
University of Warwick

Multivariate Analysis 
PCA and other dimensionality reduction approaches

Dr. Fayyaz Minhas

09 Feb 2023
Department of Computer Science

University of Warwick

(slides are text-heavy to provide self-contained notes for students)



University of Warwick

Preliminaries
• Lagrange Multipliers

• What is the relationship between the following?
– Vectors
– Matrices
– Distance
– Dot Product 
– Projections
– Transformations
– Eigen Vectors
– Variance
– Variance and Information
– Correlation
– Covariance
– Covariance Matrix
– Covariance and Information

• Principal Component Analysis (PCA)
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Old MacDonald Had a Farm … 

Old MacDonald had a plan, E-I-E-I-O,

With a length L of wire in his hand, E-I-E-I-O,

He dreamt of barns with spacious land,

Largest area, that was his grand stand.

"Maximize A equals h times w,” he cried, E-I-E-I-O,

For the largest barn, he'd not be denied, E-I-E-I-O,

With a width w and length h, he made it so,

The grandest barn began to show, E-I-E-I-O!
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max
ℎ,𝑤

𝐴 = ℎ𝑤

 Such that:
          2 ℎ + 𝑤 = 𝐿

ℎ

𝑤

Constrained Optimization Problem (COP)

max
ℎ,𝑤,𝛼

𝐷 = ℎ𝑤 − 𝛼(2 ℎ + 𝑤 − 𝐿)
𝛿𝐷

𝛿ℎ
= 𝑤 − 2𝛼 = 0

𝛿𝐷

𝛿𝑤
= ℎ − 2𝛼 = 0

𝛿𝐷

𝛿𝛼
= 2 ℎ + 𝑤 − 𝐿 = 0

ℎ = 𝑤 = 𝐿/4

Unconstrained Optimization Problem (UCOP)

https://en.wikipedia.org/wiki/Lagrange_multiplier 

Given a COP
Express each constraint as g(x)=0
And add an additional variable 𝛼 called a LaGrange multiplier
Change the objective function to include the term 𝛼g(x)
Solve the resulting UCOP

https://en.wikipedia.org/wiki/Lagrange_multiplier
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Operations on Vectors

• Using matrices

– One way of thinking about matrices is that they are collection of 
vectors

– For example, we can represent the data set for a given problem as a 
data matrix

• Each row is a vector representation of a single example or data point

• Matrices as operators

4
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Multiplication of a vector by a matrix

– Multiplication of a vector with a matrix can be viewed as a geometric 
transformation of the vector
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𝑻 =
2 0
0 2

, 𝒙 =
0
1

𝒚 = 𝑻𝒙 =
0
2

𝑻
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Eigen Vectors

• Those points that are characteristic to a given matrix that undergo only a change in scale are 
called Eigen vectors  

𝑻𝒗 = 𝜆𝒗

• How to find them: 𝑻 − 𝜆𝑰 𝒗 = 0 implies 𝑻 − 𝜆𝑰 = 0

• See: https://github.com/foxtrotmike/PCA-Tutorial/blob/master/Eigen.ipynb
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𝑻 =
2 0
0 2

, 𝒙 =
0
1

𝒚 = 𝑻𝒙 =
0
2

𝑻

https://github.com/foxtrotmike/PCA-Tutorial/blob/master/Eigen.ipynb
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• 𝑻 =
3 1
0 2

• Eigen Vector: 
1
0

, Eigen Value: 3

3 1
0 2

1
0

=
3
0

= 3
1
0

– Note scaling only

• Eigen Vector: 
−0.707
0.707

, Eigen Value: 2

3 1
0 2

−0.707
0.707

=
−1.414
1.414

= 2
−0.707
0.707
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Mean

• Mean is the expected value of a given variable

• 𝜇𝑧 =
1

𝑁
σ𝑖=1

𝑁 𝑧𝑖

• In vector form
𝒛 = 𝑧1 𝑧2 … 𝑧𝑁 𝑇

𝜇𝑧 =
1

𝑁
෍

𝑖=1

𝑁

𝑧𝑖 =
1

𝑁
𝒛𝑇𝟏

• Mean is the first order moment or expected value of a 
variable and can be written as 

𝐸 𝑧 = ෍

𝑖

𝑧𝑖𝑝𝑍 𝑧𝑖
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Fraction of the time (or probability) this value occursvalue

Example: 
Let’s say in a dice roll sequence, we see the following 
values (sorted): 1,1,2,3,3,4,4,5,6,6 
The average value is: 
1(2/10)+2(1/10)+3(2/10)+4(2/10)+5(1/10)+6(2/10) = 3.5

https://en.wikipedia.org/wiki/Expected_value
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Variance

• Mean of the spread of a variable around its mean

• 𝑣𝑎𝑟 𝑧 =
1

𝑁
σ𝑖=1

𝑁 𝑧𝑖 − 𝜇𝑧
2 =

1

𝑁
𝒛 − 𝜇𝑧

𝑇 𝒛 − 𝜇𝑧

– 𝒛 is an N-dimensional vector composed of the 
values of all data points in the sample

• If mean is zero then 𝑣𝑎𝑟 𝑧 =
1

𝑁
𝒛𝑇𝒛 =

1

𝑁
𝒛 2

• 𝑣𝑎𝑟(𝑧) = 𝐸 𝑧 − 𝜇𝑧
2

– Second moment or expected value of deviation from the mean
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https://www.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/more-standard-
deviation/v/review-and-intuition-why-we-divide-by-n-1-for-the-unbiased-sample-variance

𝒛 = 𝑧1 𝑧2 … 𝑧𝑁 𝑇

𝜇𝑧 =
1

𝑁
෍

𝑖=1

𝑁

𝑧𝑖 =
1

𝑁
𝒛𝑇𝟏

https://www.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/more-standard-deviation/v/review-and-intuition-why-we-divide-by-n-1-for-the-unbiased-sample-variance
https://www.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/more-standard-deviation/v/review-and-intuition-why-we-divide-by-n-1-for-the-unbiased-sample-variance
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Co-Variance

– Given two random variables, to what extent are they linearly related to each 
other

– 𝑐𝑜𝑣 𝑥, 𝑦 =
1

𝑁
σ𝑖=1

𝑁 𝑥𝑖 − 𝜇𝑥 𝑦𝑖 − 𝜇𝑦 =
1

𝑁
𝒙 − 𝜇𝑥

𝑇 𝒚 − 𝜇𝑦

• Covariance is positive if, on average,
– When one variable is above its mean then the other variable is above its mean too 

– When one variable is below its mean then the other variable is below its mean too

• Covariance is negative if, on average,
– When one variable is above the mean, the other is below its mean

– If the means of the two variables are zero: 𝑐𝑜𝑣 𝒙, 𝒚 =
1

𝑁
𝒙𝑇𝒚

• Maximum when the vectors are co-linear or parallel

– 𝑐𝑜𝑣 𝑥, 𝑦 = 𝐸 𝑦 − 𝜇𝑦 𝑥 − 𝜇𝑥

– Thus,𝑣𝑎𝑟 𝑧 = 𝑐𝑜𝑣 𝑧, 𝑧

10

https://en.wikipedia.org/wiki/Covariance
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Correlation

• What is the association between two random variables?

– Example: How are height and weight associated with each other?

• A related (and more general) concept from Information Theory 
is Mutual Information

11

https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Mutual_information
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Quantifying Correlation

• We can quantify the degree of linear association between two random 
variables through correlation coefficient

• Notice if we “standardize” both variables to each have zero mean and unit 
standard deviation, then the correlation between them is equal 
covariance!

– This can be achieved by standard scaling transform: 
𝑥−𝜇𝑥

𝜎𝑥

– Implemented in sklearn
– Once transform, each variable will have the same “scale” or range (if it is 

Gaussian distributed)

12

https://en.wikipedia.org/wiki/Covariance_and_correlation 

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://en.wikipedia.org/wiki/Covariance_and_correlation
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Scaling transform

• x′ = T x =
𝑥−𝜇𝑥

𝜎𝑥

• Called 
– Z-Scoring
– Standard Scaling

• Removes the effect of scaling across 
different variables

• Tells us how “extreme” a value is in 
terms of its variation

• Allows us to compare different 
variables with different variations

13

The Z-Factor Video by Numberphile

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://www.youtube.com/watch?v=-PGrIXlFq4E
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Covariance Matrix of a dataset

• Matrix of all pairwise covariances of all variables

• For two variables

• 𝑪 =
𝑐𝑜𝑣 𝑦, 𝑦 𝑐𝑜𝑣 𝑧, 𝑦

𝑐𝑜𝑣 𝑦, 𝑧 𝑐𝑜𝑣 𝑧, 𝑧

• In general, if we have d-features then this will be a dxd matrix

14

https://en.wikipedia.org/wiki/Covariance_matrix
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Covariance Matrix Example

15

The mean is [67.46 85.31]

The standard deviation is: [ 8.86 10.06 ] 

The variance is: [ 78.56 101.14] 

The co-variance matrix is:  
𝟕𝟖. 𝟓𝟔 𝟖𝟓. 𝟓𝟓
𝟖𝟓. 𝟓𝟓 𝟏𝟎𝟏. 𝟏𝟒

 

The mean is [0 0]

The standard deviation is: [ 1 1 ] 

The variance is: [ 1 1] 

Total variance: 1+1 = 2.0

The co-variance matrix is:  
𝟏 𝟎. 𝟗𝟔

𝟎. 𝟗𝟔 𝟏
 

ℎ − 𝜇ℎ

𝜎ℎ

𝑤 − 𝜇𝑤

𝜎𝑤

Standardization

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html 

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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Variance and Information

• Information content
– The self-information of measuring X as outcome x

• How surprising is an outcome?

– Shannon entropy: Expected information content of a 
random variable (measured in bits)
• What is the average surprise of different values of a random 

variable?

16

jee, Debabrata Mukher, and Makarand V. Ratnaparkhi. “On the Functional Relationship between Entropy and Variance with Related Applications.” 
Communications in Statistics - Theory and Methods 15, no. 1 (January 1, 1986): 291–311. https://doi.org/10.1080/03610928608829122.

tol = 1e-10; E=[]; V=[]; P = np.linspace(0,1,100)
for p in P:
    p1 = p; p0=1-p;
    e = -p1*np.log2(p1+tol)-p0*np.log2(p0+tol)    
    # v = np.var(np.random.rand(1000)<=p) # sample variance
    v = p1*p0 # bernoulli distribution variance
    E.append(e);V.append(v)
plt.plot(P,E); plt.plot(P,V);
plt.show(); plt.legend(['Entropy','Variance']); 
plt.xlabel('Probability of Heads'); plt.ylabel('value')

𝐸[𝑋] = ෍

𝑥

𝑥𝑝𝑋 𝑥

Definition: Expected value

Relationship between Variance and Entropy for a Coin Toss 
(Bernouli Process) with probability of heads equal to p

C
la

u
d

e 
Sh

an
n

o
n

https://doi.org/10.1080/03610928608829122
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Claude_Shannon
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Term & its
(Close Counterpart)

Formula Explanation

Entropy
(Variance) 𝐻 𝑋 = − ෍

𝑥∈𝑋

𝑃 𝑥 𝑙𝑜𝑔𝑃(𝑥)
If I have a random variable 𝑋 with which generates outcomes 𝑥 with probability 
𝑃(𝑥), then 𝐻 𝑋 quantifies how much surprise or information (in bits) is expected 
in the outcomes of 𝑋. A higher 𝐻 𝑋 means that outcomes can be expected to be 
more unpredictable. 

KL Divergence
(Distance)

𝐷𝐾𝐿(𝑃| 𝑄

= ෍

𝑥∈𝑋

𝑃 𝑥 𝑙𝑜𝑔
𝑃(𝑥)

𝑄(𝑥)

If I have two probability distributions 𝑃 and 𝑄 over the same variable 𝑋, then KL 
Divergence quantifies the difference or divergence between them. It tells us how 
much information (in bits) is lost when 𝑄 is used to approximate 𝑃. 

Cross-Entropy
(hinge loss)

𝐻 𝑃, 𝑄

= − ෍

𝑥∈𝑋

𝑃 𝑥 𝑙𝑜𝑔𝑄(𝑥)

If I have two probability distributions 𝑃 and  𝑄 over the same variable 𝑋, then 
𝐻 𝑃, 𝑄 quantifies how “bad” is  𝑄 as an estimate of 𝑃 (in terms of the number of 
additional bits required to encode 𝑃 using 𝑄).

Mutual 
Information
(Correlation)

𝐼 𝑋; 𝑌

= ෍

𝑦∈𝑋

෍

𝑥∈𝑋

𝑃 𝑥, 𝑦 𝑙𝑜𝑔
𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)

If I have two random variables 𝑋 and Y with a joint probability 𝑃(𝑥, 𝑦) and 
individual probabilities 𝑃 𝑥 and 𝑃(𝑦), then mutual information quantifies how 
much knowing 𝑌 tells me about 𝑋 (in terms of reducing the uncertainty in my 
knowledge of 𝑋). It is a measure of statistical dependence. 

Total Correlation
(Multiple Correlation 
Coefficient)

It’s a misnomer (actually not
correlation) but Multi-variate 
Mutual Information

If I have d random variables, then total correlation quantifies the amount of 
information gained about one random variable through the other variables 
together, beyond what is gained from them individually.

17

When variables inform on their fellow variables…

https://en.wikipedia.org/wiki/Entropy
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Cross-entropy
https://en.wikipedia.org/wiki/Mutual_information
https://en.wikipedia.org/wiki/Mutual_information
https://en.wikipedia.org/wiki/Total_correlation
https://en.wikipedia.org/wiki/Coefficient_of_multiple_correlation
https://en.wikipedia.org/wiki/Coefficient_of_multiple_correlation
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Principal Component Analysis: Uses

• Dimensionality Reduction
• Visualization and Exploratory Data Analysis
• Anomaly/Outlier Detection
• Understanding association between different variables
• Preprocessing 

– Noise Removal
– Removal of unwanted effects

• Feature extraction for classification (with Grid Search)
• Data/Image Compression
• Conceptual basis for understanding a variety of related algorithms 

– Kernel PCA, ICA, SVD, NMF, Clustering methods, Topic Modelling, Canonical Correlation 
Analysis, PLS, Linear Discriminant Analysis, Multidimensional Scaling, t-SNE, UMAP, 
Bottleneck neural networks/Autoencoders, Dictionary Learning, Locally Linear 
Embeddings, Batch Correction/Normalization …

18

https://scikit-learn.org/stable/auto_examples/compose/plot_compare_reduction.html#sphx-glr-auto-examples-compose-plot-compare-reduction-py
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Data Dimensionality Reduction

• How can we reduce dimensions?
– Drop features?

• Equivalent to projecting data onto canonical axes unit vectors
– Each point is originally expressed as a linear combination of two canonical axis vectors

• Once we do this, we lose information about the other feature unless both 
features are related

• Loss in variance

19

𝑧 = 𝒘𝑇𝒙 =
1
0

𝑇

𝒙
𝑧 = 𝒘𝑇𝒙 =

0
1

𝑇

𝒙

V
ar
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n
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re
d

Variance capturedVariance lost

V
ar
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n

ce
 L

o
st

𝒙 =
𝑥1

𝑥2
= 𝑥1

0
1

+ 𝑥2
1
0

https://en.wikipedia.org/wiki/Dimensionality_reduction
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Dimensionality Reduction as Projections

• Projections can be used for reducing 
dimensions
– However, projecting data onto a unit 

vector loses information

– We want to reduce the amount of 
information loss

– Solution: Find and project along a 
direction (unit vector) along which 
information loss is minimum 
• A direction along which most of the variance 

is captured

– How to do it?

20
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How to do it: Naïve Implementation

• Set p = 0

• For p from 0 to 𝜋 in steps
– Calculate projection unit vector

• 𝒘𝒑 =
cos(𝑝)
sin(𝑝)

– Project your data onto 𝑧𝑖 = 𝒘𝑝
𝑇𝒙𝑖

– Find the variance of the projected data

• Plot the variance across p

• Find the p that gives maximum variance

• Issues?

21
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Using the naïve implementation

22

Direction of Maximum Variance: [0.70, 0.71]
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Quiz Time: Find Principal Components

• What are the principal components for each data set below?

23
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So what is PCA?

• A method for transforming data 
– Projecting the data onto directions (called principal directions or axis) such 

that the variance of the data along that direction is maximal
– Projection of x on the direction of w: z = wTx
– Projection of all data points in X(nxd) along the direction of w: z = Xw
– Find w such that 𝑉𝑎𝑟 𝒛 is maximum. 

• Or in other words:

24

max𝒘 𝑉𝑎𝑟 𝒛
subject to: 
 𝒘 2 = 𝒘𝑇𝒘 = 1 

𝒘
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PCA in the light of the REO Framework

• Representation
– Linear projection along a direction vector

z = wTx

• Evaluation
– What’s a good direction?

• Optimization
– Solve using gradient descent
– Or analytically!

• Only if we had a formula for 𝑉𝑎𝑟 𝒛 !! 

25

max
𝒘

𝑉𝑎𝑟 𝒛 = 𝑉𝑎𝑟 𝑿 𝒏×𝒅 𝒘 𝒅×𝟏 = 𝐸[ 𝒛 − 𝝁𝒛
𝟐] 

subject to: 
 𝒘 2 = 𝒘𝑇𝒘 = 1 
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Formula for finding variance after projection

26

𝑣𝑎𝑟 𝑧 =
1

𝑁
෍

𝑖=1

𝑁

𝑧𝑖 − 𝜇𝑧
2

𝜇𝑧 =
1

𝑁
෍

𝑖

𝑁

𝑧𝑖 =
1

𝑁
෍

𝑖

𝑁

𝑤𝑇𝒙𝑖 = 𝑤𝑇
1

𝑁
෍

𝑖

𝑁

𝒙𝑖 = 𝑤𝑇𝝁𝒙

𝝁𝒙 =
1

𝑁
෍

𝑖

𝑁

𝒙𝑖

Thus,

𝑣𝑎𝑟 𝑧 =
1

𝑁
෍

𝑖=1

𝑁

𝑤𝑇𝒙𝒊 − 𝑤𝑇𝝁𝒙
2
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• Taking the derivative of this with respect to 𝒘 and substituting to 
zero, we get:

Principal Component Analysis

• We want to find a unit vector w that maximizes the variance along the projection

• This leads to the following constrained optimization problem

• Using the method of Lagrange Multipliers to convert it to an Unconstrained 
optimization problem

28

max
𝐰1

 𝒘𝑻𝑪𝒘 − 𝜆 𝒘𝑻𝒘 − 1

𝑪𝒘 = 𝜆𝒘

max
u

𝑓 𝑢  𝑠. 𝑡. 𝑔 𝑢 = 0

max
u,𝛼

𝑓 𝑢  − 𝛼𝑔 𝑢

Method of Lagrange Multipliers

Constrained Optimization Problem

Unconstrained Optimization Problem
https://en.wikipedia.org/wiki/Lagrange_multiplier 

max𝒘 𝑉𝑎𝑟 𝑧 = 𝒘𝑻𝑪𝒘
subject to: 
 𝒘 2 = 𝒘𝑻𝒘 = 1 

https://en.wikipedia.org/wiki/Lagrange_multiplier
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Principal Component Analysis

• The direction of maximum variance is 𝒘, given by: 

• 𝒘 is the Eigen Vector Corresponding to the covariance matrix 𝑪
with Eigen value𝜆

– It is called the principal direction

• Thus: The direction of maximum variance of the data X is the 
same as the eigen vector of its Covariance matrix (with the 
largest eigen value)

29

𝑪𝒘 = 𝜆𝒘

To refresh, see: https://github.com/foxtrotmike/PCA-Tutorial/blob/master/Eigen.ipynb 

https://github.com/foxtrotmike/PCA-Tutorial/blob/master/Eigen.ipynb
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Further Principal Directions?

• So far we have found only the first principal component, How 
do we find the others? 

• In general, if we desire to find the kth principal direction, we 
solve:

• Fortunately, similarly the covariance matrix of the data C gives 
us all these principal directions as its d eigen vectors

30

max𝒘 𝑉𝑎𝑟 𝑧 = 𝒘𝑘
𝑻𝑪𝒘𝑘

subject to: 

 𝒘𝑘
2 = 𝒘𝑘

𝑇𝒘𝑘 = 1

   𝒘𝑘
𝑇𝒘𝑗 = 0 ∀𝑗 < 𝑘 (orthogonality constraint to avoid information redundancy)
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An algorithmic view of how PCA Works
• Input: 𝑿𝑁×𝑑

• Output: A transformation matrix W which can be used for dimensionality reduction
• Parameters: Selection of principal components

– Proportion of variance
– Number of principal components (k)
– Which principal components to retain

• Internal Working
– Normalize or standardize data

• Calculate feature wise-mean and standard deviation and normalize data to zero mean and unit standard deviation (to 
achieve invariance of scales – esp when different features have different scales or ranges)

– Find Covariance Matrix
– Find Principal Components (Eigen Value Problem)
– Select Principal Components

• Using Scree Graph or Intuition

– Reduce dimensionality by Projection along selected components

• Code: https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb

31

https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
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Algorithm for PCA

• Each of the N samples is stored as a d-dimensional vector 

• The data matrix is formed as 

• Centralize (or standardize) each sample in the data as 

• Compute the 𝑑 × 𝑑 Covariance Matrix 

• Find the Eigen Values λ1, λ2… λd & d-dimensional Eigen Vectors w1, w2… wd , of C using 𝑪𝜆𝑖 = 𝒘𝑖𝜆𝑖 or Singular Value 
Decomposition (SVD) and sort the eigen values in decreasing magnitudes. Normalize the eigen vectors to have unit norm. 

• Calculate the required dimension k based on proportion of variance approach or scree graph

• Form W=[ w1 w2 … wk ](d x k)

• A centralized or standardized vector x’ can be projected using z = WTx’

• A projected vector can be used to reconstruct the standardized vector x’ using x’ = Wz followed by decentralization xr = x’+ 𝝁𝒙

𝑪 =
ሜ𝑿 ሜ𝑿𝑻

𝑵 − 𝟏

𝒙𝒊 = 𝑥1
𝑖 ⋯ 𝑥𝑑

𝑖 𝑇

ǉ𝒙𝒊 = 𝒙𝒊 − 𝝁𝒙

𝑿𝒅×𝑵 = 𝒙𝟏 ⋯ 𝒙𝑵

ሜ𝑿 = ǉ𝒙𝟏 ⋯ ǉ𝒙𝑵

pca.fit(X)

pca.transform(X)

pca.explained_variance_ 

pca.explained_variance_ratio_

pca.inverse_transform(Z)

sklearn PCA
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The co-variance matrix is:  
𝟏 𝟎. 𝟗𝟔

𝟎. 𝟗𝟔 𝟏
 (Symmetric!)

Eigen vector 1 (Principal Direction 1):

 𝒘𝟏 =
𝟎. 𝟕𝟎𝟕𝟏
𝟎. 𝟕𝟎𝟕𝟏

, 𝜆𝟏 = 𝟏. 𝟗𝟔

Variance of data after projecting along 𝒘𝟏: 1.96 (eq. to 𝜶𝟏)

Eigen vector 2 (Principal Direction 2):

 𝒘𝟐 =
−𝟎. 𝟕𝟎𝟕𝟏
𝟎. 𝟕𝟎𝟕𝟏

, 𝜆𝟐 = 𝟎. 𝟎𝟒

Variance of data after projecting along 𝒘𝟏: 0.04 (eq. to 𝜶𝟐)

 

Total Variance after data projection is 1.96+0.04 = 2.0

Total Variance after projection is equal to Total Variance 

before projection. 

Fraction of variance captured along each PC:

 Using PC-1: 1.96/2 = 0.98

 Using PC-1 and PC-2: (1.96+0.04)/2 = 1.0

The two PC vectors (principal directions) are orthogonal to 

each other 𝒘𝟏
𝑻𝒘𝟐  =  𝟎 

The PC Matrix is 𝐖 =
𝟎. 𝟕𝟎𝟕𝟏 −𝟎. 𝟕𝟎𝟕𝟏
𝟎. 𝟕𝟎𝟕𝟏 𝟎. 𝟕𝟎𝟕𝟏

The inverse of W is: 𝐖−𝟏 =
𝟎. 𝟕𝟎𝟕𝟏 𝟎. 𝟕𝟎𝟕𝟏

−𝟎. 𝟕𝟎𝟕𝟏 𝟎. 𝟕𝟎𝟕𝟏
= 𝑾𝑻

Thus, 𝐖𝐓𝐖 = 𝐈 (The transpose of W matrix is inverse of W) Principal axis 1
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Things to note

• For this data
– There are two principal components: The one with the largest variance (eigen value) is called the 

first principal component whereas the other one is called the second principal component. 

– The variance along the first principal component is higher in comparison to the second.

– The variance along the first projected direction is higher than the variance along original features 
which is 1.0 after normalization. Thus, the principal component is a direction that captures more 
information than any of the original features alone.

– The norm of each of the principal components is 1.0.

– The two principal components are orthogonal to each other (i.e., their dot product is zero)

– After project, the data is centered and the resulting features are orthogonal (statistically 
uncorrelated) to each other, i.e., PC-1 does not carry any information about PC-2

– The principal component matrix and its transpose are inverses of each other, i.e., 𝐖𝐓𝐖 = 𝐈

– The eigen values correspond to the amount of captured variance: The fraction of variance captured 
along a direction is exactly equal to the fraction of eigen values. Thus, the first principal component 
corresponds to the largest eigen value and so on.

– The plot of the fraction of captured variance up to k principal components (called the scree plot) can 
be used to select how many principal components to retain when reducing dimensionality. For the 
original data used in this example, upto 98% variance is along the first principal component. 
Therefore, if the second principal component is dropped, the loss of information will be only ~2%.

34
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PCA for dimensionality reduction
• Eigen values of the covariance matrix with small 

magnitudes have small contribution to the total 
variance of the data and these can be discarded 
without major loss of information
– We can retain 90% variance of the data by storing the 

largest eigen values and eigen vectors which contribute 
90% of the variance and projecting our data on these 
bases

• We can thus calculate Proportion of Variance (PoV) 
explained by the k eigen vectors with the largest 
eigen values as follows:

when λi are sorted in descending order 
• Typically, stop at PoV > 0.9
• Scree graph plots PoV vs k

– Stop at “elbow”

• Now the d-dimensional data vector x with 
associated mean vector µ can be projected using 
the k x d dimensional W matrix containing the k
selected eigen vectors to obtain a k < d dimensional 
data vector z using: z = WTx

( ) 1 2

1 2

k

k d

PoV k
  

   

+ + +
=

+ + + + +
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How to code?
• Fitting PCA to training data

– from sklearn.decomposition import PCA

– pca = PCA(n_components=4)

– pca.fit(X) #rows are samples, columns are features

• Projection

– Z = pca.transform(X)

• Visualization

• Scree Graph

– plt.plot(np.cumsum(pca.explained_variance_ratio_),'o-’)

• Reconstruction

– Xr = pca.inverse_transform(Z)

36
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PCA for Iris dataset

38
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Example

• MNIST visualization

• X: Nx (d=64)

• Scree Graph

39
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Visualization

40
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PCA: Reconstruction

• We know that 𝒛 = 𝑾𝑇𝒙 (assuming 
𝒙 is centered) therefore 

• The reconstruction error is given by 

• Another way of interpreting PCA is 
that it finds orthogonal direction 
vectors such that after projecting 
data onto to them, the 
reconstruction error is minimal.

ෝ𝒙 = 𝑾𝑇 −1𝒛
⇒ ෝ𝒙 = 𝑾(𝑑×𝑘)𝒛  ∵ 𝑾𝑾𝑻 = 𝑰

𝐸𝑟𝑒𝑐 = ෍

𝑖=1

𝑁

ෝ𝒙𝒊 − 𝒙𝒊

min
𝑾

෍

𝑖=1

𝑁

ෝ𝒙𝒊 − 𝒙𝒊  𝒔. 𝒕𝒉. 𝑾𝑾𝑻 = 𝑰

𝒙 𝑾𝑇 𝒛 𝑾 ෝ𝒙

𝑃𝐶𝐴
ℝ𝑑 → ℝ𝑘

𝐼𝑃𝐶𝐴
ℝ𝑘 → ℝ𝑑

−

flatten Un-flatten
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Visualizing the Principal Directions

• Notice that in the case of the MNIST example, each eigen 
vector will itself be 64 dimensional and can be visualized as an 
8x8 image. These images can be called “eigen” digits as they 
show the characteristic variations in pixels in the given 
dataset. 

42

…
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An example as linear combination of eigen vectors

• We have expressed each data point in k-dimensions, where 
each dimension corresponds to a certain principal component 
eigen vector. This allows us to write the reconstruction as a 
linear combination of these vectors as follows: 

• Example

43

≈ = + + + +
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Eigen Faces

• PCA Widely used in face detection and recognition

• Allows expressing a face image in terms of a small number of 
components

44

Turk, M. "Pentland. Eigenfaces for recognition." K. Cogn. Neurosci 4 (1991): 72-86.

Eigen Faces Code: https://scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html 

https://scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html
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Advanced: Snapshot Method for when d>>N

• If the input dimension (d) is large then the size of the 
covariance matrix is also large making its calculations 
computationally demanding

• It is known that for a d x N matrix the maximum number of 
non-zero eigenvectors is min(d-1,N-1)

• If N < d, then we can compute the eigen vectors wi’ of 

instead of C. The eigen values for both C and C’ are same and 
the eigen vectors of C can be obtained from those of C’ using 

𝐶(𝑁×𝑁)
′ =

ሜ𝑋𝑇𝑋

𝑁 − 1

( ) ( ) ( )1 1

'

d Ni id N
w X w

 
=
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Advanced: Snapshot Method

• Each of the N samples is stored as a d-dimensional vector 

• The data matrix is formed as 

• Compute the mean m=[m1 … md]T from X using

• Centralize each sample in the data as 

• Compute Covariance Matrix 

• Find the Eigen Values (sorted in decreasing values) λ’1, λ’2… λ’d & d-dimensional Eigen Vectors w’1, 
w’2… w’d , of C’ using C’λ’=w’λ’ . 

• Calculate the required dimension k based on proportion of variance-based approach explained 
earlier for a given threshold

• Form W=[ w1 w2 … wk ](d x k)

• Unit-Normalize the vector 𝑤𝑖

• A vector x can be projected using z = WT(x- m) 

𝐶′ =
ሜ𝑋𝑇 ሜ𝑋

𝑁 − 1

1

T
i i i

dx x x =  

1

1 P
j

i i

j

m x
N =

= 
i ix x m= −

1 NX x x =  

1 NX x x =  

𝑤𝑖 = ሜ𝑋𝑤𝑖
′
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Advanced: Theorem Proofs Used but not given

• Spectral Theorem: As C (covariance matrix) is symmetric positive definite 
thus its Eigen vectors with different Eigen values are orthogonal and the 
resulting projected data directions are uncorrelated. 
– It also states that the eigen values are non-negative. 

– Also, as the eigen vectors in W are orthogonal, WWT = I or W’s inverse is WT

• Proof that Eigen values of the covariance matrix are equal to the variance 
of the data after projection along those directions

• The objective function of PCA is convex: As the variance is calculated as 
𝑉𝑎𝑟 𝑧 = 𝒘𝑻𝑪𝒘, and if C (the covariance matrix) is positive semi-definite 
then the objective function −𝑉𝑎𝑟 𝑧 = −𝒘𝑻𝑪𝒘 is not non-convex. 

48

https://en.wikipedia.org/wiki/Spectral_theorem
https://math.stackexchange.com/questions/114072/what-is-the-proof-that-covariance-matrices-are-always-semi-definite
https://math.stackexchange.com/questions/2147211/why-are-the-eigenvalues-of-a-covariance-matrix-equal-to-the-variance-of-its-eige
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REO for PCA with SRM
• Basic Principle: Find orthogonal directions of maximal variance

• Representation: 𝑓 𝒙𝒊 = 𝒘𝑻𝒙𝒊

– Project the data onto a direction vector 𝒘

• Evaluation
– Regularization: Minimize the norm of 𝒘 or make sure 𝒘𝑻𝒘 = 𝒘 𝟐 = 1

– Empirical error term is the “Reconstruction Error” or “Lost Variance”

• “Lost Variance”: Loss of information (or variance) after projection: 

Total Variance (𝑉) – Variance in data after projection (𝑉𝑎𝑟 𝑧 = 𝒘𝑻𝑪𝒘)

𝑬 𝑿; 𝒘 = 𝑉 − 𝒘𝑻𝑪𝒘

• Optimization

– min
𝒘

𝝀

𝟐
𝒘𝑻𝒘 + 𝑉 − 𝒘𝑻𝑪𝒘

– Closed form solution after taking derivative: 𝑪𝒘 = 𝜆𝒘 leads to Eigen value problem

• Find a “characteristic” vector 𝒘 for the matrix 𝑪 such that multiplying 𝒘 by 𝑪 has a scaling effect on 
𝒘

• The Eigen Value formulation also allows to determine multiple “orthogonal” eigen vectors. The 
eigen values 𝜆 tell about the importance of each and can be used to pick PCs based on “explained 
variance”

– Can be kernelized leading to Kernel PCA!

• Practical Notes: 

– Always plot the scree plot or the proportion of variance plot

– Look at the eigen vectors

49

𝑪 =
1

𝑁
𝑿𝑿𝑻

𝑿 is Nxd matrix with of N examples each with d features. 
Each feature has zero mean and unit standard deviation. 
𝑲 is NxN (centered) kernel matrix.

Variance after projection

Kernel Trick
𝑪 =

1

𝑁
𝑲
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Be careful with your principal components

Björklund, Mats. “Be Careful with Your Principal Components.” Evolution 73, no. 10 (2019): 2151–58. https://doi.org/10.1111/evo.13835.

• Different components need to be distinct from each other to be 
interpretable otherwise they only represent random directions.

• Sample correlation matrices will always result in a pattern of 
decreasing eigenvalues even if there is no structure. 

• Tests are, therefore, needed to discern real patterns from illusionary 
ones:  PC-scores calculated from non-distinct PC's have very large 
standard errors and cannot be used for reasonable interpretations.

50

“By randomizing the values of each “feature” 
between “examples” … the structure of the 
original data is broken up and the test is, thus, 
how large value of these statistics can you get 
in a data set without structure just by chance.”

When there is underlying structure in the data, 
the PC’s are distinct with different levels of 

variance captured along each

When there is NO underlying structure in the 
data, the PC’s are NOT distinct

https://doi.org/10.1111/evo.13835
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How many PCs to choose?

51

Thanks to Roy Goodacre for pointing me to this work ☺
Andrew Clayton, T., John C. Lindon, Olivier Cloarec, Henrik Antti, Claude Charuel, Gilles Hanton, Jean-Pierre Provost, et al. “Pharmaco-Metabonomic Phenotyping and 
Personalized Drug Treatment.” Nature 440, no. 7087 (April 2006): 1073–77. https://doi.org/10.1038/nature04648. 
Shen, Bo, Xiao Yi, Yaoting Sun, Xiaojie Bi, Juping Du, Chao Zhang, Sheng Quan, et al. “Proteomic and Metabolomic Characterization of COVID-19 Patient Sera.” Cell 182, no. 1 
(July 9, 2020): 59-72.e15. https://doi.org/10.1016/j.cell.2020.05.032.

https://en.wikipedia.org/wiki/Roy_Goodacre
https://doi.org/10.1038/nature04648
https://doi.org/10.1016/j.cell.2020.05.032
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It’s not always the first few principal components

• Remember PCA and its eigen vectors aren’t 
magical

• They are just showing characteristics of the 
data
– The principal directions are literally eigen (or 

characteristic) vectors of the covariance matrix of 
the data!

– Specifically, the first PC is along the direction of 
the biggest variance

– But what is the source of that variation?
• Is it differences between classes?
• Is it an unrelated factor? 

– For image data, the first principal component can be 
associated with variation in illumination or lighting which 
leads to the biggest change in pixel values but may not 
communicate any information about the underlying 
difference in classes depending upon the application!

– The last components can be variations due to noise!

52

Changes in illumination can be 
the source of the biggest 
variation in images. 
Consequently, in order to 
perform face recognition that 
is robust to such “non-causal” 
variations, we may choose to 
drop the first few PCs!
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PCA can compress and denoise

• By removing principal components associated with noise or unwanted variations and then reconstructing data, we can achieve 
denoising. 

53

Image denoising using kernel PCA

https://scikit-learn.org/stable/auto_examples/applications/plot_digits_denoising.html#sphx-glr-auto-examples-applications-plot-digits-denoising-py
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Dyer, Eva L., and Konrad Kording. “Why the Simplest Explanation Isn’t Always the Best.” Proceedings of the National Academy of 
Sciences 120, no. 52 (December 26, 2023): e2319169120. https://doi.org/10.1073/pnas.2319169120. 

https://doi.org/10.1073/pnas.2319169120
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PCA Conclusions

• Other variants

– Incremental PCA

– Robust PCA

– Kernelized PCA

• PCA Tutotrial Notes

• https://github.com/foxtrotmike/PCA-Tutorial/blob/master/Eigen.ipynb

• https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-
lagrange.ipynb

55

https://scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html
https://en.wikipedia.org/wiki/Robust_principal_component_analysis
https://en.wikipedia.org/wiki/Kernel_principal_component_analysis
https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
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Advanced: PCA as an optimal transport problem

• A key requirement for dimensionality reduction is to incorporate global dependencies among original 
and embedded samples while preserving clusters in the embedding space. 

• Reformulate a subspace recovery problem with an OT objective and show that it indeed yields the standard PCA 
when using least-squares cost and no regularization

• Example: The Breast dataset contains n = 151 samples with d = 54675 gene expressions each. The goal is to 
classify these data into 6 classes corresponding to breast cancer subtypes and normal tissues.

56

Collas, Antoine, Titouan Vayer, Rémi Flamary, and Arnaud Breloy. “Entropic Wasserstein Component Analysis.” arXiv.org, March 9, 2023. https://arxiv.org/abs/2303.05119v1.

Better classification in comparison to a 1-NN over the same dataset Recovery of the clustering from the transport plan

https://arxiv.org/abs/2303.05119v1
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Advanced: Loadings and PCA via SVD

• Loadings are obtained by multiplying the Eigen vectors by their 
square root of the eigen values 

– Give the contribution (loading) of each original features to a PC

– loading matrix = pca.components_.T * sqrt(pca.explained_variance_).

• Principal components are the eigen vectors of the covariance 
matrix of the data

• Projections of the data on the principal components are also 
known as PC scores

57

https://scentellegher.github.io/machine-learning/2020/01/27/pca-loadings-sklearn.html 
https://stats.stackexchange.com/questions/134282/relationship-between-svd-and-pca-how-to-use-svd-to-
perform-pca 

https://scentellegher.github.io/machine-learning/2020/01/27/pca-loadings-sklearn.html
https://stats.stackexchange.com/questions/134282/relationship-between-svd-and-pca-how-to-use-svd-to-perform-pca
https://stats.stackexchange.com/questions/134282/relationship-between-svd-and-pca-how-to-use-svd-to-perform-pca
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Advanced: PCA in terms of SVD

• Given a matrix X
• Standardize it (standard scalar)
• U,S,V = svd(Xn)

– V are the principal components
• Z = Xn@V.T will project the data onto the principal components to give projection 

scores
• Equivalent to Z = U*S

– While U itself doesn't measure the correlation between the data and the 
PCs, you can indirectly assess the relationship between the data and the 
PCs by examining the weights (coefficients) in U. High absolute values in 
the coefficients for a particular PC suggest that the data points have a 
strong relationship with that PC, indicating that the PC captures a 
significant portion of the variation in the data.

58
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Advanced: A different way of interpreting PCA

• PCA uses correlation to project the data points along principal components (z = WTx)

– The problem with correlation 

• The correlation of 0.5 is closer to zero than it is to 1.0. 

• Always look at the scatter plot if someone tells you a correlation value

• We need to re-scale the correlation so that when data is plotted in the PCA space it 
actually aligns with the true notion of information (papers below)

• This will tell us what groups of samples dominate each PC or to what degree each PC 
“explains” a certain sample

• A heuristic approximation of mutual information is:

• 𝑀𝐼𝑋,𝑉 𝑖,𝑗
= −sgn 𝑈𝑖,𝑗 log2 1 − 𝑈𝑖,𝑗

2 where 𝑈𝑖,𝑗 is the correlation between data point 𝑖 and 

PC 𝑗. 

– This method serves a dual purpose:  

• it measures how many bits of information are shared between a given sample and a principal 
component 

– “How much are you willing to bet on Y knowing X” is MI(Y;X)

• it gives a sense of how well an association between groups of samples and each individual 
sample and a principal component can be distinguished from chance.

– MI also used in “Correlation Explanation” methods

59

Video: https://youtu.be/o9Ac85xdjE4?t=525
Taleb, Nassim Nicholas, Pierre Zalloua, Khaled Elbassioni, Andreas Henschel, and Daniel E. Platt. “Informational Rescaling of 
PCA Maps with Application to Genetic Distance.” arXiv.org, March 14, 2023. https://arxiv.org/abs/2303.12654v1.
Platt, Daniel E., Hovig Artinian, Francis Mouzaya, Wissam Khalil, Francois G. Kamar, Elizabeth Matisoo-Smith, Francesc 

Calafell, Nassim Nicolas Taleb, and Pierre Zalloua. “Autosomal Genetics and Y-Chromosome Haplogroup L1b-M317 Reveal 
Mount Lebanon Maronites as a Persistently Non-Emigrating Population.” European Journal of Human Genetics 29, no. 4 
(April 2021): 581–92. https://doi.org/10.1038/s41431-020-00765-x.

#re-scaling PCA plot 

Xn = StandardScaler().fit_transform(X)

U,S,_ = np.linalg.svd(Xn)

d = Xn.shape[1]

U = U[:,:Xn.shape[1]]

Z = U*S

plt.scatter(Z[:,0],Z[:,1]) #regular PCA plot

Z_mi = -np.sign(U)*0.5*np.log2(1-U**2)#*S/np.sqrt(d-1) 

#uncomment last part to get equivalent of loadings

plt.scatter(Z_mi[:,0],Z_mi[:,1]) #with mi scaling

With Mutual 
Information scaling 
indicating shared 
bitwise information 
(augmented by the 
sign) between samples 
and principal 
components.

Here the x and y axes ae 
the loadings, i.e., 

pc x sqrt(eig-val)

https://github.com/foxtrotmik
e/PCA-
Tutorial/blob/master/pca-
lagrange.ipynb 

https://youtu.be/o9Ac85xdjE4?t=525
https://arxiv.org/abs/2303.12654v1
https://doi.org/10.1038/s41431-020-00765-x
https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
https://github.com/foxtrotmike/PCA-Tutorial/blob/master/pca-lagrange.ipynb
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Dimensionality Reduction: Important Conceptual Note

• A number of variables can be correlated in real 
datasets

• Thus, the effective dimensionality of the dataset can 
be lower than what you see in terms of number of 
features

• Thus, data lives on a “manifold”
• That is why dimensionality reduction models help
• These manifolds may not be linear
• Taxonomy of dimensionality reduction methods

– Linear: PCA, LDA, Canonical Component Analysis 
– Nonlinear

• Manifold Learning Approaches: uncovering the low-
dimensional structure hidden within high-dimensional data

– Kernel PCA, MDS, Locally linear embeddings, t-SNE …

• Probabilistic Approaches
– ICA

• Topological Data Analysis: Preservation of the topological 
structure of the data

– UMAP

– Supervised Dimensionality Reduction

62

Roweis, Sam T., and Lawrence K. Saul. “Nonlinear Dimensionality Reduction by Locally Linear 
Embedding.” Science 290, no. 5500 (December 22, 2000): 2323–26. 
https://doi.org/10.1126/science.290.5500.2323.

https://doi.org/10.1126/science.290.5500.2323
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Independent Component Analysis

• Being linear PCA produces 
orthogonal or un-correlated 
components

• ICA generalizes this idea by 
identifying projection directions 
with minimal “mutual 
information”, i.e., knowing one 
doesn’t tell anything about the 
other 

• Used in signal analysis and “blind 
source separation”

63

Code: https://scikit-learn.org/stable/auto_examples/decomposition/plot_ica_vs_pca.html  

https://scikit-learn.org/stable/auto_examples/decomposition/plot_ica_vs_pca.html
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Manifold Learning: MDS

• Multi-dimensional Scaling

• Representation
• Input

– Pairwise Distance matrix between 
examples based on d features 𝑑𝑖𝑗

• Output
– A k-dimensional representation of each 

example: 𝒙𝑖

• Evaluation
• Reduce the number of dimensions in 

the data while preserving pairwise 
distances between points
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Read More: Wikipedia
MDS in Sklearn

https://en.wikipedia.org/wiki/Multidimensional_scaling
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
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Manifold Learning Based Methods

65

Code: https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html 
Locality constrained linear coding

https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
https://github.com/foxtrotmike/LLC/blob/master/llc.py
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Manifold Learning: How does t-SNE work?
• t-distributed stochastic neighbor

embedding
– Fundamental Idea: The “local” 

probability distributions of similarity 
between points before and after 
projection should be the same

• Representation
– Input: d-dimensional feature 

representation 𝒙𝑖

– Output: k-dimensional feature 
representation 𝒚𝑖

• Evaluation
– Reduce data dimensionality while 

preserving the local probability 
distribution of the data

• Practical Notes
– It preservers the “local structure”

– Hyperparameters: Number of 
dimensions, “Perplexity / Spread of 
neighborhood”
• Sklearn implementation
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Additional resources: Wikipedia Page
Very good tutorial: https://towardsdatascience.com/t-sne-clearly-explained-d84c537f53a 

Evaluation: min

Notice each point has its own spread

Probability of 
similarity 
between 
points before 
projection

Probability of 
similarity 
between 
points after 
projection

Kullback–Leibler (KL) divergence
(aka relative entropy) Measuring 
how much different one probability 
distribution is from another

𝒙𝑗

𝒙𝑖

𝒚𝑗

𝒚𝑖

Probability of similarity 
between points before 
projection pij

Probability of similarity 
between points after 
projection

p
ro

b
ab

ili
ty

p
ro

b
ab

ili
ty

𝑞𝑖𝑗𝑝𝑖𝑗

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://towardsdatascience.com/t-sne-clearly-explained-d84c537f53a
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
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Topological Data Analysis: UMAP
• Uniform Manifold Approximation and Projection

– Basic Principle: Preserve the topological structure (edges, 
“faces” etc) of the data during dimensionality reduction

• Representation
– Input: d-dimensional feature representation 𝒙𝑖

– Output: k-dimensional feature representation 𝒚𝑖

• Evaluation
– Minimize the cross-entropy between two “fuzzy simplical set” 

representations of the original data and the reduced 
dimensionality data

– It constructs a high-dimensional graph representing the 
manifold by connecting each point to its nearest neighbors, 
then optimizes a low-dimensional graph to be as structurally 
similar as possible, using cross-entropy between fuzzy set 
representations of the graphs to approximate this optimization.

• Practical Notes
– Unlike t-SNE which is focused on preservation of local structure, 

UMAP can balance preservation of global and local structures
– Hyperparameters: Number of neighbors in the graph, minimum 

distance (more robust to hyperparameter values in comparison 
to t-SNE)

– Both Unsupervised and Supervised
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Data occurring on a manifold. 
A “fuzzy open set” 
representation is developed in 
which the local influence of 
each point extends to at least 
its immediate neighbor. 

A graph is developed in which 
the nodes are connected based 
on the local topological 
structure of the data and the 
weighted edges show the 
probability of connection 
between nodes

Minimize Cross Entropy between graph representations in high and low 
dimensional spaces
Intuitively: Minimize much information is lost when using one distribution 
(low-dimensional one in this case) to approximate another (high-dimensional 
one)

https://umap-learn.readthedocs.io/en/latest/how_umap_works.html 

https://en.wikipedia.org/wiki/Cross-entropy
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
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UMAP Over MNIST
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https://grantcuster.github.io/umap-explorer/ 

https://grantcuster.github.io/umap-explorer/
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UMAP of Mesothelioma cells
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Eastwood, Mark, …, Fayyaz Minhas. “MesoGraph: Automatic Profiling of Mesothelioma Subtypes from Histological Images.” Cell 
Reports Medicine 0, no. 0 (October 9, 2023). https://doi.org/10.1016/j.xcrm.2023.101226.

https://en.wikipedia.org/wiki/Mesothelioma
https://doi.org/10.1016/j.xcrm.2023.101226
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Limitations of dimensionality reduction 

• All dimensionality reduction methods introduce 
distortions of some sorts
– Shown on the right is the same 20,000 dimensional data 

reduced to 2-dimensions using UMAP and shown as a 
world map and as an elephant  

• If I don’t see something in reduced dimensions
– It may still exist

• If I do see something in reduced dimensions
– It may not be there

• Further confirmatory/validation checks are needed

• Tweet: 
https://twitter.com/lpachter/status/143132596941182
1572
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Chari, Tara, and Lior Pachter. “The Specious Art of Single-Cell Genomics.” PLOS Computational 
Biology 19, no. 8 (August 17, 2023): e1011288. https://doi.org/10.1371/journal.pcbi.1011288. 

https://twitter.com/lpachter/status/1431325969411821572
https://twitter.com/lpachter/status/1431325969411821572
https://doi.org/10.1371/journal.pcbi.1011288
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Supervised Dimensionality Reduction

• Most dimensionality reduction approaches 
are un-supervised in that they do not use 
any “class” information or other 
supervisory signal in their projection

• However, there are supervised 
dimensionality reduction methods but 
they are not used that frequently

• We can use PCA to produce an 
“embedding” of examples over training 
data which can then be used over test data 
for classification but the PCA itself doesn’t 
use labels

• Important Note: Never use test labels or 
any other “target” information (directly or 
indirectly)
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Linear Discriminant Analysis

• Goal/Principle: Find the direction vector that maximally 
separate examples of two different classes while 
projecting data of each class as compactly as possible

• Representation

– Linear: z = wTx

• Evaluation

• Multi-class LDA produces a weight vector that is 
(Number of classes -1) in dimensionality 
– In essence, this tells us the direction of maximal separability under the assumption that 

the data is gaussian distributed
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max
𝒘

𝑆 =
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

=
(𝒘𝑇𝒎1 − 𝒘𝑇𝒎2)

𝒔𝟏
𝟐 + 𝒔𝟐

𝟐 =
(𝒘𝑇𝒎1 − 𝒘𝑇𝒎2)

𝒘𝑇𝑪𝟏𝒘 + 𝒘𝑻𝑪𝟐𝒘

https://en.wikipedia.org/wiki/Linear_discriminant_analysis 
https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html 

https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html


University of Warwick

Supervised UMAP

• Guides the embedding 
process so that the data 
points with the same label 
are closer to each other in 
the reduced space, 
enhancing the separation 
between different classes.

• Can be used for semi-
supervised or transductive
learning in which label 
information is only available 
for a few examples

• Can also be used as a feature 
extractor
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Test

https://umap-learn.readthedocs.io/en/latest/supervised.html 

https://umap-learn.readthedocs.io/en/latest/supervised.html
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Other Models: Factor Analysis

• Goal

– Describe the variability among observed variables in 
terms of a potentially lower number of unobserved 
(latent) variables called factors to reveal the underlying 
structure of the data

• Representation

– In matrix form: 𝑋(𝑁×𝑑) = 𝑀 + 𝐹 𝑁×𝑘 𝐿 𝑘×𝑑 + 𝜖

– Express the (centralized) observations in terms of its 

• Evaluation (No orthogonality requirement)
min
(𝐹,𝐿)

𝑋(𝑁×𝑑) − (𝑀 + 𝐹 𝑁×𝑘 𝐿 𝑘×𝑑 )
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https://scikit-learn.org/stable/auto_examples/decomposition/plot_varimax_fa.html 

𝑋(𝑁×𝑑)

Given
𝐹(𝑁×𝑘) 𝐿(𝑘×𝑑)=

𝑀(𝑁×𝑑)

Fixed
+

Factors Loadings

https://en.wikipedia.org/wiki/Factor_analysis
https://scikit-learn.org/stable/auto_examples/decomposition/plot_varimax_fa.html
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Other Methods: Topic Models
• Goal

– Can we uncover what are the “topics” in a given
dataset
• From document modelling: How can we describe each 

document in terms of its topics

– Discover latent semantic structure in data

• Non-Negative Matrix Factorization
– Break down a given matrix in terms of non-

negative factors
– Representation (assuming centralized data)

𝑋(𝑁×𝑑) = 𝐹 𝑁×𝑘 𝐿 𝑘×𝑑

– Evaluation (assuming 𝑀 = 0)

min
(𝐹,𝐿)

𝑋(𝑁×𝑑) − 𝐹 𝑁×𝑘 𝐿 𝑘×𝑑

s.th. 𝐹 ≥ 0, 𝐿 ≥ 0

– Other Approaches: 
• Latent Dirichlet Allocation (LDA)
• Correlation Explanation
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N Documents (or other “items”)

Feature 
Representation (e.g., 
Word  frequencies for 

documents)

𝐹(𝑁×𝑘) 𝐿(𝑘×𝑑)

𝑋(𝑁×𝑑)

Given

Word 
frequency for 

each topic

Topic 
decomposition  of 

each document

NMF

What is each 
topic?What topics does 

each document 
discuss?

𝑋(𝑁×𝑑) 𝐹(𝑁×𝑘) 𝐿(𝑘×𝑑)=

“Stars” for each 
movie by each user

(with missing values)

Representation of 
each  movie in terms 
of “topics” which are 

automatically 
discovered

Preferences 
of each user 
in terms of 

those topics

https://en.wikipedia.org/wiki/Netflix_Prize 

Achieves Decomposition and Completion Simultaneously! 

https://en.wikipedia.org/wiki/Non-negative_matrix_factorization
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
https://arxiv.org/abs/1406.1222
https://en.wikipedia.org/wiki/Netflix_Prize
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Application

• What are the underlying patterns of gene expression of breast cancer patients and 
can those be predicted from whose slide imaging?
– Used CoRex to discover such patterns converting 20,000 genes to 200 binary topics!
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Dawood, Muhammad, Mark Eastwood, Mostafa Jahanifar, Lawrence Young, Asa Ben-Hur, Kim Branson, Louise Jones, Nasir Rajpoot, and Fayyaz ul Amir Afsar Minhas. 
“Cross-Linking Breast Tumor Transcriptomic States and Tissue Histology.” Cell Reports Medicine 4, no. 12 (December 19, 2023). 
https://doi.org/10.1016/j.xcrm.2023.101313.

<- Patients ->

https://doi.org/10.1016/j.xcrm.2023.101313
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Cross Decomposition: Canonical Correlation Analysis

• Goal: Uncover the degree of association between two 
feature spaces?
– Assume we have two sets of features for N examples and we 

would like to identify the direction(s) for each set such that the 
if the data are projected onto the corresponding directions, the 
resulting vectors are maximally correlated

• Representation (for single dimension reduction, k=1)
– Input Data Matrices: 𝑿 𝑁×𝑑𝑥

, 𝒀 𝑁×𝑑𝑦

– Output: 

• 𝑿′ = 𝑿 𝑁×𝑑𝑥
𝒂 𝑑𝑥×1 , 𝒀′ = 𝒀 𝑁×𝑑𝑦

𝒃 𝑑𝑦×1

• Evaluation
– Maximize Correlation between projected dimensions

– 𝒎𝒂𝒙(𝒂,𝒃) 𝒄𝒐𝒓𝒓 𝑿′, 𝒀′ (subject to some normalization 
constraints)

• Implementation
– https://scikit-learn.org/0.16/modules/generated/sklearn.cross_decomposition.CCA.html
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𝑿(𝑁×𝑑𝑋) 𝒀(𝑁×𝑑𝑌)

CCA

𝑿′(𝑁×𝑘)
=

𝑿(𝑁×𝑑𝑋)𝑨(𝑑𝑋×𝑘)

𝒀′(𝑁×𝑘)
=

𝒀(𝑁×𝑑𝑌)𝑩(𝑑𝑌×𝑘)

Andrew, Galen, Raman Arora, Jeff Bilmes, and Karen Livescu. “Deep Canonical Correlation Analysis.” In Proceedings of the 30th 
International Conference on Machine Learning, 1247–55. PMLR, 2013. https://proceedings.mlr.press/v28/andrew13.html. 
Benton, Adrian, Huda Khayrallah, Biman Gujral, Dee Ann Reisinger, Sheng Zhang, and Raman Arora. “Deep Generalized Canonical 
Correlation Analysis.” In Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), edited by Isabelle 
Augenstein, Spandana Gella, Sebastian Ruder, Katharina Kann, Burcu Can, Johannes Welbl, Alexis Conneau, Xiang Ren, and Marek Rei, 1–6. 
Florence, Italy: Association for Computational Linguistics, 2019. https://doi.org/10.18653/v1/W19-4301. 

𝑨 𝑩

Tells us how should I 
project 𝑿 so that it is 
maximally correlated 
with the projection of 𝒀

Tells us how should I 
project 𝒀 so that it is 
maximally correlated 
with the projection of 𝑿

https://en.wikipedia.org/wiki/Canonical_correlation
https://scikit-learn.org/0.16/modules/generated/sklearn.cross_decomposition.CCA.html
https://proceedings.mlr.press/v28/andrew13.html
https://doi.org/10.18653/v1/W19-4301
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Why dimensionality reduction is even possible!

• Variables in data may carry information 
about each other
– Why?

• Because the underlying physical or information 
generating source giving rise to examples is the 
same

• This introduces statistical dependence 
between our variables and gives structure 
(manifold or topological) to the data

• Dimensionality reduction approaches 
exploit such “Mutual Information” and 
help us uncover the hidden structure and 
to make sense of our data by identifying 
(a smaller number of) directions or latent 
variables that can “explain away” our data
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Johnson–Lindenstrauss lemma

https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
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End of Lecture

We want to make a machine that will be proud of us.

- Danny Hillis
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