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The Philosophical 
foundations of 

Machine Learning
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Paintings by two different painters
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Who’s painting is this?
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And this?

learning from data for generalization to unseen cases

inductive inference
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I. Entities have (explicit or implicit) representations
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A transformer that 
can transform into a 
yellow car 

My self
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Application: Conventional Histopathology
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Application: Digital Pathology
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• Flexible working
• Good concordance with slide based 

clinical decision making based on 
equivalence studies

• However: digitization of glass slides 
alone does not resolve the pressures 
of an increasing workload on a 
diminishing workforce of pathologists

Example equivalence studies: Snead, David R. J., Yee-Wah Tsang, Aisha Meskiri, Peter K. Kimani, Richard Crossman, Nasir M. Rajpoot, Elaine Blessing, et al. “Validation of Digital 
Pathology Imaging for Primary Histopathological Diagnosis.” Histopathology 68, no. 7 (June 2016): 1063–72. https://doi.org/10.1111/his.12879.
Hanna, Matthew G., Victor E. Reuter, Meera R. Hameed, Lee K. Tan, Sarah Chiang, Carlie Sigel, Travis Hollmann, et al. “Whole Slide Imaging Equivalency and Efficiency Study: 
Experience at a Large Academic Center.” Modern Pathology 32, no. 7 (July 2019): 916–28. https://doi.org/10.1038/s41379-019-0205-0. 

https://doi.org/10.1111/his.12879
https://doi.org/10.1038/s41379-019-0205-0
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Application: Computational Pathology
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Example Independent validation study of PAIGE Prostate: Kanan, Christopher, Jillian Sue, Leo Grady, Thomas J. Fuchs, Sarat Chandarlapaty, Jorge S. Reis-Filho, Paulo G O Salles, Leonard 
Medeiros da Silva, Carlos Gil Ferreira, and Emilio Marcelo Pereira. “Independent Validation of Paige Prostate: Assessing Clinical Benefit of an Artificial Intelligence Tool within a Digital 
Diagnostic Pathology Laboratory Workflow.” Journal of Clinical Oncology 38, no. 15_suppl (May 20, 2020): e14076–e14076. https://doi.org/10.1200/JCO.2020.38.15_suppl.e14076.

https://info.paige.ai/prostate 

https://info.paige.ai/prostate
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How does ML work?
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Wenqi Lu, Islam M Miligy, Fayyaz Minhas, Young Saeng Park, David R J Snead, Emad A Rakha, Clare Verrill, Nasir Rajpoot “Lessons from a Breast Cell Annotation 
Competition Series for School Pupils.” Scientific Reports, 2022. https://ora.ox.ac.uk/objects/uuid:9e34d4e6-c677-4380-9403-759808b349aa. 
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https://ora.ox.ac.uk/objects/uuid:9e34d4e6-c677-4380-9403-759808b349aa
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How does ML work?
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Wenqi Lu, Islam M Miligy, Fayyaz Minhas, Young Saeng Park, David R J Snead, Emad A Rakha, Clare Verrill, Nasir Rajpoot “Lessons from a Breast Cell Annotation 
Competition Series for School Pupils.” Scientific Reports, 2022. https://ora.ox.ac.uk/objects/uuid:9e34d4e6-c677-4380-9403-759808b349aa. 
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https://ora.ox.ac.uk/objects/uuid:9e34d4e6-c677-4380-9403-759808b349aa
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Classification Approaches: Nearest Neighbor and kNN
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𝑥
(2
)
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𝐷 𝒙𝒂, 𝒙𝒃 = 𝑥𝑎
(1)

− 𝑥𝑏
(1) 2

+ 𝑥𝑎
(2)

− 𝑥𝑏
(2) 2

• Python Warm-up Lab Exercise
• https://github.com/foxtrotmike/CS909/blob/master/DM_1_kNN.ipynb 

https://github.com/foxtrotmike/CS909/blob/master/DM_1_kNN.ipynb
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Example (k=1)-Nearest Neighbor Classification

Demo: https://foxtrotmike.github.io/CS909/knn.html 

Discuss:
 Partitioning of the representation space
 Is k-NN a good rule?
 Can we separate points with a line?
 

https://foxtrotmike.github.io/CS909/knn.html
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“Bank” in which statement 
is more semantically related 

to the picture?

• A: As he walked by the bank, he saw some tillers

• B: As he walked by the bank, he saw some tellers

17
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II. Semantic relatedness of entities is context dependent 
and thus their representations are contextual

As he walked by the bank, he saw some tillers As he walked by the bank, he saw some tellers
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III. Representation of an entity can allow us to reconstruct or 
“generate” it



Data Mining University of Warwick 20

IV. It is possible to develop representations in an inductive 
manner (i.e., through empirical observations)

https://en.wikipedia.org/wiki/Johannes_Kepler
https://earthobservatory.nasa.gov/features/OrbitsHistory
https://plato.stanford.edu/entries/induction-problem/ 
 

https://plato.stanford.edu/entries/induction-problem/
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V. To act effectively and adaptively towards a goal, a being requires 
developing and using causal representations of entities at an 

appropriate level of complexity.
21

US Airways Flight 1549
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Only if we could have a mechanism that would enable 
developing such representations from empirical 

observations
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Machine Learning and Deep 
Learning give mechanisms 

that allow us to use or develop 
effective representations from 

empirical observations that 
would generalize to unseen 

cases
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I. Entities have (explicit or implicit) representations

II. Semantic relatedness of entities is context 
dependent and thus their representations are 
contextual

III. Representation of any entity can allow us to 
reconstruct or “generate” it to a “sufficient”

IV. It is possible to develop representations in an 
inductive manner (through empirical observations)

V. To act effectively and adaptively towards a goal, a 
being requires developing and using causal 
representations of entities at an appropriate level of 
complexity. 

Feature analysis / Representation learning

Using Convolutions, Transformers or Graph Layers

Generative Machine Learning: GANs, Latent Diffusion Models

Learning Algorithm: Optimization of model parameters 
through gradient descent based on existing data
Learning mechanisms: Self Supervised Learning, Next word 
prediction

Reinforcement Learning?
Structural risk minimization (controls the model complexity 
and hence complexity of representations it learns)

AlgorithmsPhilosophical basis
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