
Fayyaz Minhas Perceptron to SVMs

From Perceptron to SVM

Dr. Fayyaz Minhas

Department of Computer Science

University of Warwick

https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs909/

https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs909/

Fayyaz Minhas Perceptron to SVMs

Classification

• Given

– A set of labelled training examples

• Find

– A mathematical function that generalizes
well to unseen cases

• Discriminant function

2

Feature-1

Fe
at

u
re

-2

Classifier
𝐰, 𝑏

𝑓 𝐱𝐱

𝑓 𝐱 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 + 𝑏 = 𝐰𝑇𝐱 + 𝑏

Training Data

Fayyaz Minhas Perceptron to SVMs

REO For Perceptron
• Representation

– Features
– Discriminant

• Linear

• Evaluation
– 0/1 (Step) Loss

– Hinge Loss

– Overall Loss

• Optimization
– Using Gradient Descent

3

∇𝑳 =
1

𝑁

𝑖=1

𝑁

∇𝒘𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)

𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝛼∇𝒍 𝒘(𝒌−𝟏)

𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝜶I(𝑙 𝑓(𝒙;w) , 𝑦))(−𝑦𝒙) = 𝒘 𝒌−𝟏 + 𝛼I(𝑙 𝑓(𝒙;w) , 𝑦))(𝑦𝒙)

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝒙 > 1

1 − 𝑦𝑓 𝒙 𝑦𝑓 𝒙 ≤ 1
= max{0,1−𝑦 𝒘𝑇𝒙 }

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝑥 > 0

1 𝑦𝑓 𝑥 ≤ 0

𝑓 𝐱 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 + 𝑏 = 𝐰𝑇𝐱

∇𝒘max{0,1−𝑦 𝒘𝑇𝒙 } = ቊ
0 1−𝑦𝑓(𝒙;w) < 0

−𝑦𝒙 𝑒𝑙𝑠𝑒
= ቊ

−𝑦𝒙 𝑙 𝑓(𝒙;w) , 𝑦) > 0
0 𝑒𝑙𝑠𝑒

= I(𝑙 𝑓(𝒙;w) , 𝑦))(−𝑦𝒙)

𝐿 =
1

𝑁

𝑖=1

𝑁

𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)
𝑖𝑖𝑑

𝐸[𝑙 𝑓(𝒙;w) , 𝑦)]

𝑦𝑓 𝑥 = 𝑦𝑤𝑇𝑥

𝑙 𝑓(𝑥 , 𝑦; 𝑤)

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝑤𝑤(𝑘−1) 𝑤(𝑘)

Fayyaz Minhas Perceptron to SVMs

Coding in Python

4

import numpy as np
import matplotlib.pyplot as plt
import itertools

class Perceptron:

 def __init__(self,alpha = 0.1, epochs = 200):
 self.alpha = alpha
 self.epochs = epochs
 self.W = np.array([0])
 self.bias = np.random.randn()
 self.Lambda = 0.5
 def fit(self,Xtr,Ytr):
 d = Xtr.shape[1]
 self.W = np.random.randn(d)
 for e in range(self.epochs):
 finished = True
 for i,x in enumerate(Xtr):
 if Ytr[i]!=self.predict(np.atleast_2d(x)):
 finished = False
 self.W += self.alpha*Ytr[i]*x
 self.bias += self.alpha*Ytr[i]
 if finished: break

 def score(self,x):
 return np.dot(x,self.W) + self.bias

 def predict(self,x):
 return np.sign(self.score(x))

if __name__=='__main__':
 from plotit import plotit
 Xtr = np.array([[-1,0],[0,1],[4,4],[2,3]])
 ytr = np.array([-1,-1,+1,+1])
 clf = Perceptron()
 clf.fit(Xtr,ytr)
 z = clf.score(Xtr)
 print("Prediction Scores:",z)
 y = clf.predict(Xtr)
 print("Prediction Labels:",y)
 plotit(Xtr,ytr,clf=clf.score,conts=[0],
 extent = [-5,+5,-5,+5])

from sklearn.linear_model import Perceptron
clf = Perceptron()
clf.fit(X, y)
clf.predict(X)

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html

Fayyaz Minhas Perceptron to SVMs

Empirical Risk Minimization

• So far, our machine learning models look like the following
(empirical error) minimization:

• This is called ERM:

– Learning only from training data

5

𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝐿 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒀𝒕𝒓𝒂𝒊𝒏; 𝑓

x1

x2

𝒘∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘𝐿 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒀𝒕𝒓𝒂𝒊𝒏; 𝑓

Fayyaz Minhas Perceptron to SVMs 6

Issues with empirical risk parameters

• There are a large number of lines (or in general ‘hyperplanes’)
separating the two classes

x1

x2

() 0x w x
Tf b= + =

> 0

< 0

Which separator is the best?

Fayyaz Minhas Perceptron to SVMs 7

Limitations of Empirical Risk Minimization

x1

x2 > 0

< 0

The boundary which lies at the
maximum distance from data
points of both classes gives better
tolerance to noise and better
“generalization”*

The boundary which lies closer to
data points has low margin for error:
A small change in the input can
change the prediction label

*Under the assumption that:
 Test data is “identically distributed” as the training data

Fayyaz Minhas Perceptron to SVMs 8

Margin of a linear classifier

• The width by which the boundary of a linear classifier can be
increased before hitting a data point is called the margin of the
linear classifier

x1

x2 > 0

< 0

x1

x2 > 0

< 0

Linear Classifiers
with larger margins
are better

Fayyaz Minhas Perceptron to SVMs

Margin and Regularization

• Large Margin

• Classifiers with large margin have a property

– Small changes in x should cause small changes in output: Regularization

• How can we achieve regularization?

9

x1

x2 > 0

< 0

𝑓 𝐱 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 + 𝑏 = 𝐰𝑇𝐱 + 𝑏

Fayyaz Minhas Perceptron to SVMs

Structural Risk Minimization

• In order to produce better generalization,
we need to do both empirical error
minimization but also reduce “Structural
Risk”

• Formally, minimizing “structural risk” puts
an upper bound on your generalization
error
– Structural risk control, in essence, controls the

structure of your prediction model in addition
to empirical error minimization

10

Vladimir Vapnik

Fayyaz Minhas Perceptron to SVMs 11

Support Vector Machines (SVM)

• Support Vector Machines are linear classifiers that produce the
optimal separating boundary (hyper-plane)

– Find w and b in a way so as to:

• Minimize misclassification error over training data (Empirical Risk
Minimization)

• Maximize the margin
– Or equivalently, maximize regularization

– Or equivalently, minimize the individual absolute weights

x1

x2 > 0

< 0

𝑓 𝐱 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 + 𝑏 = 𝐰𝑇𝐱 + 𝑏

Fayyaz Minhas Perceptron to SVMs

Understanding Regularization

• If w is too large (positive or negative)
– Then a small change in x (e.g., due to noise)

will cause a large change in the output 𝒘𝑻𝒙 +
𝑏

– Can lead to errors
– Controlling for this is called “Regularization”

• Achieved by minimizing:
𝑅 𝑓 = 𝒘𝟏

𝟐 + 𝒘𝟐
𝟐 + ⋯ + 𝒘𝒅

𝟐 = 𝒘𝑻𝒘 = 𝒘 𝟐

More important than understanding margin
based explanations as the concept of margin
gets a bit difficult when moving from
classification to other types of machine learning
problems.

12

Small weights limit “the butterfly effect”

• Let’s quantify how sensitive the model is to a
perturbation of its input

• 𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏
• 𝒇 𝒙 + 𝜹𝒙 = 𝒘𝑻 𝒙 + 𝜹𝒙 + 𝒃 = 𝒘𝑻𝒙 + 𝒃 + 𝒘𝑻𝜹𝒙 =

𝒇 𝒙 + 𝒘𝑻𝜹𝒙
• 𝒇 𝒙 + 𝜹𝒙 − 𝒇 𝒙 = 𝒘𝑻𝜹𝒙

• 𝒇 𝒙 + 𝜹𝒙 − 𝒇 𝒙 = 𝒘𝑻𝜹𝒙 ≤ 𝒘 𝜹𝒙 (using
Cauchy-Schwarz inequality)

• Therefore,
𝒇 𝒙+𝜹𝒙 −𝒇 𝒙

𝜹𝒙
≤ 𝒘

Change in model output per unit additive change in input
is upper bounded by 𝑤 . Consequently, minimizing the
norm of the weight vector (or its square) would lead to a

regularization effect as it would limit the effect of any
change in the input on the output.

Vapnik showed that minimizing “structural risk”
(combination of empirical error over training examples

and the norm of the weight vector) leads to minimization
of the upper bound on generalization error.

𝑅 𝑤 ≤ 𝑅𝑒𝑚𝑝 𝑤 + Ω
1

𝑁
,

1

𝒘

Fayyaz Minhas Perceptron to SVMs

SRM to SVM

• Representation

f(x) = w1x(1)+w2x(2)+…+w2x(d)+b = 𝒘𝑻𝒙 + 𝑏

• Evaluation & Optimization

13

min𝒘 𝑅 𝑓 + 𝐶𝐿 𝑿, 𝒀; 𝒘

Empirical Error/Loss over
Training Data

(Inverse of) Margin
AKA
Regularization term

C > 0 is a weighting factor that
controls the relative contribution
of both

𝑅 𝑓 =
1

2
𝒘𝟏

𝟐 + 𝒘𝟐
𝟐 + ⋯ + 𝒘𝒅

𝟐 =
1

2
𝒘𝑻𝒘 =

1

2
𝒘 𝟐 𝐿 𝑿, 𝒀; 𝒘 =

1

𝑁

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;w)}

min𝒘,𝑏

1

2
𝒘𝑻𝒘 +

𝐶

𝑁

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖)}

Fayyaz Minhas Perceptron to SVMs

SVM Optimization

14

min𝑤 𝑃 𝒘 =
𝜆

2
𝒘𝑻𝒘 +

1

𝑁

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;w)}

𝒘𝑘 ← 𝒘𝒌−𝟏 − 𝛼∇𝑃 𝒘𝒌−𝟏

∇𝑷 = 𝜆𝒘 −
𝜕

𝜕𝒘
max{0,1−𝑦 𝒘𝑇𝒙 }

𝜕

𝜕𝒘
max{0,1−𝑦 𝒘𝑇𝒙 } = ቊ

0 𝑦𝑓(𝒙;w) > 1
−𝑦𝒙 𝑒𝑙𝑠𝑒

= 𝟏 𝑦𝑓(𝒙) < 1 −𝑦𝒙

∇𝑷 = 𝜆𝒘 − 1 𝑦𝑓(𝒙) < 1 −𝑦𝒙 = 𝜆𝒘 + 𝟏 𝑦𝑓(𝒙) < 1 𝑦𝒙

𝒘𝑘 ← 𝒘𝒌−𝟏 − 𝛼𝜆𝒘𝒌−𝟏 − 𝛼𝟏 𝑦𝑓(𝒙) < 1 𝑦𝒙

min𝒘,𝑏

1

2
𝒘𝑻𝒘 +

𝐶

𝑁

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖)}

Alternatively, we can use a weighting hyperparameter with the regularization term

𝜕

𝜕𝒘

𝜆

2
𝒘𝑻𝒘 = 𝜆𝒘

Gradient Descent Update Rule:

Gradient calculation:

Final Weight Update Rule:

Fayyaz Minhas Perceptron to SVMs 15

Support Vector Machines
• Support Vector Machines, in their basic form, are

linear classifiers that give maximum margin or
regularization

• Principles of Operation
– Minimize the number of training errors

• Achieved by minimizing hinge loss
– Maximize margin

• Allows noise tolerance
• Allows Regularization

– Perform Nonlinear Classification
• Achieved through feature

transformations/kernels

• The points that determine the margin are called
Support Vectors

x1

x2

> 0< 0

Fayyaz Minhas Perceptron to SVMs

REO For Perceptron
• Representation

– Features
– Discriminant

• Linear

• Evaluation
– 0/1 (Step) Loss

– Hinge Loss

– Overall Loss

• Optimization
– Using Gradient Descent

16

∇𝑳 =
1

𝑁

𝑖=1

𝑁

∇𝒘𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)

𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝛼∇𝒍 𝒘(𝒌−𝟏)

𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝜶I(𝑙 𝑓(𝒙;w) , 𝑦))(−𝑦𝒙) = 𝒘 𝒌−𝟏 + 𝛼𝐈(𝑙 𝑓(𝒙;w) , 𝑦) > 0)(𝑦𝒙)

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝒙 > 1

1 − 𝑦𝑓 𝒙 𝑦𝑓 𝒙 ≤ 1
= max{0,1−𝑦 𝒘𝑇𝒙 }

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝑥 > 0

1 𝑦𝑓 𝑥 ≤ 0

𝑓 𝐱 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 + 𝑏 = 𝐰𝑇𝐱

∇𝒘max{0,1−𝑦 𝒘𝑇𝒙 } = ቊ
0 1−𝑦𝑓(𝒙;w) < 0

−𝑦𝒙 𝑒𝑙𝑠𝑒
= ቊ

−𝑦𝒙 𝑙 𝑓(𝒙;w) , 𝑦) > 0
0 𝑒𝑙𝑠𝑒

= 𝐈 𝑙 𝑓(𝒙;w) , 𝑦 > 0)(−𝑦𝒙)

𝐿 =
1

𝑁

𝑖=1

𝑁

𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)
𝑖𝑖𝑑

𝐸[𝑙 𝑓(𝒙;w) , 𝑦)]

𝑦𝑓 𝑥 = 𝑦𝑤𝑇𝑥

𝑙 𝑓(𝑥 , 𝑦; 𝑤)

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝑤𝑤(𝑘−1) 𝑤(𝑘)

(Ignoring Explicit Bias for Simplicity)

Fayyaz Minhas Perceptron to SVMs

REO For SVM
• Representation

– Features

– Discriminant

• Linear

• Evaluation
– Hinge Loss

• Minimize training error (Empirical Risk Minimization)

– Regularization
• Minimize Impact of small changes in examples

– Structural Risk Minimization:

• Optimization
– Using Gradient Descent

17

∇𝑷 = ∇𝒘

𝜆

2
𝑤𝑇𝑤 +

1

𝑁

𝑖=1

𝑁

∇𝒘𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝛼∇𝑷 𝒘(𝒌−𝟏)

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝒙 > 1

1 − 𝑦𝑓 𝒙 𝑦𝑓 𝒙 ≤ 1
= max{0,1−𝑦 𝒘𝑇𝒙 }

𝑓 𝐱; 𝒘 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 = 𝐰𝑇𝐱

∇𝒘max{0,1−𝑦 𝒘𝑇𝒙 } = ቊ
0 1−𝑦𝑓(𝒙;w) < 0

−𝑦𝒙 𝑒𝑙𝑠𝑒

𝑦𝑓 𝑥 = 𝑦𝑤𝑇𝑥

𝒘𝑘 ← 𝒘𝒌−𝟏 − 𝛼𝜆𝒘𝒌−𝟏 − 𝛼𝑰 𝑦𝑓(𝒙) < 1 𝑦𝒙∇𝒘

𝜆

2
𝑤𝑇𝑤 = 𝜆𝑤

min𝑤 𝑃 𝒘 =
𝜆

2
𝒘𝑻𝒘 +

1

𝑁

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝑥𝑖; 𝒘)}

min𝑤 𝑃 𝒘 =
1

2
𝒘𝑻𝒘 +

𝐶

𝑁

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;w)}

Empirical Error Regularization
Hyperparameter 𝜆 or 𝐶: Control the relative

weighting of the Regularization and Empirical Error
Minimization terms

(Ignoring Explicit Bias for Simplicity)

𝑅 𝑓 = 𝑅 𝑤 =
1

2
𝒘𝑻𝒘

min
𝑓

𝑅 𝑓 + 𝐿(𝑓; 𝑋, 𝑌)

𝑤

For a single training example

𝑅 𝑤

Fayyaz Minhas Perceptron to SVMs

Coding in Python

18

import numpy as np
import matplotlib.pyplot as plt
import itertools

class RegularizedPerceptron:
 def __init__(self,Lambda = 0.0, margin = 0.0, alpha = 0.1, epochs = 1000):
 self.alpha = alpha
 self.epochs = epochs
 self.W = np.array([0])
 self.bias = np.random.randn()
 self.Lambda = Lambda #not used in perceptron
 self.Margin = margin #0.0 in Perceptron
 def fit(self,Xtr,Ytr):
 d = Xtr.shape[1]
 self.W = np.random.randn(d)
 for e in range(self.epochs):
 finished = True
 for i,x in enumerate(Xtr):
 if self.score(np.atleast_2d(x))*Ytr[i]<self.Margin:
 self.W += self.alpha*Ytr[i]*x
 self.bias += self.alpha*Ytr[i]

 self.W = self.W-self.alpha*self.Lambda*self.W #Regularization update

 def score(self,x):
 return np.dot(x,self.W) + self.bias

 def predict(self,x):
 return np.sign(self.score(x))

if __name__=='__main__':
 from plotit import plotit
 Xtr = np.array([[-1,0],[0,1],[4,4],[2,3]])
 ytr = np.array([-1,-1,+1,+1])
 clf = RegularizedPerceptron(Lambda = 0.1, margin = 1.0)
 clf.fit(Xtr,ytr)
 z = clf.score(Xtr)
 print("Prediction Scores:",z)
 y = clf.predict(Xtr)
 print("Prediction Labels:",y)
 plotit(Xtr,ytr,clf=clf.score,conts=[0],extent = [-5,+5,-5,+5])

https://github.com/foxtrotmike/CS909/blob/master/regper.ipynb

https://github.com/foxtrotmike/CS909/blob/master/regper.ipynb

Fayyaz Minhas Perceptron to SVMs

Difference between Perceptron and SVM

19

Fayyaz Minhas Perceptron to SVMs

SVM in Sklearn

20

import numpy as np
from sklearn.svm import LinearSVC as Classifier

X = np.array([[0,0],[0,1],[1,0],[1,1]])
y =np.array([-1,1,1, 1])
clf = Classifier(class_weight='balanced',C=100)
clf.fit(X, y)
f = clf.predict(X)
print('Coefficients before adding additional feature:', clf.coef_,clf.intercept_)
print('Predictions before adding additional feature:',f)
plotit(X,y,clf = clf.decision_function,conts=[0],extent=[-2,+2,-2,+2])

C=1000
w=[2,2],b=-1

C=1
w = [0.84 0.84],b=-0.465

Fayyaz Minhas Perceptron to SVMs

Wanna Play?

• Use the Java Applet at:

• https://www.csie.ntu.edu.tw/~cjlin/libsvm/

• Set “-t 0 -c 100”

21

https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Fayyaz Minhas Perceptron to SVMs

SVMs up till now

• Vapnik and Chervonenkis:
– Theoretical foundations for SVMs
– Structural Risk Minimization

• Corinna Cortes
– Soft SVM (1995)

• Bernard Scholkopf (1997)
– Representer Theorem
– Complete Kernel trick!
– Kernels not only allow nonlinear boundaries but also

allow representation of non-vectoral data

22

Rosenblatt
1928-1971

V. Vapnik
1936 -

Chervonenkis
1938 - 2014

C. Cortes
1961 -

Scholkopf
1968 -

http://www.svms.org/history.html

R. A. Fisher
1890-1962

min𝒘,𝑏

1

2
𝒘𝑻𝒘 +

𝐶

𝑁

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖)}

x1

x2

http://www.svms.org/history.html

Fayyaz Minhas Perceptron to SVMs

How to achieve non-linear classification boundaries?

• So far we have only discussed linear
classification

• How can we solve non-linear
classification?

– By folding the space on which examples
lie and then making a single straight cut
• Notice how folding changes the distance

between points

– How to achieve such folding?
• One way is to transform the data

23

The Fold-and-Cut Theorem implies that any pattern can be achieved
with a single straight cut if the paper (or space) is folded
appropriately.

Thus, it is theoretically possible to partition any space into regions
containing positive and negative training examples no matter how
complex such a boundary is by simply folding the feature space
appropriately and using a linear classifier (single straight cut).

https://en.wikipedia.org/wiki/Fold-and-cut_theorem

https://www.youtube.com/watch?v=ZREp1mAPKTM

https://en.wikipedia.org/wiki/Fold-and-cut_theorem
https://www.youtube.com/watch?v=ZREp1mAPKTM

Fayyaz Minhas Perceptron to SVMs

Nonlinear Separation through Transformation

• Given a classification problem with a nonlinear boundary, we
can, at times, find a mapping or transformation of the feature
space which makes the classification problem linear separable
in the transformed space

24

()

()

()
()()

()

()
()

(.)
()

()

()

()
()

()

()

()
()

()

Feature spaceInput space

Fayyaz Minhas Perceptron to SVMs

Examples: Transformation

25

𝒙(𝟏) 𝒙(𝟐) y

0 0 -1

0 1 +1

1 0 +1

1 1 -1

𝒙′(𝟏) 𝒙′(𝟐) 𝒙′(𝟑) y

0 0 0 -1

0 1 0 +1

1 0 0 +1

1 1 2 -1

f(x;θ) = w1x(1)+w2x(2)+w3x(3) +b= 0

(0,0,0): b < 0
(0,1,0): w2+b > 0
(1,0,0): w1+b > 0

(1,1, 2): w1+ w2 + 2 w3 + b <0

w1 = 2, w2 = 2, w3 = -3, b = -1

𝝓 𝒙(𝟏)

𝒙(𝟐)
=

𝒙 𝟏 𝟐

𝒙 𝟐 𝟐

2𝒙(𝟏)𝒙(𝟐)

f(x;θ) = w1x(1)+w2x(2)+b= 0

(0,0): b < 0
(0,1): w2+b > 0
(1,0): w1+b > 0
(1,1): w1+ w2 + b <0

Fayyaz Minhas Perceptron to SVMs 26

import numpy as np
from sklearn.svm import LinearSVC as Classifier
from plotit import *
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

X = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([-1,1,1,-1])
clf2d = Classifier(C=1000).fit(X, y)
f = clf2d.predict(X)
print('Coefficients before Transformation:', clf2d.coef_,clf2d.intercept_)
print('Predictions before Transformation:',f)

transform = lambda x: np.hstack((x**2,np.atleast_2d(np.sqrt(2)*x[:,0]*x[:,1]).T))
Xt = transform(X)
print(Xt)
clf = Classifier(C=1000).fit(Xt, y)
f = clf.predict(Xt)
print('Coefficients after Transformation:',clf.coef_,clf.intercept_)
print('Predictions after Transformation:',f)

showing the plane in 3d
xx,yy = np.arange(-1, 2, 0.01), np.arange(-1, 2, 0.01)
yy = xx, yy = np.meshgrid(xx, yy)
zz = -(clf.coef_[0,0]*xx+clf.coef_[0,1]*yy+clf.intercept_[0])/(clf.coef_[0,2])
fig = plt.figure(); ax = fig.add_subplot(111, projection='3d')
Xp,Xn = Xt[y==1,:],Xt[y!=1,:]
ax.scatter(Xp[:,0], Xp[:,1], Xp[:,2],color = 'red',alpha=1,s=100)
ax.scatter(Xn[:,0], Xn[:,1], Xn[:,2],color = 'blue',alpha=1,s=100)
ax.plot_surface(xx, yy, zz,linewidth=0, antialiased=True)
ax.set_xlabel('X^t_1'); ax.set_ylabel('X^t_2'); ax.set_zlabel('X^t_3')
Normal vector (coef_ of the SVM)
normal_vector = clf.coef_[0]
start_point = [0, 0, -clf.intercept_[0] / clf.coef_[0,2]]
ax.quiver(start_point[0], start_point[1], start_point[2],
 normal_vector[0], normal_vector[1], normal_vector[2], length=1, color='green', normalize=True)

showing the boundary in 2d
plt.figure(); plotit(X,y,clf = clf.decision_function,transform = transform,conts=[0],extent=[-2,+2,-2,+2])

https://github.com/foxtrotmike/CS909/blob/master/transformations.ipynb

https://github.com/foxtrotmike/CS909/blob/master/transformations.ipynb

Fayyaz Minhas Perceptron to SVMs

Examples: Transformation
– Does this mapping do it?

• 𝝓 𝒙(𝟏)

𝒙(𝟐)
=

𝒙 𝟏 𝟐

𝒙 𝟐 𝟐

2𝒙(𝟏)𝒙(𝟐)

– What about this one?

• 𝝓 𝒙(𝟏)

𝒙(𝟐)
= 𝒙(𝟏) + 𝒙(𝟐) − 1

𝟐

27

Fayyaz Minhas Perceptron to SVMs

Transformation Examples
• Can you find a transform that makes the following classification problems linear separable? Can you draw the data points in

the new transformed feature space?

28

(I)

(II)

(III)

Fayyaz Minhas Perceptron to SVMs

Feature Transformation Distance Change

• Feature transformations change the
concept of distance or dot product
between two points

– Consider:

𝑑 𝒂, 𝒃 = 𝒂 − 𝒃 2 = 𝒂 − 𝒃 𝑇 𝒂 − 𝒃
= 𝒂𝑇𝒂 + 𝒃𝑇𝒃 − 2𝒂𝑇𝒃

– After transformation: 𝒙 → 𝝓 𝒙 , the
value of the distance between points
changes.

29

𝒙(𝟏) 𝒙(𝟐) y

0 0 -1

0 1 +1

1 0 +1

1 1 -1

𝒙′(𝟏) 𝒙′(𝟐) 𝒙′(𝟑) y

0 0 0 -1

0 1 0 +1

1 0 0 +1

1 1 2 -1

𝝓 𝒙(𝟏)

𝒙(𝟐)
=

𝒙 𝟏 𝟐

𝒙 𝟐 𝟐

2𝒙(𝟏)𝒙(𝟐)

i 1 2 3 4

1 0 1 1 2

2 1 0 2 1

3 1 2 0 1

4 2 1 1 0

𝑑 𝒂, 𝒃

i 1 2 3 4

1 0 1 1 4

2 1 0 2 3

3 1 2 0 1

4 4 3 3 0

𝑑𝜙 𝒂, 𝒃

from scipy.spatial.distance import pdist, squareform
D = squareform(pdist(Xt,metric='sqeuclidean'))

Fayyaz Minhas Perceptron to SVMs

Dot Product Change Distance Change
• Notice how the distance formula contains

nothing but dot products?

𝑑 𝒂, 𝒃 = 𝒂 − 𝒃 2 = 𝒂 − 𝒃 𝑇 𝒂 − 𝒃
= 𝒂𝑇𝒂 + 𝒃𝑇𝒃 − 2𝒂𝑇𝒃

After transformation, the distance is defined in
terms of dot products in the transformed
space

𝑑𝜙 𝒂, 𝒃 = 𝝓(𝒂) − 𝝓(𝒃) 2

= 𝝓(𝒂) − 𝝓(𝒃) 𝑇 𝝓(𝒂) − 𝝓(𝒃)
= 𝝓 𝒂 𝑇𝝓(𝒂) + 𝝓 𝒃 𝑇𝝓(𝒃) − 2𝝓 𝒂 𝑇𝝓(𝒃)

We call dot products in the transformed space
“Kernels”

𝑑𝜙 𝒂, 𝒃 = 𝑘𝜙 𝒂, 𝒂 + 𝑘𝜙 𝒃, 𝒃 − 2𝑘𝜙 𝒂, 𝒃

With
𝑘𝜙 𝒂, 𝒃 = 𝝓 𝒂 𝑇𝝓(𝒃)

30

𝒙(𝟏) 𝒙(𝟐) y

0 0 -1

0 1 +1

1 0 +1

1 1 -1

i 1 2 3 4

1 0 1 1 2

2 1 0 2 1

3 1 2 0 1

4 2 1 1 0

𝑑 𝒂, 𝒃

i 1 2 3 4

1 0 1 1 4

2 1 0 2 3

3 1 2 0 1

4 4 3 3 0

𝑑𝜙 𝒂, 𝒃

i 1 2 3 4

1 0 0 0 0

2 0 1 0 1

3 0 0 1 1

4 0 1 1 2

i 1 2 3 4

1 0 0 0 0

2 0 1 0 1

3 0 0 1 1

4 0 1 1 4

𝒙′(𝟏) 𝒙′(𝟐) 𝒙′(𝟑) y

0 0 0 -1

0 1 0 +1

1 0 0 +1

1 1 2 -1

𝝓

𝑘 𝑎, 𝑏 = 𝒂𝑇𝒃

𝑘𝜙 𝑎, 𝑏 = 𝝓 𝒂 𝑇𝝓 𝒃

Transformed Data

Kernel Matrix Distance Matrix

Fayyaz Minhas Perceptron to SVMs

Feature Transformation Distance Change Kernels

• So far, we have established that:

– Whenever the features are transformed

• The distance changes

• The dot product values changes

• But it also means that

– If I change the distance between points, I will be applying a
transformation

– If I change the dot product or kernel, we will change the distance or
in essence achieve an implicit transformation

31

Fayyaz Minhas Perceptron to SVMs

Feature Transformation Kernel

– Let’s say, we have 2D data, then

• 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃 = 𝑎(1)𝑏(1) + 𝑎(2)𝑏(2)

– Let’s change the definition of the dot product or kernel as follows

• 𝑘𝜙 𝒂, 𝒃 = 𝒂𝑻𝒃
2

= 𝑎 1 𝑏 1 + 𝑎 2 𝑏 2 2
= 𝑎 1 𝑏 1 2

+ 𝑎 2 𝑏 2 2
+

2𝑎 1 𝑎 2 𝑏 1 𝑏 2 = 𝑎 1 2
𝑏 1 2

+ 𝑎 2 2
𝑏 2 2

+ 2𝑎 1 𝑎 2 2𝑏 1 𝑏 2 =

𝑎 1 2
𝑎 2 2

√2𝑎 1 𝑎 2

𝑏 1 2

𝑏 2 2

√2𝑏 1 𝑏 2

= 𝜙 𝒂 𝑻𝜙 𝒃

– Thus, 𝑘𝜙 𝒂, 𝒃 = 𝒂𝑻𝒃
2

implies the transformation

𝜙 𝒖 =
𝑢 1 2

𝑢 2 2

√2𝑢 1 𝑢 2

32

Fayyaz Minhas Perceptron to SVMs

Other Kernels

• We can change the definition of dot products to any other
function

– Each kernel will have its own underlying feature representation

• Formally: Moore–Aronszajn theorem

33

Requirements for being a kernel

Any function k can be a kernel if its pairwise kernel or ‘Gram’ matrix

𝐾 =

𝑘(𝑥1, 𝑥1) 𝑘 𝑥1, 𝑥2 𝑘(𝑥1, 𝑥3)
𝑘(𝑥2, 𝑥1) 𝑘(𝑥2, 𝑥2) 𝑘(𝑥2, 𝑥3)
𝑘(𝑥3, 𝑥1) 𝑘(𝑥3, 𝑥2) 𝑘(𝑥3, 𝑥3)

is symmetric, positive semi-definite (for all given data).
And for any valid kernel, a corresponding transformation 𝒙 → 𝝓 𝒙
exists such that k 𝒂, 𝒃 = 𝝓 𝒂 𝑻𝝓 𝒃 .

https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space#Moore%E2%80%93Aronszajn_theorem

Fayyaz Minhas Perceptron to SVMs

Kernels and their underlying transformations
Kernel Transform (for 2D Input)

Linear: 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃 𝜙 𝒖 = 𝒖 = 𝑢 1 𝑢 2 𝑻

Polynomial degree 2: 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃
2

(Homogeneous) 𝜙 𝒖 = 𝑢 1 2
𝑢 2 2

2𝑢 1 𝑢 2 𝑇

Polynomial degree 2: 𝑘 𝒂, 𝒃 = 𝒂𝑻𝒃 + 1
2

𝜙 𝒖 = 1 2𝑢 1 2𝑢 2
𝑢 1 2

𝑢 2 2
2𝑢 1 𝑢 2

𝑇

RBF Kernel: 𝑘 𝒂, 𝒃 = exp(−𝛾 𝒂 − 𝒃 2) Infinite dimensional (depending upon hyperpameter 𝛾 > 0
See: https://en.wikipedia.org/wiki/Radial_basis_function_kernel

34

Let’s build a support vector machine on this idea!

https://en.wikipedia.org/wiki/Radial_basis_function_kernel

Fayyaz Minhas Perceptron to SVMs

Kernelized SVM: Representation
• We know that the discriminant function of the SVM can be written as:

𝑓 𝒙 = 𝑤𝑇𝒙 + 𝑏

• The Representer theorem (Scholkopf 2001) allows us to represent the weight
vector as a linear combination of input vectors with each example’s contribution
weighted by a factor 𝛼𝑖

𝒘 =

𝑖=1

𝑁

𝛼𝑖𝒙𝑖

Thus,

𝑓 𝒙 = 𝒘𝑇𝒙 + 𝑏 = 𝑏 +

𝑗=1

𝑁

𝛼𝑗𝒙𝑗
𝑇𝒙

Notice how the prediction function involves only dot-products. Generalizing the dot product to
a kernel function: 𝑘 𝒖, 𝒗 = 𝒖𝑇𝒗

𝑓 𝒙 = 𝑏 + 𝒘𝑇𝒙 = 𝑏 +

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝑗 , 𝒙

35

𝐱𝑖 =
0
0

0
1

1
0

1
1

𝑦 = −1 + 1 + 1 + 1
𝛼𝑖 = −2 + 1 + 1 0

𝒘 =

𝑖=1

𝑁

𝛼𝑖𝒙𝑖 =
1
1

𝒃 = −1

https://en.wikipedia.org/wiki/Representer_theorem

Fayyaz Minhas Perceptron to SVMs

Kernel SVM: Optimization

36

min𝑤

1

2
𝒘𝑻𝒘 +

𝐶

𝑁

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;𝒘)} min𝜶,𝑏

1

2

𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +
𝐶

𝑁

𝑖=1

𝑁

max 0,1−𝑦𝑖 𝑏 +

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗

𝒘 =

𝑖=1

𝑁

𝛼𝑖𝒙𝑖

𝒘𝑇𝒘 =

𝑖=1

𝑁

𝛼𝑖𝒙𝑖

𝑇

𝑗=1

𝑁

𝛼𝑗𝒙𝑗 =

𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗

max 0,1−𝑦𝑖 𝑏 +

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗

𝑓 𝒙 = 𝑏 + 𝒘𝑇𝒙 = 𝑏 +

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝑗 , 𝒙

Fayyaz Minhas Perceptron to SVMs

Kernel SVM: Optimization with GD

37

min𝜶,𝑏𝐷 𝜶, 𝒃 =
1

2

𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +
𝐶

𝑁

𝑖=1

𝑁

max 0,1−𝑦𝑖 𝑏 +

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗

∇𝛼𝑖
𝐷 =

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +
−

𝐶

𝑁

𝑗=1

𝑁

𝑦𝑗𝑘 𝒙𝒊, 𝒙𝑗 𝑖𝑓 1−𝑦𝑖 𝑏 +

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗 > 0

0 𝑒𝑙𝑠𝑒

∇𝑏𝐷 =
−

𝐶

𝑁

𝑗=1

𝑁

𝑦𝑗 𝑖𝑓 1−𝑦𝑖 𝑏 +

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗 > 0

0 𝑒𝑙𝑠𝑒

𝜶(𝒎) ← 𝜶(𝒎−𝟏) − 𝜂∇𝑫𝜶 𝜶(𝒌−𝟏)

Fayyaz Minhas Perceptron to SVMs

Kernelized SVM

• Things to note In this formulation

• The weight vector is not present
– The formulation only involves dot products or kernel function values

– Thus, we do not need explicit feature representations

• All the dot products have been replaced with a kernel function 𝑘 𝒙𝑗 , 𝒙𝑖

• We assume that we know 𝑘 𝒙𝑖 , 𝒙𝑗 for any two given training examples

• The optimization solution will be to obtain 𝜶 and 𝑏

• Once we solve the optimization problem, we can calculate the prediction score for any example
based only on its kernel function values with training examples

38

𝑓 𝒙 = 𝑏 +

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝑗 , 𝒙

min𝜶,𝑏 =
1

2

𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +
𝐶

𝑁

𝑖=1

𝑁

max 0,1−𝑦𝑖 𝑏 +

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝒋

Fayyaz Minhas Perceptron to SVMs

REO For SVM

• Representation
– Features

– Discriminant
• Linear

• Evaluation
– Hinge Loss

– Regularization

– SRM:

• Optimization
– Using Gradient Descent

39

∇𝑷 = ∇𝒘

𝜆

2
𝑤𝑇𝑤 +

1

𝑁

𝑖=1

𝑁

∇𝒘𝑙 𝑓(𝒙𝒊;w) , 𝑦𝑖)𝒘(𝒌) ← 𝒘(𝒌−𝟏) − 𝛼∇𝑷 𝒘(𝒌−𝟏)

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝒙 > 1

1 − 𝑦𝑓 𝒙 𝑦𝑓 𝒙 ≤ 1
= max{0,1−𝑦 𝒘𝑇𝒙 }

𝑓 𝐱; 𝒘 = 𝑤1𝒙1 + 𝑤2𝒙2 + ⋯ + 𝑤𝑑𝒙𝑑 = 𝐰𝑇𝐱

∇𝒘max{0,1−𝑦 𝒘𝑇𝒙 } = ቊ
0 1−𝑦𝑓(𝒙;w) < 0

−𝑦𝒙 𝑒𝑙𝑠𝑒

𝑦𝑓 𝑥 = 𝑦𝑤𝑇𝑥

𝒘𝑘 ← 𝒘𝒌−𝟏 − 𝛼𝜆𝒘𝒌−𝟏 − 𝛼𝟏 𝑦𝑓(𝒙) < 1 𝑦𝒙∇𝒘

𝜆

2
𝑤𝑇𝑤 = 𝜆𝑤

min𝑤 𝑃 𝒘 =
𝜆

2
𝒘𝑻𝒘 +

1

𝑁

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝑥𝑖; 𝒘)}

min𝑤 𝑃 𝒘 =
1

2
𝒘𝑻𝒘 +

𝐶

𝑁

𝑖=1

𝑁

max{0,1−𝑦𝑖𝑓(𝒙𝑖;w)}

Empirical Error Regularization
Hyperparameter 𝜆 or 𝐶: Control the relative

weighting of the Regularization and Empirical
Error Minimization terms

Fayyaz Minhas Perceptron to SVMs

REO For Kernelized SVM

• Representation
– Features

– Discriminant

• Evaluation
– Hinge Loss

– SRM:

• Optimization
– Using Gradient Descent

40

∇𝑫 = ∇𝜶𝐷 𝜶𝜶(𝒌) ← 𝜶(𝒌−𝟏) − 𝛼∇𝑫 𝜶(𝒌−𝟏)

𝑙 𝑓(𝑥 , 𝑦) = ቊ
0 𝑦𝑓 𝒙 > 1

1 − 𝑦𝑓 𝒙 𝑦𝑓 𝒙 ≤ 1

𝑓 𝒙 =

𝑗=1

𝑁

𝛼𝑗𝑘(𝒙𝑗 , 𝒙)

𝐷 𝜶 =
1

2

𝑖=1

𝑁

𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +
𝐶

𝑁

𝑖=1

𝑁

max 0,1−𝑦𝑖

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝒋

Empirical Error Regularization

𝑓 𝒙 = 0

kernelized

https://github.com/foxtrotmike/CS909/blob/master/kernelizedSVM_pytorch.py (uses PyTorch for optimization so ignore for now!)
https://github.com/foxtrotmike/CS909/blob/master/mosvm_pytorch.ipynb

https://github.com/foxtrotmike/CS909/blob/master/kernelizedSVM_pytorch.py
https://github.com/foxtrotmike/CS909/blob/master/mosvm_pytorch.ipynb

Fayyaz Minhas Perceptron to SVMs

But how does a kernelized SVM achieve nonlinear classification?

• Put simply, a kernel 𝑘 𝒂, 𝒃 is simply a way of quantifying the
degree of similarity between two examples or objects
– If we can change the definition of how similar two things are (by

switching to a different kernel), we can achieve an implicit
transformation of the example that may allow us to solve non-linear
classification problems

• Choosing a kernel function allows us to not worry about defining
explicit transformations to achieve non-linear separation
– Moore–Aronszajn theorem states that for every kernel an underlying

feature transformation exists.
– A way of achieving a paper fold!!

• Together with the fold-and-cut theorem, this means that

– If I choose my kernel appropriately, I should be able to achieve non-
linear classification no matter how complex the data!

• Thus, an (appropriately) kernelized SVM can, in principle,
memorize any training data set

• However, being based on Structural Risk Minimization, an SVM
comes with a good regularization control to help it generalize!!

41

The Fold-and-Cut Theorem implies that any pattern can be achieved
with a single straight cut if the paper (or space) is folded
appropriately.

Thus, it is theoretically possible to partition any space into regions
containing positive and negative training examples no matter how
complex such a boundary is by simply folding the feature space
appropriately and using a linear classifier (single straight cut).

An SVM allows us to do it by using kernel functions.

https://www.youtube.com/watch?v=ZREp1mAPKTM

https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space#Moore%E2%80%93Aronszajn_theorem
https://en.wikipedia.org/wiki/Fold-and-cut_theorem
https://www.youtube.com/watch?v=ZREp1mAPKTM

Fayyaz Minhas Perceptron to SVMs

Where does the name SVM Come From?

• The training examples for which the values of 𝛼𝑖 are non-zero
after optimization are the only ones contributing to the
decision

• These examples are called “Support Vectors” as they support
the decision or prediction!

42

𝑓 𝒙 = 𝑏 +

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝑗 , 𝒙

Fayyaz Minhas Perceptron to SVMs

• Use the Applet at: https://www.csie.ntu.edu.tw/~cjlin/libsvm/
• Study the impact of changing kernel type, kernel hyperparameters and C

43

https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Fayyaz Minhas Perceptron to SVMs

Example: Solution of the OR problem

44

One of the 3 SVsOptimal separating boundary

𝐱𝑖 =
0
0

0
1

1
0

1
1

𝑦 = −1 + 1 + 1 + 1
𝛼𝑖 = −2 + 1 + 1 0

𝐰∗ =
1
1

𝑏∗ = −1

import numpy as np
from sklearn.svm import SVC as Classifier

X = np.array([[0,0],[0,1],[1,0],[1,1]])
y =np.array([-1,1,1,1])
clf = Classifier(kernel = 'poly', degree = 1, C = 10).fit(X, y)
plotit(X,y,clf = clf.decision_function,conts=[0],extent=[-2,+2,-2,+2])
print("Alpha: ",clf.dual_coef_)
print(clf.support_vectors_)
print(clf.intercept_)

𝑘 𝑎, 𝑏 = 𝑎𝑇𝑏

See: https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb

https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb

Fayyaz Minhas Perceptron to SVMs

XOR

45

import numpy as np
from sklearn.svm import SVC as Classifier

X = np.array([[0,0],[0,1],[1,0],[1,1]])
y =np.array([-1,1,1,-1])
clf = Classifier(kernel = 'poly', degree = 2, C = 1).fit(X, y)
plotit(X,y,clf = clf.decision_function,conts=[0],extent=[-2,+2,-2,+2])
print("Alpha: ",clf.dual_coef_)
print(clf.support_vectors_)
print(clf.intercept_)

𝑘 𝑎, 𝑏 = 𝑎𝑇𝑏 2

𝐱𝑖 =
0
0

0
1

1
0

1
1

𝑦 = −1 + 1 + 1 − 1
𝛼𝑖 = −1 + 0.7 + 0.7 − 0.4
𝑏∗ = −1

See: https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb

https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb

Fayyaz Minhas Perceptron to SVMs 46

See: https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb

SVM with linear Kernel SVM with polynomial Kernel SVM with RBF Kernel

https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb

Fayyaz Minhas Perceptron to SVMs 47

Linear SVM without Transform
Linear SVM with transform Linear SVM with transform

SVM with kernel: 𝑘 𝐚, 𝐛 = 𝝓 𝒂 𝑻𝝓 𝒃 SVM with pre-defind kernel Matrix SVM with pre-defined kernel: 𝑘 𝐚, 𝐛 = exp(−𝛾 𝑎 − 𝑏 2)

𝜙 𝒖 = 𝑢 1 2
𝑢 2 2

2𝑢 1 𝑢 2 𝑇

𝝓 𝒖 = 𝒖(𝟏) + 𝒖(𝟐) − 1
𝟐

See: https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb

https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb

Fayyaz Minhas Perceptron to SVMs

Using the SVM

• Read:

• Ben-Hur, Asa, and Jason Weston. 2010. “A User’s Guide to Support
Vector Machines.” In Data Mining Techniques for the Life Sciences,
edited by Oliviero Carugo and Frank Eisenhaber, 223–39. Methods
in Molecular Biology 609. Humana Press.
http://dx.doi.org/10.1007/978-1-60327-241-4_13

• http://pyml.sourceforge.net/doc/howto.pdf

• Coding tutorial:
https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutor
ial.ipynb

48

http://dx.doi.org/10.1007/978-1-60327-241-4_13
http://pyml.sourceforge.net/doc/howto.pdf
https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb
https://github.com/foxtrotmike/svmtutorial/blob/master/svmtutorial.ipynb

Fayyaz Minhas Perceptron to SVMs

Steps for Feature based Classification

• Prepare the pattern matrix X

• Select the kernel function to use

• Select the parameter of the kernel function and the value of C

– You can use the values suggested by the SVM software, or you can
set apart a validation set to determine the values of the parameter

• Execute the training algorithm and obtain the i

• Unseen data can be classified using the i and the support
vectors

Fayyaz Minhas Perceptron to SVMs

Choosing the Kernel Function

• Probably the trickiest part of using SVM.

• The kernel function is important because it creates the kernel matrix,
which summarizes all the data

• In practice, a low degree polynomial kernel or RBF kernel with a
reasonable width is a good initial try

• Use hyperparameter optimization over a validation set to choose a
kernel

Fayyaz Minhas Perceptron to SVMs

Handling data imbalance

• If the data is imbalanced (too much of one class and only a
small number of examples from the other)

– You can set an individual C for each class (called class weighting) or
even per-example weighting

– Can also be used to reflect a priori knowledge

51

min𝜶,𝑏

1

2

𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +
𝐶

𝑁

𝑖=1

𝑁

max 0,1−𝑦𝑖 𝑏 +

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗

min𝜶,𝑏

1

2

𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +

𝑖=1

𝑁

𝑐𝑖max 0,1−𝑦𝑖 𝑏 +

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗 per-example weighting

Coding: https://scikit-learn.org/stable/auto_examples/svm/plot_weighted_samples.html

https://scikit-learn.org/stable/auto_examples/svm/plot_weighted_samples.html

Fayyaz Minhas Perceptron to SVMs

Strengths and Weaknesses of SVM
• Strengths

– Only a few training points (Support Vectors) determine the final boundary
– Very useful is the amount of training data is small (esp. in biomedical domains)
– Margin maximization and kernelized
– Optimization is relatively easy: No local optimal, unlike in neural networks
– It scales well to high dimensional data
– Tradeoff between classifier complexity and error can be controlled explicitly (through C)
– Non-traditional data like strings and trees can be used as input to SVM, instead of

feature vectors as the SVM only requires defining a kernel or degree of similarity
between examples

– Completely interpretable and explainable
• When using linear SVMs, the weight vector gives a clear indication of which features are important (if input data

is appropriately scaled): 𝑓 𝒙; 𝒘 = 𝑤1𝑥(1) + 𝑤2𝑥(2) + ⋯ +𝑤𝑑 𝑥 𝑑 + 𝑏
• When using non-linear SVMs, the decision can still be explained in terms of the degree of similarity to different

training examples: 𝑓 𝒙; 𝜶 = 𝛼1𝑘(𝒙, 𝒙1) + 𝛼2𝛼1𝑘(𝒙, 𝒙2) + ⋯ +𝛼𝑁 𝛼1𝑘(𝒙, 𝒙𝑁) + 𝑏

• Weaknesses
– Need to choose a “good” kernel function.
– Can be sensitive to data normalization and standardization

• See: https://scikit-learn.org/stable/modules/preprocessing.html

– Large scale data
• Kernel Approximation Algorithms

“Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning” by Recht and Rahimi, 2009

What are the underlying characteristics of an antimicrobial
peptide? We can infer the relative importance of different amino
acids in an antimicrobial peptide using the weights of the SVM.

Gull, Sadaf, Nauman Shamim, and Fayyaz Minhas. “AMAP:
Hierarchical Multi-Label Prediction of Biologically Active and
Antimicrobial Peptides.” Computers in Biology and Medicine 107
(April 1, 2019): 172–81.
https://doi.org/10.1016/j.compbiomed.2019.02.018.

https://scikit-learn.org/stable/modules/preprocessing.html
https://doi.org/10.1016/j.compbiomed.2019.02.018

Fayyaz Minhas Perceptron to SVMs

Advantages of kernels

• Once we replace the dot product with a kernel function (i.e., perform
the kernel trick or ‘kernelize’ the formulation), the SVM formulation no
longer requires any features!

• As long as you have a kernel function, everything works

– Remember a kernel function is simply a mapping from two examples
to a scalar

• Tells us how similar the two examples are to each other

53

Fayyaz Minhas Perceptron to SVMs

General Principle

• Each machine learning model should have:

– Empirical Error Minimization

– Regularization

• Feature transformations Kernels Paper folding

54

Fayyaz Minhas Perceptron to SVMs

What can we do with SRM?

• The principal of SRM allows us to develop a family of large margin
learning machines by changing its components

• Example

• SVM: 𝒎𝒊𝒏𝒘,𝒃
𝜆

2
𝒘 𝟐 + σ𝒊=𝟏

𝑵 1 − 𝑦𝑖𝑓 𝒙𝒊 +

• Regularized least square regression

– 𝒎𝒊𝒏𝒘,𝒃
𝝀

𝟐
𝒘 𝟐 + σ𝒊=𝟏

𝑵 𝑦𝑖 − 𝑓 𝒙𝒊
𝟐

• Support Vector Regression

– 𝒎𝒊𝒏𝒘,𝒃
𝝀

𝟐
𝒘 𝟐 + σ𝒊=𝟏

𝑵 𝑦𝑖 − 𝑓 𝒙𝒊 − 𝜖 +

• Feature selection

– 𝒎𝒊𝒏𝒘,𝒃
𝜆

2
𝒘 1

2 + σ𝒊=𝟏
𝑵 1 − 𝑦𝑖𝑓 𝒙𝒊 +

55

Fayyaz Minhas Perceptron to SVMs

Regularizers

• Controls the complexity error of the classifier

• There are also other regularizers

– 𝒘 𝟐
𝟐 = 𝑤1

𝟐 + 𝑤2
𝟐 + ⋯ + 𝑤𝑑

𝟐

• Convex, Smooth

– 𝒘 𝟏
𝟏 = 𝒘𝟏 + 𝒘𝟐 + ⋯ + 𝒘𝒅

• Used for feature reduction

• “1-norm Support Vector Machine”, Zhu et al. (2004)

– 𝒘 𝟎 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒏𝒐𝒏 − 𝒛𝒆𝒓𝒐 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒊𝒏 𝒘

• Minimization of this norm will lead to feature selection

• “Use of the Zero-Norm with Linear Models and Kernel Methods”, JMLR, Weston et al., (2003)

56

Fayyaz Minhas Perceptron to SVMs

Application Examples

57

Keller, Piotr, Muhammad Dawood, and Fayyaz ul Amir Afsar Minhas. “Maximum Mean
Discrepancy Kernels for Predictive and Prognostic Modeling of Whole Slide Images.” in
proc. IEEE - ISBI 2023 International Symposium on Biomedical Imaging (ISBI),
Columbia, April 2023. https://doi.org/10.48550/arXiv.2301.09624.

PAIRpred: Partner-specific prediction of interacting residues from sequence and
structure, Fayyaz Minhas, Brian Geiss and Asa Ben-Hur in Proteins: Structure, Function
and Bioinformatics, vol. 82, no. 7, pp. 1142-1155, 2014 (Published Online: 2013).

https://doi.org/10.48550/arXiv.2301.09624

Fayyaz Minhas Perceptron to SVMs

Why (still) study SVMs?

• Cover important concepts

• Future: Quantum Support Vector
Machines

– https://qiskit.org/documentation/sta
ble/0.24/tutorials/machine_learning/
01_qsvm_classification.html

58

Sahin, M. Emre, Benjamin C. B. Symons, Pushpak Pati, Fayyaz Minhas, Declan Millar, Maria Gabrani, Jan Lukas
Robertus, and Stefano Mensa. “Efficient Parameter Optimisation for Quantum Kernel Alignment: A Sub-
Sampling Approach in Variational Training.” arXiv, January 5, 2024.
https://doi.org/10.48550/arXiv.2401.02879.

https://qiskit.org/documentation/stable/0.24/tutorials/machine_learning/01_qsvm_classification.html
https://qiskit.org/documentation/stable/0.24/tutorials/machine_learning/01_qsvm_classification.html
https://qiskit.org/documentation/stable/0.24/tutorials/machine_learning/01_qsvm_classification.html
https://doi.org/10.48550/arXiv.2401.02879

Fayyaz Minhas Perceptron to SVMs 59

End of Lecture

We want to make a machine that will be proud of us.

- Danny Hillis

	Slide 1: From Perceptron to SVM
	Slide 2: Classification
	Slide 3: REO For Perceptron
	Slide 4: Coding in Python
	Slide 5: Empirical Risk Minimization
	Slide 6: Issues with empirical risk parameters
	Slide 7: Limitations of Empirical Risk Minimization
	Slide 8: Margin of a linear classifier
	Slide 9: Margin and Regularization
	Slide 10: Structural Risk Minimization
	Slide 11: Support Vector Machines (SVM)
	Slide 12: Understanding Regularization
	Slide 13: SRM to SVM
	Slide 14: SVM Optimization
	Slide 15: Support Vector Machines
	Slide 16: REO For Perceptron
	Slide 17: REO For SVM
	Slide 18: Coding in Python
	Slide 19: Difference between Perceptron and SVM
	Slide 20: SVM in Sklearn
	Slide 21: Wanna Play?
	Slide 22: SVMs up till now
	Slide 23: How to achieve non-linear classification boundaries?
	Slide 24: Nonlinear Separation through Transformation
	Slide 25: Examples: Transformation
	Slide 26
	Slide 27: Examples: Transformation
	Slide 28: Transformation Examples
	Slide 29: Feature Transformation ↔ Distance Change
	Slide 30: Dot Product Change ↔ Distance Change
	Slide 31: Feature Transformation ↔ Distance Change ↔ Kernels
	Slide 32: Feature Transformation ↔ Kernel
	Slide 33: Other Kernels
	Slide 34: Kernels and their underlying transformations
	Slide 35: Kernelized SVM: Representation
	Slide 36: Kernel SVM: Optimization
	Slide 37: Kernel SVM: Optimization with GD
	Slide 38: Kernelized SVM
	Slide 39: REO For SVM
	Slide 40: REO For Kernelized SVM
	Slide 41: But how does a kernelized SVM achieve nonlinear classification?
	Slide 42: Where does the name SVM Come From?
	Slide 43
	Slide 44: Example: Solution of the OR problem
	Slide 45: XOR
	Slide 46
	Slide 47
	Slide 48: Using the SVM
	Slide 49: Steps for Feature based Classification
	Slide 50: Choosing the Kernel Function
	Slide 51: Handling data imbalance
	Slide 52: Strengths and Weaknesses of SVM
	Slide 53: Advantages of kernels
	Slide 54: General Principle
	Slide 55: What can we do with SRM?
	Slide 56: Regularizers
	Slide 57: Application Examples
	Slide 58: Why (still) study SVMs?
	Slide 59: End of Lecture

