtube.com/watch?v=ZREp1mAPKTM 

https://en.wikipedia.org/wiki/Fold-and-cut_theorem
https://www.youtube.com/watch?v=ZREp1mAPKTM
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Nonlinear Separation through Transformation

• Given a classification problem with a nonlinear boundary, we 
can, at times, find a mapping or transformation of the feature 
space which makes the classification problem linear separable 
in the transformed space
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Examples: Transformation
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𝒙(𝟏) 𝒙(𝟐) y

0 0 -1

0 1 +1

1 0 +1

1 1 -1

𝒙′(𝟏) 𝒙′(𝟐) 𝒙′(𝟑) y

0 0 0 -1

0 1 0 +1

1 0 0 +1

1 1 2 -1

f(x;θ) = w1x(1)+w2x(2)+w3x(3) +b= 0

(0,0,0): b < 0
(0,1,0): w2+b > 0
(1,0,0): w1+b > 0

(1,1, 2): w1+ w2 + 2 w3 + b <0

w1 = 2, w2 = 2,  w3 = -3, b = -1

𝝓 𝒙(𝟏)

𝒙(𝟐)
=

𝒙 𝟏 𝟐

𝒙 𝟐 𝟐

2𝒙(𝟏)𝒙(𝟐)

f(x;θ) = w1x(1)+w2x(2)+b= 0

(0,0): b < 0
(0,1): w2+b > 0
(1,0): w1+b > 0
(1,1): w1+ w2 + b <0
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import numpy as np
from sklearn.svm import LinearSVC as Classifier
from plotit import *
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

X = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([-1,1,1,-1])
clf2d = Classifier(C=1000).fit(X, y)
f = clf2d.predict(X)
print('Coefficients before Transformation:', clf2d.coef_,clf2d.intercept_)
print('Predictions before Transformation:',f)

transform = lambda x: np.hstack((x**2,np.atleast_2d(np.sqrt(2)*x[:,0]*x[:,1]).T))
Xt = transform(X)
print(Xt)
clf = Classifier(C=1000).fit(Xt, y)
f = clf.predict(Xt)
print('Coefficients after Transformation:',clf.coef_,clf.intercept_)
print('Predictions after Transformation:',f)

# showing the plane in 3d
xx,yy = np.arange(-1, 2, 0.01), np.arange(-1, 2, 0.01)
yy = xx, yy = np.meshgrid(xx, yy)
zz = -(clf.coef_[0,0]*xx+clf.coef_[0,1]*yy+clf.intercept_[0])/(clf.coef_[0,2])
fig = plt.figure(); ax = fig.add_subplot(111, projection='3d')
Xp,Xn = Xt[y==1,:],Xt[y!=1,:]
ax.scatter(Xp[:,0], Xp[:,1], Xp[:,2],color = 'red',alpha=1,s=100)
ax.scatter(Xn[:,0], Xn[:,1], Xn[:,2],color = 'blue',alpha=1,s=100)
ax.plot_surface(xx, yy, zz,linewidth=0, antialiased=True)  
ax.set_xlabel('$X^t_1$'); ax.set_ylabel('$X^t_2$'); ax.set_zlabel('$X^t_3$')
# Normal vector (coef_ of the SVM)
normal_vector = clf.coef_[0]
start_point = [0, 0, -clf.intercept_[0] / clf.coef_[0,2]]
ax.quiver(start_point[0], start_point[1], start_point[2],
          normal_vector[0], normal_vector[1], normal_vector[2], length=1, color='green', normalize=True)

# showing the boundary in 2d
plt.figure(); plotit(X,y,clf = clf.decision_function,transform = transform,conts=[0],extent=[-2,+2,-2,+2])

https://github.com/foxtrotmike/CS909/blob/master/transformations.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/transformations.ipynb
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Examples: Transformation
– Does this mapping do it?

• 𝝓 𝒙(𝟏)

𝒙(𝟐)
=

𝒙 𝟏 𝟐

𝒙 𝟐 𝟐

2𝒙(𝟏)𝒙(𝟐)

– What about this one?

• 𝝓 𝒙(𝟏)

𝒙(𝟐)
= 𝒙(𝟏) + 𝒙(𝟐) − 1

𝟐

27
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Transformation Examples
• Can you find a transform that makes the following classification problems linear separable? Can you draw the data points in 

the new transformed feature space?
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(I)

(II)

(III)
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Feature Transformation Distance Change

• Feature transformations change the 
concept of distance or dot product 
between two points

– Consider:

𝑑 𝒂, 𝒃 = 𝒂 − 𝒃 2 = 𝒂 − 𝒃 𝑇 𝒂 − 𝒃
= 𝒂𝑇𝒂 + 𝒃𝑇𝒃 − 2𝒂𝑇𝒃

– After transformation: 𝒙 → 𝝓 𝒙 , the 
value of the distance between points 
changes. 
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𝒙(𝟏) 𝒙(𝟐) y

0 0 -1

0 1 +1

1 0 +1

1 1 -1

𝒙′(𝟏) 𝒙′(𝟐) 𝒙′(𝟑) y

0 0 0 -1

0 1 0 +1

1 0 0 +1

1 1 2 -1

𝝓 𝒙(𝟏)

𝒙(𝟐)
=

𝒙 𝟏 𝟐

𝒙 𝟐 𝟐

2𝒙(𝟏)𝒙(𝟐)

i 1 2 3 4

1 0 1 1 2

2 1 0 2 1

3 1 2 0 1

4 2 1 1 0

𝑑 𝒂, 𝒃

i 1 2 3 4

1 0 1 1 4

2 1 0 2 3

3 1 2 0 1

4 4 3 3 0

𝑑𝜙 𝒂, 𝒃

from scipy.spatial.distance import pdist, squareform
D = squareform(pdist(Xt,metric='sqeuclidean'))
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Dot Product Change Distance Change
• Notice how the distance formula contains 

nothing but dot products? 

𝑑 𝒂, 𝒃 = 𝒂 − 𝒃 2 = 𝒂 − 𝒃 𝑇 𝒂 − 𝒃
= 𝒂𝑇𝒂 + 𝒃𝑇𝒃 − 2𝒂𝑇𝒃

After transformation, the distance is defined in 
terms of dot products in the transformed 
space

𝑑𝜙 𝒂, 𝒃 = 𝝓(𝒂) − 𝝓(𝒃) 2

= 𝝓(𝒂) − 𝝓(𝒃) 𝑇 𝝓(𝒂) − 𝝓(𝒃)
= 𝝓 𝒂 𝑇𝝓(𝒂) + 𝝓 𝒃 𝑇𝝓(𝒃) − 2𝝓 𝒂 𝑇𝝓(𝒃)

We call dot products in the transformed space 
“Kernels”

𝑑𝜙 𝒂, 𝒃 = 𝑘𝜙 𝒂, 𝒂 + 𝑘𝜙 𝒃, 𝒃 − 2𝑘𝜙 𝒂, 𝒃

With
𝑘𝜙 𝒂, 𝒃 = 𝝓 𝒂 𝑇𝝓(𝒃)
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𝒙(𝟏) 𝒙(𝟐) y

0 0 -1

0 1 +1

1 0 +1

1 1 -1

i 1 2 3 4

1 0 1 1 2

2 1 0 2 1

3 1 2 0 1

4 2 1 1 0

𝑑 𝒂, 𝒃

i 1 2 3 4

1 0 1 1 4

2 1 0 2 3

3 1 2 0 1

4 4 3 3 0

𝑑𝜙 𝒂, 𝒃

i 1 2 3 4

1 0 0 0 0

2 0 1 0 1

3 0 0 1 1

4 0 1 1 2

i 1 2 3 4

1 0 0 0 0

2 0 1 0 1

3 0 0 1 1

4 0 1 1 4

𝒙′(𝟏) 𝒙′(𝟐) 𝒙′(𝟑) y

0 0 0 -1

0 1 0 +1

1 0 0 +1

1 1 2 -1

𝝓

𝑘 𝑎, 𝑏 = 𝒂𝑇𝒃

𝑘𝜙 𝑎, 𝑏 = 𝝓 𝒂 𝑇𝝓 𝒃

Transformed Data

Kernel Matrix Distance Matrix
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Feature Transformation Distance Change Kernels

• So far, we have established that:

– Whenever the features are transformed

• The distance changes

• The dot product values changes

• But it also means that

– If I change the distance between points, I will be applying a 
transformation

– If I change the dot product or kernel, we will change the distance or 
in essence achieve an implicit transformation

31
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Feature Transformation Kernel

– Let’s say, we have 2D data, then

• 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃 = 𝑎(1)𝑏(1) + 𝑎(2)𝑏(2)

– Let’s change the definition of the dot product or kernel as follows

• 𝑘𝜙 𝒂, 𝒃 = 𝒂𝑻𝒃
2

= 𝑎 1 𝑏 1 + 𝑎 2 𝑏 2 2
= 𝑎 1 𝑏 1 2

+ 𝑎 2 𝑏 2 2
+

2𝑎 1 𝑎 2 𝑏 1 𝑏 2 = 𝑎 1 2
𝑏 1 2

+ 𝑎 2 2
𝑏 2 2

+ 2𝑎 1 𝑎 2 2𝑏 1 𝑏 2 =

𝑎 1 2
𝑎 2 2

√2𝑎 1 𝑎 2

𝑏 1 2

𝑏 2 2

√2𝑏 1 𝑏 2

= 𝜙 𝒂 𝑻𝜙 𝒃

– Thus, 𝑘𝜙 𝒂, 𝒃 = 𝒂𝑻𝒃
2

implies the transformation

𝜙 𝒖 =
𝑢 1 2

𝑢 2 2

√2𝑢 1 𝑢 2

32
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Other Kernels

• We can change the definition of dot products to any other 
function

– Each kernel will have its own underlying feature representation 

• Formally: Moore–Aronszajn theorem

33

Requirements for being a kernel

Any function k can be a kernel if its pairwise kernel or  ‘Gram’ matrix

𝐾 =

𝑘(𝑥1, 𝑥1) 𝑘 𝑥1, 𝑥2 𝑘(𝑥1, 𝑥3)
𝑘(𝑥2, 𝑥1) 𝑘(𝑥2, 𝑥2) 𝑘(𝑥2, 𝑥3)
𝑘(𝑥3, 𝑥1) 𝑘(𝑥3, 𝑥2) 𝑘(𝑥3, 𝑥3)

is symmetric, positive semi-definite (for all given data).
And for any valid kernel, a corresponding transformation 𝒙 → 𝝓 𝒙  
exists such that k 𝒂, 𝒃 = 𝝓 𝒂 𝑻𝝓 𝒃 .

https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space#Moore%E2%80%93Aronszajn_theorem
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Kernels and their underlying transformations
Kernel Transform (for 2D Input)

Linear: 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃 𝜙 𝒖 = 𝒖 = 𝑢 1 𝑢 2 𝑻

Polynomial degree 2: 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃
2

(Homogeneous) 𝜙 𝒖 = 𝑢 1 2
𝑢 2 2

2𝑢 1 𝑢 2 𝑇

Polynomial degree 2: 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃 + 1
2

𝜙 𝒖 = 1 2𝑢 1 2𝑢 2
𝑢 1 2

𝑢 2 2
2𝑢 1 𝑢 2

𝑇

RBF Kernel: 𝑘 𝒂, 𝒃 = exp(−𝛾 𝒂 − 𝒃 2) Infinite dimensional (depending upon hyperpameter 𝛾 > 0
See: https://en.wikipedia.org/wiki/Radial_basis_function_kernel

34

Let’s build a support vector machine on this idea!

https://en.wikipedia.org/wiki/Radial_basis_function_kernel
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Kernelized SVM: Representation
• We know that the discriminant function of the SVM can be written as:

𝑓 𝒙 = 𝑤𝑇𝒙 + 𝑏

• The Representer theorem (Scholkopf 2001) allows us to represent the weight 
vector as a linear combination of input vectors with each example’s contribution 
weighted by a factor 𝛼𝑖

𝒘 = 

𝑖=1

𝑁

𝛼𝑖𝒙𝑖

Thus,

𝑓 𝒙 = 𝒘𝑇𝒙 + 𝑏 = 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝒙𝑗
𝑇𝒙

Notice how the prediction function involves only dot-products. Generalizing the dot product to 
a kernel function: 𝑘 𝒖, 𝒗 = 𝒖𝑇𝒗

𝑓 𝒙 = 𝑏 + 𝒘𝑇𝒙 = 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝑗 , 𝒙
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𝐱𝑖 =
0
0

  
0
1

  
1
0

  
1
1

𝑦 =  −1 + 1 + 1 + 1
𝛼𝑖 =  −2 + 1 + 1 0

𝒘 = 

𝑖=1

𝑁

𝛼𝑖𝒙𝑖 =
1
1

𝒃 = −1

https://en.wikipedia.org/wiki/Representer_theorem
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Kernel SVM: Optimization

36

min𝑤

1

2
𝒘𝑻𝒘 +

𝐶

𝑁


𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;𝒘)} min𝜶,𝑏

1

2


𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +
𝐶

𝑁


𝑖=1

𝑁

max 0,1−𝑦𝑖 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗

𝒘 = 

𝑖=1

𝑁

𝛼𝑖𝒙𝑖

𝒘𝑇𝒘 = 

𝑖=1

𝑁

𝛼𝑖𝒙𝑖

𝑇



𝑗=1

𝑁

𝛼𝑗𝒙𝑗 = 

𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗

max 0,1−𝑦𝑖 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗

𝑓 𝒙 = 𝑏 + 𝒘𝑇𝒙 = 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝑗 , 𝒙
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Kernel SVM: Optimization with GD

37

min𝜶,𝑏𝐷 𝜶, 𝒃 =
1

2


𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +
𝐶

𝑁


𝑖=1

𝑁

max 0,1−𝑦𝑖 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗

∇𝛼𝑖
𝐷 = 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +
−

𝐶

𝑁


𝑗=1

𝑁

𝑦𝑗𝑘 𝒙𝒊, 𝒙𝑗 𝑖𝑓 1−𝑦𝑖 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗 > 0

0 𝑒𝑙𝑠𝑒

∇𝑏𝐷 =
−

𝐶

𝑁


𝑗=1

𝑁

𝑦𝑗 𝑖𝑓 1−𝑦𝑖 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗 > 0

0 𝑒𝑙𝑠𝑒

𝜶(𝒎) ← 𝜶(𝒎−𝟏) − 𝜂∇𝑫𝜶 𝜶(𝒌−𝟏)
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Kernelized SVM

• Things to note In this formulation

• The weight vector is not present 
– The formulation only involves dot products or kernel function values

– Thus, we do not need explicit feature representations

• All the dot products have been replaced with a kernel function 𝑘 𝒙𝑗 , 𝒙𝑖

• We assume that we know 𝑘 𝒙𝑖 , 𝒙𝑗 for any two given training examples

• The optimization solution will be to obtain 𝜶 and 𝑏

• Once we solve the optimization problem, we can calculate the prediction score for any example 
based only on its kernel function values with training examples

38

𝑓 𝒙 = 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝑗 , 𝒙

min𝜶,𝑏 =
1

2


𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +
𝐶

𝑁


𝑖=1

𝑁

max 0,1−𝑦𝑖 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝒋
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REO For SVM

• Representation
– Features

– Discriminant
• Linear

• Evaluation
– Hinge Loss

– Regularization

– SRM:

• Optimization
– Using Gradient Descent

39

∇𝑷 = ∇𝒘

𝜆

2
𝑤𝑇𝑤 +

1

𝑁


𝑖=1

𝑁

∇𝒘𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝛼∇𝑷 𝒘(𝒌−𝟏)

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝒙 > 1

1 − 𝑦𝑓 𝒙  𝑦𝑓 𝒙 ≤ 1
= max{0,1−𝑦 𝒘𝑇𝒙 }

𝑓 𝐱; 𝒘 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 = 𝐰𝑇𝐱

∇𝒘max{0,1−𝑦 𝒘𝑇𝒙 } =  ቊ
0 1−𝑦𝑓(𝒙;w) < 0

−𝑦𝒙 𝑒𝑙𝑠𝑒

𝑦𝑓 𝑥 = 𝑦𝑤𝑇𝑥

𝒘𝑘 ← 𝒘𝒌−𝟏 − 𝛼𝜆𝒘𝒌−𝟏 − 𝛼𝟏 𝑦𝑓(𝒙) < 1 𝑦𝒙∇𝒘

𝜆

2
𝑤𝑇𝑤 = 𝜆𝑤

min𝑤 𝑃 𝒘 =
𝜆

2
𝒘𝑻𝒘 +

1

𝑁


𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝑥𝑖; 𝒘)}

min𝑤 𝑃 𝒘 =
1

2
𝒘𝑻𝒘 +

𝐶

𝑁


𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;w)}

Empirical Error Regularization
Hyperparameter 𝜆 or 𝐶: Control the relative 

weighting of the Regularization and Empirical 
Error Minimization terms 
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REO For Kernelized SVM

• Representation
– Features

– Discriminant

• Evaluation
– Hinge Loss

– SRM:

• Optimization
– Using Gradient Descent

40

∇𝑫 = ∇𝜶𝐷 𝜶𝜶(𝒌) ← 𝜶(𝒌−𝟏) − 𝛼∇𝑫 𝜶(𝒌−𝟏)

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝒙 > 1

1 − 𝑦𝑓 𝒙  𝑦𝑓 𝒙 ≤ 1

𝑓 𝒙 = 

𝑗=1

𝑁

𝛼𝑗𝑘(𝒙𝑗 , 𝒙)

𝐷 𝜶 =
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +
𝐶

𝑁


𝑖=1

𝑁

max 0,1−𝑦𝑖 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝒋

Empirical Error Regularization

𝑓 𝒙 = 0

kernelized

https://github.com/foxtrotmike/CS909/blob/master/kernelizedSVM_pytorch.py (uses PyTorch for optimization so ignore for now!)
https://github.com/foxtrotmike/CS909/blob/master/mosvm_pytorch.ipynb 
 

https://github.com/foxtrotmike/CS909/blob/master/kernelizedSVM_pytorch.py
https://github.com/foxtrotmike/CS909/blob/master/mosvm_pytorch.ipynb
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But how does a kernelized SVM achieve nonlinear classification?

• Put simply, a kernel 𝑘 𝒂, 𝒃 is simply a way of quantifying the 
degree of similarity between two examples or objects
– If we can change the definition of how similar two things are (by 

switching to a different kernel), we can achieve an implicit 
transformation of the example that may allow us to solve non-linear 
classification problems

• Choosing a kernel function allows us to not worry about defining 
explicit transformations to achieve non-linear separation
– Moore–Aronszajn theorem states that for every kernel an underlying 

feature transformation exists. 
– A way of achieving a paper fold!!

• Together with the fold-and-cut theorem, this means that 

– If I choose my kernel appropriately, I should be able to achieve non-
linear classification no matter how complex the data!

• Thus, an (appropriately) kernelized SVM can, in principle, 
memorize any training data set

• However, being based on Structural Risk Minimization, an SVM 
comes with a good regularization control to help it generalize!!

41

The Fold-and-Cut Theorem implies that any pattern can be achieved 
with a single straight cut if the paper (or space) is folded 
appropriately. 

Thus, it is theoretically possible to partition any space into regions 
containing positive and negative training examples no matter how 
complex such a boundary is by simply folding the feature space 
appropriately and using a linear classifier (single straight cut). 

An SVM allows us to do it by using kernel functions. 

https://www.youtube.com/watch?v=ZREp1mAPKTM 

https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space#Moore%E2%80%93Aronszajn_theorem
https://en.wikipedia.org/wiki/Fold-and-cut_theorem
https://www.youtube.com/watch?v=ZREp1mAPKTM
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Where does the name SVM Come From?

• The training examples for which the values of 𝛼𝑖 are non-zero 
after optimization are the only ones contributing to the 
decision

• These examples are called “Support Vectors” as they support 
the decision or prediction!

42

𝑓 𝒙 = 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝑗 , 𝒙
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• Use the Applet at: https://www.csie.ntu.edu.tw/~cjlin/libsvm/
• Study the impact of changing kernel type, kernel hyperparameters and C

43

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Example: Solution of the OR problem

44

One of the 3 SVsOptimal separating boundary

𝐱𝑖 =
0
0

  
0
1

  
1
0

  
1
1

𝑦 =  −1 + 1 + 1 + 1
𝛼𝑖 =  −2 + 1 + 1 0

𝐰∗ =
1
1

𝑏∗ = −1

import numpy as np
from sklearn.svm import SVC as Classifier

X = np.array([[0,0],[0,1],[1,0],[1,1]])
y =np.array([-1,1,1,1])
clf = Classifier(kernel = 'poly', degree = 1, C = 10).fit(X, y)
plotit(X,y,clf = clf.decision_function,conts=[0],extent=[-2,+2,-2,+2])
print("Alpha: ",clf.dual_coef_)
print(clf.support_vectors_)
print(clf.intercept_)

𝑘 𝑎, 𝑏 = 𝑎𝑇𝑏

See: https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb 

https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb
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XOR

45

import numpy as np
from sklearn.svm import SVC as Classifier

X = np.array([[0,0],[0,1],[1,0],[1,1]])
y =np.array([-1,1,1,-1])
clf = Classifier(kernel = 'poly', degree = 2, C = 1).fit(X, y)
plotit(X,y,clf = clf.decision_function,conts=[0],extent=[-2,+2,-2,+2])
print("Alpha: ",clf.dual_coef_)
print(clf.support_vectors_)
print(clf.intercept_)

𝑘 𝑎, 𝑏 = 𝑎𝑇𝑏 2

𝐱𝑖 =
0
0

  
0
1

  
1
0

  
1
1

𝑦 =  −1 + 1 + 1 − 1
𝛼𝑖 =  −1 + 0.7 + 0.7 − 0.4
𝑏∗ = −1

See: https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb 

https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb
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See: https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb 

SVM with linear Kernel SVM with polynomial Kernel SVM with RBF Kernel

https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb
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Linear SVM without Transform
Linear SVM with transform Linear SVM with transform

SVM with kernel: 𝑘 𝐚, 𝐛 = 𝝓 𝒂 𝑻𝝓 𝒃 SVM with pre-defind kernel Matrix SVM with pre-defined kernel: 𝑘 𝐚, 𝐛 = exp(−𝛾 𝑎 − 𝑏 2)

𝜙 𝒖 = 𝑢 1 2
𝑢 2 2

2𝑢 1 𝑢 2 𝑇

𝝓 𝒖 = 𝒖(𝟏) + 𝒖(𝟐) − 1
𝟐

See: https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb 

https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb
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Using the SVM

• Read: 

• Ben-Hur, Asa, and Jason Weston. 2010. “A User’s Guide to Support 
Vector Machines.” In Data Mining Techniques for the Life Sciences, 
edited by Oliviero Carugo and Frank Eisenhaber, 223–39. Methods 
in Molecular Biology 609. Humana Press. 
http://dx.doi.org/10.1007/978-1-60327-241-4_13

• http://pyml.sourceforge.net/doc/howto.pdf

• Coding tutorial: 
https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutor
ial.ipynb
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http://dx.doi.org/10.1007/978-1-60327-241-4_13
http://pyml.sourceforge.net/doc/howto.pdf
https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb
https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb
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Steps for Feature based Classification

• Prepare the pattern matrix X

• Select the kernel function to use

• Select the parameter of the kernel function and the value of C

– You can use the values suggested by the SVM software, or you can 
set apart a validation set to determine the values of the parameter

• Execute the training algorithm and obtain the i

• Unseen data can be classified using the i and the support 
vectors
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Choosing the Kernel Function

• Probably the trickiest part of using SVM.

• The kernel function is important because it creates the kernel matrix, 
which summarizes all the data

• In practice, a low degree polynomial kernel or RBF kernel with a 
reasonable width is a good initial try

• Use hyperparameter optimization over a validation set to choose a 
kernel
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Handling data imbalance

• If the data is imbalanced (too much of one class and only a 
small number of examples from the other)

– You can set an individual C for each class (called class weighting) or 
even per-example weighting 

– Can also be used to reflect a priori knowledge

51

min𝜶,𝑏

1

2


𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +
𝐶

𝑁


𝑖=1

𝑁

max 0,1−𝑦𝑖 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗

min𝜶,𝑏

1

2


𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 + 

𝑖=1

𝑁

𝑐𝑖max 0,1−𝑦𝑖 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗 per-example weighting 

Coding: https://scikit-learn.org/stable/auto_examples/svm/plot_weighted_samples.html 

https://scikit-learn.org/stable/auto_examples/svm/plot_weighted_samples.html
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Strengths and Weaknesses of SVM
• Strengths

– Only a few training points (Support Vectors) determine the final boundary
– Very useful is the amount of training data is small (esp. in biomedical domains)
– Margin maximization and kernelized
– Optimization is relatively easy:  No local optimal, unlike in neural networks
– It scales well to high dimensional data
– Tradeoff between classifier complexity and error can be controlled explicitly (through C)
– Non-traditional data like strings and trees can be used as input to SVM, instead of 

feature vectors as the SVM only requires defining a kernel or degree of similarity 
between examples

– Completely interpretable and explainable
• When using linear SVMs, the weight vector gives a clear indication of which features are important (if input data 

is appropriately scaled): 𝑓 𝒙; 𝒘 = 𝑤1𝑥(1) + 𝑤2𝑥(2) + ⋯ +𝑤𝑑 𝑥 𝑑 + 𝑏
• When using non-linear SVMs, the decision can still be explained in terms of the degree of similarity to different 

training examples: 𝑓 𝒙; 𝜶 = 𝛼1𝑘(𝒙, 𝒙1) + 𝛼2𝛼1𝑘(𝒙, 𝒙2) + ⋯ +𝛼𝑁 𝛼1𝑘(𝒙, 𝒙𝑁) + 𝑏

• Weaknesses
– Need to choose a “good” kernel function.
– Can be sensitive to data normalization and standardization

• See: https://scikit-learn.org/stable/modules/preprocessing.html

– Large scale data
• Kernel Approximation Algorithms

“Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning”  by Recht and Rahimi, 2009

What are the underlying characteristics of an antimicrobial 
peptide? We can infer the relative importance of different amino 
acids in an antimicrobial peptide using the weights of the SVM. 

Gull, Sadaf, Nauman Shamim, and Fayyaz Minhas. “AMAP: 
Hierarchical Multi-Label Prediction of Biologically Active and 
Antimicrobial Peptides.” Computers in Biology and Medicine 107 
(April 1, 2019): 172–81. 
https://doi.org/10.1016/j.compbiomed.2019.02.018.

https://scikit-learn.org/stable/modules/preprocessing.html
https://doi.org/10.1016/j.compbiomed.2019.02.018
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Advantages of kernels

• Once we replace the dot product with a kernel function (i.e., perform 
the kernel trick or ‘kernelize’ the formulation), the SVM formulation no 
longer requires any features!

• As long as  you have a kernel function, everything works

– Remember a kernel function is simply a mapping from two examples 
to a scalar

• Tells us how similar the two examples are to each other

53
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General Principle

• Each machine learning model should have:

– Empirical Error Minimization

– Regularization

• Feature transformations Kernels Paper folding

54
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What can we do with SRM?

• The principal of SRM allows us to develop a family of large margin 
learning machines by changing its components

• Example

• SVM: 𝒎𝒊𝒏𝒘,𝒃
𝜆

2
𝒘 𝟐 + σ𝒊=𝟏

𝑵 1 − 𝑦𝑖𝑓 𝒙𝒊 +

• Regularized least square regression

– 𝒎𝒊𝒏𝒘,𝒃
𝝀

𝟐
𝒘 𝟐 + σ𝒊=𝟏

𝑵 𝑦𝑖 − 𝑓 𝒙𝒊
𝟐

• Support Vector Regression

– 𝒎𝒊𝒏𝒘,𝒃
𝝀

𝟐
𝒘 𝟐 + σ𝒊=𝟏

𝑵 𝑦𝑖 − 𝑓 𝒙𝒊 − 𝜖 +

• Feature selection

– 𝒎𝒊𝒏𝒘,𝒃
𝜆

2
𝒘 1

2 + σ𝒊=𝟏
𝑵 1 − 𝑦𝑖𝑓 𝒙𝒊 +

55
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Regularizers

• Controls the complexity error of the classifier

• There are also other regularizers

– 𝒘 𝟐
𝟐 = 𝑤1

𝟐 + 𝑤2
𝟐 + ⋯ + 𝑤𝑑

𝟐

• Convex, Smooth

– 𝒘 𝟏
𝟏 = 𝒘𝟏 + 𝒘𝟐 + ⋯ + 𝒘𝒅

• Used for feature reduction

• “1-norm Support Vector Machine”, Zhu et al. (2004)

– 𝒘 𝟎 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒏𝒐𝒏 − 𝒛𝒆𝒓𝒐 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒊𝒏 𝒘

• Minimization of this norm will lead to feature selection

• “Use of the Zero-Norm with Linear Models and Kernel Methods”, JMLR, Weston et al., (2003)

56
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Application Examples

57

Keller, Piotr, Muhammad Dawood, and Fayyaz ul Amir Afsar Minhas. “Maximum Mean 
Discrepancy Kernels for Predictive and Prognostic Modeling of Whole Slide Images.” in 
proc. IEEE - ISBI 2023 International Symposium on Biomedical Imaging (ISBI), 
Columbia, April 2023. https://doi.org/10.48550/arXiv.2301.09624.

PAIRpred: Partner-specific prediction of interacting residues from sequence and 
structure, Fayyaz Minhas, Brian Geiss and Asa Ben-Hur in Proteins: Structure, Function 
and Bioinformatics, vol. 82, no. 7, pp. 1142-1155, 2014 (Published Online: 2013).

https://doi.org/10.48550/arXiv.2301.09624
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Why (still) study SVMs?

• Cover important concepts

• Future: Quantum Support Vector 
Machines

– https://qiskit.org/documentation/sta
ble/0.24/tutorials/machine_learning/
01_qsvm_classification.html

58

Sahin, M. Emre, Benjamin C. B. Symons, Pushpak Pati, Fayyaz Minhas, Declan Millar, Maria Gabrani, Jan Lukas 
Robertus, and Stefano Mensa. “Efficient Parameter Optimisation for Quantum Kernel Alignment: A Sub-
Sampling Approach in Variational Training.” arXiv, January 5, 2024. 
https://doi.org/10.48550/arXiv.2401.02879. 

https://qiskit.org/documentation/stable/0.24/tutorials/machine_learning/01_qsvm_classification.html
https://qiskit.org/documentation/stable/0.24/tutorials/machine_learning/01_qsvm_classification.html
https://qiskit.org/documentation/stable/0.24/tutorials/machine_learning/01_qsvm_classification.html
https://doi.org/10.48550/arXiv.2401.02879
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End of Lecture

We want to make a machine that will be proud of us.

- Danny Hillis
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