
User Manual for the AcCoRD Simulator
(Actor-based Communication via

Reaction-Diffusion)

Adam Noel

Manual Release 1 for AcCoRD v1.4.2
February 2020

ii

Contents

1 Introduction 1
1.1 Feature Summary . 1
1.2 Motivation . 2
1.3 Publications . 4

1.3.1 Primary Reference . 4
1.3.2 Supporting References 5

1.4 History . 5
1.5 Outline . 7

2 Download and Installation 9
2.1 Download . 9
2.2 Recommended Installation Instructions 10
2.3 Compiling from Source (Advanced) 11

3 How to Use AcCoRD 13
3.1 Summary for Using AcCoRD 13
3.2 AcCoRD Configuration . 14

3.2.1 Configuration File Format 14
3.2.2 Visualizing an Environment 15

3.3 AcCoRD Configuration Parameters Lists 17
3.3.1 Structure of a Configuration File 17
3.3.2 Simulation Control . 18
3.3.3 Chemical Properties 20
3.3.4 Environment . 25

3.4 Running AcCoRD . 37
3.4.1 Instructions to Run AcCoRD 37
3.4.2 Taking Advantage of Random Number Seeds 38
3.4.3 Using a Compute Cluster 40

3.5 Understanding AcCoRD Output 42
3.5.1 Importing to MATLAB 42
3.5.2 Reading AcCoRD Output Files 49

iii

iv CONTENTS

3.6 AcCoRD Post-Processing . 52
3.6.1 Plot Maker . 53
3.6.2 Video Maker . 56

4 AcCoRD Configuration Examples 63
4.1 Latest Release Examples . 63
4.2 Specific Release Examples . 66

4.2.1 Sample Videos in the AcCoRD Journal Paper 66

Chapter 1

Introduction

This is the User Manual for AcCoRD (Actor-based Communication via
Reaction-Diffusion). AcCoRD is a molecular communication simulator and
designed as a generic reaction-diffusion solver for flexible system configu-
ration. Actors are placed as sources (i.e., transmitters) or observers (i.e.,
receivers) of molecules. Environments can be defined with a combination
of microscopic and mesoscopic regions. A sample environment is shown in
Fig. 1.1.

In this Chapter, we give a summary of AcCoRD’s features and motivation,
list the supporting publications, and provide an outline for the rest of this
User Manual.

1.1 Feature Summary

A summary of AcCoRD’s primary features is as follows:

• It can use a hybrid of microscopic (track each solute molecule indi-
vidually) and mesoscopic (i.e., subvolume-based) simulation models to
define the environment. Every region is either microscopic or meso-
scopic.

• “Actors” are either active molecule sources (i.e., transmitters that re-
lease molecules) or passive observers (i.e., receivers). They can be
placed within a single region or occupy multiple regions.

• Individual regions are cubes, spheres, or rectangles. Spheres must be
microscopic but can be infinite in size.

• Regions can be hollow (i.e., surfaces) and/or placed inside of other
regions.

1

2 CHAPTER 1. INTRODUCTION

• Molecules can move via diffusion or steady uniform flow.

• Framework for chemical reactions can accommodate reactions such as
molecule degradation, enzyme kinetics, reversible or irreversible surface
binding, ligand-receptor binding, transitions across boundary mem-
branes, and simplified molecular crowding.

• Independent realizations of a simulation can be repeated any number of
times (and on different computers) and then aggregated to determine
the average behavior and channel statistics.

• Readable setup and output summary files in JSON format.

• Readable warnings and errors at run time about contradictions or miss-
ing information in the configuration file.

• Post-processing tools developed in MATLAB (recommend using
R2016b or newer) include video generation and plotting receiver ob-
servations.

1.2 Motivation

AcCoRD provides a simulation platform with the power of a generic reaction-
diffusion solver that facilitates communications analysis. The target applica-
tion is molecular communication, which is the use of molecules as information
carriers. Molecular communication is ubiquitous for signalling in nature. In-
terest in studying molecular communication comes from two directions:

1. We are interested in the design of synthetic communication networks
for environments where radio frequency wireless technologies are not
appropriate. Molecular communication could be a suitable alternative
in such cases. So, we seek a firm understanding of the fundamental
limits of molecular communication. We also need insights into practical
system design.

2. We are interested in using communications analysis to gain insight into
the function of biological mechanisms that rely on molecular communi-
cation, such as quorum sensing in bacterial communities. Such insight
could improve understanding of diseases and contribute to the devel-
opment of new prevention or treatment options.

1.2. MOTIVATION 3

Figure 1.1: Example of a complex simulation environment with many of
AcCoRD’s system model components. Reprinted from [1] with permission
from Elsevier.

Using diffusion for molecular communication has a number of attractive
properties. They include its speed over short distances, its simplicity, and
the availability of mathematical models. There are closed-form expressions
for the impulse response for diffusion in a number of specific system geome-
tries. However, these systems are usually simplistic and may not accurately
represent realistic environments. Having a simulation “sandbox” that is less
restricted to particular environments would be a valuable tool.

Existing simulation options (which we discuss in much greater detail in
[1]) tend to follow one of two trends:

1. Generic reaction-diffusion solvers are not designed to accommodate the
behavior of a transmitter in a communications system, and are not
designed to generate the statistics of a communications link.

2. Simulators designed specifically for molecular communication are not
built as generic reaction-diffusion solvers. While some are very detailed
for their intended environments, they are not flexible for studying new
and different environments.

AcCoRD (Actor-based Communication via Reaction-Diffusion)
bridges the gap between reaction-diffusion solvers and molecular
communications analysis. As a reaction-diffusion sandbox, we anticipate
that it will contribute the following for molecular communications research:

• Encourage the use of simulations without relying entirely on Monte
Carlo methods.

4 CHAPTER 1. INTRODUCTION

• Increase accessibility to this multi-disciplinary domain. It can im-
prove the understanding and visualization of known reaction-diffusion
environments and their communications channel responses.

• Provide a platform to verify new analysis and test transceiver de-
signs.

• Enable exploration of new environments that have not or cannot
be precisely examined analytically.

1.3 Publications

1.3.1 Primary Reference

The primary reference paper for the AcCoRD simulator is [1] “Simulating
with AcCoRD: Actor-Based Communication via Reaction-Diusion” (DOI:
http://dx.doi.org/10.1016/j.nancom.2017.02.002, and is also available
from arXiv: https://arxiv.org/abs/1612.00485). If you use AcCoRD in
your work, then please cite that paper. It provides an overview of AcCoRD,
including:

• Motivation for developing a generic reaction-diffusion solver for com-
munication analysis

• Details of all simulation algorithms

• Derivation of computational complexity

• Verification of accuracy by comparing simulation output with analytical
expressions

• Insights into appropriate simulation parameters

The paper also includes videos in the supplementary materials. A playlist
of these videos is also available here: https://www.youtube.com/playlist?
list=PLZ7uYXG-7XF8UyhFrIuQIiZig1XA89e3i.

We welcome hearing about how AcCoRD has been used in your work.
Where appropriate, we would be happy to add a link to your work
on the AcCoRD website (https://warwick.ac.uk/fac/sci/eng/staff/
ajgn/software/accord/).

http://dx.doi.org/10.1016/j.nancom.2017.02.002
https://arxiv.org/abs/1612.00485
https://www.youtube.com/playlist?list=PLZ7uYXG-7XF8UyhFrIuQIiZig1XA89e3i
https://www.youtube.com/playlist?list=PLZ7uYXG-7XF8UyhFrIuQIiZig1XA89e3i
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/

1.4. HISTORY 5

1.3.2 Supporting References

Papers that describe new features added to AcCoRD:

• [2] A. Noel and D. Makrakis, Algorithm for Mesoscopic Advection-
Diffusion, IEEE Transactions on NanoBioscience, Oct. 2018.
(DOI: https://doi.org/10.1109/TNB.2018.2878065; arXiv preprint
https://arxiv.org/abs/1805.12438). This paper describes the in-
tegration of advection (flow) into the reaction-diffusion simulations of
the mesoscopic regime. The implementation was added in AcCoRD
v1.1.

• [3] Y. Wang, A. Noel, and N. Yang, A New Simulation Algorithm
for Absorbing Receiver in Molecular Communications, in Proc. IEEE
SECON Workshops 2018, Jun. 2018. (DOI: https://doi.org/

10.1109/SECONW.2018.8396342; arXiv preprint https://arxiv.org/
abs/1803.04638). This paper introduces the A Priori Monte Carlo
(APMC) algorithm for the simulation of absorbing surfaces, which can
significantly reduce the time required to accurately simulate an absorb-
ing surface. The implementation was added in AcCoRD v1.4.

Portion’s of AcCoRD’s design was initially motivated in the following
papers:

• [4] A. Noel, K. C. Cheung, and R. Schober, On the Statistics of
Reaction-Diffusion Simulations for Molecular Communication, in Proc.
ACM NANOCOM 2015, Sep. 2015. (DOI: http://dx.doi.org/

10.1145/2800795.2800821; arXiv preprint http://arxiv.org/abs/

1505.05080). The simulations in this paper were completed with Ac-
CoRD v0.1, which was an early 2D build.

• [5] A. Noel, K. C. Cheung, and R. Schober, Multi-Scale Stochastic
Simulation for Diffusive Molecular Communication, in Proc. IEEE
ICC 2015, pp. 2712–2718, Jun. 2015. (DOI: http://dx.doi.org/

10.1109/ICC.2015.7248471; arXiv preprint http://arxiv.org/abs/
1412.6135). The simulations in this paper were completed with proof-
of-concept MATLAB code that implemented hybrid diffusion with rudi-
mentary transition rules.

1.4 History

The plan to build AcCoRD began in 2014, while the developer (Adam Noel)
was completing his PhD at UBC. The following timeline is a summary of the
major development milestones:

https://doi.org/10.1109/TNB.2018.2878065
https://arxiv.org/abs/1805.12438
https://doi.org/10.1109/SECONW.2018.8396342
https://doi.org/10.1109/SECONW.2018.8396342
https://arxiv.org/abs/1803.04638
https://arxiv.org/abs/1803.04638
http://dx.doi.org/10.1145/2800795.2800821
http://dx.doi.org/10.1145/2800795.2800821
http://arxiv.org/abs/1505.05080
http://arxiv.org/abs/1505.05080
http://dx.doi.org/10.1109/ICC.2015.7248471
http://dx.doi.org/10.1109/ICC.2015.7248471
http://arxiv.org/abs/1412.6135
http://arxiv.org/abs/1412.6135

6 CHAPTER 1. INTRODUCTION

• 2014-09 - developed a proof-of-concept model in MATLAB to describe a
hybrid of microscopic and mesoscopic simulation models and how that
could be useful for molecular communication simulations. Submitted
corresponding paper [5] to the 2015 IEEE International Conference on
Communications (ICC) in London, UK.

• 2014-10 - began development of a reaction-diffusion sandbox in C.

• 2015-01 - built a 2D reaction-diffusion solver that would eventually be
known as AcCoRD. Presented early results at the Information Theory
and Applications workshop in La Jolla, California.

• 2015-04 - added passive and active actors that could be placed ”any-
where”. Implemented JSON-format (http://www.json.org/) simu-
lation output to simplify importing to MATLAB. Most importantly,
named simulator AcCoRD (Actor-based Communication via Reaction-
Diffusion). Version would become known as v0.1.

• 2015-05 - submitted paper [4] to the 2015 ACM International Confer-
ence on Nanoscale Computing and Communication (NanoCom), which
demonstrated environments in v0.1.

• 2015-09 - v0.3 upgraded environments to 3D and added the ability to
”nest” regions inside of other regions.

• 2016-02 - migrated development to Github for accessibility and issue
tracking. v0.4 added spherical regions and actors and improved the
tracking of microscopic molecules as they cross region boundaries.

• 2016-05 - v0.5 and its update added surface regions and surface inter-
action reactions. These reactions include absorption, desorption, and
transitions through membranes.

• 2016-05 - v0.6 added bimolecular reactions in the microscopic regime
and utilities for visualizing environments and generating video in MAT-
LAB.

• 2016-07 - v0.7 added utilities for plotting passive actor observation sig-
nals in MATLAB, and the ability to visualize an environment without
simulating it first. Simulations using this version (and its bug-fix up-
date) were used in the primary AcCoRD reference [1].

• 2016-10 - v1.0 added option to set local diffusion coefficients for any
region or surface reaction. A number of minor enhancements and fixes
brought the major version number from ”v0” to ”v1”.

http://www.json.org/

1.5. OUTLINE 7

• 2016-12 - v1.1 added uniform flow, which can be defined globally and
also for molecules in specific regions. Corresponding submitted paper
is on arXiv (http://arxiv.org/abs/1805.12438).

• 2018-05 - v1.2 expanded options for simulation plotting.

• 2018-07 - v1.3 replaced supporting text files with a PDF User’s Manual

• 2018-08 - v1.4 added the A Priori Monte Carlo algorithm as an op-
tion to simulate absorbing surfaces. Corresponding paper is https:

//doi.org/10.1109/SECONW.2018.8396342. Also added a “Quick
Plot” function in MATLAB as a simpler wrapper for the Plot Maker.

AcCoRD’s change log has a more complete description of the changes
made in each version of AcCoRD, starting with v0.2. The change log is
included with every download.

1.5 Outline

The rest of this User Manual is organized as follows:

• Chapter 2 gives instructions on how to download and install AcCoRD.
Instructions are also provided for compiling from source.

• Chapter 3 describes how to use AcCoRD, including how to prepare a
proper configuration file and how to post-process the output.

• Chapter 4 describes sample configuration files, including those that are
included with the latest version of AcCoRD.

http://arxiv.org/abs/1805.12438
https://doi.org/10.1109/SECONW.2018.8396342
https://doi.org/10.1109/SECONW.2018.8396342

8 CHAPTER 1. INTRODUCTION

Chapter 2

Download and Installation

This Chapter will help you download AcCoRD, install it, and run the sample
simulations. AcCoRD has a very simple installation procedure. A complete
installation has the following:

1. An AcCoRD executable file that is compiled for your flavor of operating
system

2. Directory of MATLAB utilities (optional but recommended for post-
processing)

3. One (or more) configuration files to define simulation parameters

The releases hosted on the AcCoRD Download page (https://warwick.
ac.uk/fac/sci/eng/staff/ajgn/software/accord/downloads/) are pro-
vided as prepackaged archives using the recommended file structure in a
single zip-file. Each one includes an “optimal” and a “debug” executable, a
collection of sample simulations, and a script to run all of the sample simu-
lations. When running AcCoRD, you should use the “optimal” executable.
The “debug” executable is useful if you need to run AcCoRD with debugging
software, such as gdb (https://www.gnu.org/software/gdb/) or valgrind
(http://valgrind.org/).

2.1 Download

Go to the AcCoRD Download page (https://warwick.ac.uk/fac/sci/
eng/staff/ajgn/software/accord/downloads/) to download the latest
stable release or source code. There are also selected previous releases avail-
able.

9

https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/downloads/
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/downloads/
https://www.gnu.org/software/gdb/
http://valgrind.org/
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/downloads/
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/downloads/

10 CHAPTER 2. DOWNLOAD AND INSTALLATION

You can also find the latest release, the current code, and older releases on
Github (https://github.com/adamjgnoel/AcCoRD/releases). However,
the releases on the Github page keep the executables separate from the source
code, so you will need to put the executables in the “bin” folder yourself.

2.2 Recommended Installation Instructions

You can install and test a pre-compiled version as follows:

1. Download AcCoRD from the AcCoRD Download page
(https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/
accord/downloads/). There are pre-compiled versions for Windows
and Debian/Ubuntu Linux. Other OSs (including Mac OS and
RHEL/CentOS Linux) require compiling from source; see Section 2.3.

2. Extract the zip-file contents to your preferred directory. This com-
pletes the installation!

3. Test your installation:

(a) Open a command line terminal and navigate to the “bin” directory

• on Windows, run “cmd.exe”

• on Linux, open a terminal window

(b) Run the default simulation:

• on Windows, enter “accord win.exe”

• on Debian/Ubuntu, enter “./accord dub.out”

• Note: in Linux you may need to give yourself execution per-
mission. If the command does not work, then enter “chmod
+x accord dub.out” and try again.

(c) Run all sample simulations (this may take up to 10 minutes):

• on Windows, enter “run accord win samples.bat”

• on Debian/Ubuntu, enter “./run accord dub samples.sh”

(d) By default, simulation output is saved to “bin/results/”. If the di-
rectory does not exist, AcCoRD will check up one directory for the
existence of a “results” directory, else it will create “bin/results/”.

https://github.com/adamjgnoel/AcCoRD/releases
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/downloads/
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/downloads/

2.3. COMPILING FROM SOURCE (ADVANCED) 11

2.3 Compiling from Source (Advanced)

If you want to run AcCoRD on a different operating system (e.g., Mac OS or
RHEL/CentOS Linux), or use different compilation parameters, then you can
build it directly from the source code. The source code for the latest release is
found on the AcCoRD Download page (https://warwick.ac.uk/fac/sci/
eng/staff/ajgn/software/accord/downloads/). The source code for the
latest and all previous releases is also on the Github AcCoRD Releases page
(https://github.com/adamjgnoel/AcCoRD/releases). To build AcCoRD,
you will need a C-compiler and standard C libraries. The following instruc-
tions assume that you have GCC (https://gcc.gnu.org/), which is the
standard compiler for Linux and can be obtained for Windows via minGW
(http://www.mingw.org/) or for Mac via xCode from the AppStore:

1. Download AcCoRD’s source code directory (see above)

2. Extract the zip-file source code contents to your preferred directory

3. If you want to compile for an OS that is not Windows, Linux, or
Mac OS, then you should look at modifying source code in two lo-
cations. The files “file io.c” and “file io.h” in the “src” directory each
have preprocessor directives that check the existence of “ linux ” or
“ apple ” in order to call the correct function to create a new direc-
tory within the current OS. The corresponding code would need to be
modified to account for the OS that you want to use.

4. Inspect the build script that you want to use in the “src” directory.
The sample build scripts provided correspond to the default installa-
tions above (i.e., one “optimal” and one “debug” for each of Windows,
Debian/Ubuntu Linux, and RHEL/CentOS Linux). All have filenames
that start with “build accord”. The Windows build scripts are .bat
files and the Linux build scripts have no extension. Modify your cho-
sen build script if necessary. Note that the Debian/Ubuntu scripts are
actually identical to the RHEL/CentOS build scripts, except for the
filenames of the output executable. The Linux build scripts can also
be used in Mac OS.

5. Open a command line terminal and navigate to the “src” directory

6. Run the desired build script. The binary will be placed in the
“bin” directory (unless you changed the output in the script):

• sample Windows call: build accord opt win.bat

https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/downloads/
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/downloads/
https://github.com/adamjgnoel/AcCoRD/releases
https://gcc.gnu.org/
http://www.mingw.org/

12 CHAPTER 2. DOWNLOAD AND INSTALLATION

• sample Linux or Mac OS call: ./build accord opt dub

• Note: in Linux or Mac OS you may need to give yourself execution
permission. If the script does not run, then enter “chmod +x
NAME OF SCRIPT” and try again, where NAME OF SCRIPT
is the name of the script

7. Follow the “Test your installation” steps in the Recommended Instal-
lation Instructions above.

Chapter 3

How to Use AcCoRD

This Chapter provides basic instructions on how to use AcCoRD. It is up to
date for version 1.2. The instructions assume that you have already down-
loaded and installed AcCoRD. If not, then please refer to Chapter 2. Some
of the content in this Chapter is adapted from [1].

3.1 Summary for Using AcCoRD

Here is a summary for using AcCoRD on a personal computer. This summary
is also a quick start guide. More details for all of these steps can be found
throughout the remainder of this Chapter.

1. Prepare a configuration file - Many sample files are included with
the AcCoRD Download and discussed in Chapter 4. Choose a sample
file and modify it as desired. See Section 3.2 for more details, and see
Section 3.3 for a detailed listing of all possible simulation parameters.

2. Run AcCoRD - Open a command line window and navigate to the
AcCoRD “bin” directory. Enter the command to run the simulation.
If your OS is Windows and your config file is MY CONFIG.txt, then
you can enter “accord win.exe MY CONFIG.txt”. This uses 1 as the
default seed number for the random number generator. If your sim-
ulation output parameter was set to MY OUTPUT, then the files
MY OUTPUT SEED1.txt and MY OUTPUT SEED1 summary.txt
will be created and placed in the “bin/results” directory. See Sec-
tion 3.4 for more details.

3. Import Output in MATLAB - Set the current directory to
the AcCoRD “matlab” directory. If your simulation output pa-
rameter was set to MY OUTPUT and written to the “bin/results”

13

14 CHAPTER 3. HOW TO USE ACCORD

directory, then call accordImport(’../bin/results/MY OUTPUT’, 1,
true). The mat-file MY OUTPUT out.mat will be created. See
Section 3.5 for more details. Alternatively, call accordQuick-
Plot(’../bin/results/MY OUTPUT’), which will both import the out-
put and do a simple plot of the passive actor data.

4. Process the Output - Read the “data” and “config” variables in the
file MY OUTPUT out.mat as desired for post-processing. To plot a
figure showing a passive actor signal, modify and run a copy of the
file accordPlotMakerWrapper.m. As a simple alternative, call the ac-
cordQuickPlot function. To make a video showing the environment
and molecules (IF you saved molecule locations in your configuration),
modify and run a copy of accordVideoMakerWrapper. See Section 3.6
for more details.

3.2 AcCoRD Configuration

This Section presents an overview of the AcCoRD configuration file structure
and how to preview environments in MATLAB. Once you have prepared a
configuration file, you can refer to Section 3.4 to run the simulation.

Every simulation in AcCoRD relies on a single configuration file that
defines the simulation environment. Configuration files should be kept in
the AcCoRD “config” directory. A number of sample configuration files are
included with the AcCoRD download. Modifying an existing configuration
is the easiest way to start setting up your own simulation. However, since
AcCoRD is a simulation sandbox, the sample files cannot cover all possible
configurations. So, this section summarizes the configuration file format.
For a detailed description of the structure of a configuration file, including a
listing of all possible configuration parameters, please refer to Section 3.3.

3.2.1 Configuration File Format

AcCoRD configuration files are written in the JSON (JavaScript Object No-
tation) interchange format (http://www.json.org/). JSON uses a simple
structure to store data that is easy to read and modify. You do not need to
read all the details of JSON to modify JSON-format files, but here are a few
things to keep in mind:

• JSON objects are set of name/value pairs that are enclosed inside curly
braces. Each AcCoRD configuration has a single parent object.

http://www.json.org/

3.2. ACCORD CONFIGURATION 15

• The format for a name/value pair is (including quotation marks)
“Name of pair”: VALUE, where VALUE can be a string (inside
quotes), an integer, a double, another object (inside curly braces), or
an array.

• Multiple name/value pairs inside the same object are separated by
commas.

• In AcCoRD, placing a comma after the last name/value pair in an
object, or writing a decimal number without a leading digit (e.g., .25 for
0.25) will result in an error. Such errors will print out the configuration
file from the point where the first error occurred.

• AcCoRD is case sensitive for field names.

• The ordering of fields within a given object does not matter.

• There is no formal commenting mechanism. However, additional string
values can be included to behave as comments. This is done throughout
the sample configuration files via the “Notes” field (or any field name
that is not already used for some other purpose).

3.2.2 Visualizing an Environment

You can test the environment of a configuration file before simulating it.
AcCoRD includes a MATLAB utility for drawing the actors and regions a
simulation environment. This utility does not do a comprehensive testing of
parameter validity, but is useful for a visual confirmation of what the envi-
ronment will look like. MATLAB version R2016b or newer is recommended.

The “main” function for this utility is accordEmptyEnvironment.m, and
it is not recommended that you call it directly. The function requires non-
trivial input arguments to control how the environment and its contents
are drawn. However, a sample wrapper function, accordEmptyEnvironmen-
tWrapper.m, is provided that prepares all of the necessary inputs. You should
make a copy of the wrapper function and then modify it for your environ-
ment. The comments in the wrapper describe all of the arguments that are
passed to accordEmptyEnvironment and what other files you can refer to for
information on modifying the arguments.

Note: an alternative to modifying the default wrapper for the
environment plotter is the pre-defined wrapper accordEmptyEnvi-
ronmentQuick.m. It takes a single argument that is the path to
the configuration file to be plotted. It then plots all of the regions

16 CHAPTER 3. HOW TO USE ACCORD

Figure 3.1: Sample empty environment as visualized in MATLAB. Reprinted
from [1] with permission from Elsevier.

and actors in the environment with default settings (though many
of these settings can then be adjusted using the plot editor and
browser).

There is a sample environment drawing in Fig. 3.1. The configuration file
for this environment and the wrapper file to plot it can be found on the
AcCoRD Examples page (https://warwick.ac.uk/fac/sci/eng/staff/
ajgn/software/accord/examples/); refer to the files for the sample videos
in the AcCoRD journal paper.

https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/examples/
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/examples/

3.3. ACCORD CONFIGURATION PARAMETERS LISTS 17

3.3 AcCoRD Configuration Parameters Lists

This Section describes the AcCoRD configuration parameters. Many of the
options are labelled as one of the following:

• usually define - The parameter has a default value but it should
generally be defined by the configuration. A warning will appear if
it is not defined (or is defined improperly). It is recommended to fix
warning cases because they might prevent importing the simulation
output into MATLAB.

• optional - The parameter has a default value but it is only needed
under certain conditions. A warning will appear if it is not defined
and should have been, or if it is defined but not needed. It is recom-
mended to fix warning cases because they might prevent importing the
simulation output into MATLAB.

If a parameter has neither label, then it should always be defined.
An error will appear if it is not defined. For instructions on using
an AcCoRD configuration file to run a simulation, please refer to Sec-
tion 3.4. For sample complete configuration files, please refer to the Ac-
CoRD Examples webpage (https://warwick.ac.uk/fac/sci/eng/staff/
ajgn/software/accord/examples/). For a more detailed technical discus-
sion of how these parameters are used within a simulation, please refer to
[1]. Flow parameters are described separately in https://arxiv.org/abs/

1805.12438. The A Priori Monte Carlo absorption algorithm is described in
https://doi.org/10.1109/SECONW.2018.8396342.

3.3.1 Structure of a Configuration File

The overall structure of an AcCoRD configuration file is as follows (with
sample values):

{

"Output Filename": "my_output",

"Warning Override": false,

"Simulation Control": {},

"Chemical Properties": {},

"Environment": {}

}

These name/value pairs are used as follows:

https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/examples/
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/examples/
https://arxiv.org/abs/1805.12438
https://arxiv.org/abs/1805.12438
https://doi.org/10.1109/SECONW.2018.8396342

18 CHAPTER 3. HOW TO USE ACCORD

• “Output Filename” (usually define) - Prefix for the output data files
that will be created by the simulation. Seed information will be ap-
pended to this prefix. Default value is “test”.

• “Warning Override” (usually define) - Switch to ignore configuration
warnings (when true) and proceed with simulation without pausing.
Default value is false. When false, the simulation will pause if any
parameters are needed and default values are assigned (either because
they were missing or defined incorrectly). Whether true or false, all
warning messages will be printed to the command line.

• “Simulation Control” - An object containing global simulation param-
eters. It should not be empty as shown above!

• “Chemical Properties” - An object containing molecule parameters,
including chemical reaction specifications. It should not be empty as
shown above!

• “Environment” - An object specifying the regions and actors in the
simulation environment. It should not be empty as shown above!

In the remainder of this Section, we provide more details for defining the
“Simulation Control”, “Chemical Properties”, and “Environment” objects.

3.3.2 Simulation Control

The “Simulation Control” object is structured with (some or all of) the
following fields (with sample values):

"Simulation Control": {

"Number of Repeats": 1,

"Final Simulation Time": 0.1,

"Global Microscopic Time Step": 1e-4,

"Random Number Seed": 1,

"Max Number of Progress Updates": 100

"Small Subvolumes at Hybrid Interface?": true,

"Max Intrastep Micro to Meso Distance": 10e-6

}

These name/value pairs are used as follows:

• “Number of Repeats” (usually define) - The number of times that
the simulation will be repeated (i.e., the number of realizations) in one
execution. Default value is 1.

3.3. ACCORD CONFIGURATION PARAMETERS LISTS 19

• “Final Simulation Time” (usually define) - The simulated time
(in seconds) when the simulation will stop. Not really optional, since
the default value is 0. This is not the same as the simulation run time,
which is the time it takes for a computer to simulate the system.

• “Global Microscopic Time Step” (usually define) - The time step
for the microscopic regime (in seconds), which is the granularity of a
microscopic simulation. Not really optional if there are any microscopic
regions, since the default value is 0.

• “Random Number Seed” (optional) - Integer used to initialize
the random number generator. If you want to aggregate simulation
results into a single output, then the different simulations will only be
different if they were run with different seeds. However, this parameter
is optional because the seed value can be entered via the command line.
Default value is 1.

• “Max Number of Progress Updates” (usually define) - Integer
defining the maximum number of updates on the simulation progress.
Updates print the index of the current repeat/realizations being sim-
ulated and an estimate of the remaining simulation time. There is no
more than one update per realization. Default value is 10.

• “Small Subvolumes at Hybrid Interface?” (optional) - Switch
to define the transition rules used at the interface between microscopic
and mesoscopic regimes (i.e., the hybrid interface). The rules can either
assume that mesoscopic subvolumes at the interface are small (and
therefore on the scale of movement in the microscopic regime), or that
they are relatively large. This switch is only needed if there is at least
one microscopic region and one mesoscopic region. Default value is
false. See [1] for more about the ramifications of this parameter.

• “Max Intrastep Micro to Meso Distance” (optional) - Maxi-
mum distance (in meters) that a microscopic molecule must be within,
both before and after a diffusion step, to assume that it could have
entered and exited the mesoscopic regime within the time step. This
distance is only needed if there is at least one microscopic region and
one mesoscopic region. Default value is 0. See [1] for more about the
ramifications of this parameter.

20 CHAPTER 3. HOW TO USE ACCORD

3.3.3 Chemical Properties

The “Chemical Properties” object in an AcCoRD configuration file is
structured as follows (with sample values):

"Chemical Properties": {

"Number of Molecule Types": 1,

"Diffusion Coefficients": [1e-9],

"Global Flow Type": "Uniform",

"Global Flow Vector": [1e-3, 0, 0],

"Does Molecule Type Flow?": [true],

"Chemical Reaction Specification": []

}

These name/value pairs are used as follows:

• “Number of Molecule Types” (usually define) - The number of
types of molecules that exist in the environment. Default value is 1.

• “Diffusion Coefficients” (usually define) - Array of global dif-
fusion coefficients (in meters squared per second) for each type of
molecule, each separated by a comma. Length of the array should
be equal to the “Number of Molecule Types”. Default value for each
coefficient is 0.

• “Global Flow Type” (usually define) - String to indicate the de-
fault type of flow applied to every region. Possible values are “None”
and “Uniform”. If “Uniform”, then flow is steady and uniform. Default
type is “None”.

• “Global Flow Vector” (optional) - Array defining the global flow
parameters. Only needed if “Global Flow Type” is not “None”. If
“Global Flow Type” is “Uniform”, then array should have length three
and define the flow along the (x,y,z) directions in meters per second.

• “Does Molecule Type Flow?” (optional) - Array of switches
indicating whether each type of molecule follows the global flow. Only
needed if “Global Flow Type” is not “None” and some molecule type
does not follow the global flow. Length of the array should be equal
to the “Number of Molecule Types”. Default value for each molecule
type is true.

3.3. ACCORD CONFIGURATION PARAMETERS LISTS 21

• “Chemical Reaction Specification” (usually define) - Array con-
taining details of all chemical reactions in the environment. Each re-
action has its own object within the array. Default value is an empty
array.

If the “Chemical Reaction Specification” array is not empty, then
its objects are structured with (some of) the following fields (with sample
values):

{

"Label": "",

"Is Reaction Reversible?": false,

"Reverse Reaction Label": "Some other Reaction Label",

"Surface Reaction?": false,

"Surface Reaction Type": "Absorption",

"Surface Reaction Diffusion Coefficient": 1e-9,

"Surface Transition Probability": "Steady State",

"Surface Reaction Threshold Type": "None",

"Surface Reaction Threshold Value": 0,

"Default Everywhere?": true,

"Exception Regions": [],

"Reactants": [0],

"Products": [0],

"Products Released?": [false],

"Release Placement Type": "Leave",

"Reaction Rate": 1,

"Binding Radius": 1e-6,

"Unbinding Radius": 5e-6

}

These name/value pairs are used as follows:

• “Label” (usually define) - A string ID for the reaction. Only needed
if the reaction is reversible in order to indicate which reaction it is
coupled to. Default value is an empty string.

• “Is Reaction Reversible?” (usually define) - Switch to indicate
whether the reaction is reversible. Currently only used when calculating
the steady state reaction probabilities of surface reactions. Default
value is false.

• “Reverse Reaction Label” (optional) - String ID “Label” of the re-
verse reaction. Only needed if the reaction if “Is Reaction Reversible?”
is true. If not defined, then “Is Reaction Reversible?” is set to false.

22 CHAPTER 3. HOW TO USE ACCORD

• “Surface Reaction?” (optional) - switch to indicate whether the
reaction is a first order surface interaction reaction, such as absorp-
tion, desorption, or transitioning through the surface as if it were a
membrane. Default value is false.

• “Surface Reaction Type” (optional) - String to indicate the type
of surface interaction reaction. Possible values are “Normal”, “Ab-
sorbing”, “A Priori Absorbing”, “Desorbing”, “Membrane Inner”, and
“Membrane Outer”. Only needed if “Surface Reaction?” is true. De-
fault type is “Normal”. The membrane reactions should only be as-
signed to surface regions that are configured as membranes. The “Mem-
brane Inner” reaction is for molecules that transition from the side of
the membrane where the surface is considered to be on the “in” side of
the adjacent normal region, i.e., 2D surfaces that are to the left, down,
or in directions relative to the normal region (i.e., surface is along the
lower x, y, or z face of the normal region), or if the surface is the parent
of the normal region. The “Membrane Outer” reaction is for molecules
that transition from the side of the membrane where the surface is
considered to be on the “out” side of the adjacent normal region, i.e.,
2D surfaces that are to the right, up, or out directions relative to the
normal region (i.e., surface is along the upper x, y, or z face of the
normal region), or if the normal region is the parent of the surface.
The “A Priori Absorbing” surface is a Monte-Carlo based alternative
to an “Absorbing” surface and enables much larger time steps if the
environment can be described (or approximated) as a special analytical
case. This algorithm is described in [3] and the current AcCoRD im-
plementation requires that the corresponding reaction rate be infinite.
Note that a membrane with an associated “Membrane Inner”
or “Membrane Outer” requires a corresponding reaction of
the other type, even if it has a reaction rate of 0.

• “Surface Reaction Diffusion Coefficient” (optional) - Diffusion
coefficient (in meters squared per second) to override the default diffu-
sion coefficient for a surface reaction. Only relevant if “Surface Reac-
tion?” is true. The default coefficient is the global diffusion coefficient
of the reactant for an absorbing or membrane transition reaction, and
that of the first product for a desorption reaction.

• “Surface Transition Probability” (optional) - String indicating
how the surface reaction probability is calculated. Only needed if “Sur-
face Reaction?” is true and “Surface Reaction Type” is not normal.
Options are “Normal”, “Steady State”, “Mixed”, “A Priori Sphere”,

3.3. ACCORD CONFIGURATION PARAMETERS LISTS 23

and “A Priori Plane”. Default value is “Normal”. See [1] for more
about the ramifications of this parameter for reversible surface reac-
tions. The “A Priori Sphere” and “A Priori Plane” are the only valid
options for an “A Priori Absorbing” surface. The “A Priori Sphere”
assumes that the environment has a point transmitter and a single
absorbing sphere (see [3]) and the “A Priori Plane” assumes that the
environment has a point transmitter and an infinite absorbing plane.

• “Surface Reaction Threshold Type” (optional) - Switch to deter-
mine whether an “A Priori Absorbing” surface reaction has a threshold
constraining when it is applied. If the corresponding condition is not
satisfied, then a molecule cannot be absorbed by the “A Priori Absorb-
ing” surface. Options are “None” (default), “Distance” (molecule must
be within some distance of absorbing surface), “Probability” (molecule
must have at least some specified probability of being absorbed in next
time step), and “Current Region” (molecule must be within a region
that is a neighbor of the absorbing surface). See [3] for more about the
APMC algorithm.

• “Surface Reaction Threshold Value” (optional) - Numerical
value corresponding to “Surface Reaction Threshold Type”. Only
needed for an “A Priori Absorbing” surface reaction, and only used
when the threshold is either “Distance” or “Probability”. See [3] for
more about the APMC algorithm.

• “Default Everywhere?” (usually define) - Switch to indicate
whether the reaction exists in all corresponding regions (i.e., in all
surface regions for a surface reaction, or all normal regions for a non-
surface reaction). Default value is true.

• “Exception Regions” (usually define) - Array of strings to indicate
the labels of regions that are exceptions to the “Default Everywhere?”
value. Default is an empty array.

• “Reactants” (usually define) - Array of non-negative integers in-
dicating which molecules are reactants in the reaction. Length of the
array should be equal to the “Number of Molecule Types”. Default
value for each molecule type is 0. There must be no more than two
reactants for most reactions, and no more than one reactant if the reac-
tion is surface reaction that is not “Normal”. The order of the reaction
(i.e., zeroth order, first order, or second order) is determined by the
sum of the values in this array.

24 CHAPTER 3. HOW TO USE ACCORD

• “Products” (usually define) - Array of non-negative integers indi-
cating which molecules are products in the reaction. Length of the
array should be equal to the “Number of Molecule Types”. Default
value for each molecule type is 0. All values are ignored for “Mem-
brane Inner” and “Membrane Outer” reactions, where it is assumed
that the product is the same type of molecule as the reactant.

• “Products Released?” (optional) - Array of switches indicat-
ing whether each product molecule is detached from the surface into
the adjacent normal region. Only needed if “Surface Reaction?” is
true. Length of the array should be equal to the “Number of Molecule
Types”. Default value for each molecule type is false.

• “Release Placement Type” (optional) - String indicating how re-
leased molecules are placed. Only needed if “Surface Reaction?” is true
and at least one value in “Products Released?” is true. Length of the
array should be equal to the “Number of Molecule Types”. Options are
“Leave”, “Full Diffusion”, and “Steady State Diffusion”. Default value
is “Leave”. See [1] for more about the ramifications of this parameter.

• “Reaction Rate” (usually define) - Non-negative number defining
the chemical reaction rate. Units are those that are standard for each
order of reaction (molecules per second per meter cubed for zeroth
order, per second for regular first order, meter per second for surface
first order, and meter cubed per molecule per second for second order).
Default value is 0. For an “A Priori Absorbing” surface reaction, the
rate must be infinite for the algorithm to be used (e.g., assign value of
1e9999).

• “Binding Radius” (optional) - Non-negative number defining the
maximum distance (in meters) that two reactant molecules in a second
order chemical reaction can be separated by at the end of a microscopic
time step and still react. Only needed if the reaction is second order
and can occur in a microscopic region. Default value is 0.

• “Unbinding Radius” (optional) - Non-negative number defining
the separation distance (in meters) that is applied to the products of
a second order reaction. Only needed if the reaction is second order, it
can occur in a microscopic region, and there are at least two products.
Default value is If there are exactly two products, then they are placed
along the line that joins the locations of the two reactants after they
diffused. Each reaction’s displacement from the reaction location is

3.3. ACCORD CONFIGURATION PARAMETERS LISTS 25

proportional to its diffusion coefficient. If there are more than two
products, then each is placed in a random direction but the sum of
the distances of the products from the reaction location is equal to the
“Unbinding Radius”.

For more information on how these parameters are used to implement
chemical reactions, please refer to [1].

3.3.4 Environment

The “Environment” object in an AcCoRD configuration file is structured
as follows (with sample values):

"Environment": {

"Subvolume Base Size": 1e-6,

"Region Specification": [],

"Actor Specification": []

}

These name/value pairs are used as follows:

• “Subvolume Base Size” - Positive number defining the granular-
ity (in meters) of the size of rectangular region subvolumes. Every
rectangular region (whether microscopic or mesoscopic) is composed of
square/cubic subvolumes whose length is an integer multiple of “Sub-
volume Base Size”. This parameter is also used to define the margin of
error for detecting regions that overlap incorrectly, so it is needed for
any simulation. Default value is 1.

• “Region Specification”- Array containing details of all regions in the
environment. Each region has its own object within the array. A valid
configuration must have at least one region. For details, see below.

• “Actor Specification” - Array containing details of all actors in the
environment, including active actors and passive actors. Each actor
has its own object within the array. A valid configuration must have at
least one actor (it could be active or passive). For details, see below.

See below for more about configuring the Region Specification and Actor
Specification objects.

26 CHAPTER 3. HOW TO USE ACCORD

Regions

The objects in the “Region Specification” array of an AcCoRD configuration
file are structured with (some of) the following fields (with sample values):

{

"Label": "",

"Parent label": "",

"Local Diffusion Coefficients": [0, 0],

"Shape": "Rectangular Box",

"Type": "Normal",

"Surface Type": "Outer",

"Anchor Coordinate": [0, 0, 0],

"Anchor X Coordinate": 0,

"Anchor Y Coordinate": 0,

"Anchor Z Coordinate": 0,

"Integer Subvolume Size": 1,

"Is Region Microscopic?": true,

"Number of Subvolumes Per Dimension": [1, 1, 1],

"Number of Subvolumes Along X": 1,

"Number of Subvolumes Along Y": 1,

"Number of Subvolumes Along Z": 1,

"Radius": 5e-6,

"Local Flow": [

{

"Is Molecule Type Affected?": [true],

"Flow Type": "Uniform",

"Flow Vector": [2e-3, 0, 0]

}

]

}

These name/value pairs are used as follows:

• “Label” (usually define) - A string ID for the region. Only needed if
another region is nested inside this region or if an actor’s shape will be
defined using this region. Default is an empty string. It is recommended
that non-empty Region Labels be at least 2 characters long to avoid a
JSON bug that treats arrays of single-character strings as one string
(which leads to errors if you try to plot the environment).

• “Parent label” (usually define) - A string ID stating the region’s
parent region, such that this region is nested inside of it (and referred

3.3. ACCORD CONFIGURATION PARAMETERS LISTS 27

to as the child). Needed if this region is nested inside another region.
A child region must be entirely inside its parent. Multiple generations
of nesting are possible (i.e., a parent region can also have its own parent
region, etc.).

• “Local Diffusion Coefficients” (optional) - Array of local diffusion
coefficients (in meters squared per second) for each type of molecule,
each separated by a comma. Length of the array should be equal to the
“Number of Molecule Types”. Default value for each coefficient is 0.
If local values are not defined, then the values specified by “Diffusion
Coefficients” in the “Chemical Properties” object are used.

• “Shape” (usually define) - String defining the shape of the region.
Options are “Rectangular Box”, “Sphere”, and “Rectangle”. Default
is “Rectangular Box”.

• “Type” (usually define) - String defining the type of region. Options
are “Normal”, “3D Surface”, and “2D Surface”. Default is “Normal”.
A “Normal” region occupies the entirety of its volume (except where
there are child regions). A “3D Surface” region is a surface to a 3D
“Normal” region and a “2D Surface” is a surface to a 2D “Normal”
region. For example, a normal “Rectangular Box” could have a surface
“Rectangular Box” nested inside and/or a surface “Rectangle” along
some or all of one of its faces. Each of the surfaces in this case should
be defined as a “3D Surface”.

• “Surface Type” (optional) - String defining the type of surface.
Options are “Outer”, “Inner”, and “Membrane”. Default is “Mem-
brane”. The “Outer” and “Inner” surfaces are both one-sided and the
type specifies the side. These surfaces block diffusion and can have
chemical reactions occur at them. An “Inner” surface is considered to
be on the “in” side of the adjacent normal region, i.e., 2D shapes that
are to the left, down, or in directions relative to the 3D normal region
(i.e., surface is along the lower x, y, or z face of the normal region), or
if the surface is the parent of the normal region. An “Outer” surface is
considered to be on the “out” side of the adjacent normal region, i.e.,
2D shapes that are to the right, up, or out directions relative to the
3D normal region (i.e., surface is along the upper x, y, or z face of the
normal region), or if the normal region is the parent of the surface. The
“Membrane” surface is double-sided and blocks diffusion unless there
is membrane reaction defining the rate at which a molecule can pass

28 CHAPTER 3. HOW TO USE ACCORD

through. This parameter is only needed if the region’s “Type” is “3D
Surface” or “2D Surface”.

• “Anchor Coordinate” (optional) - An array with 3 numbers (in me-
ters) that define the region’s location in global space. For a rectangular
region, the anchor is its corner with the smallest (X,Y,Z) coordinate.
For a “Sphere”, the anchor is the center. This is the default method
for defining the anchor; the alternative is to define the (X,Y,Z) values
individually. Default is [0, 0, 0].

• “Anchor X Coordinate”, “Anchor Y Coordinate”, “Anchor Z
Coordinate” (optional) - A number defining the value (in meters)
of the region’s location in the corresponding dimension (see “Anchor
Coordinate” above). This is the alternative method for defining the
anchor; the default is to define the (X,Y,Z) values in a single array.
Default value is 0.

• “Integer Subvolume Size” (optional) - Positive integer number
defining the length of each individual subvolume. The actual subvolume
length will be this value times “Subvolume Base Size”. Only needed for
rectangular regions (i.e., “Rectangular Box” and “Rectangle”). Default
value is 1.

• “Is Region Microscopic?” (optional) - Switch indicating whether
a region is microscopic or mesoscopic. Only needed for rectangular
regions (i.e., “Rectangular Box” and “Rectangle”), since a “Sphere” is
always microscopic. Default value is false.

• “Number of Subvolumes Per Dimension” (optional) - An array
with three non-negative integers defining the total size of the region
by specifying its length (in subvolumes) along each Cartesian dimen-
sion. Only needed for rectangular regions (i.e., “Rectangular Box” and
“Rectangle”). This is the default method for defining the length of
the region; the alternative is to define the (X,Y,Z) values individually.
Default is [1, 1, 1]. A “Rectangle” region must have a single zero value
for one of the dimensions.

• “Number of Subvolumes Along X”, “Number of Subvolumes
Along Y”, “Number of Subvolumes Along Z” (optional) - A
non-negative integer defining the length of the region (in subvolumes)
along the corresponding dimension. Only needed for rectangular re-
gions (i.e., “Rectangular Box” and “Rectangle”). This is the alterna-

3.3. ACCORD CONFIGURATION PARAMETERS LISTS 29

tive method for defining the length of the region; the default is to define
the (X,Y,Z) values in a single array. Default value is 1.

• “Radius” (optional) - A non-negative number defining the radius
(in meters) of a “Sphere” region. Only needed for a “Sphere” region.
Default value is the “Subvolume Base Size”. Set radius to a value that is
bigger than the maximum double (e.g., 1e9999) to have an unbounded
region.

• “Local Flow” (optional) - An array of objects describing exceptions
to the local flow parameters. Array can be of any length but only the
first exception specified for a given molecule type will be applied. Each
object can have the following:

– “Is Molecule Type Affected?” (usually define) - Array of
switches whose length is equal to “Number of Molecule Types”.
If switch for any molecule type is true, and the current local flow
exception is the first to list that molecule type, then the current
exception will apply. Default value for each molecule type is false.

– “Flow Type” (usually define) - String defining type of flow.
Same possible values as “Global Flow Type” in the “Chemical
Properties” object.

– “Flow Vector” (optional) - Array defining the local exception
flow parameters. Only needed if the “Flow Type” for the current
exception is not “None”. Same possible values as “Global Flow
Vector” in the “Chemical Properties” object.

Here is a sample object for a rectangular region (with irrelevant parame-
ters excluded):

{

"Label": "",

"Parent label": "",

"Shape": "Rectangular Box",

"Type": "Normal",

"Anchor Coordinate": [0, 0, 0],

"Integer Subvolume Size": 1,

"Is Region Microscopic?": true,

"Number of Subvolumes Per Dimension": [1, 1, 1]

}

Here is a sample object for a spherical surface region (with irrelevant param-
eters excluded):

30 CHAPTER 3. HOW TO USE ACCORD

{

"Label": "",

"Parent label": "",

"Shape": "Sphere",

"Type": "Surface",

"Surface Type": "Outer",

"Anchor Coordinate": [0, 0, 0],

"Radius": 5e-6

}

Actors

The objects in the “Actor Specification” array of an AcCoRD configu-
ration file are structured with (some of) the following fields (with sample
values):

{

"Is Location Defined by Regions?": false,

"List of Regions Defining Location": [],

"Shape": "Rectangular Box",

"Outer Boundary": [0, 5e-6, 0, 10e-6, 0, 10e-6],

"Is Actor Active?": true,

"Start Time": 0,

"Is There Max Number of Actions?": false,

"Max Number of Actions": 100,

"Is Actor Independent?": true,

"Action Interval": 5e-3,

"Is Actor Activity Recorded?": true,

"Random Number of Molecules?": false,

"Random Molecule Release Times?": false,

"Release Interval": 0,

"Slot Interval": 0,

"Bits Random?": true,

"Bit Sequence": [0, 1, 1, 1, 0, 0, 1, 0],

"Probability of Bit 1": 1,

"Modulation Scheme": "CSK",

"Modulation Bits": 1,

"Modulation Strength": 10,

"Is Molecule Type Released?": [true],

"Is Time Recorded with Activity?": false,

"Is Molecule Type Observed?": [true],

3.3. ACCORD CONFIGURATION PARAMETERS LISTS 31

"Is Molecule Position Observed?": [true]

}

These name/value pairs are used as follows:

• “Is Location Defined by Regions?” (usually define) - A switch
indicating how the shape of the actor is defined. If true, then the actor
will exist over the union of a set of regions. If false, then the actor will
have its own shape. Default is false.

• “List of Regions Defining Location” (optional) - An array of
strings of the “Label”s of the regions whose union defines the shape of
the actor. The regions can be disjoint. Only needed if “Is Location
Defined by Regions?” is true. Default value is an empty array.

• “Shape” (optional) - String defining the shape of the region. Options
are “Rectangular Box”, “Sphere”, “Rectangle”, and “Point” (however,
only active actors can be defined as a point, since molecules in the
space of 0 volume cannot be observed). Only needed if “Is Location
Defined by Regions?” is false. Default is “Rectangular Box”.

• “Outer Boundary” (optional) - A numeric array defining the outer
boundary of the actor (in meters). Only needed if “Is Location Defined
by Regions?” is false. The length of the array depends on the “Shape”
parameter. For “Rectangular Box” or “Rectangle”, the format is [xmin,
xmax, ymin, ymax, zmin, zmax]. For “Sphere”, the format is [xCen-
ter, yCenter, zCenter, radius]. The “Sphere” will be unbounded if the
radius is larger than the largest double value, e.g., 1e9999 (but active
actors should not be unbounded). For “Point”, the format is [x, y, z].
Default value of any element is 0. An actor should be defined within
the space occupied by regions. However, a passive actor is permitted to
extend beyond the boundary defined by the regions, whereas an active
actor is not.

• “Is Actor Active?” (usually define) - A switch indicating whether
the actor is passive or active. An active actor releases molecules into the
environment (i.e., a transmitter). A passive actor observes molecules
in the environment (i.e., a receiver). Default is false.

• “Start Time” (usually define) - A number indicating the start time
(in seconds) of the actor’s behavior. The global simulation start time is
0 and the end time is set by “Final Simulation Time” in the “Simulation
Control Object”, so “Start Time” should be between these two values.

32 CHAPTER 3. HOW TO USE ACCORD

Default value is 0. Actors that act at the same instant could do so in a
random order. In order to impose a specific order, a small offset to an
actor’s start time can be used. This can also be done in consideration
of the microscopic time step.

• “Is There Max Number of Actions?” (usually define) - A
switch indicating whether the actor has a preset maximum number
of actions. One action is the start of a symbol interval (i.e., modulated
data symbol) for an active actor or an observation of molecules by a
passive actor. Default value is false.

• “Max Number of Actions” (optional) - A positive integer number
of actions for the actor to perform. Only needed if “Is There Max
Number of Actions?” is true. The actor may perform fewer actions if
the “Final Simulation Time” is reached first. Default value is 1.

• “Is Actor Independent?” (usually define) - Switch to indicate
whether the actor is independent. The actual value is ignored and
will be accounted for in a future release. Default value is true, since
currently all actors are independent.

• “Action Interval” (usually define) - A number indicating the time
(in seconds) between actions performed by the actor. Default value is
1.

• “Is Actor Activity Recorded?” (usually define) - Switch to indi-
cate whether the actor’s actions are recorded in the simulation output
file. Active actor activity is its sequence of emitted symbols. Passive
actor activity is the number of each type of molecule that is observed
(and optionally the coordinates of those molecules). Default is true.

• “Random Number of Molecules?” (optional) - A switch indicat-
ing whether the precise number of molecules released by the transmitter
for a given symbol is random or deterministic. Only needed if the actor
is active. Default is false. See Table 3.1 for how this parameter controls
the release of molecules.

• “Random Molecule Release Times?” (optional) - A switch in-
dicating whether the precise molecule release times within a symbol
interval are random or deterministic. Only needed if the actor is ac-
tive, and only used if “Random Number of Molecules?” is true. Default
is false. See Table 3.1 for how this parameter controls the release of
molecules.

3.3. ACCORD CONFIGURATION PARAMETERS LISTS 33

• “Release Interval” (optional) - A non-negative number indicating
the time (in seconds) that an active actor will release molecules for a
given interval. Analogous to pulse width. The value can be larger than
the “Action Interval”, i.e., an active actor can be performing multiple
actions simultaneously. Only needed if the actor is active. Default
value is 0 (i.e., molecules are released instantaneously). See Table 3.1
for how this parameter controls the release of molecules.

• “Slot Interval” (optional) - A non-negative number indicating the
period (in seconds) between molecule releases within a single “Release
Interval”. Only needed if the actor is active, and only used if “Random
Number of Molecules?” is false. Default value is 0. See Table 3.1 for
how this parameter controls the release of molecules.

• “Bits Random?” (optional) - A switch indicating whether the bit
sequence, whose symbols are modulated by an active actor, is random-
ized. Only needed if the actor is active and the modulation scheme is
not “Burst”. Default value is true.

• “Bit Sequence” (optional) - An array of binary values specifying
the bits that are to be modulated by an active actor. Only needed
if the actor is active, the modulation scheme is not “Burst”, and and
“Bits Random?” is false. The length of the sequence should be consis-
tent with “Max Number of Actions” and “Modulation Bits”, otherwise
“Max Number of Actions” will be corrected. Default value for each
element is 0.

• “Probability of Bit 1” (optional) - A value between 0 and 1 that
defines the probability that given bit in an active actor’s data sequence
will have value 1. Only needed if the actor is active, the modulation
scheme is not “Burst”, and “Bits Random?” is true. Every bit is
determined independently. Default value is 0.5.

• “Modulation Scheme” (optional) - A string defining the modula-
tion scheme used by an active actor. Options are “CSK” (Concentra-
tion shift keying) and “Burst”. For “CSK”, the actor will release a
number of molecules that is (on average) linearly proportional to the
current data symbol (i.e., scaling the modulation strength in Table 3.1).
For “Burst”, the actor will release (on average) a constant number of
molecules (of possibly multiple types) in every action interval. Only
needed if the actor is active. Default value is “CSK”.

34 CHAPTER 3. HOW TO USE ACCORD

• “Modulation Bits” (optional) - A positive integer number defining
the number of bits in each symbol of an active actor’s data sequence.
Only needed if the actor is active and the modulation scheme is not
“Burst”. Default value is 1.

• “Modulation Strength” (optional) - A positive number defining
the strength of an active actor’s molecule emissions. The precise use of
this value (as either a rate or an absolute number of molecules) depends
on how the actor’s other transmission parameters are defined. Specif-
ically, for “CSK” modulation, the strength is an (average) number of
molecules per slot if “Random Molecule Release Times?” is false, and
an expected generation rate (in molecules per second) if both “Ran-
dom Number of Molecules?” and “Random Molecule Release Times?”
is true, where the number or rate are scaled by the value of the current
symbol value. The behavior for “Burst” modulation is similar, except
that the symbol value is always 1 and multiple types of molecules can
be released simultaneously. Only needed if the actor is active. Default
value is 1.

• “Is Molecule Type Released?” (optional) - An array of switches
indicating what type(s) of molecule is (are) released by an active ac-
tor. Length of the array should be equal to the “Number of Molecule
Types”. If the array does not have the correct length, then the first
element is set to true. Otherwise, the default value of each element
is false. For “CSK” modulation, all true elements after the first are
ignored. Only needed if the actor is active.

• “Is Time Recorded with Activity?” (optional) - A switch in-
dicating whether the simulation time of each action of a passive actor
should be recorded with the rest of the action information. Only needed
if the actor is passive. Default is false.

• “Is Molecule Type Observed?” (optional) - An array of switches
indicating what type(s) of molecule is (are) observed by a passive ac-
tor. Length of the array should be equal to the “Number of Molecule
Types”. Only needed if the actor is passive. Default value of each
element is true.

• “Is Molecule Position Observed?” (optional) - An array of
switches indicating whether a passive actor should record the posi-
tion of every molecule that it observes. Length of the array should be
equal to the “Number of Molecule Types”. Only needed if the actor is

3.3. ACCORD CONFIGURATION PARAMETERS LISTS 35

Table 3.1: Table Listing How Release Parameters are Interpreted
“Random Number

of Molecules”
“Random Molecule

Release Times”
How “Modulation Strength”

is Applied

false n/a
of molecules in each

slot within release interval

true false
Expected # of molecules in
each slot with release interval

true true
Expected release rate

(in molecules per second)
over entire release interval

passive. Default value of each element is false. To generate a mean-
ingful simulation video, at least one passive actor should be recording
molecule locations. However, doing so generally increases the output
file size considerably.

Here is a sample object for an active actor that is defined by two regions:

{

"Is Actor Location Defined by Regions?": true,

"List of Regions Defining Location": ["A", "B"],

"Is Actor Active?": true,

"Start Time": 0,

"Is There Max Number of Actions?": true,

"Max Number of Actions": 20,

"Is Actor Independent?": true,

"Action Interval": 100e-3,

"Is Actor Activity Recorded?": true,

"Random Number of Molecules?": false,

"Release Interval": 25e-3,

"Slot Interval": 5e-3,

"Bits Random?": true,

"Probability of Bit 1": 0.5,

"Modulation Scheme": "CSK",

"Modulation Bits": 1,

"Modulation Strength": 200,

"Is Molecule Type Released?": [true, false]

}

Here is a sample object for a passive actor whose location is defined
manually:

36 CHAPTER 3. HOW TO USE ACCORD

{

"Is Actor Location Defined by Regions?": false,

"Shape": "Sphere",

"Outer Boundary": [0, 0, 10e-6],

"Is Actor Active?": false,

"Start Time": 1e-10,

"Is There Max Number of Actions?": false,

"Is Actor Independent?": true,

"Action Interval": 1e-3,

"Is Actor Activity Recorded?": true,

"Is Time Recorded with Activity?": false,

"Is Molecule Type Observed?": [true, false],

"Is Molecule Position Observed?": [false, false]

}

3.4. RUNNING ACCORD 37

3.4 Running AcCoRD

This Section has instructions for running AcCoRD simulations, including
discussions of random number seeds and running AcCoRD on a compute
cluster. These instructions assume that you have already prepared a con-
figuration file. If not, then please refer to Sections 3.2 and 3.3. Once your
simulations have been run, you can refer to Sections 3.5 and 3.6 for reading
the files and importing into MATLAB.

3.4.1 Instructions to Run AcCoRD

Once you have a configuration file ready, then you can try to run it:

1. Open a command line window (e.g., run cmd.exe in Windows or open
a terminal in Linux or Mac OS).

2. Navigate to the AcCoRD “bin” directory using the “cd” command (e.g.,
enter “cd \PATH TO ACCORD\AcCoRD-1.0\bin\” on Windows)

3. Run either the optimal or debug executable. Generally, the optimal
executable is recommended. The call syntax for each is the same:
“MY EXECUTABLE MY CONFIG SEED VALUE”, where the exe-
cutable MY EXECUTABLE is:

• accord win.exe or accord win debug.exe on Windows

• ./accord dub.out or ./accord dub debug.out on Debian or Ubuntu
Linux

• The executable for Mac OS, RHEL/CentOS Linux, or any other
OS will depend on which build script you used when compiling.

MY CONFIG is the name of your configuration file, e.g., my config.txt,
which can include a relative or absolute directory. AcCoRD will search
for MY CONFIG in the following order: relative to the current di-
rectory, relative to a “bin\config” directory, and finally relative to a
“config” directory (sibling to “bin”). The SEED VALUE is a positive
integer random number seed to initialize the random number genera-
tor. This seed is optional and will over-ride the seed value specified by
the configuration.

While AcCoRD runs, the information printed to the command line will
include the following:

1. Version information.

38 CHAPTER 3. HOW TO USE ACCORD

2. Where the configuration file was found (if at all).

3. Warnings from the configuration file parameters. If there are any warn-
ings, and the “Warning Override” property is false, then execution will
pause and you will be prompted to continue or cancel the simulation.

4. A summary of the configuration (e.g., number of regions, subvolumes,
actors, etc.)

5. Location and name of the two output files that will be created. A “re-
sults” folder will be created inside the “bin” directory if it did not exist
and if there is no “results” sibling directory. The files will be named
MY OUTPUT SEEDX.txt and MY OUTPUT SEEDX summary.txt,
where MY OUTPUT is the “Output Filename” defined in the config-
uration file, and X is the seed value. If the output files already exist,
then they will be over-written.

6. Simulation progress with estimated time remaining (if there are multi-
ple realizations being simulated)

7. Simulation run time.

Sample command line outputs are shown without (Fig. 3.2) and with
(Fig. 3.3) warnings. If warnings appear, the user is told what action is being
taken to address them and the user also has to press “enter” in order to
continue the simulation.

3.4.2 Taking Advantage of Random Number Seeds

One of the global parameters in an AcCoRD simulation is the random number
“seed”. The seed is used to initialize the random number generator (RNG).
The RNG drives all of the random behavior in a simulation, such as the
values of random bits, the displacement of microscopic molecules, and when
chemical reactions occur. A key desired property of an RNG is that it can
generate a long sequence of values that are effectively independent, such
that someone who knows all the prior values in the sequence cannot guess
the next value. Furthermore, sequences that are initialized with different
seeds should also be independent. One of the primary features of AcCoRD
is that its design facilitates repeating a simulation a large number of times.
It can do this in one of two ways:

1. In a single execution, a simulation is repeated multiple times accord-
ing to the “Number of Repeats” property in the “Simulation Control”
object. Each of these realizations should be independent.

3.4. RUNNING ACCORD 39

Figure 3.2: Sample command line output on Windows running one of the
sample configuration files.

Figure 3.3: Sample command line output on Windows running a modified
sample configuration file where two unnecessary properties have been added.

2. Every execution uses a seed. A simulation can be called multiple times,
each with a different seed, and then all of the realizations in every
execution should be independent.

Of course, every execution creates its own output. Why would you want

40 CHAPTER 3. HOW TO USE ACCORD

to use different seeds and create more output files? The main reason is
that AcCoRD is a single-threaded program. Multi-threaded execution can
be achieved by running multiple instances of the same simulation at the
same time, each with its own seed. This concept can be extended to running
AcCoRD on a compute cluster (see below). In terms of the number of output
files, this is generally not an issue, since the AcCoRD import utility for
MATLAB can combine output from a simulation that was run with different
seeds.

3.4.3 Using a Compute Cluster

If you have access to a computing cluster, then it can be a great resource for
running simulations. Clusters might be managed locally, such as in a single
research lab or department, or they could be multi-institutional infrastruc-
ture, such as the WestGrid and the Centre for Advanced Computing, which
have both been used at different stages of AcCoRD’s development. Unfortu-
nately, different clusters can have very different ways to set up and execute
code, so detailed instructions cannot be provided here and the potential for
support by the AcCoRD developer is limited. However, here are some general
guidelines and tips to give you an idea of what might be involved:

• You often need some form of SSH access to log in to a remote terminal
that serves as the gateway to the cluster. The cluster would usually
has some kind of registration procedure that once completed will give
you SSH credentials (username/password). On Windows, PuTTY is
commonly used for SSH. Linux usually has SSH via command line by
default.

• You will need a way to transfer files to and from the cluster. A full
install of PuTTY includes utilities to transfer files. Alternatively, an
interface-based program like FileZilla can be very helpful to do this.

• You will (probably) need to compile the AcCoRD executable directly
on the cluster. Refer to Chapter 2 for instructions on how to compile
from source, but replace “preferred directory” with “directory on the
cluster” and replace “command line terminal” with “SSH session”. If
the cluster is using a Linux-based OS (which it most likely is), then the
Linux-based build scripts should work fine.

• A cluster usually has a job submission system where you submit a “job”
to run one simulation. The syntax for this can vary greatly. Once you
figure out how to submit a job (usually there are sample commands

3.4. RUNNING ACCORD 41

provided), it can be very helpful to write a script with a for-loop that
submits one job for each value in a range of seed values.

• A cluster usually has some kind of fairness protocol to limit how many
computing resources a user has access to. You may need to trade
off between the number of seeds vs the number of “Repeats” in each
simulation, in order to run your simulations in a reasonable time.

• The command line output on a cluster is usually written to a unique
data file for each simulation. Generally, there is no mechanism to deal
with configuration warnings, so be sure that your configuration file
doesn’t generate any warnings (or - not recommended - set “Warning
Override” to true).

• If you run many simulations with a lot of seed values, then you may
need to transfer large numbers of files. It can be much faster to combine
files into a “zip” file (or some other compression method) and then
transfer the zip file. Total file size can be reduced by up to an order of
magnitude, and the transfer rate is much faster when there are fewer
individual files.

42 CHAPTER 3. HOW TO USE ACCORD

3.5 Understanding AcCoRD Output

This page has instructions for reading and working with AcCoRD output
files, including how to import them into MATLAB. These instructions as-
sume that you have already generated the output files by running simula-
tions. If not, then please refer to Section 3.4 for details. Once you out-
put has been imported to MATLAB, you can refer to the AcCoRD Post-
Processing page for creating plots and videos. Each AcCoRD simulation
generates two output files. The files are named MY OUTPUT SEEDX.txt
and MY OUTPUT SEEDX summary.txt, where MY OUTPUT is the “Out-
put Filename” defined in the configuration file, and X is the seed value.
We will refer to these two files as the main output file and the sum-
mary file, respectively. The summary file is written in JSON format
(http://www.json.org/). It provides some general information about the
simulation, including the run time and the name of the configuration file that
was used. Importantly, it also includes information on how to read the main
output file. However, the recommended AcCoRD workflow does not
include working directly with these files. MATLAB utilities are pro-
vided which scan the output into structures that are much more convenient
to manipulate. If you do not have access to MATLAB, or you need to do
some debugging, then information is also provided (in Section 3.5.2) about
reading the raw output files.

Note: an alternative to using the accordImport function de-
scribed below is the simple wrapper accordQuickPlot.m. It takes
only a simple argument that can be either a filename that would
be passed to accordImport or the corresponding output file that
accordImport generates. It also then plots all of the average time-
varying data of all passive actors. However, accordQuickPlot will
only load the simulation output associated with the seed value 1.

3.5.1 Importing to MATLAB

The recommended method to use AcCoRD output is by importing into MAT-
LAB. AcCoRD comes with utility functions to read output files and facili-
tate post-processing (see Section 3.6). These functions are all included in the
“matlab” directory of the AcCoRD installation. To access these functions,
this directory should be your current directory in MATLAB (or, alterna-
tively, on your MATLAB path). Note: If the AcCoRD “matlab” directory
is not your current directory, then you will also need to include the directory
“JSONlab”, which is inside the AcCoRD “matlab” directory, on your MAT-
LAB path. The “JSONlab” directory is only needed when importing (and

http://www.json.org/

3.5. UNDERSTANDING ACCORD OUTPUT 43

not post-processing). The primary import function, which you call directly
from the MATLAB command line, is called accordImport.m. It takes three
arguments:

1. filename - The prefix of your AcCoRD output files (i.e., without the
“ SEEDX.txt” or “ SEEDX summary.txt” suffixes). This should in-
clude a path to the file.

2. seedRange - An array listing the seed values associated with the files
that you want to import. All files need the same prefix and should
have been created using the same configuration file (otherwise
unexpected behavior may occur).

3. bWrite - A switch to write the imported data to a MATLAB “mat” file.
If true, then the file filename out.mat will be created in the “matlab”
directory, where “filename” is the filename argument but without any
path.

The accordImport function also has up to two output arguments:

1. data - Structure containing the simulation summary and output con-
tent.

2. config - Structure containing the configuration parameters defined in
the configuration file, but only if the configuration file can be found.
MATLAB will search for the file as specified in the “ConfigFile” string
of the summary file (but not including the path). It will search relative
to the current directory, and then a number of variations including the
parent directory, grandparent directory, and a “config” directory that is
either in the current directory of in the parent or grandparent directory.
If the file cannot be found, then the “config” output is an empty array.

The “data” Structure

The fields of the “data” structure are as follows (including indexing informa-
tion where applicable):

• “numSeed” - The number of seed values that were aggregated.

• “seed” - The array of seed values that were aggregated.

• “configName” - The name of the original configuration file (not in-
cluding the path)

44 CHAPTER 3. HOW TO USE ACCORD

• “startTime” - The computer time at the start of execution (but after
loading the configuration file and initializing the system parameters)
of the first seed value.

• “endTime” - The computer time at the end of the simulation (but
before memory cleanup) of the first seed value.

• “numRepeatSingle” - The number of realizations simulated by the
first seed.

• “numRepeat” - The number total number of realizations by all seeds,
assuming that the same number of realizations was simulated by each
seed.

• “numActive” - The number of active actors whose behavior is
recorded in the main output files.

• “activeID” - Array containing the numeric IDs of the active actors.
Numbering of IDs starts at 0 and follows the order of all actors (active
and passive) in the configuration file.

• “activeMaxBits” - Array containing, for each active actor, the length
of the longest bit sequence among all realizations simulated by the first
seed.

• “activeBits” - Cell array of matrices containing the transmitted bits
of each active actor in every realization. Indexing has format ac-
tiveBitsi(j,k) for the kth observation by the ith active actor in the jth
realization.

• “numPassiveRecord” - The number of passive actors whose behavior
is recorded in the main output files.

• “passiveRecordID” - Array containing the numeric IDs of the passive
actors. Numbering of IDs starts at 0 and follows the order of all actors
(active and passive) in the configuration file.

• “passiveRecordBTime” - Array of switches indicating whether the
times of the passive actor’s observations were recorded.

• “passiveRecordMaxCountLength” - Array containing, for each
passive actor, the largest number of observations made by actor in
any single realization simulated by the first seed.

3.5. UNDERSTANDING ACCORD OUTPUT 45

• “passiveRecordNumMolType” - Array of the number of types of
molecules observed by each passive actor.

• “passiveRecordMolID” - Cell array of arrays, each of length “pas-
siveRecordNumMolType”, indicating the numeric IDs of the types of
molecules that were observed by each passive actor. Numbering of IDs
starts at zero. Indexing has format passiveRecordMolIDi(j) for the jth
type of molecule observed by the ith passive actor.

• “passiveRecordBPos” - Cell array of arrays of switches, each of
length “passiveRecordNumMolType”, indicating whether the passive
actor recorded the positions of the molecules that were observed. In-
dexing has format passiveRecordBPosi(j) for the jth type of molecule
observed by the ith passive actor.

• “passiveRecordTime” - Cell array of matrices, each of size “num-
Repeat” by “passiveRecordMaxCountLength”, storing the observation
times by each passive actor in every realization. Only written to if
“passiveRecordBTime” is true. Indexing has format passiveRecord-
Timei(j,k) for the kth type of molecule observed by the ith passive
actor in the jth realization.

• “passiveRecordCount” - Cell array of 3D arrays, each of size
“numRepeat” by “passiveRecordNumMolType” by “passiveRecord-
MaxCountLength”, storing the number of molecules of each type ob-
served by each passive actor in every realization. Indexing has format
passiveRecordCounti(j,k,m) for the mth observation of the kth type of
molecule observed by the ith passive actor in the jth realization.

• “passiveRecordPos” - Cell array of cell arrays, each of length “pas-
siveRecordNumMolType”, of 2D cell arrays, each of size “numRepeat”
by “passiveRecordMaxCountLength”, of N by 3 matrices indicating
the coordinates of every molecule observed by each passive actor in ev-
ery realization. Only written to for elements of “passiveRecordBPos”
that are true. Indexing has format passiveRecordPosijk,m(n,p) for the
pth coordinate of the nth molecule of the jth type observed by the ith
passive actor in the mth observation of the kth realization.

The “config” Structure

The fields of the “config” structure are mostly analogous to those in the cor-
responding configuration file. The fields match as follows (refer to Section 3.3
for more details about the configuration parameters):

46 CHAPTER 3. HOW TO USE ACCORD

• “outputFilename” - “Output Filename”

• “numRepeatPerSeed” - “Number of Repeats”

• “dt” - “Global Microscopic Time Step”

• “tFinal” - “Final Simulation Time”

• “numMolTypes” - “Number of Molecule Types”

• “diffusionCoeff” - matrix where every row contains the diffusion co-
efficients for that region. Unless the region defined “Local Diffusion
Coefficients”, the global “Diffusion Coefficients” are used.

• “numChemRxn” - length of the “Chemical Reaction Specifica-
tion” array

• “chemRxn” - Array of structures corresponding to “Chemical Re-
action Specification”. The fields of each structure may include (as
appropriate):

– “rate” - “Reaction Rate”

– “label” - “Label”

– “bReversible” - “Is Reaction Reversible?”

– “revLabel” - “Reverse Reaction Label”

– “bSurface” - “Surface Reaction?”

– “surfRxnType” - “Surface Reaction Type”

– “surfTransProb” - “Surface Transition Probability”

– “surfRxnThresholdType” - “Surface Reaction Threshold
Type”

– “surfRxnThresholdValue” - “Surface Reaction Threshold
Value”

– “diffusion” - “Surface Reaction Diffusion Coefficient”

– “bEverywhere” - “Default Everywhere?”

– “numExceptions” - length of the “Exception Regions” array

– “exceptionRegions” - “Exception Regions”

– “reactants” - “Reactants”

– “products” - “Products”

3.5. UNDERSTANDING ACCORD OUTPUT 47

– “bProdReleased” - “Products Released?”

– “releaseType” - “Release Placement Type”

• “subBaseSize” - “Subvolume Base Size”

• “numRegion” - length of the “Region Specification” array

• “region” - Array of structures corresponding to “Region Specifica-
tion”. The fields of each structure may include (as appropriate):

– “label” - “Label”

– “parent” - “Parent label”

– “shape” - “Shape”

– “type” - “Type”

– “surfaceType” - “Surface Type”

– “bMicro” - “Is Region Microscopic?”

– “numSubDim” - “Number of Subvolumes Per Dimension”

– “subvolSizeInt” - “Integer Subvolume Size”

– “radius” - “Radius”

– “anchorCoor” - “Anchor Coordinate”

• “numActor” - length of the “Actor Specification” array

• “numActive” - number of actors in the “Actor Specification” array
that are active

• “numPassive” - number of actors in the “Actor Specification”
array that are passive

• “actor” - Array of structures corresponding to “Actor Specifica-
tion”, where only the parameters that are common to both active and
passive actors are stored. The fields of each structure may include (as
appropriate):

– “bDefinedByRegions” - “Is Actor Location Defined by
Regions?”

– “numRegion” - length of the “List of Regions Defining Lo-
cation” array

– “regionList” - “List of Regions Defining Location”

48 CHAPTER 3. HOW TO USE ACCORD

– “shape” - “Shape”

– “boundary” - “Outer Boundary”

– “bActive” - “Is Actor Active?”

– “startTime” - “Start Time”

– “bMaxActions” - “Is There Max Number of Actions?”

– “maxActions” - “Max Number of Actions”

– “bIndependent” - “Is Actor Independent?”

– “actionInterval” - “Action Interval”

– “bRecord” - “Is Actor Activity Recorded?”

– “activeID” - if actor is active, this number indicates the index
of the corresponding active actor parameters in the “activeActor”
array of structures

– “passiveID” - if actor is active, this number indicates the index
of the corresponding active actor parameters in the “passiveActor”
array of structures

• “activeActor” - Array of structures corresponding to the active actors
in “Actor Specification”. The fields of each structure may include
(as appropriate):

– “actorID” - index of the corresponding common actor parame-
ters in the “actor” array of structures.

– “bRandNumMolecules” - “Random Number of
Molecules?”

– “bRandReleaseTimes” - “Random Molecule Release
Times?”

– “releaseInterval” - “Release Interval”

– “slotInterval” - “Slot Interval”

– “bBitsRandom” - “Bits Random?”

– “probBitOne” - “Probability of Bit 1”

– “bitSequence” - “Bit Sequence”

– “numBits” - length of the “Bit Sequence” array

– “modScheme” - “Modulation Scheme”

– “numModBits” - “Modulation Bits”

– “modStrength” - “Modulation Strength”

3.5. UNDERSTANDING ACCORD OUTPUT 49

– “bReleaseType” - “Is Molecule Type Released?”

• “passiveActor” - Array of structures corresponding to the passive
actors in “Actor Specification”. The fields of each structure include:

– “actorID” - index of the corresponding common actor parame-
ters in the “actor” array of structures.

– “bRecordTime” - “Is Time Recorded with Activity?”

– “bRecordMolCount” - “Is Molecule Type Observed?”

– “bRecordMolPosition” - “Is Molecule Position Ob-
served?”

Note: It is generally expected that necessary configuration parameters are
defined by the configuration file (i.e., any case that results in a warning about
a missing parameter at simulation run time would result in an error here).

3.5.2 Reading AcCoRD Output Files

AcCoRD output files are technically readable but are not intended for pri-
mary post-processing. The summary file contains two JSON objects and is
written so that the original configuration file is not needed to import
the actor behavior to MATLAB (however, the original configuration file
is needed to import all of the simulation parameters). The first object has
the following fields:

• “ConfigFile” - The name of the configuration file used to define the
simulation environment (including the path if it was provided).

• “SEED” - The seed value used to initialize the random number gener-
ator. Does not necessarily match the one in the configuration file since
it can be defined at run time.

• “NumRepeat” - The number of independent realizations.

• “StartTime” - The computer time at the start of execution (but after
loading the configuration file and initializing the system parameters).

The second object in the AcCoRD summary file has the following fields:

• “NumberActiveRecord” - The number of active actors whose be-
havior is recorded in the main output file.

• “ActiveInfo” - An array of objects, one for each active actor whose
behavior was recorded. Each of these objects has the following fields:

50 CHAPTER 3. HOW TO USE ACCORD

– “ID” - The numeric ID of the actor. Numbering starts at 0 and
follows the order of all actors (active and passive) in the configu-
ration file.

– “MaxBitLength” - The length of the longest actor bit sequence,
among all realizations.

• “NumberPassiveRecord” - The number of passive actors whose be-
havior is recorded in the main output file.

• “RecordInfo” - An array of objects, one for each passive actor whose
behavior was recorded. Each of these objects has the following fields:

– “ID” - The numeric ID of the actor. Numbering starts at 0 and
follows the order of all actors (active and passive) in the configu-
ration file.

– “bRecordTime” - Switch indicating whether the times of this
actor’s observations were recorded.

– “MaxCountLength” - The largest number of observations made
by the passive actor in any single realization.

– “NumMolTypeObs” - The number of types of molecules that
the actor observed.

– “MolObsID” - The numeric IDs of the types of molecules that
were observed. Numbering starts at zero.

– “bRecordPos” - Array of switches of length “NumMolType-
Obs”. Indicates whether the actor recorded the positions of the
molecules that were observed.

• “EndTime” - The computer time at the end of the simulation (but
before memory cleanup).

• “RunTime” - The total run time of the main simulation loop (ex-
cludes initialization and cleanup, so should scale linearly with the num-
ber of realizations).

The main output file is not written in JSON. Instead, a simple ASCII
format is used for fast importing into MATLAB. The structure is as follows:

Realization #: (repeats for every realization)

ActiveActor #: (repeats for every active actor

with recorded data)

(numbering follows the actor IDs)

3.5. UNDERSTANDING ACCORD OUTPUT 51

[Actor bit sequence]

PassiveActor #: (repeats for every passive actor

with recorded data)

(numbering follows the actor IDs)

MolID #: (repeats for every type of

molecule observed by actor)

Count:

[Number of molecules

in each observation]

Position: (Only if bRecordPos is true

for this molecule type)

[Array of arrays of 3D molecule

locations for every observed

molecule. Each molecule location

is defined within (), and all

molecules for a single observation

are also within ()]

52 CHAPTER 3. HOW TO USE ACCORD

3.6 AcCoRD Post-Processing

This page describes how to use the AcCoRD post-processing utilities that
were developed in MATLAB (for version R2016b or newer), including
functions to plot signal curves and generate videos. These instructions as-
sume that you have already imported simulation output to MATLAB. If not,
then please refer to Section 3.5 for details. If you have a configuration file
that you want to draw without simulating it first, then please refer to Sec-
tion 3.2 to learn more about using the utility accordEmptyEnvironment.m.
AcCoRD has two primary post-processing utility files, neither of which you
should call directly:

1. accordPlotMaker.m (the Plot Maker) - Plot curves on a figure
showing observed signals from one or more realizations of a simulation.
Can also plot non-simulation data (in fact, this can be used as a generic
plotting function if desired).

2. accordVideoMaker.m (the Video Maker) - Build video files or a
sequence of figures showing molecules from a single realization of a sim-
ulation. Optional commands enable you to add annotations, a timer,
and molecule counters.

Both of these files, which are found in the AcCoRD “matlab” directory, have
a wrapper file that you should copy and modify for your specific simulation
and plotting requirements. The wrapper files prepare all of the necessary
input arguments and include some documentation about how the arguments
can be modified. Generally, you should have a different wrapper for every
plot or video that you want to make. This makes it easier to re-generate any
plot or video at a later time, as needed. The rest of this page will describe how
to prepare the wrappers for these two AcCoRD post-processing functions. If
you are interested in other post-processing tasks, e.g., calculating bit error
rates, then you should refer to Section 3.5 for details on how to read the
simulation output after it has been imported.

Note: an alternative to using the default wrapper for Plot
Maker is the simple wrapper accordQuickPlot.m. It takes a single
argument that can be either a filename that would be passed to
accordImport or the corresponding output file that accordImport
generates. It also then plots all of the average time-varying data
of all passive actors. However, please note that if accordQuick-
Plot is used to import then it will only load the simulation output
associated with the seed value 1.

3.6. ACCORD POST-PROCESSING 53

3.6.1 Plot Maker

The default wrapper for plotting curves is the file accordPlotMakerWrap-
per.m. To prepare a plot, you should start by copying and renaming
this file. By default, it plots the time-varying signal of the number of
molecules observed by the passive actor in the default configuration (“ac-
cord config sample.txt”). This is actually rather boring, since the environ-
ment is a box with 2 molecules in it and the actor watches the whole box!
The default wrapper is designed to plot one signal from one passive actor
in one output file; this can be expanded by adding for loops. The wrapper
takes no input arguments, but it has up to two output arguments:

• “hFig” - handle to the figure. This can be used to modify the figure
after it has been created.

• “hAxes” - handle to the figure axes. This can be used to modify the
axes (including adding new curves) after it has been created.

The parameters that are defined by the default Plot Maker wrapper are as
follows:

• “fileToLoad” - Name of the MATLAB “mat” file whose data will be
plotted.

• “hAxes” - Handle to the figure axes to add the curve. If its value is
0, then a new figure and axes will be created.

• “customFigProp” - Structure of figure properties to modify from
their AcCoRD defaults. It can be an empty array if there are no prop-
erties to change. The file “accordBuildFigureStruct.m” lists some of
the structure fields and their default values. Generally, most valid
MATLAB figure properties can be modified here (i.e., figure properties
that you can change via the “set” command). Examples include the
background color and the size of the figure.

• “customAxesProp” - Structure of axes properties to modify from
their AcCoRD defaults. It can be an empty array if there are no prop-
erties to change. The file “accordBuildAxesStruct.m” lists some of the
structure fields and their default values. Generally, most valid MAT-
LAB axes properties can be modified here (i.e., axes properties that
you can change via the “set” command). Examples include the axis
limits and visibility of the grid. The default values are set to favor video
generation, so it is recommended to change the “Visible” field to “on”
(to show the coordinate axes), the “Projection” field to “orthographic”
(which removes depth perception), and the “Clipping” field to “on”.

54 CHAPTER 3. HOW TO USE ACCORD

• “passiveID” - Index of passive actor whose signal is to be plotted.
The indexing here is from the list of passive actors whose observations
were recorded (and not the underlying actor IDs in the original
simulation).

• “molID” - Index of the molecule type whose signal is to be plotted.
The indexing here is from the list of molecule types that the passive
actor recorded (and not the underlying molecule type IDs in the
original simulation).

• “customObsProp” - Structure of display properties to configure the
curve. It can be an empty array if there are no properties to change (de-
fault is the time-varying number of molecules observed, averaged over
all realizations). There are many different types of plots and settings to
configure the curve. For complete details, please refer to the “accord-
BuildObserverStruct.m” file. The most critical field of this structure is
“obsType”, which defines the type of curve. The options for this field
are as follows:

– “Sample” (default) - 2D plot of the time-varying simulation
observations. Can be from a specific realization or averaged over
any set of realizations (default is to average over all).

– “Expected” (non-simulation) - 2D plot of user-supplied data.
Useful for plotting expected curves, but can be any data. Set the
“data1” and “data2” fields as vectors of (x, y) data.

– “3D Expected” (non-simulation) - 3D version of “Expected”.
Set the “data1”, “data2”, and “data3” fields as matrices of (x, y,
z) data.

– “Empirical CDF” - 2D plot of the cumulative distribution func-
tion of the simulation observations, i.e., measures the probability
that an observation will be less than or equal to some value. In-
cludes all observations at all observation times into one CDF.

– “3D Empirical CDF” - time-varying version of “Empirical
CDF”. Every observation time has its own corresponding CDF.

– “Expected CDF” (non-simulation) - 2D plot of the cumu-
lative distribution function for the specified probability distribu-
tion. Options are based on the Binomial distribution, with a cor-
responding number of trials “numTrials” and success probability
“trialProbability”. The other distributions are the Poisson and
Gaussian approximations of the Binomial distribution.

3.6. ACCORD POST-PROCESSING 55

– “3D Expected CDF” (non-simulation) - 3D version of “Ex-
pected CDF”, where the “trialProbability” is a vector instead of
a scalar and the “data2” field lists event times associated with the
each trial probability.

– “Empirical PMF” - 2D plot of the probability mass function of
the simulation observations, i.e., measures the probability that an
observation will be equal to some value. Includes all observations
at all observation times into one PMF.

– “3D Empirical PMF” - time-varying version of “Empirical
PMF”. Every observation time has its own corresponding PMF.

– “Expected PMF” (non-simulation) - 2D plot of the proba-
bility mass function for the specified probability distribution. Op-
tions are based on the Binomial distribution, with a corresponding
number of trials “numTrials” and success probability “trialProb-
ability”. The other distributions are the Poisson and Gaussian
approximations of the Binomial distribution.

– “3D Expected PMF” (non-simulation) - 3D version of “Ex-
pected PMF”, where the “trialProbability” is a vector instead of
a scalar and the “data2” field lists event times associated with the
each trial probability.

– “Mutual Information” - 2D plot of mutual information between
simulation observations relative to a reference observation, which
tells you how much the knowledge of the reference observation
helps in predicting the value of other observations. The reference
observation is the first one specified. Generally, mutual informa-
tion should decrease as observations become more separated in
time. It is measured using all realizations.

– “3D Mutual Information” - 3D version of “Mutual Infor-
mation”, where there are multiple reference observations. The
“data1” vector defines what (relative) observations to measure
from each reference. If a value in “data1” is 0, then the corre-
sponding surface points will measure the entropy of each reference
observation.

– “Monte Carlo Mutual Information” (non-simulation) - 2D
plot of mutual information between independent random variables
generated from Binomial distributions with different success prob-
abilities. Since there is a finite number of realizations of the ran-
dom variables, the mutual information will have a non-zero value
(even though the true mutual information between independent

56 CHAPTER 3. HOW TO USE ACCORD

random variables is 0). This kind of curve can take a long time to
generate.

– “3D Monte Carlo Mutual Information” (non-simulation)
- 3D version of “Monte Carlo Mutual Information”, where there
is a matrix instead of a vector of success probabilities. This kind
of curve can take a very long time to generate.

• “customCurveProp” - Structure of curve (2D) or surface (3D) prop-
erties to modify from their AcCoRD defaults. It can be an empty
array if there are no properties to change. The file “accordBuildCur-
veStruct.m” lists some of the structure fields and their default values for
2D plots. The file “accordBuildSurfStruct.m” lists some of the struc-
ture fields and their default values for 3D plots. Generally, most valid
MATLAB curve and surface properties can be modified here (i.e., curve
or surface properties that you can change via the “set” command). Ex-
amples include marker size, line style, and display name (which you see
if you turn on the legend).

Once the wrapper is configured as desired, you can run it to run the Plot
Maker and generate the figure. Complete examples of modified wrap-
per files for generating plots can be found on the AcCoRD Examples
webpage (https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/
accord/examples/).

3.6.2 Video Maker

Before running simulations to create videos, you should consider the following
guidelines:

• Generally, the simulations that you run to create videos may not the
same as those for other post-processing. This is because you probably
want passive actors to observe more of the environment, and they need
exact molecule locations. Recording molecule locations results in larger
output files and takes longer to import into MATLAB.

• In order to see molecules in a video, their locations need to be recorded
by a passive actor. If not, then there will be nothing to see! So, if
you want to watch molecules everywhere in the environment (and in
an isolated location, e.g., at an intended receiver), then you will need
to configure one or more passive actors to occupy the entire simulation
environment. One reason for multiple passive actors that do not overlap
is so that you can use different colors to indicate when molecules have
entered different areas of the environment.

https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/examples/
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/examples/

3.6. ACCORD POST-PROCESSING 57

• A video will only display a single realization, so a simulation run to
create a video will mostly likely only need one realization (unless you
want to try multiple realizations and pick one with the observations
that you want to use).

• The display of any actor or region in the environment is optional and in-
dependent of what molecules are being drawn. You can have molecules
moving in an environment that appears to be empty.

The Video Wrapper File

The default wrapper for creating videos is the file accordVideoMaker-
Wrapper.m. To prepare a video, you should start by copying and renam-
ing this file. By default, it makes a video of the two molecules diffusing in
the default configuration (“accord config sample.txt”). The wrapper takes
no input arguments, but it has up to two output arguments:

• “hFig” - Array of handles to the figure. This can be used to modify
the figures after they have been created (there is an option to create
multiple figures instead of building a video).

• “hAxes” - Array of handles to the figure axes. This can be used to
modify the axes after they have been created.

The parameters that are defined by the default Video Maker wrapper are as
follows (you can see that a number of them are the same as those for the
Plot Maker wrapper):

• “fileToLoad” - Name of the MATLAB “mat” file whose data will be
plotted.

• “bMakeVideo” - Switch to control whether a video is generated. If
false, then each observation will be plotted as a separate figure. If true
(or a positive integer), then all observations are plotted in the same
figure and stitched into a video file. Entering a number greater than 1
will repeat each frame the specified number of times (to decrease the
apparent frame rate).

• “videoName” - Filename to save the video file to. The relevant ex-
tension will be added automatically.

• “videoFormat” - Format of the video. See the MATLAB docu-
mentation for the “VideoWriter” function to see the full list of op-
tions. “Motion JPEG AVI” creates a high quality video with a large

58 CHAPTER 3. HOW TO USE ACCORD

file size (but which can be easily converted to a high quality mp4
with a much smaller file size with free tools like VLC Media Player
(https://www.videolan.org/). To generate a small file directly in
Windows, set to “MPEG-4” (though experience has shown much bet-
ter results by building an avi file first and the converting with VLC).

• “curRepeat” - Index of the simulation realization to use.

• “scale” - A scaling factor used to mitigate display problems observed
when trying to draw objects that have very small dimensions. This
factor is applied to region and actor coordinates. It is recommended
that the smallest object (that isn’t a molecule) have a length on the
order of 1, so a system defined on the order of microns should set “scale”
to 1e6.

• “observationToPlot” - Array of indices listing the observations that
will be recorded and in what order. Actual actor start times and action
intervals are ignored; it is assumed that all recorded actors make obser-
vations at the same times. Indices that are larger than the maximum
number of observations in the simulation are just ignored.

• “customFigProp” - Structure of figure properties to modify from
their AcCoRD defaults. It can be an empty array if there are no prop-
erties to change. The file “accordBuildFigureStruct.m” lists some of
the structure fields and their default values. Generally, most valid
MATLAB figure properties can be modified here (i.e., figure properties
that you can change via the “set” command). Examples include the
background color and the size of the figure.

• “customAxesProp” - Structure of axes properties to modify from
their AcCoRD defaults. It can be an empty array if there are no prop-
erties to change. The file “accordBuildAxesStruct.m” lists some of the
structure fields and their default values. Generally, most valid MAT-
LAB axes properties can be modified here (i.e., axes properties that
you can change via the “set” command). Examples include the axis
limits and visibility of the grid. The default values are set to favor
video generation, so you may not need to change any values from their
defaults.

• “customVideoProp” - Structure of video properties to modify from
their AcCoRD defaults. It can be an empty array if there are no prop-
erties to change. The file “accordInitializeVideo.m” lists some of the

https://www.videolan.org/

3.6. ACCORD POST-PROCESSING 59

structure fields and their default values. Generally, most valid MAT-
LAB video object properties can be modified here (i.e., video properties
that you can change via the “set” command). Examples include the
frame rate and the video quality (although video quality does not apply
to lossless formats).

• “regionToPlot” - Array of indices of the regions that will be plotted.
This can be an empty array if no regions are to be drawn. Choosing
to draw a region is independent of choosing to draw the molecules that
are inside that region.

• “customRegionProp” - Structure of region display properties to
modify from their AcCoRD defaults. It can be an empty array if there
are no properties to change. The file “accordBuildDispStruct.m” lists
the structure fields and their default values, which do not correspond
to a specific set of MATLAB properties. Properties include color and
opacity.

• “actorToPlot” - Array of indices of the actors that will be plotted.
Indexing is from the initial actor list (of both active and passive actors).
This can be an empty array if no actors are to be drawn. Choosing
to draw a actor is independent of choosing to draw the molecules that
are inside that actor. Actors are drawn after regions, so if an actor is
defined by regions then it will be drawn on top of its regions.

• “customActorProp” - Structure of actor display properties to mod-
ify from their AcCoRD defaults. It can be an empty array if there
are no properties to change. The file “accordBuildDispStruct.m” lists
the structure fields and their default values, which do not correspond
to a specific set of MATLAB properties. Properties include color and
opacity.

• “passiveActorToPlot” - Array of indices of passive actors whose
molecules are to be plotted. Indexing is from the list of passive actors
whose observations were recorded. Actors listed here will have their
observed molecules plotted and not the actor shapes themselves.

• “molToPlot” - Cell array of arrays of indices of molecule types to plot.
Each cell corresponds to the passive actor index specified in “passiveAc-
torToPlot”. The array in a given cell lists the indices of the molecule
types of that actor that are to be drawn, where the indexing corre-
sponds only to the molecule types that the specific actor observed. For
example, if a simulation used 4 types of molecules, and an actor only

60 CHAPTER 3. HOW TO USE ACCORD

observed the 4th type of molecule, then its corresponding array can
only be [1].

• “customMolProp” - Cell array of structures of molecule display prop-
erties to modify from their AcCoRD defaults. It can be an empty array
if there are no properties to change. Indexing in this cell array matches
the “molToPlot” cell array. The file “accordBuildMarkerStruct.m” lists
the structure fields and their default values, which do not correspond
to a specific set of MATLAB properties.

• “cameraAnchorArray” - Cell array of cell arrays defining anchor
points for the camera display. It can be an empty cell array if the
camera view will not be modified. You can control how the camera be-
haves during a video such that it moves between anchor locations that
are defined for specific frames. Each anchor point is a cell array that
defines a complete set of camera settings, in the format ’CameraPo-
sition’, ’CameraTarget’, ’CameraViewAngle’, ’CameraUpVector’. See
the MATLAB camera documentation for more details. You can also
add camera anchors to this cell array via the command line at run time
(see later in this Section).

• “frameCameraAnchor” - Array that specifies the camera anchor
(from the “cameraAnchorArray” cell array or defined at run time) used
in each frame. Length of this array should be equal to that of “observa-
tionToPlot”. It can be an empty array if “cameraAnchorArray” is also
empty. Values in the array must be 0 or match the index of of anchor
points in “cameraAnchorArray”. If a frame has value 0, and there are
anchor points defined for an earlier and a later frame, then the camera
settings for the current frame will be linearly interpolated between the
camera settings for the surrounding anchors. You can also modify this
array via the command line at run time (see later in this Section).

Once the wrapper is configured as desired, you can run it. See the following
section for more details.

Running the Video Maker

The wrapper function is run without any import arguments (unless you added
them to your copy). When it calls the Video Maker, a figure is generated and
the environment is plotted according to the wrapper arguments (without any
molecules yet). If a video file is to be generated, then it is initialized (and
over-writing the file if it already existed). Then, execution enters MATLAB’s
“debug mode” so that you can do any of the following:

3.6. ACCORD POST-PROCESSING 61

1. Change how the regions and actors appear. If you are making a
video (and not a sequence of images), then changing the appearance
of any regions or actors (e.g., color, line width) will apply to the video.

2. Modify the camera settings.

• Call the function “accordAddCameraAn-
chor(FRAME INDICES)” to add a new camera anchor to
the “cameraAnchorArray” cell array, where the current camera
settings are used to define a camera anchor point for the frames
defined by the FRAME INDICES array.

• If the “cameraAnchorArray” cell array defined in the wrapper file
was originally empty, then you will see a default view. You can
modify the camera as desired (i.e., by panning, zooming, rotating,
etc.) and it will be applied as-is for all of the video or sequence of
images.

• If the “cameraAnchorArray” cell array was not originally empty,
then the camera settings will show the first anchor point. Changes
made to the camera will only apply if you add new anchors.

• Calling “accordAddCameraAnchor” without any arguments will
delete all existing anchors and creates an anchor for every frame
using the current camera settings.

3. Add text or graphic annotations. You can add custom text or other
annotations that will appear on-screen for any specified subset of the
frames. Once you have created the desired annotations for a particular
subset of frames, call “accordAddAnnotation(FRAME INDICES)” to
save the annotations, which will appear for the frames defined by the
FRAME INDICES array. Here are some tips and guidelines:

• De-select the “Edit Plot” button in the figure toolbar before call-
ing accordAddAnnotation. If not, then the last selected object will
have the selection highlighting included in the annotation cap-
ture. This highlighting will be visible in the final video or image
sequence.

• Generally, annotations will be drawn on top of the molecules.

• Any annotations that are still on screen when you resume execu-
tion of the Video Maker will remain in all frames.

• Simulation timers and molecule counters (see below) are all ig-
nored when you call accordAddAnnotation.

62 CHAPTER 3. HOW TO USE ACCORD

4. Add a simulation timer. Call the function “accordAddTimeDis-
play(NUM DECIMAL PLACES)” to print dynamic simulation time
in seconds, where NUM DECIMAL PLACES is the (optional) number
of decimal places. The default is 4 places. The timer text that appears
can be moved or re-configured (e.g., font size) as desired.

5. Add a molecule counter. Call the function “accordAddObservation-
Count(PASSIVE ACTOR INDEX, MOLECULE INDEX, TEXT)” to
print a molecule counter. PASSIVE ACTOR INDEX is the index of
the passive actor to count, from the list of passive actors whose ob-
servations were saved to output. MOLECULE INDEX is the index of
molecule to count, from the passive actor’s molecule list. TEXT is
prefix text that will appear before the counter value. The counter text
that appears can be moved or re-configured (e.g., font size) as desired.

To resume execution and generate the video (or sequence of images), en-
ter “dbcont” at the command line. If you want to cancel execution, enter
“dbquit”.

Chapter 4

AcCoRD Configuration
Examples

This Chapter contains descriptions of configuration and post-processing file
examples to run in the AcCoRD simulator. To run these examples yourself,
you will need to download and install AcCoRD (see Chapter 2). For more
information on how to use these files, you can refer to Chapter 3. The
examples are sorted into two main categories. The configuration files of the
latest release examples are included with every download of AcCoRD
and are kept up to date to run on the latest release. The specific release
examples are maintained for a specific version and are intended to recreate
results from a specific publication or demonstrate a new feature associated
with that release. The files for the specific version examples can be found on
the AcCoRD Examples webpage (https://warwick.ac.uk/fac/sci/eng/
staff/ajgn/software/accord/examples/).

4.1 Latest Release Examples

The following configuration files are kept up to date for the latest version of
AcCoRD. To limit execution times, most of these simulations only run a sin-
gle realization. To access these files, you can download the latest version of
AcCoRD (https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/
accord/downloads/; see Chapter 2).

• “accord config sample.txt” - Places 2 molecules in a microscopic
box and tracks their locations as they diffuse. No reactions. This is
one of only two sample configuration files that track molecule
locations.

63

https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/examples/
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/examples/
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/downloads/
https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/downloads/

64 CHAPTER 4. ACCORD CONFIGURATION EXAMPLES

• “accord config sample a priori absorption.txt” - Single point
source release in an environment with an absorbing sphere. Demon-
strates the use of the A Priori Monte Carlo absorption algorithm (see
[3]). Compared to “typical” reactive surface simulations, the time step
(0.5 seconds) is very large.

• “accord config sample all shapes hybrid.txt” - Places molecules
uniformly in a large box that is divided into a mix of microscopic and
mesoscopic regions. Demonstrates the nesting of regions. No reactions.

• “accord config sample all shapes meso.txt” - Places molecules
uniformly in a large box that is divided into a number of mesoscopic
regions. Demonstrates the nesting of regions. No reactions.

• “accord config sample all shapes micro.txt” - Places molecules
uniformly in a large box that is divided into a number of microscopic
regions. Demonstrates the nesting of regions. No reactions.

• “accord config sample communication.txt” - Small spherical
source releases finite-width pulses of molecules that are observed as
they pass through a transparent spherical receiver. Environment is all
microscopic. The transmitter modulates its signal according to a pre-
defined sequence of bits. Each symbol has two bits. The symbols (0,
1, 2, 3) result in (0, 1000, 2000, 3000) molecules being released over
a release interval of 1ms, which is 10% of the symbol interval. No
reactions.

• “accord config sample communication chemical.txt” - Point
source releases finite-width pulses of molecules that can bind to a spher-
ical receiver. Environment is all microscopic. Transmitter modulates
its signal according to a randomly-generated bit sequence. Each symbol
has 2 bits (values are 0, 1, 2, 3). The value of the symbol is multiplied
by a stochastic generation rate of 120000 molecules per second that is
active for 1ms of the transmitter’s 10ms symbol interval. Molecules
can reversibly bind to the surface of the receiver.

• “accord config sample crowding.txt” - Places 10 molecules in a
microscopic box that has a reflecting box nested inside. A bimolecular
reaction with a finite unbinding radius maintains a minimum distance
between pairs of molecules.

• “accord config sample flow.txt” - Point source releases an impulse
of molecules that are counted inside a spherical observer. There is a net

4.1. LATEST RELEASE EXAMPLES 65

flow in the direction from the source to the observer, and the flow has
a slower velocity within the observer. Environment is all microscopic.

• “accord config sample flow closed hybrid.txt” - Places
molecules inside a pipe that is closed to form a square. Each
side of the pipe has a different flow direction, such that the molecules
undergo a net counterclockwise motion. Two of the sides are meso-
scopic and two of the sides are microscopic. This is one of only two
sample configuration files that track molecule locations.

• “accord config sample hybrid.txt” - Places molecules in a box
that is one half microscopic and one half mesoscopic. The mesoscopic
region has 125 subvolumes.

• “accord config sample pipe reaction diffusion.txt” - Places
molecules at one end of a rectangular pipe. An absorbing region with
a finite absorption rate is at the other end of the pipe. The pipe is
mesoscopic.

• “accord config sample pipe reaction diffusion microscopic.txt”
- Places molecules at one end of a rectangular pipe. An absorbing
region with a finite absorption rate is at the other end of the pipe.
The pipe is microscopic.

• “accord config sample point diffusion.txt” - Point source re-
leases an impulse of molecules that are observed by various transparent
receivers, including a sphere and a box. Environment is all microscopic.
No reactions.

• “accord config sample reactor.txt” - Creates and destroys
molecules in a mesoscopic box. On average, one molecule is created
every second and has an expected lifetime of 100 seconds.

• “accord config sample reactor 2nd order.txt” - Places
molecules in a mesoscopic box. The molecules can degrade by
participating in an enzyme kinetic reaction. The diffusion coefficients
of all molecule are set to zero but there is only one subvolume so no
diffusion is needed (molecules are always assumed to have a random
location inside a mesoscopic subvolume).

• “accord config sample reactor microscopic.txt” - Creates and
destroys molecules in a microscopic box. On average, one molecule
is created every second and has an expected lifetime of 100 seconds.

66 CHAPTER 4. ACCORD CONFIGURATION EXAMPLES

• “accord config sample surface.txt” - Places molecules of many
types in a microscopic box. Some types of molecules can pass through
one face of the box into an adjacent box, and some types of molecules
can be absorbed by one face of the box (either reversible or irreversibly).
This environment re-creates that used for Figure 6a in [6], a paper by
Steven S. Andrews where he derived the surface reaction probabilities
for Smoldyn (http://www.smoldyn.org/). These probabilities are also
implemented in AcCoRD.

4.2 Specific Release Examples

The following configuration files were written for a specific version of Ac-
CoRD. Old versions of AcCoRD can be found on Github (https://github.
com/adamjgnoel/AcCoRD/releases).

4.2.1 Sample Videos in the AcCoRD Journal Paper

[1] has a series of 8 videos in its supplementary materials. These videos
can also be found on Youtube (https://www.youtube.com/playlist?list=
PLZ7uYXG-7XF8UyhFrIuQIiZig1XA89e3i). The simulations were run using
version 0.7 and 0.7.0.1, and the videos were generated using version 1.0, but
all can be re-created using just 1.0.

• The corresponding configuration directory also includes a MATLAB
m-file (“accord config journal video 1 draw environment.m”) that will
draw the regions defined for the first video without needing to run a
simulation. This script should be placed in the AcCoRD “matlab”
directory to run properly.

• A separate directory includes the Video Maker wrappers that can be
used to build the videos once the simulation output has been imported
into MATLAB.

http://www.smoldyn.org/
https://github.com/adamjgnoel/AcCoRD/releases
https://github.com/adamjgnoel/AcCoRD/releases
https://www.youtube.com/playlist?list=PLZ7uYXG-7XF8UyhFrIuQIiZig1XA89e3i
https://www.youtube.com/playlist?list=PLZ7uYXG-7XF8UyhFrIuQIiZig1XA89e3i

Bibliography

[1] A. Noel, K. C. Cheung, R. Schober, D. Makrakis, and A. Hafid, “Simulat-
ing with AcCoRD: Actor-based communication via reaction–diffusion,”
Nano Communication Networks, vol. 11, pp. 44–75, Mar. 2017.

[2] A. Noel and D. Makrakis, “Algorithm for mesoscopic advection-
diffusion,” IEEE Transactions on NanoBioscience, vol. 17, no. 4, pp.
543–554, Dec. 2018.

[3] Y. Wang, A. Noel, and N. Yang, “A new simulation algorithm for ab-
sorbing receiver in molecular communication,” in Proc. IEEE SECON
Workshops. IEEE, Jun. 2018, pp. 1–4.

[4] A. Noel, K. C. Cheung, and R. Schober, “On the statistics of reaction-
diffusion simulations for molecular communication,” in Proc. ACM
NANOCOM, Sep. 2015, pp. 1–6.

[5] ——, “Multi-scale stochastic simulation for diffusive molecular commu-
nication,” in Proc. IEEE ICC, Jun. 2015, pp. 1109–1115.

[6] S. S. Andrews, “Accurate particle-based simulation of adsorption, desorp-
tion and partial transmission,” Physical biology, vol. 6, no. 4, p. 046015,
2009.

67

	Introduction
	Feature Summary
	Motivation
	Publications
	Primary Reference
	Supporting References

	History
	Outline

	Download and Installation
	Download
	Recommended Installation Instructions
	Compiling from Source (Advanced)

	How to Use AcCoRD
	Summary for Using AcCoRD
	AcCoRD Configuration
	Configuration File Format
	Visualizing an Environment

	AcCoRD Configuration Parameters Lists
	Structure of a Configuration File
	Simulation Control
	Chemical Properties
	Environment

	Running AcCoRD
	Instructions to Run AcCoRD
	Taking Advantage of Random Number Seeds
	Using a Compute Cluster

	Understanding AcCoRD Output
	Importing to MATLAB
	Reading AcCoRD Output Files

	AcCoRD Post-Processing
	Plot Maker
	Video Maker

	AcCoRD Configuration Examples
	Latest Release Examples
	Specific Release Examples
	Sample Videos in the AcCoRD Journal Paper

