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Objectives of this lecture

* How to compare machine learning models?
— My classifier is better than yours
* How to select the optimal parameters of a machine learning
model?
— How should | choose “C” or “k”?
* Organization
— Philosophical Foundations

— How to evaluate accuracy
* Metrics: Accuracy, FPR, TRP, PPV, ROC, PR-Curves, F-measure
* Cross-Validation and Resampling
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Why Evaluate Models?

* Q@Guess
e Evaluate consequences
e Compare to Nature / Experiment / Experience

e |fit disagrees with nature, it’s wrong!

‘It doesn't matter how beautiful your theory is, it doesn't
matter how smart you are. If it doesn't agree with
experiment, it's wrong. ”

* Objective:
— We want to find out which model “fits” our data best for use in
the real world.

— AKA “Will it Work?”
— More often, “Why doesn’t it work?”

* Turing Test

CS909: Data Mining

NEW YORK TIMES BESTSELLER

“SURELY
YOU’RE JOKING,
MR. FEYNMAN!”

Adventures
of a Curious

~ Character

“Quintessential Feynman—funny, brilliant, bawdy.”—The New Yorker

RICHARD P. FEYNMAN

Richard Phillips Feynman 1918-1988

https://en.wikipedia.org/wiki/Richard Feynman
https://www.youtube.com/watch?v=EYPapE-3FRw
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Evaluating & Comparing Models

. Be clear about the objective of your evaluation This model does not work because ...
— | want to find the best parameters for my model It fails to capture the structure of the data
It fails to work on discrete data
The data is not linearly separable
The amount of training data is small

— Is my model better on this data?
— Is this classifier typically better than this other one?

_ i ? .
Does this model work: The data is imbalanced

— This model gives better sensitivity The training data is noisy

— My training time is better than yours The test data does not follow the same distribution as the training data

The underlying assumptions of this classifier need revision
The optimization algorithm failed
The representation is improper

— The classifier is overfitting/ poor at generalization
— This model is particular suited for high dimensional data

—  These features work better than these other features The evaluation strategy presented in the paper by Lay man et al. is wrong
—  When to stop learning?
— Etc
Define the Identify Prepare and Model the Trainand Verify and
Problem Required Data Pre-process Data Test Deploy
Identify business goals Assess needed data Select required data Select algorithms Train the model with Verify final model
Identify data mining  Collect and understand  Cleanse/format dataas  Build predictive models sample data sets Prepare visualizations
goals data necessary Test and iterate and deploy
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Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? Are Random Forests Truly the Best Classifiers?

Manuel Fernandez-Delgado, Eva Cernadas, Senén Barro, Dinani Amorim; 15(90):3133-3181, 2014. Michael Wainberg, Babak Alipanahi, Brendan J. Frey; 17(110):1-5, 2016.

Abstract Abstract

We evaluate 179 classifiers arising from 17 families (discriminant analysis, Bayesian, neural networks, support vector machines, The'JMLR study Do we need hundreds of C/({SSlﬁL’"S 1o 50/"" real “'i”'_/d C/(’-"~Yiﬁ(’(’fif’” prqb/ems? benchmarl‘(s 1'79 leiSSiﬁerS in 17
decision trees, rule-based classifiers, boosting, bagging, stacking, random forests and other ensembles, generalized linear models, families on 121 data sets from the UCI repository and claims that 3~ " the random forest is clearly the best family of

classifiera” . In this response, we show that the study's results are biased by the lack of a held-out test set and the exclusion of
trials with errors. Further, the study's own statistical tests indicate that random forests do not have significantly higher percent
accuracy than support vector machines and neural networks, calling into question the conclusion that random forests are the best
classifiers.

nearest-neighbors, partial least squares and principal component regression, logistic and multinomial regression, multiple adaptive
regression splines and other methods). implemented in Weka, R (with and without the caret package), C and Matlab, including all

the relevant classifiers available today. We use 121 data sets, which represent the whole UCI data base (excluding the large- scale
problems) and other own real problems, in order to achieve significant conclusions about the classifier behavior, not dependent on
the data set collection. The classifiers most likely to be the bests are the random forest (RF) versions, the best of which B .
(implemented in R and accessed via caret) achieves 94.1% of the maximum accuracy overcoming 90% in the 84.3% of the data Do ImageNet Classifiers Generalize to ImageNet?
sets. However, the difference is not statistically significant with the second best, the SVM with Gaussian kernel implemented in C

. . . . - I Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, Vaishaal Shankar
using LibSVM, which achieves 92.3% of the maximum accuracy. A few models are clearly better than the remaining ones: random

forest, SVM with Gaussian and polynomial kernels, extreme learning machine with Gaussian kernel, C5.0 and avNNet (a We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been the focus of intense research for almost a decade, raising the danger of
committee of multi-layer perceptrons implemented in R with the caret package). The random forest is Clearly the best fami]y of overfitting to excessively re-used test sets. By closely following the original dataset creation processes, we test to what extent current classification models generalize to new
classifiers (3 out of 5 bests classifiers are RF), followed by SVM (4 classifiers in the top-10), neural networks and boosting data. We evaluate a broad range of models and find accuracy drops of 3% - 15% on CIFAR-10 and 11% - 14% on ImageNet. However, accuracy gains on the original test
ensembles (5 and 3 members in the t0p-20, respectively). sets translate to larger gains on the new test sets. Our results suggest that the accuracy drops are not caused by adaptivity, but by the models' inability to generalize to

slightly "harder" images than those found in the original test sets.
Issues in performance evaluation for host-pathogen
Common pitfalls and recommendationsforusing  protein interaction prediction REET: Robustness Evaluation and Enhancement Toolbox for Computational Pathology
machinelearning to detect and prognosticate for
COVID-19 using chest radiographs and CT scans

Waijid Arshad Abbasi 1, Fayyaz Ul Amir Afsar Minhas Alex Foote, Amina Asif, Nasir Rajpoot, Fayyaz Minhas

Affiliations + expand

B 5 Motivation: Digitization of pathology laboratories through digital slide scanners and advances in deep learning approaches for objective histological assessment have resulted
PMID: 26932275 DOI: 10.1142/S0219720016500116

Michael Roberts ), Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, in rapid progress in the field of computational pathology (CPath) with wide-ranging applications in medical and pharmaceutical research as well as clinical workflows.

Angelica |. Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall, However, the estimation of robustness of CPath models to variations in input images is an open problem with a significant impact on the down-stream practical applicability,
Zhongzhao Teng, Effrossyni Gkrania-Klotsas, AIX-COVNET, James H. F. Rudd, Evis Sala & Carola-Bibiane Abstract deployment and acceptability of these approaches. Furthermore, development of domain-specific strategies for enhancement of robustness of such models is of prime
Schinlieb The study of interactions between host and pathogen proteins is important for understanding the importance as well.

underlying mechanisms of infectious diseases and for developing novel therapeutic solutions. Wet-lab Implementation and Availability: In this work, we propose the first domain-specific Robustness Evaluation and Enhancement Toolbox (REET) for computational pathology
Nature Machine Intelligence 3, 199-217 (2021) | Cite this article techniques for detecting protein-protein interactions (PPls) can benefit from computational applications. It provides a suite of algorithmic strategies for enabling robustness assessment of predictive models with respect to specialized image transformations such as

predictions. Machine learning is one of the computational approaches that can assist biologists by
predicting promising PPIs. A number of machine learning based methods for predicting host-
pathogen interactions (HPI) have been proposed in the literature. The techniques used for assessing

staining, compression, focusing, blurring, changes in spatial resolution, brightness variations, geometric changes as well as pixel-level adversarial perturbations.
Furthermore, REET also enables efficient and robust training of deep learning pipelines in computational pathology. REET is implemented in Python and is available at the
following URL: this https URL.

65k Accesses | 128 Citations | 1124 Altmetric | Metrics

Abstract the accuracy of such predictors are of critical importance in this domain. In this paper, we question
the effectiveness of K-fold cross-validation for estimating the generalization ability of HPI prediction Contact: Fayyaz.minhas@warwick.this http URL
Machine learning methods offer great promise for fast and accurate detection and for proteins with no known interactions. K-fold cross-validation does not model this scenario, and we
demonstrate a sizable difference between its performance and the performance of an alternative [Submitted on 28 Jan 2022]
prognostication of coronavirus disease 2019 (COVID-19) from standard-of-care chest - - . P . ..
evaluation scheme called leave one pathogen protein out (LOPO) cross-validation. LOPO is more Insights into performance evaluation of com-pound-protein interaction prediction methods

radiographs (CXR) and chest computed tomography (CT) images. Many articles have beer effective in modeling the real world use of HPI predictors, specifically for cases in which no

published in 2020 describing new machine learning-based models for both of these tasks, information about the interacting partners of a pathogen protein is available during training. We also Adiba Yaseen (1), Imran Amin (2), Naeem Akhter (1), Asa Ben-Hur (3), Fayyaz Minhas (4)
point out that currently used metrics such as areas under the precision-recall or receiver operating

characteristic curves are not intuitive to biologists and propose simpler and more directly

interpretable metrics for this purpose.

itis unclear which are of potential clinical utility. In this systematic review, we consider all
published papers and preprints, for the period from 1 January 2020 to 3 October 2020, wh

describe new machine learning models for the diagnosis or prognosis of COVID-19 from C. x
Keywords: Performance evaluation; cross-validation; host-pathogen interactions; machine learning;

or CTimages. All manuscripts uploaded to bioRxiv, medRxiv and arXiv along with all entri protein—protein interactions. Motivation: Machine learning based prediction of compound-protein interactions (CPls) is important for drug design, screening and repurposing studies and can improve the
in EMBASE and MEDLINE in this timeframe are considered. Our searchidentified 2,212 efficiency and cost-effectiveness of wet lab assays. Despite the publication of many research papers reporting CPI predictors in the recent years, we have cbserved a
studies, of which 415 were included after initial screening and, after quality screening, 62 number of fundamental issues in experiment design that lead to over optimistic estimates of model performance. Results: In this paper, we analyze the impact of several
important factors affecting generalization perfor-mance of CP| predictors that are overlooked in existing work: 1. Similarity between training and test examples in cross-
validation 2. The strategy for generating negative examples, in the absence of experimentally verified negative examples. 3. Choice of evaluation protocols and performance
metrics and their alignment with real-world use of CPI predictors in screening large compound libraries. Using both an existing state-of-the-art method (CPI-NN) and a

This isa major weakness, given the urgency with which validated COVID-19 models are proposed kernel based approach, we have found that assessment of predictive performance of CPI predictors requires careful con-trol over similarity between training and
needed. To address this, we give many recommendations which, if followed, will solve these test examples. We also show that random pairing for gen-erating synthetic negative examples for training and performance evaluation results in models with better
generalization performance in comparison to more sophisticated strategies used in existing studies. Furthermore, we have found that our kernel based approach, despite its
simple design, exceeds the prediction performance of CPI-NN. We have used the proposed model for compound screening of several proteins including SARS-CoV-2 Spike

and Human ACEZ2 proteins and found strong evidence in support of its top hits. Availability: Code and raw experimental results available at this https URL Contact:
Fayyaz. minhas@warwick.this http URL
C$S909: Data Minin v @ d ) 5

studies were included in this systematic review. Our review finds that none of the models

identified are of potential clinical use due to methodological flaws and/or underlying biases.

issues and lead to higher-quality model development and well-documented manuscripts.



Experiment Design Objectives

* Accuracy Evaluation: How good will it be in practice?
* Sensitivity Analysis: Is the classifier sensitive to

— the choice of the parameters so much so that it will be useless in
practice

— choice of the data

— Randomness

— Round-off error

— Other controllable and non-controllable factors

CS909: Data Mining University of Warwick



Evaluation Metrics

* Training Set: For training the model
* Test Set: For evaluation

* Under no circumstances are testing labels to be used in training
or the training data in evaluation of the generalization
performance

* All evaluation metrics have underlying assumptions and
limitations which may or may not suffice for the test that you
are trying to perform

CS909: Data Mining University of Warwick



Definitions

* True Positive

True negative

* True Negative True positive
* False Positive
* False Negative

False negative
(Type Il error)

Image from https://neeraj-kumar-vaid.medium.com/statistical-performance-measures-12bad66694b7
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Accuracy

e Two-Class Classification

— Accuracy: Percentage of Correct Predictions

tp +tn
tp+tn+ fp+ fn

Accuracy =

* Assumption
— The data set is balanced
— Misclassification of any class is equally bad
— The threshold used for classification is optimal

CS909: Data Mining University of Warwick



Classification Performance

* A classifier (or any machine learning model) can be viewed as a
functiony = f(x|0) which generates an output y given the input x
and a parameter set 6 using a decision function f(x|8)

 The output of a classifier is typically a real-valued output which is
then thresholded to yield classification labels

f(x|6) >0 =>y=+1
fx|) <0 =>y=-1

* Here “0” acts as the threshold
* Thus, the labels can change based on the threshold
* Thus, accuracy of a classifier is parametrized by this threshold

CS909: Data Mining University of Warwick
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Thought Experiment

e Consider the data

— Assume that the data is balanced (equal number of positive and
negative examples)

— Consider a random classifier
* This classifier will generate a random score of any example given as input
* What will be its accuracy?

— Consider a classifier which generates a score of +1 for all inputs
* What will be its accuracy?

CS909: Data Mining University of Warwick 11



Thought Experiment

e Consider the data
— Assume that the data is imbalanced (#Neg>>#Pos)
— Consider a random classifier

* This classifier will generate a random score of any example given as input
* What will be its accuracy?

— Consider a classifier which generates a score of +1 for all inputs
* What will be its accuracy?

CS909: Data Mining University of Warwick 12



Confusion Matrix

True condition

Prevalence
_ Z Condition positive
T Total population

Total population Condition positive Condition negative

Positive predictive value i
Predicted condition i False positive (PPV), Precision False discovery . (FDR)
positive True positive (Type | error) ) e _ L False positive
. = L True positiv € ~ X Test outcome positive
Predicted X Test outcome positive
condition - Negative predictive value
Predicted condition False negative . Pl g et _(FOR) (NPV)
negative (Type Il error) True negative = Z False negative o
yp " T Test outcome negative = Z True negative
= L Test outcome negative
True positive rate (TPR), | False positive rate (FPR), S ]
o Positive likelihood ratio (LR+)
Sensitivity, Recall Fall-out TPR
_ _ X True positive _ I False positive = FPR _ _ ,
Acc.u.racy (ACC) = . T Condition positive | X Condition negative Diagnostic odds ratio (DOR)
T True positive + T True negative : . _ LR+
: False negafive rate True negative rate _ - ; = IR-
Z Total PUP“lﬂUOﬂ ) - Negative likelihood ratio
(FNR), Miss rate (TNR), Specificity (SPC) FNR
¥ False negative ¥ True negative (LR-)= TNR
Z Condition positive | I Condition negative

https://en.wikipedia.org/wiki/Sensitivity and specificity

CS909: Data Mining
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Test
Fecal
outcome
occult ”
positive
blood
screen
test Test
outcome
outcome
negative

Patients with bowel cancer

(as confirmed on endoscopy)

Condition positive

True positive
(TP) =20

False negative
(FN) =10

Sensitivity
=TP /(TP + FN)
=20/(20 + 10)
=67%

Condition negative

Positive predictive value

False positive =TP /(TP + FP)
(FP) =180 =20/(20 + 180)
=10%
Negative predictive value
True negative =TN/(FN + TN)
(TN) = 1820 =1820/ (10 + 1820)
= 99.5%
Specificity

= TN/ (FP + TN)
= 1820/ (180 + 1820)  F =2x
=91%

precision x recall

precision + recall

https://en.wikipedia.org/wiki/Sensitivity and specificity

CS909: Data Mining University of Warwick
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Output of a binary classifier

e At athreshold of 0.5, can you

. Inst# Class Score | Inst# Class Score
calculate:
1 p 9 11 P 4

— Accuracy 2 p 8 12 n .39

S e e 3 n i 13 p 38
— Sensitivity 4 p 6 14 n 37
— Specificity 5 p .55 15 n 36

EPR 6 p .54 6 n .35
o 7 n .53 17 p 34
— TPR 8 n .52 18 n .33

. . 9 p Sl 19 P 30

— Precision 10 n 505 0 n .l
— F-score

See: https://scikit-learn.org/stable/modules/model evaluation.html#classification-metrics

CS909: Data Mining University of Warwick 15
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Role of threshold

 What will be the behavior of TPR with increase in threshold of
the classifier?

e How will FPR behave?

e How will Precision behave?

e Can TPR decrease with increase in threshold?

CS909: Data Mining University of Warwick
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FPR vs. TPR Curve

Error Rate

TPR(t) = Probability that the classifier scores a positive example higher than a threshold p(f(x) > t|y = 1)
FPR(t) = Probability that the classifier scores a negative example higher than a threshold p(f(x) > t|y = —1)

Threshold t

CS909: Data Mining University of Warwick 17



Receiver Operating Characteristics Curve

* Aplot of TPR vs FPR

TPR!
1.0 |

CS909: Data Mining University of Warwick



Making the ROC Curve

30 .1
Inst# Class Score | Inst# Class Score ' [ [ | I 1‘ —~
34 1,33
| p 9 11 P 4 09 ¥==x
38 .37 .36 L35
2 p 8 12 n .39 0.8 — === = ==X —
1
3 n 7 3 p .38 071 1.-5-.&39 i
4 p 6 14 n .37 06k L8 _
2 I
5 p .55 15 n .36 S sk 2838 g2 _
o) 1
i & I
6 p 54 16 n .35 2 04 *55 i
= 1
7 m .53 17 p 34 sl 48 ]
8 52 18 33 '
n n 0248 &7 -
9 51 19 p 30 9
0.1 _
10 505 20 N -
= . HJ;““V| N N SN NN R B B
0

01 02 03 04 05 06 07 08 09 1

False positive rate
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Origin of the ROC

CS909: Data Minin

University of Warwick
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ROC

What will be ROC curve for a perfect classifier?
What will the ROC Curve of a random classifier look like?

What will the ROC curve of a classifier that always predicts the
positive class look like?

What are the underlying assumptions of the ROC curve?
What part of the ROC curve is the most important?

CS909: Data Mining University of Warwick
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ROC and AUC-ROC

* The area under the ROC curve is a quality metric

AUC — ROC = jTPR(FPR‘l(u))du
0

TPR!

}
: L]
CS909: Data Mining University of Warwick 22



Averaging ROC Curves

 ROC curves can be vertically averaged

True positive rate

0.8

0.6

-------

True positive rate

0.2 0.4 0.6 0.8

False positive rate

<
o0

g
=

=
P

<
)

CS909: Data Mining

0.2

0.4 0.6

False positive rate

0.8

University of Warwick
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ROC Convex Hull

e Scores of two classifiers can 0
be combined through a

M . . 0.8 4
weighted combination to
result in an optimal 5 o5
classifier 0

* This can be done using the
ROC convex hull

0 0.2 0.4 0.6 0.8 1.0

(a) False positive rate

CS909: Data Mining University of Warwick 24



— What does AUC-ROC measure? RO C P ro p e rt | es

* The probability with which a randomly-chosen positive

example is ranked more highly than a randomly-chosen Distribution of scores ROC curve and AUC Class with
from deep learning model highest score
negative example by a classifier [1] 250 { 1.00
* This also allows us to generalize this idea to “paired g 2 0751
evaluation” [1] Test o 150- 2 Always the
subset O ;.E correct class
— When to Use? = 2
! g %
Z 50
. . 0.254
* When there isn’t much class imbalance ,
%0.00 0.20 0.40 0.60 0.80 1.00 ’
» To compare classifiers across all operating points Model score O
r - - - — 000 025 050 0.75 1.00
B Without the medical diagnosis 1 - Specificity
— Caveats EEE With the medical diagnosis AUC = 1.00
* Class imblanace l Eachisoors e
* Multi-class ROC curves: Watch out for Imbalance
2000 1.00-
* LHS of the plot matters more .
. £ 1500 ,
* Threshold selection: Threshold on one dataset may not work 3 il
. . External & o Always the
for another (see image on the right). ROC curves are not affected dataset O 1000 - negative class
by calibration of the classifier. E - 8
=
— Recommendations 021
%0.00 020 0.40 0.60 0.80 1.00 4
* Always plot histogram of prediction scores to identify Model score TR i
H : Without the medical diagnosis | z " Soecifov. .
pOtentIaI bIaS 8 With the medical diagnosis AUC =1.00 pecioly

* Know its limitations
A method that can give a high AUC-ROC on a validation or test subset

may still generate inaccurate labels depending upon the threshold.

[1] Nariya, Maulik K., Caitlin E. Mills, Peter K. Sorger, and Artem Sokolov. “Paired Evaluation i o
See: Kleppe, A. “Area under the Curve May Hide Poor Generalisation to External

of Machine-Learning Models Characterizes Effects of Confounders and Outliers.” Patterns . | .
0, no. 0 (July 7, 2023). https://doi.org/10.1016/j.patter.2023.100791. Datasets.” ESMO Open 7, no. 2 (April 2022): 100429.
https://doi.org/10.1016/j.esmo0p.2022.100429.
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Interpreting ROC curves when N>>P

1.0

0.8

TPR=TP/P

ol FPR=FP/N 1.0

CS909: Data Mining

A small FPR signifies a significant number of FPs
when N>>P

Assume P =100, N =10,000
Assume that at a certain threshold you get FPR =
0.1 and TPR of 0.8, i.e., TPR(FPR=0.1) = 0.8

FP =1,000

TP =80

The classifier is generating 80 true positives for
every 1,000 false positives.

The classifier is not very precise.

One may get high AUC-ROC but, in case of N>>P,
it may not be a good metric.

University of Warwick
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Which is better?

=

(=)
-
3
=

CS909: Data Mining University of Warwick 27



AUC ROC-N

* In cases with class imbalance or where high false positive rates are unacceptable or it is useless to
evaluate TPR at high FPR values, we can use AUC-ROC N

* Area under the ROC curve up to the first N False Positives
— N=50

— N=10% TPR!

1.0 :

| 0.1 1.0 FPR

CS909: Data Mining University of Warwick 28



Precision-Recall Curves

Plot of Precision vs. Recall
« AUC-PRis a performance

ROC Curves

PR Curves

metric 5
_ 4 TPR
e Useful in cases of class- =
imbalance or in which
precision is a requirement
9
W TPR
=

CS909: Data Mining

FPR

c
(@]
k%)
o
Q
S
o
1.0
TPR 1.0
Classifier-1
Classifier-2
1.0
c
(@]
‘v
‘O
Q
| .
o
1.0 TPR 1.0

University of Warwick
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Relationship between ROC & PR Curves

* One-to-One correspondence between the two curves

* |f a curve dominates in ROC space then it dominates in PR
space.

* |f a curve dominates in PR space then it dominates in ROC
Space.

 What will be the PR curve for a random classifier?
 What part of an ROC curve impacts the PR curve more?

CS909: Data Mining University of Warwick
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Reading

e Recommended

— Davis, Jesse, and Mark Goadrich. 2006. “The Relationship Between
Precision-Recall and ROC Curves.” In Proceedings of the 23rd
International Conference on Machine Learning, 233-40. ICML '06.
New York, NY, USA: ACM. doi:10.1145/1143844.1143874.

— Fawcett, Tom. 2006. “An Introduction to ROC Analysis.” Pattern
Recogn. Lett. 27 (8): 861-74. doi:10.1016/j.patrec.2005.10.010.

* Required
— Alpaydin 2010, Section 19.7

CS909: Data Mining University of Warwick
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ROC and PR Curves in Scikit-Learn

* http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc curve.html

* http://scikit-learn.org/stable/auto examples/model selection/plot roc.html#example-model-selection-plot-roc-py

from sklearn.metrics import *
P,R = precision_recall curve(Y,Z)
AUCPR = average precision_score(Y,Z)

Very Important Exercise and associated Questions
https://github.com/foxtrotmike/CS909/blob/master/evaluation example.ipynb

CS909: Data Mining University of Warwick 32
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Metrics

Classification
‘accuracy’
‘balanced_accuracy’
‘top_k_accuracy’
‘average_precision’
‘neg_brier_score’
1’

‘f1_micro’
‘1_macro’
‘f1_weighted’
‘f1_samples’
‘neg_log_loss’

‘precision’ etc.

‘recall’ etc.

‘jaccard’ etc.

‘roc_auc’

‘roc_auc_ovr’

‘roc_auc_ovo’
‘roc_auc_ovr_weighted’
Matthews correlation coefficient

‘roc_auc_ovo_weighted’

You are expected to know at least those in bold. Also the difference between micro and macro averaging.

metrics.accuracy score

metrics.balanced accuracy score

metrics.top k accuracy score

metrics.average precision _score

metrics.brier score loss

metrics.f1 score

metrics.f1 score

metrics.f1 score

metrics.f1 score

metrics.fl score

metrics.log loss

metrics.precision _score

metrics.recall score

metrics.jaccard score

metrics.roc_auc_score

metrics.roc_auc_score

metrics.roc_auc_score

metrics.roc_auc_score

metrics.matthews corrcoef

metrics.roc_auc_score

https://scikit-learn.org/stable/modules/model evaluation.html

Try understanding why “MCC is better than F-measures”:

for binary targets
micro-averaged
macro-averaged

weighted average

by multilabel sample

requires predict_proba support
suffixes apply as with 1’
suffixes apply as with 1’
suffixes apply as with 1’

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6413-7

CS909: Data Mining

Regression

‘explained_variance’

‘max_error’
‘neg_mean_absolute_error’
‘neg_mean_squared_error’
‘neg_root_mean_squared_error’
‘neg_mean_squared_log_error’
‘neg_root_mean_squared_log_error’
‘neg_median_absolute_error’

‘o

‘neg_mean_poisson_deviance’
‘neg_mean_gamma_deviance’
‘neg_mean_absolute_percentage_error’
‘d2_absolute_error_score’
‘d2_pinball_score’

‘d2_tweedie_score’

Spearman, Pearson Corr and Kendall tau

Clustering
‘adjusted_mutual_info_score’
‘adjusted_rand_score’
‘completeness_score’
‘fowlkes_mallows_score’
‘homogeneity_score’
‘mutual_info_score’
‘normalized_mutual_info_score’
‘rand_score’

‘v_measure_score’

metrics.explained variance score

metrics.max_error

metrics.mean_absolute error

metrics.mean squared error

metrics.root_mean _squared _error

metrics.mean squared log error

metrics.root mean squared log error

metrics.median_absolute error

metrics.r2 _score

metrics.mean poisson deviance

metrics.mean gamma deviance

metrics.mean absolute percentage error

metrics.d2 absolute error _score

metrics.d2 pinball score

metrics.d2 tweedie score

scipy.stats.pearsonr
scipy.stats.spearmanr
scipy.stats.kendalltau

metrics.adjusted mutual info score

metrics.adjusted rand score

metrics.completeness score

metrics.fowlkes mallows score

metrics.homogeneity score

metrics.mutual info score

metrics.normalized mutual info score

metrics.rand_score

metrics.v._measure_score i3



https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html#sklearn.metrics.accuracy_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html#sklearn.metrics.balanced_accuracy_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.top_k_accuracy_score.html#sklearn.metrics.top_k_accuracy_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html#sklearn.metrics.average_precision_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.brier_score_loss.html#sklearn.metrics.brier_score_loss
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html#sklearn.metrics.log_loss
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html#sklearn.metrics.precision_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html#sklearn.metrics.recall_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html#sklearn.metrics.jaccard_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
http://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.explained_variance_score.html#sklearn.metrics.explained_variance_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.max_error.html#sklearn.metrics.max_error
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.root_mean_squared_error.html#sklearn.metrics.root_mean_squared_error
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_log_error.html#sklearn.metrics.mean_squared_log_error
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.root_mean_squared_log_error.html#sklearn.metrics.root_mean_squared_log_error
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_poisson_deviance.html#sklearn.metrics.mean_poisson_deviance
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_gamma_deviance.html#sklearn.metrics.mean_gamma_deviance
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html#sklearn.metrics.mean_absolute_percentage_error
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.d2_absolute_error_score.html#sklearn.metrics.d2_absolute_error_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.d2_pinball_score.html#sklearn.metrics.d2_pinball_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.d2_tweedie_score.html#sklearn.metrics.d2_tweedie_score
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html#scipy.stats.pearsonr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html#scipy.stats.kendalltau
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html#sklearn.metrics.adjusted_mutual_info_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html#sklearn.metrics.adjusted_rand_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.completeness_score.html#sklearn.metrics.completeness_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fowlkes_mallows_score.html#sklearn.metrics.fowlkes_mallows_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_score.html#sklearn.metrics.homogeneity_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html#sklearn.metrics.mutual_info_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html#sklearn.metrics.normalized_mutual_info_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.rand_score.html#sklearn.metrics.rand_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.v_measure_score.html#sklearn.metrics.v_measure_score
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6413-7

Measurement of Generalization Performance

* Typically we do not have access to real world test examples

* Use the given “training” set for approximating the
generalization performance

* Guidelines
— There should be “enough” training examples left

— Test labels should not be used, directly or indirectly, during training
* Test data (without labels) can be used

— You should be clear about the intended use and application of the
system

— You should be clear about the objective of performance evaluation

CS909: Data Mining University of Warwick
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Issues

e The variance of our estimate increases as the size of the test
set decreases.

 Asmallincrease in the pessimistic bias when we decrease the
size of the training set

CS909: Data Mining University of Warwick 35



Cross-Validation: K-fold

e Measurement of Generalization
Performance

e For estimation of variation
 Divide the data into K folds

— Fork=1..K
* Train on K-1 sets leaving the k" set out for Split1
validation Split 2
* Validate on the k" set and obtain the Split 3
performance metrics Split 4
— Report the average and the variation in Split 5

the performance

All Data
Training data Test data

Fold1l | Fold2 || Fold3 || Fold4 || Fold5 |\
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold5 |/

Final evaluation { Test data

https://github.com/foxtrotmike/CS909/blob/master/evaluation example.ipynb

CS909: Data Mining
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https://github.com/foxtrotmike/CS909/blob/master/evaluation_example.ipynb

Cross-Validation

* |f K=Number of examples then this
extreme case is called Leave One Qut CV

(LOOCV)

All Data

— Useful if the amount of data is small Training data

Test data

positive

 Stratification (Stratified cross-validation)

negative

\ Fold 1 H Fold 2 H Fold 3 \

Fold 4 ‘ Fold 5 ‘\

— Make sure that each fold contains the same

spiit1 | Fold1 || Fold2 || Fold3 |

Fold4 | Fold5

number of examples as the overall data

spiit2 | Fold1 || Fold2 || Fold3 |

Fold4 | Fold5

* If a class has 20 percent examples in the whole |
dataset, in all samples drawn from the dataset, it " _Fod1 || Fodz |[[Foid3]

Fold4 || Fold5

should also have approximately 20 percent Split4 | Fold1 || Fold2 || Fold3 ||

Fold4 | Fold5

examples. spiits | Fold1 || Fold2 || Fold3 |

Fold4 || Folds

 What will be the impact on approximated
performance with increase in K?

https://github.com/foxtrotmike/CS909/blob/master/evaluation example.ipynb

CS909: Data Mining

Final evaluation {

Test data
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So what to use?

* 10 Fold Stratified Cross-Validation is good

— May give overly optimistic values. However, its okay to use it for
comparison of classifiers.

 However, for small sample sizes, it can have a large variance in
which case you can use LOOCV or the .632 or the .632+

bootstrap
* For comparison of multiple classifiers: Cochran Test, F-Test

 SCIKIT-LEARN
http://rasbt.github.io/mlixtend/
° M LXTEN D http://scikit-learn.org/stable/model selection.html

Kohavi, Ron. 1995. “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.” In Proceedings of the 14th International Joint
Conference on Artificial Intelligence - Volume 2, 1137-43. |JCAI'95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
http://dl.acm.org/citation.cfm?id=1643031.1643047.

CS909: Data Mining University of Warwick
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http://rasbt.github.io/mlxtend/user_guide/evaluate/cochrans_q/
http://rasbt.github.io/mlxtend/user_guide/evaluate/combined_ftest_5x2cv/
http://scikit-learn.org/stable/model_selection.html
http://scikit-learn.org/stable/model_selection.html

Bootstrapping

* Bootstrapping is any test or metric that uses random
sampling with replacement (e.g. mimicking the
sampling process), and falls under the broader class
of resampling methods.

e Basic idea (Out of Bag Bootstrap)

: Original D Xy Xq | X, Xy | Xg | %50
— Take the entire data set of N examples nginal batase! - | o
— For multiple iterations
. . Bootstrap 1 | %a X | g | X5 | Xg | Xyq | Xy | X5 | Xz X7 | %10
* Sample N examples from it with replacement PORTER _ =
— You will get a total of N samples but some may be the same Bootstran 2 (ERBAAEAEEIEI Gl
example p 10| X | Aa| A5 | A | Kr | Ra| A2 ] A1 ] Re Xg | Xg

— You train on this set

— Test on the set of remaining examples and compute metrics Bootstrap 3 - | e | e XX T | X | el e e | o] 2 %% %0
— Report the average metric and its standard deviation ‘ Training Sefs | e

* ShOU|d be Stratified 7 This work by Sebastian Raschka is licensed under a

@_(D_ i 5 ns
Creative Commons Attribution 4.0 Intermational License
* Code example

e QOther variants such as .632 and .632+ bootstrap also
available
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https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
http://rasbt.github.io/mlxtend/user_guide/evaluate/BootstrapOutOfBag/
http://rasbt.github.io/mlxtend/user_guide/evaluate/bootstrap/
http://rasbt.github.io/mlxtend/user_guide/evaluate/bootstrap_point632_score/

Model Hyperparameter Selection

* Grid Search

4
10

— Exhaustive Search through
Cross-Validation

* Recommended: Nested Cross- o
Validation or separate test set 10

* There can be a range of
parameter values that yield
optimal values and these 107 B
equivalent points in the
parameter space fall along a
ridge

3
10

10 10° 10° 10° 10 10° 10"

gamma

Ben-Hur, Asa, and Jason Weston. 2010. “A User’s Guide to Support Vector Machines.” In Data Mining Techniques for the Life Sciences,
edited by Oliviero Carugo and Frank Eisenhaber, 223—-39. Methods in Molecular Biology 609. Humana Press.
http://dx.doi.org/10.1007/978-1-60327-241-4_13.
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Searching for optimal parameters

* Regularization Path Finding
* Gradient Based Approaches
* Evolutionary approaches

 Grid Search in Scikit-learn
— http://scikit-learn.org/stable/modules/grid search.html

CS909: Data Mining
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http://scikit-learn.org/stable/modules/grid_search.html

Parameter Selection

e http://hyperopt.github.io/

* http://hyperopt.github.io/hyperopt-sklearn/

* https://automl.github.io/auto-sklearn/stable/api.html

e https://en.wikipedia.org/wiki/Xgboost

e http://www.kdnuggets.com/2017/01/current-state-
automated-machine-learning.html
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http://hyperopt.github.io/hyperopt-sklearn/
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https://en.wikipedia.org/wiki/Xgboost
http://www.kdnuggets.com/2017/01/current-state-automated-machine-learning.html
http://www.kdnuggets.com/2017/01/current-state-automated-machine-learning.html

“Other” ways of selecting parameters

e Selecting gamma

— Visualize the spread

* Ensuring robustness to parameter changes
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(Very) Important Notes

*  Performance evaluation results in “estimates”
*  Metrics tell you what you ask of them. It is upto you to choose the appropriate

metric . . THE NEURAL NET TANK URBAN
* Having a high-performance metric is no guarantee that the classifier is good for
use LEGEND
— A model may have hidden biases, be unfair or fail in other ways
— Can be affected by Confounding factors (remem ber tank c|assification?) AI folklore tells a story about a neural network trained to detect tanks which instead learned to detect time of day;
_ May not be robust or transparent investigating, this probably never happened.

— A model may not be well-calibrated, i.e., its output can be interpreted
probabilistically or used for uncertainty quantification

* Example: Without careful calibration, it cannot be assumed that if the prediction score of an ARTSEREEAL SENTEEC RSN &
example is 0.9, the probability of it being positive is 0.9 . oa . - . .

https://scikit-learn.org/stable/modules/calibration.html Predictive pOIICI"g algOrlthms areracist.

*  Platt Scaling =

* Uncertainty quantification with conformal prediction They need to be dlsmantled'

Lack of transparency and biased training data mean these tools are not fit for
Calibration plots purpose. If we can't fix them, we should ditch them.
1.0 -
By Will Douglas Heaven July 17,2020
T:: 0.8 & WV ‘ ‘ A I\ 1
F o “F**k the algorithm(?: What the world
g o6 can learn from/the UK's\Aslevel grading
; flasco
E 0.4 4
[=N
© FAIRNESS AND MACHINE LEARNING
% ----- Perfectly calibrated
g %27 —— Logistic Limitations and Opportunities
—¥— Naive Bayes
0.0 1 : ::Edom forest https://fairmlbook.org/pdf/fairmlbook.pdf
0.0 0.2 0.4 0.6 0.8 10

Mean predicted probability (Positive class: 1) Solon Barocas, Moritz Hardt, Arvind Narayanan 44


https://scikit-learn.org/stable/modules/calibration.html
https://github.com/foxtrotmike/platt/blob/master/platt_example.ipynb
https://people.eecs.berkeley.edu/~angelopoulos/blog/posts/gentle-intro/
https://fairmlbook.org/pdf/fairmlbook.pdf

Some papers

Chapter 19 “Design and Analysis of Machine Learning Experiments” Alpaydin, Ethem. 2010. Introduction to Machine Learning.
Cambridge, Mass.: MIT Press.

Demsar, Janez. 2006. “Statistical Comparisons of Classifiers over Multiple Data Sets.” J. Mach. Learn. Res. 7 (December): 1-30.

Salvador Garci, and Francisco Herrera. 2008. “An Extension on ‘Statistical Comparisons of Classifiers over Multiple Data Sets’ for All
Pairwise Comparisons.” Journal of Machine Learning Research 9 (Dec.): 2677-94.

Chapelle, Olivier, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. 2002. “Choosing Multiple Parameters for Support Vector
Machines.” Machine Learning 46 (1-3): 131-59. doi:10.1023/A:1012450327387.

Hastie, Trevor, Saharon Rosset, Robert Tibshirani, and Ji Zhu. 2004. “The Entire Regularization Path for the Support Vector Machine.” J.
Mach. Learn. Res. 5 (December): 1391-1415.

Ferndndez-Delgado, Manuel, Eva Cernadas, Senén Barro, and Dinani Amorim. 2014. “Do We Need Hundreds of Classifiers to Solve Real
World Classification Problems?” Journal of Machine Learning Research 15: 3133-81

Forman, George, and Ira Cohen. 2004. “Learning from Little: Comparison of Classifiers Given Little Training.” In Knowledge Discovery in
Databases: PKDD 2004, edited by Jean-Francois Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino Pedreschi, 161-72. Lecture
Notes in Computer Science 3202. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/978-3-540-30116-5 17.

Salperwyck, C., and V. Lemaire. 2011. “Learning with Few Examples: An Empirical Study on Leading Classifiers.” In The 2011
International Joint Conference on Neural Networks (IJCNN), 1010-19. do0i:10.1109/1JCNN.2011.6033333.
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CASE STUDY

Amyloid Prediction by Farzeen

— Alzheimer’s, Parkinson’s, Huntington’s, ALS,
Type-Il Diabetes, Cataracts

Given:
— Labeled Peptide Sequences of length 6

Output:

— Predict if a protein contains a sequence
that can form amyloids

Preprocessing
— Normalization

Training Data
Test Data

CS909: Data Mining

*Nhe 2« 0 0
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o d - Oligomers : * *
Truncated E4 .'.l » # Signaling
. .:.- molecules

Impalred.
synapse
Neurite

Tau
10
Amynoid"'-a;?i,;.' _
laque ¢ Sovengs
plaq 0...':':‘.\.? ;’.'.".‘«.

Neurofibrillary
tangles

adapted from Roberson & Mucke, Science (2006)

http://www.cmu.edu/biolphys/smsl/research/topics/amyloids.html
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mer
0.0001
0.001
0.01

0.1

10

100

Selecting “C”

1st fold of
training

0.78
0.78
0.78
0.79
0.801
0.809

0.809

2nd fold
of training

0.65
0.67
0.67
0.705
0.75
0.76

0.76

CS909: Data Mining

3rd fold of
training

0.822
0.824
0.823
0.87
0.84
0.809

0.809

average

0.75
0.75
0.757
0.788
0.797
0.7926

0.792

University of Warwick
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Grid Search

C gamma=0.001 gamma=0.01 gamma=0.1 gamma=1 gamma=10 gamma=100 gamma=1000
0.0001 0.734 0.733 0.734 0.731 0.525 0.525 0.525
0.001 0.734 0.734 0.734 0.734 0.55 0.546 0.546
0.01 0.734 0.732 0.735 0.737 0.553 0.546 0.546
0.1 0.736 0.7329 0.735 0.704 0.553 0.546 0.546
1 0.724 0.733 0.758 0.745 0.597 0.546 0.546
10 0.7340 0.750 0.725 0.751 0.597 0.546 0.546
100 0.746 0.687 0.725 0.751 0.597 0.546 0.546
1000 0.746 0.687 0.725 0.751 0.597 0.546 0.546
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1.0

ROC using Radial basic function kernel of SVM

0.8

0.6

tpr

0.4

0.2fF | e—e 1mer, C: 100, ~: 0.01, auc: 0.855452257649 |-

»—» orthogonal, C: 1, ~: 0.1, auc: 0.775067074312

— 2Z2mer, C: 1, ~: 0.1, auc: 0.812576693496

0.0 I 1 I I
0.0 0.2 0.4 0.6 0.8 1.0

fpr

CS909: Data Mining University of Warwick 49




1.0

ROC using Radial basic funcion kernel of SVM

0.8

0.6 4
=2

0.4 .

0.2F% | e—e 1mer, C: 100, 4: 0.01, auc: 0.855452257649
»—+ orthogonal, C: 1, 4: 0.1, auc: 0.775067074312
— 2mer, C: 1, +: 0.1, auc: 0.812576693496

0.0 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0
1.0 ROC using Polynominal kernel of SVM

10 ROC using linear kernel of SVM

0.8

0.6 R 0.6 |
=2 =2
0.4 . 0.4 ]
0.2 0.2 : :
e—e 1Imer, C: 10, degree: 3, auc: 0.847112164888 e—e 1mer, C: 1, auc: 0.843098105281
»— orthogonal, C: 1000, degree=2, auc: 0.784811048023 ‘ »— orthogonal, C: 0.01, auc: 0.750005199559
~—— 2mer, C: 1, degree=3, auc: 0.804465381336 = 2mer, C: 0.01, auc: 0.769493146981
L 1 1 1 00 1 L Il L
O'Co.lo 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
fpr fpr
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Ten simple rules to fool the masses with
machine learning

* Choose a biased accuracy metric or a metric irrelevant to the
problem domain OR Fail to relate the accuracy to impact on the
problem domain

* Choose hyper-parameters that maximize the performance metric

* Do not analyze the sensitivty of your model to changes in data,
hyper-parameter values or randomness

* Use labeled validation data in training

ITenwaystclb fool the masses with machine learning
* Forget that examples may not be independent of each other: use

statistical tests even if they might not be applicable

M M M L If you want to tell people the truth, make them laugh, otherwise they'll kill you. (source unclear)
b DO n Ot CO m p a re Wlt h a S I m p | e b a Se | I n e C | a SS Ifl e r Machine learning and deep learning are the technologies of the day for developing intelligent automatic systems.

However, a key hurdle for progress in the field is the literature itself: we often encounter papers that report resuits

[ CO m pa re yo u rm Od e I w it h u N O pti m ize d Ve rs i O N s Of Ot h e rm O d e | S O r that are difficult to reconstruct or reproduce, results that mis-represent the performance of the system, or contain

other biases that limit their validity. In this semi-humorous article, we discuss issues that arise in running and

O n e S t h at h ave b e e n t ra i n e d u Si n g d iffe re nt d ata O r a d iffe re nt ;eporting re:‘.ults.t ofbmachine Iliarrrl]ing :xpelrim.ents. T':f pulrpostfal of thedal"ticle is tto provi;ie a llist .of watchh?ut points
evaluation protocol caming papers.

* Forget about reproducibility

— Do not provide detailed performance results, codes or a webserver, Is a
model that fits better, better? A model should know when it doesn't
know!

* Only publishing matters: Forget about deployment or generalization
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A useful baseline: Naive Bayes

* Naive Bayes methods are a set of supervised learning

algorithms, works quite well!

— Apply Bayes’ theorem with the naive assumption

* Features are independent of each other

— The Bayes theorem states that: Py x.....2.) = P(FJP(%I-I--% [ 9)

— Independence assumption implies that

P[Ii|yar1.~ R FRLTE S B a‘r?t] = P(Ii|yj~

— Thus, Ply| v, .. a) = ‘D(E’ﬁgf-l.ﬁ[fﬂ .
Ply | z1,.. zq) < Ply) [ Plei | y)

=1
U

j = argmax P(y) [Py,
1=1

H. Zhang (2004). The optimality of Naive Bayes. Proc. FLAIRS.

CS909: Data Mining

What are the:
Representation
Evaluation

Optimization

For a Naive Bayes Classifier?
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http://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf

End of Lecture

if you can't measure it, you can't manage it.
You get what you measure!
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