Levitating Quantum Diamonds

Supervisor: Gavin W Morley

Background: Single nitrogen-vacancy (NV) centres in diamond have isolated electronic and nuclear spins which can store quantum information at room temperature for over one second. We have built an experiment to study nanodiamonds while they are levitated diamagnetically between two sharp magnets. Our theoretical proposals (together with the groups of Sougato Bose and Peter Barker in UCL and Myungshik Kim at Imperial College) suggest that we could put these diamonds into a quantum superposition of being in two places at once [1–4]. We have made nanodiamonds (with collaborator Oliver Williams’ group in Cardiff) that are 1000 times purer than commercially-available nanodiamonds, so they don’t heat up so much when we shine in light [5]. The high purity means that the spins remain coherent for longer than other nanodiamonds [6]. Our new magnetic levitation allows us to levitate a nanodiamond with much less light hitting it, so that we could cool the diamond below room temperature.

The project: The goal of this PhD project is to build in and test the quantum control of a single NV spin in a nanodiamond that is levitated in our magnetic trap. We have already demonstrated world-leading quantum control of our non-levitated nanodiamonds which we will now set up in the trap [6]. The long-term vision for this research is to better understand fundamental physics by testing what is the most macroscopic Schrödinger cat state that can be created. This could provide groundbreaking experimental results on the quantum nature of gravity [3]. The nanodiamonds we have developed also have applications in nanoscale quantum sensing.

Our lab in Warwick also benefits from several other NV experiments for quantum technology focused on nanoscale and bulk magnetometry both at room temperature and in helium cryostats. You would start off by learning how to use our equipment for studying single NV centres without levitation. Your research project would start in the lab from day one without doing an initial Masters course. For informal enquiries, please contact gavin.morley@warwick.ac.uk.

The research will be carried out in the Physics Department at Warwick and supported by the Warwick Centre for Doctoral Training in Diamond Science and Technology. Applicants must have (or expect to obtain) at least the equivalent of a UK first or upper second-class degree in Physics (or related subjects). The studentship will commence in October 2023 (although an earlier start is possible based on your availability) and for UK students will provide funding for tuition fees and a maintenance grant at the standard UKRI rate, currently £17,668 for the 2022/23 academic year. Funding may be available on a competitive basis to exceptional students of any citizenship. Applications are welcome from those able to support themselves or with funding already arranged. Such applications will go through the same level of academic assessment. For further details please contact Gavin Morley (gavin.morley@warwick.ac.uk) and DST.Admin@warwick.ac.uk, and provide a CV.