
Lecture Notes for ES3C5: Signal Processing
Version 1.3

Dr Adam Noel
adam.noel@warwick.ac.uk

School of Engineering
University of Warwick

Autumn 2022

Contents

Acknowledgements 2

Preface 3

1 Introduction 9

I Analogue Signals and Systems 13

2 Laplace Transforms and LTI Systems 14

3 Poles, Zeros, and Stability of Analogue Systems 28

4 Analog Frequency Response 38

5 Analogue Filter Design 45

6 Periodic Analogue Functions 56

7 Computing with Analogue Signals 63

II Digital Signals and Systems 71

8 Signal Conversion Between Analogue and Digital 72

9 Z-Transforms and LSI Systems 80

10 Stability of Digital Systems 89

11 Digital Frequency Response 94

12 Filter Difference Equations and Impulse Responses 100

ii

CONTENTS iii

13 FIR Digital Filter Design 116

14 Discrete Fourier Transform and the FFT 126

15 Computing with Digital Signals 135

16 Digital Vs Analogue Recap 145

III Random Signal Processing 151

17 Probabilities and Random Signals 152

18 Signal Estimation 159

19 Correlation and Power Spectral Density 172

IV Introduction to Image Processing 180

20 Image Processing 181

V Appendices 194

A Mathematical Background 195

B Answers/Hints to End-of-Lesson Problems 200

iv CONTENTS

Version History

These notes are Version 1.3 for the 2022-2023 academic year.

� 1.3: Clarified in Lesson 4 End-of-Lesson Problem 5 that 0 dB = 1, since dB-to-
linear version is not introduced until the following Lesson. Corrected interme-
diate calculation for Lesson 14 Example 14.2. Corrected reasoning in solution
to Lesson 19 End-of-Lesson Problem 1.

� 1.2: Added Lesson 12 End-of-Lesson Problem 8.

� 1.1: Corrected answer listed for Lesson 2 End-of-Lesson Problem 6(ii). Cor-
rected wording of filter band specification in Lesson 5 End-of-Lesson Problem
4. Corrected label on Appendix Example A.2 and corresponding introduction
to state that it is an example of partial fractions with repeated roots and not
complex roots.

� 1.0: Added EXTRA comment in Lesson 3 on LTI systems being real. Added
comment on filter characteristics providing constraints in Lesson 5. Added
clarification in Lesson 7 that order argument in the butter function is only
half the total order for band pass and band stop filters. Extended sequence
indices displayed for Lesson 7 Example 9.4. Shifted labels in Fig. 12.1 for
visibility. Designated Lesson 15 Section 15.2.2 as EXTRA content since it
is not recommended to use the symbolic math toolbox for digital systems.
Updated narrative in Lesson 15 Section 15.2.3 to specify that polynomial co-
efficient vectors should be written for negative powers of z and where the
leading denominator coefficient is 1. Designated the paragraph in Lesson 18
on sequential least squares and constrained least squares to be EXTRA con-
tent. Added section on interval limits to Mathematical Background Appendix
A.

� 0.0: Initial version copied from notes for 2021-2022 academic year.

1

Acknowledgements

These notes were developed with the support of materials from previous offerings of
this and similar modules in the School of Engineering at the University of Warwick:

� Lecture slides for ES3C5 by Prof Weisi Guo and Dr Christos Mias. These were
last updated for the 2018-2019 academic year, when the module was co-taught
by Dr Mias and Dr Adam Noel.

� Module textbook “Systems and Control: an introduction to systems, signal
processing and linear control,” published in 2004 by Dr Tardi Tjahjadi. This
text is included in the “Further Reading” list for this module and several copies
can be borrowed from the University of Warwick Library.

2

Preface

0.1 Learning Outcomes

By the end of this lesson, you should . . .

1. Understand the structure and context of ES3C5: Signal Processing.

2. Be able to Recall the background mathematical knowledge that is required
and assumed for ES3C5: Signal Processing.

0.2 Welcome

Welcome to ES3C5: Signal Processing. This document is the official set of notes to
supplement the lectures (in-person and video lectures). It is written as a series of
lessons that correspond to the lectures. Each lesson will align with one to several
video lectures. The video lectures focus on highlighting the main theoretical ideas
and presenting example problems that are worked on in the videos. These notes are
intended to provide a precise, self-contained presentation of all technical material
needed for ES3C5, including formal definitions and descriptions of the theoretical
ideas. These notes also present additional applications, example problems, code
snippets, etc.

This raises two important questions:

1. Do you need to read these notes if you watch the video lectures and attend
the in-person lectures?

2. Do you need to attend the in-person lectures and watch the video lectures if
you read these notes?

In practice, depending on your personal approach to learning, you may find the
lectures and videos more helpful than the notes, or vice versa. Nevertheless, it is
recommended that you use all of them .

A few reasons to attend the in-person lectures:

3

4 CONTENTS

� Opportunity to ask and hear questions. The benefits of live discussion
in a classroom setting are difficult to replicate in any other format.

� Live examples and software demonstrations. The coursework is primar-
ily software-based (MATLAB). There will be several sessions focusing on live
MATLAB demonstrations.

� Lecture capture isn’t perfect. Lecture capture is a very useful tool and
we will be using it for all in-person lectures, but it is not 100% guaranteed.
Previous limitations have included not capturing all of the projected screens
and not always capturing the audio.

A few reasons to watch the video lectures:

� Keep on top of the material. While you may have been exposed to many of
the mathematical concepts in previous modules, ES3C5 covers a lot of ground
and ties together a lot of ideas from a design perspective. The video lectures
will help you keep up.

� Emphasize what’s most important. The video lectures won’t cover all of
the material in the same detail as the notes, but they will highlight the most
important content that you will be assessed on.

� Be guided through problems. We will work through a lot of examples
and they can be easier to follow in the video lectures than to read through
solutions yourself.

A few reasons to use the notes:

� Preview lecture material. The notes can help set the stage for what will
be covered in the lectures.

� Clarify details about what was covered in lectures. After an in-person
or video lecture, the notes might help you to resolve lingering questions.

� The notes are self-contained. There will be no concept that you need to
know for the exam that isn’t in the notes (though the coursework may require
you to do some additional research). This can make the notes very useful for
exam revision.

� More accessible than the textbooks. Although the notes are self-contained,
they are written to be more concise and accessible than the module textbooks.
Furthermore, the scope of the module is larger than what can be found in any
one of the module textbooks.

� Additional study aides. The notes include many example problems; many
but not all of these will be covered during video and in-person lectures.

0.3. ES3C5 OVERVIEW 5

0.2.1 Structure of These Notes

The notes are divided into a series of lessons. Each lesson has its own learning
outcomes and sample problems. Some lesson content (including problems and ap-
plications) is provided as advanced material that is beyond the scope of ES3C5; any
such content is clearly labelled as per below. The video lectures follow a similar
structure, except that most lessons are taught over multiple video lectures.

Example 0.1

Examples will be clearly labelled as such and will appear inside a rounded
box.

EXTRA: Demonstration of the Extra Material Box

Extra content will be clearly labelled as such and will appear inside a blue
box. Any content inside of a blue box is beyond the scope of the module. Con-
tent might include advanced topics, extended applications, or just tangential
comments that are provided for insight or reference.

Example 0.2: Example of Extra Material

If an example is inside of a blue box, then it is also beyond the scope
of the module, i.e., is harder than what is expected to be asked in any
of the assessments.

These notes were originally written for the 2019-2020 academic year and have
been updated for the 2022-2023 academic year. Feedback on the content and sug-
gestions for future years are welcome.

0.3 ES3C5 Overview

ES3C5 has several formal learning outcomes. By the end of the module you should
be able to . . .

1. Apply mathematics to analyse deterministic and random signals and to anal-
yse processing systems.

6 CONTENTS

2. Apply signal processing systems to classify signals and extract information.

3. Critique practical issues behind signal processing and information retrieval.

4. Design signal processing systems.

5. Model signals, filters and processes using computer packages.

6. Evaluate signals and systems using laboratory test and measurement equip-
ment.

The learning objectives mention signals but not what kinds of signals (besides
deterministic vs random). This module and these notes are organized according
to the signal type. We will consider deterministic analog signals, deterministic
digital signals, and random digital signals. Although most practical signals have a
random component, we first consider deterministic signals because they are simpler
to analyse. We also focus on signal processing systems that are filters, which are
broadly applicable to a very wide range of signal processing applications.

This module will not teach you everything there is or everything you will ever
need to know about signal processing. But it will help you to develop a skill set to
understand signal processing, design (relatively) simple signal processing systems,
and be aware of some more advanced signal processing techniques.

0.3.1 Module in Context

ES3C5: Signal Processing is a core module for the Systems, Biomedical, and EE/EEE
streams, and optional for students in the General engineering program. It can also
be taken by MSc students who do not have a background in signal processing. It
builds most directly on material that is covered in ES2C7 (Engineering Mathemat-
ics and Technical Computing) and is the foundation for all of the subsequent signal
processing modules in the School.

The broad applicability of signal processing is reflected in the diverse mod-
ules that build on this one, including ES335 (Communications Systems), ES4A4
(Biomedical Signal Processing), ES4E9 (Affective Computing), etc.

You will also find that many 3rd and 4th year projects include a signal processing
component, so you may pick up some skills or discover methods that you can apply
in your project work. Of course, you should also find this module relevant as a
practising engineer.

0.3.2 Textbooks

The following textbooks are the most relevant for this module:

0.4. MATHEMATICAL KNOWLEDGE 7

� “Essentials of Digital Signal Processing,” B.P. Lathi and R.A. Green, Cam-
bridge University Press, 2014. Lathi has authored several popular textbooks
on signals and systems. This recent text is quite accessible and features strong
integration with MATLAB.

� “Essential MATLAB for engineers and scientists,” B. Hahn and D. Valen-
tine, Academic Press, 7th Edition, 2019. There are many excellent free re-
sources for MATLAB, including the official software documentation (go to the
help browser within the software or visit https://uk.mathworks.com/help/
matlab/index.html). While this book has only a very brief chapter on signal
processing, it is good for a broad overview of MATLAB if you are seeking a
general reference. It is also up to date as of MATLAB release 2018b.

� “Discrete-Time Signal Processing,” Oppenheim and Schafer, Pearson, 3rd Edi-
tion, 2013. Every signal processing textbook will have its relative strengths
and weaknesses. This book serves as an alternative to Lathi and Green’s
“Essentials of Digital Signal Processing.” While MATLAB is used for some
of the examples, it is not thoroughly integrated, but overall this book has
greater depth and breadth of topics. For example, it provides better coverage
of random processes and signals.

We will refer to several other textbooks and resources throughout the module,
but they will only be relevant for 1 or 2 lessons each. Please see “Further Reading”
at the end of each lesson for details.

0.3.3 Administrative Details

Please refer to the module syllabus and announcements for current information
about the lecture schedule, contacting the instructors, support and feedback ar-
rangements, and the assessment schedule.

0.4 Mathematical Knowledge

ES3C5 is quite mathematically-focussed and it is assumed that you have mathemat-
ical background from previous modules in your degree program. In particular, for
successful completion of this module it is essential that you are comfortable with
the following topics:

� Partial fractions

� Integration (including integration by parts)

https://uk.mathworks.com/help/matlab/index.html
https://uk.mathworks.com/help/matlab/index.html

8 CONTENTS

� Complex numbers (including calculation of magnitude and phase)

� Curve sketching

� Elementary algebra, including the quadratic equation

� Laplace transform

We also assume that you have some familiarity with calculating frequency re-
sponses, but we cover these extensively in the module.

Previously, it was also useful to be familiar with basic electrical circuits (e.g., pas-
sive elements, ideal op-amps). However, since this module is now taken by students
from non-engineering backgrounds, you will not be required to analyse a circuit and
any corresponding example problems are labelled as Extra material.

Some mathematical background is provided in Appendix A. Furthermore, we
will recall some concepts as needed when we go through sample problems.

Lesson 1

Introduction

This lesson establishes some basic definitions and provides examples of signals and
signal processing systems. The distinction between analogue vs digital signals will
divide the first two parts of this module.

1.1 Learning Outcomes

By the end of this lesson, you should . . .

1. Understand that there are different classes of signals.

2. Understand the meaning of signal processing and be aware of its applications.

1.2 Signals and Signal Classification

So what are signals? A signal is a quantity that can be varied in order to convey
information. If a signal does not contain useful information (at least not in the
current context), then the signal is regarded as noise. You may have a useful audio
signal for your neighbour in a lecture, but this could be noise to anyone nearby that
is trying to listen to the instructor!

Practically any physical phenomena can be understood as a signal (e.g., temper-
ature, pressure, concentration, voltage, current, impedance, velocity, displacement,
vibrations, colour). Immaterial quantities can also be signals (e.g., words, stock
prices, module marks). Signals are usually described over time, frequency, and/or
spatial domains. Time and frequency will be the most common in the context of
this module, but our brief introduction to image processing will treat images as
two-dimensional signals.

There are several ways of classifying signals. We will classify according to how
they are defined over time and in amplitude. Over time we have:

9

10 LESSON 1. INTRODUCTION

1. Continuous-time signals – signals that are specified for every value of time
t (e.g., sound level in a classroom).

2. Discrete-time signals – signals that are specified at discrete values of time
(e.g., the average daily temperature). The times are usually denoted by the
integer n.

In amplitude we have:

1. Analogue signals – signals can have any value over a continuous range (e.g.,
body temperature).

2. Digital signals – signals whose amplitude is restricted to a finite number of
values (e.g., the result of rolling a die).

While we can mix and match these classes of signals, in practice we most of-
ten see continuous-time analogue signals (i.e., many physical phenomena) and
discrete-time digital signals (i.e., how signals are most easily represented in a
computer); see Fig. 1.1. However, digital representations of data are often difficult to
analyse mathematically, so we will usually treat them as if they were analogue. Thus,
the key distinction is actually continuous-time versus discrete-time, even though for
convenience we will refer to these as analogue and digital. The corresponding math-
ematics for continuous-time and discrete-time signals are distinct, and so they also
impose the structure of this module.

1 2 3 4 5 6 7 8 90

1

2

3

t

x(t)

(a)

5 10 15

−1

0

1

2

3

n

x[n]

(b)

Figure 1.1: Comparison of classes of signals. (a) A continuous-time analogue signal
x(t). (b) A discrete-time digital signal x[n] where amplitudes must be a whole
integer.

Although many signals are not naturally in an electrical form, we can convert
them to electrical form using transducers. We do this because most physical signal
processing is done electrically (whether in analogue electronics or digital electronics).

1.3. WHAT IS SIGNAL PROCESSING? 11

1.3 What is Signal Processing?

In short, signal processing applies mathematical operations to a signal. Signal
processing is applied in many disciplines in practice. Here are some top-level exam-
ples:

(a) Image and video processing. Used in industrial machine vision, target
tracking, media compression, social media photo filters, etc.

(b) Communication systems. Used to package information for transmission
over a noisy channel (wired or wireless) and recover at a destination.

(c) Audio mixing. Used to amplify sounds at different frequencies, noise can-
cellation, karaoke, introduce effects such as reverb, distortion, and delay, etc.

(d) Biomedical systems. Used to monitor vital signs, diagnose diseases, guide
surgical procedures, etc.

(e) Artificial intelligence. Self-driving cars, speech/pattern recognition, smart
homes (heating, appliances), video games, etc.

(f) Financial markets. Predict future prices (of currencies, stocks, options,
houses, etc.) and optimise portfolio asset allocations.

We will not be covering all of these applications in this module, particularly as
some of them rely on more advanced methods than what we will learn about. But
we will use a diverse range of applications for our examples.

1.4 Summary

� Signals are quantities that vary to convey information.

� This module will focus on continuous-time analogue signals, which are
continuous in both time and amplitude, and discrete-time analogue sig-
nals, which are discrete in both time. For convenience we will usually refer to
these as just analogue signals and digital signals.

� Signal processing applies mathematical operations to a signal. There are
many engineering fields that make use of it.

1.5 Further Reading

� Section 1.1 of “Essentials of Digital Signal Processing,” B.P. Lathi and R.A.
Green, Cambridge University Press, 2014.

12 LESSON 1. INTRODUCTION

1.6 End-of-Lesson Problems

We haven’t covered enough material yet to provide meaningful problems, but con-
sider the following reflective questions to review and prepare for the module:

1. Refer to the top-level examples of signal processing in Section 1.3. Can you
infer what the signals might be and how they would be classified?

2. Refer to the background mathematical material in Appendix A. Are you com-
fortable with the skills needed for this module?

Part I

Analogue Signals and Systems

13

Lesson 2

Laplace Transforms and LTI
Systems

The first part of this module is the study of Analogue systems and signals.
As discussed in Lesson 1, most practical physical phenomena can be represented as
continuous-time analogue signals. In this lesson, we present the notion of Laplace
transforms (which should be a review from previous modules) and how they can
be applied to linear time invariant (LTI) systems. This forms the basis for all of
the analysis of analogue signal processing that we will perform in this part of the
module.

2.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Apply the Laplace transform and the inverse Laplace transform.

2. Apply properties of the Laplace transform and the inverse Laplace transform.

3. Understand what a Linear Time-Invariant (LTI) system is.

4. Understand the definitions of a transfer function and convolution.

5. Understand the common simple input signals.

6. Apply the Laplace transform and inverse Laplace transform to find the system
dynamic response to an input.

7. Analyse common electrical circuits with RLC components.

14

2.2. LINEAR TIME INVARIANT SYSTEMS 15

2.2 Linear Time Invariant Systems

This is a module on signal processing, and in this context we perform signal process-
ing through systems, which take a signal as an input and then return a signal as
an output. We will focus on systems that we can design as engineers, i.e., with par-
ticular system processing goals in mind. For example, in communication problems,
there is a natural system that distorts our communication signal, and we design a
receiver system to help us recover the original signal.

We will focus our study of analogue systems in this part of the module on a
particular class of systems: those that are Linear Time Invariant (LTI). LTI
systems have particular properties when acting on input signals. Given an LTI
system that is defined by the functional (i.e., function of a function) F {·} acting
on time-varying input signals x1 (t) and x2 (t), where t is time, the properties are as
follows:

1. The system is linear, meaning that:

(a) The system is additive, i.e.,

F {x1 (t) + x2 (t)} = F {x1 (t)}+ F {x2 (t)} (2.1)

(b) The system is scalable (or homogeneous), i.e.,

F {ax1 (t)} = aF {x1 (t)} (2.2)

for any real or complex constant a.

2. The system is time-invariant, i.e., if output y (t) = F {x1 (t)}, then

y (t− τ) = F {x1 (t− τ)} . (2.3)

In other words, delaying the input by some constant time τ will delay the
output and make no other changes.

Part of the convenience of working with LTI systems is that we can derive the
output y (t) given the input x (t), if we know the system’s impulse response h (t).
The impulse response is the system output when the input is a Dirac delta, i.e.,

h (t) = F {δ(t)} . (2.4)

Given the impulse response h (t) of a system, the output is the convolution of
the input signal with the impulse response, i.e.,

y (t) =

∫ t

0

x (τ)h (t− τ) dτ = x (t) ∗ h (t) = h (t) ∗ x (t) . (2.5)

16 LESSON 2. LAPLACE TRANSFORMS AND LTI SYSTEMS

Convolution can be described as “flip-and-shift”, because in effect it flips one
function about the horizontal time axis (around t = 0) and then measures the area
as that function is shifted past the other one.

While it is nice that the output of convolution is still a time-domain signal, it is
often cumbersome to use in practice and it doesn’t offer much intuition to help us
design h (t) or interpret it for a particular system. To help us out, we will find it
helpful to take advantage of the Laplace transform.

2.3 The Laplace Transform

2.3.1 Laplace Transform Definition

The Laplace transform L{·} is a very widely used signal transformation in the
physical sciences and engineering. It converts a time-domain function f (t), which
we will assume is causal, i.e., f (t) = 0,∀t < 0, into a complex domain function F (s)
that we say is in the Laplace domain or the s-domain. It is defined as follows:

L{f (t)} = F (s) =

∫ ∞

t=0

f (t) e−stdt, (2.6)

where s = σ + jω is a complex independent parameter.

EXTRA 2.1: The Bilateral Laplace Transform

The definition above for the Laplace transform is formally for the unilateral
Laplace transform and is specifically for causal signals. But what if our
function f (t) is not causal, i.e., what if it is non-zero for some negative values
of t? In this case, we should use the bilateral Laplace transform, which is
defined as

F (s) =

∫ ∞

t=−∞
f (t) e−stdt. (2.7)

Why would we not always use this form, since it is more general? The bi-
lateral transform is more involved than the unilateral transform, particularly
when evaluating its inverse, because we need to consider its Region of Con-
vergence. Since we are generally more interested in causal signals, and your
Engineering data book only provides a table for unilateral Laplace transforms
anyway, we will just assume that all Laplace transforms in this module are
unilateral. For additional details, refer to Section 1.10 of Lathi and Green.

2.3. THE LAPLACE TRANSFORM 17

You will likely have already seen the Laplace transform in previous modules
(hopefully!). The notation may have been slightly different, but we will present it
consistently here. While we will formally write the transform as F (s) = L{f (t)},
we will also show conversion between the time and Laplace domains with a double
arrow, i.e., by writing

f (t) ⇐⇒ F (s) . (2.8)

The double arrow suggests that we can also reverse the transform to go from the
Laplace domain back to the time domain, and this is true. The inverse Laplace
transform L−1 {·} is defined as follows:

L−1 {F (s)} = f (t) =
1

2πj
lim
T→∞

∫ γ+jT

s=γ−jT

F (s) estds, (2.9)

which converts the complex function F (s) into the causal (t > 0) time-domain signal
f (t).

Example 2.1: Laplace Transform of the Step Function

Find the Laplace transform of the step function

f (t) = u(t) =

{
1, t ≥ 0,
0, t < 0.

(2.10)

Using the definition of the Laplace transform, we can write

F (s) =

∫ ∞

t=0

f (t) e−stdt

=

∫ ∞

t=0

e−stdt

=− e−st

s

∣∣∣∞
0

=
1

s
, s ̸= 0. (2.11)

Example 2.2: Laplace Transform of an Exponential Function

Find the Laplace transform of the exponential function

f (t) = eat, (2.12)

18 LESSON 2. LAPLACE TRANSFORMS AND LTI SYSTEMS

for real constant a. Using the definition of the Laplace transform, we can
write

F (s) =

∫ ∞

t=0

f (t) e−stdt

=

∫ ∞

t=0

eate−stdt =

∫ ∞

t=0

e(a−s)tdt

=
1

a− s
e(a−s)t

∣∣∣∞
0

=
1

s− a
, s ̸= a. (2.13)

So far, it is not easy to appreciate the benefit of using the Laplace transform
over a convolution to study systems. However, the Laplace transform is almost
entirely bijective (and for this module we will always assume that it is bijective),
which means there is a one-to-one mapping between the time-domain function f (t)
and its transform F (s), i.e., a time-domain function has a unique Laplace domain
function and vice versa. Common function pairs are published in tables and there
is a Laplace transform table in the Engineering Data Book; a brief list of common
transform pairs is presented here in Example 2.3.

Example 2.3: Sample Laplace Transform Pairs

f (t) F (s)

1 ⇐⇒ 1

s

eat ⇐⇒ 1

s− a

tn, n ∈ {1, 2, 3, . . .} ⇐⇒ n!

sn+1

cos(at) ⇐⇒ s

s2 + a2

sin(at) ⇐⇒ a

s2 + a2

We can now use a Laplace transform table to simplify an example.

2.3. THE LAPLACE TRANSFORM 19

Example 2.4: Inverse Laplace Example

Find the inverse Laplace transform of the following equation:

F (s) =
s+ 4

s(s+ 2)
. (2.14)

Before applying the transform table, we need to decompose F (s) using
partial fractions.

F (s) =
2

s
− 1

s+ 2

=⇒ f (t) = u(t)(2− e−2t)

In fact, our standard approach to find an inverse Laplace transform is to
apply partial fractions and then use a table to invert each of the components.

2.3.2 Laplace Transform Properties

The Laplace transform has several properties that we will find relevant in this mod-
ule. They are as follows:

1. Linearity - the Laplace transform of a sum of scaled functions is equal to the
sum of scaled Laplace transforms of the individual functions, i.e.,

af1 (t) + bf2 (t) ⇐⇒ aF1 (s) + bF2 (s) , (2.15)

which we have already applied in Example 2.4.

2. Derivatives - the Laplace transform of the derivative of a smooth function
(i.e., no discontinuities) is as follows:

L{f ′ (t)} = sL{f (t)} − f (0) = sF (s)− f (0) . (2.16)

We have a proof in the following example.

Example 2.5: Proof of the Laplace Transform of the Derivative

Use integration-by-parts to find the Laplace transform of the derivative

20 LESSON 2. LAPLACE TRANSFORMS AND LTI SYSTEMS

of a function f (t).

L{f ′ (t)} =

∫ ∞

t=0

f ′ (t) e−stdt

= e−stf (t)
∣∣∣∞
0
+

∫ ∞

t=0

se−stf (t) dt

= 0− f (0) + s

∫ ∞

t=0

e−stf (t) dt

= sF (s)− f (0)

We can also use recursion to find higher order derivatives, e.g.,

L{f ′′ (t)} = L
{
df ′ (t)

dt

}
= s2F (s)− sf (0)− f ′ (0)

In general and ignoring initial conditions (i.e., at time t = 0), the Laplace
transform of the nth order derivative is

fn (t) ⇐⇒ snF (s) . (2.17)

3. Integrals - the Laplace transform of the integral of a smooth function is as
follows: ∫ ∞

t=0

f (t) dt ⇐⇒ F (s)

s
. (2.18)

We omit the proof because we will generally find the Laplace transform of the
derivative to be more useful than that of the integral.

4. Delay (in both domains) - delaying a signal in one domain corresponds to
multiplying by an exponential in the other domain. More precisely, we have
the following two transforms:

f (t− T) ⇐⇒ e−sTF (s) (2.19)

eatf (t) ⇐⇒ F (s− a) , (2.20)

for constant time shift T or Laplace shift a.

2.4 Transfer Functions

Now that we are caught up on Laplace transforms, we can proceed to apply them
to LTI systems. This is because there is another very important property about the

2.4. TRANSFER FUNCTIONS 21

Laplace transform. The Laplace transform of the convolution of two functions is the
product of the Laplace transforms of the two functions, i.e.,

L{x (t) ∗ h (t)} = L{x (t)}L {h (t)} = X (s)H (s) . (2.21)

In other words, convolution in the time domain is equal to multiplication
in the Laplace domain. Recalling our convention that x (t) is the system input
and h (t) is the system impulse response, we can combine this property with our
understanding of LTI systems by writing the Laplace transform of the system output
as

L{y (t)} = Y (s) = X (s)H (s) . (2.22)

So, we can find the time-domain output y (t) of an LTI system by

1. Transforming x (t) and h (t) into the Laplace domain.

2. Finding the product Y (s) = X (s)H (s).

3. Taking the inverse Laplace transform of Y (s).

Although this series of steps may seem difficult, it is often easier than doing
convolution in the time domain. Furthermore, as we will see in the following lectures,
we can gain a lot of insight about a system by analysing it in the Laplace domain. We
refer to the Laplace transform H (s) of the system impulse response as the system’s
transfer function.

Example 2.6: System Responses with Simple Inputs

There are two special cases of system response that we will regularly see.

1. When the input is a delta function, i.e., x (t) = δ(t), then we know that
X (s) = 1 and so we immediately have Y (s) = H (s). This can also be
proven in the time domain, i.e., y (t) = h (t), using convolution.

2. When the input is a step function, i.e., x (t) = u(t), then we know
that X (s) = 1/s and so Y (s) = H (s) /s. This can be proven in the
time domain from convolution and the integral property of the Laplace
transform.

22 LESSON 2. LAPLACE TRANSFORMS AND LTI SYSTEMS

EXTRA 2.2: Proof that Convolution in the Time Domain is Equiv-
alent to Multiplication in the Laplace Domain

We want to prove that L{x (t) ∗ h (t)} = X (s)H (s). We will start with the
definition of the Laplace transform of y (t) and apply a change of variables.

L{x (t) ∗ h (t)} = Y (s) =

∫ ∞

t=0

e−st

(∫ t

τ=0

x (τ)h (t− τ) dτ

)
dt

=

∫ ∞

τ=0

∫ ∞

t=τ

e−stx (τ)h (t− τ) dtdτ

=

∫ ∞

τ=0

∫ ∞

α=0

e−s(α+τ)x (τ)h (α) dαdτ

=

(∫ ∞

τ=0

e−sτx (τ) dτ

)(∫ ∞

α=0

e−sαh (α) dα

)
= X (s)H (s) ,

where the swapping of integrals in the second line requires application of
Fubini’s theorem, and in the third line we define α = t− τ .

We can also re-arrange the product Y (s) = X (s)H (s) to write the definition of
the system transfer function H (s) from the time-domain input and output, i.e.,

H (s) =
L{y (t)}
L {x (t)}

, (2.23)

which is valid for a linear system when the initial conditions are zero. We commonly
see this kind of formulation in circuit analysis, where the input and output are
currents or voltages associated with the circuit. Deriving the system response of a
circuit is outside the scope of this module, but you could be presented with a circuit
and its corresponding system response and then asked to analyse it.

EXTRA 2.3: First Example of Circuit System Response

2.4. TRANSFER FUNCTIONS 23

i(t)

Cv(t)

Figure 2.1: Simple capacitive circuit for Example 2.7.

Example 2.7: System Response of Simple Circuit

Consider the capacitive circuit in Fig. 2.1. What is the transfer func-
tion of this circuit? Assume that the input is the voltage v(t) and the
output is the current i(t).

From circuit theory we (should) know that:

v(t) =
1

C

∫ t

0

i(τ)dτ

=⇒ V (s) =
I(s)

sC

=⇒ H(s) =
I(s)

V (s)
= sC

EXTRA 2.4: Second Example of Circuit System Response

Generally, we will find it helpful to know the voltage potential drops across
the 3 common passive circuit elements in the Laplace domain. Given the
current I(s) through the element, the potential drop V (s) across the element
is:

1. V (s) = RI(s) across resistance R.

2. V (s) = sLI(s) across inductance L.

24 LESSON 2. LAPLACE TRANSFORMS AND LTI SYSTEMS

3. V (s) = I(s)
sC

across capacitance C.

Example 2.8: System Response of More Complex Circuit

Consider the capacitive circuit in Fig. 2.2. What is the transfer func-
tion of this circuit? Assume that the input is the voltage vi(t) and the
output is the voltage vo(t).

Using result of the previous example we already have

Vo(s) =
I(s)

sC
.

From Kirchoff’s circuit law we can also write

Vi(s) = RI(s) + Vo(s)

= RI(s) +
I(s)

sC

=⇒ H(s) =
Vo(s)

Vi(s)
=

I(s)
sC

RI(s) + I(s)
sC

=
1

sRC + 1

i(t) R

C vo(t)vi(t)

+

−

Figure 2.2: More complex capacitive circuit for Example 2.8.

2.5. SUMMARY 25

2.5 Summary

� The output of a linear time invariant (LTI) system can be found by con-
volving the input with the system impulse response.

� We can use the Laplace transform to convert an LTI system into the Laplace
domain, where the impulse response is known as the transfer function. Con-
volution in the time domain is equivalent to multiplication in the Laplace
domain, so we can more readily find the output of a system in the Laplace
domain.

� Laplace domain analysis is particularly helpful when analysing circuits.

2.6 Further Reading

� Sections 1.5, 1.10 of “Essentials of Digital Signal Processing,” B.P. Lathi and
R.A. Green, Cambridge University Press, 2014.

2.7 End-of-Lesson Problems

1. Find the Laplace transform of the following functions:

(a) f (t) = 4t2

(b) f (t) = t sin(2t)

(c) f (t) = 2te2t + t2

(d) f (t) = e3t cos(2t) + e3t sin(2t)

(e) f (t) = e−3tt sin(2t)

2. Find the inverse Laplace transform of the following functions:

(a) F (s) = 1
(s−2)2+9

(b) F (s) = 5s+10
s2+3s−4

3. Solve the differential equation f ′′ (t)− 3f ′ (t)+2f (t) = 0, given that f (0) = 0
and f ′ (0) = 1.

4. Use Euler’s formula and the transform eat ⇐⇒ 1
s−a

to prove that the Laplace
transform of cos(ωt) is s

s2+ω2

26 LESSON 2. LAPLACE TRANSFORMS AND LTI SYSTEMS

5. Use the Laplace transform of the first order derivative of a function to prove
that the Laplace transform of the second order derivative is L{f ′′ (t)} =
s2F (s)− sf (0)− f ′ (0)

6. Find the time-domain output y (t) of an LTI system defined by transfer func-
tion

H (s) =
1

1 + τs

when the input x (t) is i) A step function, and ii) A ramp function, i.e., x (t) =
t.

7. (EXTRA Problem) Find the transfer function H (s) = Vo(s)
Vi(s)

for the circuit
in Figure 2.3

i1(t) R1

Cvi(t)

i2(t) L

R2 vo(t)

+

−

Figure 2.3: A two-loop circuit.

8. (EXTRA Problem) Find the transfer function H (s) = Vo(s)
Vi(s)

for the circuit
in Figure 2.4

R1

R2

C2

vi(t)

C1

vo(t)

+

−

Figure 2.4: A second order filter circuit.

2.7. END-OF-LESSON PROBLEMS 27

9. (EXTRA Problem) Assume that the operational amplifier in Fig. 2.5 is

perfect. Find the transfer function H (s) = Vo(s)
Vi(s)

for the circuit.

+

−
C R1

R2

vi(t)

+

−
v0(t)

+

−

Figure 2.5: Op-amp circuit.

Lesson 3

Poles, Zeros, and Stability of
Analogue Systems

System stability is a very important consideration in system design, as we will see
in future lessons throughout this module. In this lesson, we consider the stability of
analogue systems. We will see that Laplace domain analysis makes this possible by
looking at the roots of the system’s transfer function.

3.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Use an analogue system’s transfer function to identify its poles and zeroes.

2. Apply the criterion for analogue system stability.

3. Analyse the dynamic response of an analogue system with real poles.

4. Analyse the dynamic response of an analogue system with complex poles.

3.2 Poles and Zeros

Generally, a transfer function H (s) in the Laplace domain can be written as a
fraction of two polynomials, i.e.,

H (s) =
b0s

M + b1s
M−1 + . . .+ bM−1s+ bM

a0sN + a1sN−1 + . . .+ aN−1s+ aN
, (3.1)

where the numerator is a Mth order polynomial with coefficients bs, and the de-
nominator is a Nth order polynomial with coefficients as. For a system to be real,

28

3.2. POLES AND ZEROS 29

then the order of the numerator polynomial must be no greater than the order of
the denominator polynomial, i.e., M ≤ N .

EXTRA 3.1: Border Case of Being “Real”

If the order of the numerator polynomial is greater than the order of the
denominator polynomial, i.e., if M > N , then the LTI system output will
grow unbounded with increasing frequency (we can prove this with what we
cover in Lesson 4). This is not physically possible, which is why we consider
an LTI system to not be real in this specific context, since a system can also be
unreal due to anti-causality. Furthermore, strictly speaking, an LTI system
with transfer function polynomials of equal order, i.e., where M = N , is
also not real, because LTI system output cannot be constant with arbitrary
increasing frequency. However, this special case would force us to refer to
some ideal filters (which we cover in Lesson 5), such as high pass and band
stop filters, as unreal, even though they have (ideal) circuit implementations
available.

We are not going to focus on whether LTI systems are real or unreal
because of their transfer function polynomials, but this discussion is provided
to note the ambiguity.

Eq. 3.1 may look intimidating, but it is general. If we factorize Eq. 3.1 into its
roots, then we can re-write H (s) as a ratio of products, i.e.,

H (s) = K
(s− z1)(s− z2) . . . (s− zM)

(s− p1)(s− p2) . . . (s− pN)
(3.2)

= K

∏M
i=1 s− zi∏N
i=1 s− pi

(3.3)

where we emphasise that the coefficient on each s is 1. Eq. 3.1 has several key
definitions:

� The roots z of the numerator are called the zeros. When s is equal to any zi,
the transfer function H (s) = 0.

� The roots p of the denominator are called the poles. When s is equal to any
pi, the transfer function H (s) will be infinite (and we will soon see that this
relates to stability. . .)

� K is the overall transfer function gain.

30 LESSON 3. POLES, ZEROS, AND STABILITY OF ANALOGUE SYSTEMS

Note: later in this module we will see the z-transform. It will be important to
not confuse it with the zeros of a transfer function. Unfortunately, due to the names
of the terms, re-use of variables is unavoidable here.

We will often find it useful to plot the poles and zeros of a transfer function on
the complex domain of s, which we call a pole-zero plot. The convention is to
plot zeros as circles (o for 0, i.e., don’t fall in the hole!) and poles as “x”s (i.e., stay
away from these!).

Example 3.1: First Pole-Zero Plot

Plot the pole-zero plot for the transfer function

H (s) =
s+ 1

s

First we need to figure out the poles and zeros, i.e., the roots of the transfer
function. This transfer function is already in a form where the roots are
factorized. We can see that the numerator is zero when s = −1, so z− 1 and
the denominator is zero when s = 0, so p = 0. We also see that the gain is
K = 1.

We need to draw a 2D axes, where the real components of s lie along the
horizontal axis and the imaginary components of s lie along the vertical axis.
The plot is shown in Fig. 3.1.

−2 −1 1 2

−2

−1

0

1

2

Re {s}

Im {s}

Figure 3.1: Pole-zero plot for Example 3.1.

More generally, poles and zeros are complex, i.e., they do not need to lie on the
horizontal axis of the s-plane. In the following, we focus on the features of analogue
systems with real and complex poles.

3.3. POLES AND DYNAMIC RESPONSES 31

3.3 Poles and Dynamic Responses

3.3.1 Real Poles

We will see that the poles of a system determine the general form of its response.
First, consider a system where all of the poles are real. If we consider a step input
to the system, then from the previous lesson we know what we can write the output
in the Laplace domain as

Y (s) =
1

s
H (s) (3.4)

=
1

s
× K × Zero Polynomial

(s− p1)(s− p2)(s− p3) . . .
(3.5)

=
some constant

s
+

some constant

s− p1
+

some constant

s− p2
+ . . . , (3.6)

where the numerators will all be constants that depend on the form of the numerator
polynomial (i.e., zero polynomial). By partial fraction expansion, the output Y (s)
is a sum of fractions where each denominator is a linear function of s. Since we’ve
assumed that each pole is real, we can apply the transforms 1 ⇐⇒ 1

s
and eat ⇐⇒ 1

s−a

and see that the time-domain output signal y (t) is scaled constant plus a sum of
(hopefully decaying!) exponentials. In this particular example, the scaled constant
came from the input; more generally, we will see that the input dominates the first
term of the output.

Thus, if we take the inverse Laplace transform of only the terms associated with
the poles, then we have

ypoles (t) = [some constant]ep1t + [some constant]ep2t + . . . (3.7)

The main takeaways for systems with real poles are as follows:

� The system input will (hopefully) dominate the output.

� Each real pole corresponds to an exponential component in the time domain
with a rate that depends on that pole.

� The magnitude of each exponential component depends on the zeros.

Example 3.2

Consider an LTI system with the impulse response

h (t) =
1

2
e−t(e2t − 1),

32 LESSON 3. POLES, ZEROS, AND STABILITY OF ANALOGUE SYSTEMS

which we will assume is causal (i.e., h (t) = 0 for t < 0). Answer the following:

1. Find the system’s poles and zeros and sketch a pole-zero plot.

2. Find the dynamic response in the time domain, subject to a step input.

3. Sketch the dynamic response and comment on the role of the poles and
zeros.

We can re-write the impulse response as

h (t) =
et

2
− e−t

2
.

The Laplace transform gives the transfer function:

H (s) =
1

2(s− 1)
− 1

2(s+ 1)
=

1

(s− 1)(s+ 1)
.

Thus, there are no zeros and 2 poles at p = ±1. Also, the gain is K = 1. See
the pole-zero plot in Fig. 3.2.

If there is a step input, then we know X (s) = 1
s
and hence the output is

Y (s) =
1

s
H (s)

=
1

s

1

(s− 1)(s+ 1)

=
1

2(s− 1)
− 1

s
+

1

2(s+ 1)

=⇒ y (t) = −1 +
e−t

2
+

et

2

A plot of this output is shown in Fig. 3.3. We see that the +1 exponent
dominates for time t > 0 (in fact this system is unstable; we will soon see
why), and the −1 exponent dominates for t < 0 (but the system is causal so
y (t) = 0 before an input is applied).

3.3.2 Complex Poles

Now let us consider a system with complex poles. Rather than write the most
general form, let us jump right to a more specific example and consider the transfer

3.3. POLES AND DYNAMIC RESPONSES 33

−2 −1 1 2

−2

−1

0

1

2

Re {s}

Im {s}

Figure 3.2: Pole-zero plot for Example 3.2.

y (t) = −1 + e−t

2 + et

2

1 2 30

2.5

5

7.5

t

y (t)

Figure 3.3: Dynamic response for Example 3.2.

function

H (s) =
As+B

(s+ α)2 + β2
, (3.8)

for real constants α and β. In this case, the poles exist on the complex s-plane at
s = −α ± jβ. We see that there are two poles, and in fact they are a conjugate
pair. In practice, any poles that we will see with an imaginary component will
be part of a conjugate pair. What is more interesting, however, is the impact of
complex poles on the system response. Let us find the inverse Laplace transform of
Y (s) by first finding suitable numerators:

H (s) =
As+B

(s+ α)2 + β2
=

A(s+ α)

(s+ α)2 + β2
+

Cβ

(s+ α)2 + β2
, (3.9)

where we have introduced the constant C = B−Aα
β

. We can now take the inverse
Laplace transform as

h (t) = Ae−αt cos(βt) + Ce−αt sin(βt) = De−αt sin(βt+ ϕ), (3.10)

34 LESSON 3. POLES, ZEROS, AND STABILITY OF ANALOGUE SYSTEMS

where D =
√
A2 + C2 and tanϕ = A

C
. The important result here is that complex

poles lead to an oscillatory response in the time domain. The real component of the
pole (−α) corresponds to the power of the exponent, and the imaginary component
of the pole (β) corresponds to the frequency of oscillation. A critical parameter,
then, is the value of α, or more specifically the sign. If α > 0, then the exponent
e−αt will decay with time. If α < 0, then the exponent e−αt will grow with time. At
the transition is where α = 0 and the response stays the same. We visualize these
three cases in Fig. 3.4.

3.3.3 Stability Criterion for Analogue Systems

The preceding discussion about poles brought us very close to discussing stability.
In fact, we should now define it. A system is considered to be stable if its impulse
response tends to zero in the time domain. If the impulse response does not tend
to zero or some finite value, then the system is unstable. We have seen that this
depends on the locations of the poles, so we can use the poles to define a stability
criterion for a system. In particular, if all of a system’s poles are on the left half
of the complex s-plane (i.e., to the left of the imaginary s-axis), then the system is
stable. We see this criterion visually in Fig. 3.5. Any pole satisfying this condition
corresponds to a decaying exponential in the time domain.

It is worth mentioning what to do when a system has a pole that is on the
imaginary s-axis. Is such a system stable? From Fig. 3.5, we might be inclined to
say yes. However, as we can see in Fig. 3.4(c), such a system does not satisfy our
definition of stability, as the impulse response does not tend to zero over time. Such
a system is said to be marginally stable.

EXTRA 3.2: Alternative Definitions of Stability

Lathi and Green define stability from a slightly different perspective. They
call a system bounded-input bounded-output (BIBO) stable if and only
if every bounded (finite) input x (t) results in bounded output y (t). A system
is asymptotically stable if bounded initial conditions result in bounded
output. In practice for most systems, these two definitions are equivalent
and also equal to our definition based on the impulse response. Under all 3
definitions, a system whose transfer function’s poles are all to the left of the
imaginary s-axis is stable and having poles to the right of the imaginary s-
axis makes the system unstable. The details vary for poles on the imaginary
s-axis.

3.4. SUMMARY 35

De−αt

De−αt sin(βt+ ϕ)

D

0
t

h (t)

(a) α > 0

De−αt

De−αt sin(βt+ ϕ)

D
0

t

h (t)

(b) α < 0

D

D sin(βt+ ϕ)

D

0

−D

t

h (t)

(c) α = 0

Figure 3.4: Impulse response of system with complex poles for different values of α.

3.4 Summary

� The zeros are the roots to the transfer function’s numerator in the Laplace
domain.

� The poles are the roots to the transfer function’s denominator in the Laplace
domain.

36 LESSON 3. POLES, ZEROS, AND STABILITY OF ANALOGUE SYSTEMS

Re {s}

Im {s}

(-1,0) (1,0)

Figure 3.5: Pole-zero plot showing the stability region for poles with shaded cross
hatches.

� A system is stable if the impulse response tends to zero with increasing time.

� Real components of poles correspond to exponential responses.

� Imaginary components of poles correspond to the angular frequency of oscil-
lating responses.

3.5 Further Reading

� Sections 1.5.5 and 2.1.1 of “Essentials of Digital Signal Processing,” B.P. Lathi
and R.A. Green, Cambridge University Press, 2014. Note that Lathi and Green
use a slightly different definition of stability than what we use in this module.
Our definition for stability in analogue systems is more convenient to use in
consideration of time-domain behaviour.

3.6 End-of-Lesson Problems

1. Determine the zeros and poles of the system with transfer function

H (s) =
(1 + 0.04s)(1 + 11s)

0.44s2 + 13.04s+ 1
.

2. Consider a system with transfer function

H (s) =
20

0.03s2 + 1.4s+ 20
.

3.6. END-OF-LESSON PROBLEMS 37

Determine the poles of this system. Sketch the time-domain output of the
system in response to a step input. Is this system stable?

3. Determine the s-domain transfer function H (s) of the system with the pole-
zero plot shown in Fig. 3.6. Is this system stable?

−2 −1 1 2

−2

−1

0

1

2

Re {s}

Im {s}

Figure 3.6: Pole-zero plot for Question 3.

4. Determine the poles of each of the following transfer functions and state
whether they represent a stable system:

(a) H (s) = 1
s−1

(b) H (s) = ω
s2+ω2

(c) H (s) = 3
s2+2s+10

Lesson 4

Analog Frequency Response

In Lesson 3, we saw how a system’s pole-zero plot enabled us to describe time-domain
characteristics of the system, including its stability. In this lesson, we will focus on
the behaviour of systems in response to periodic inputs of a particular frequency.
To do so, we will find it convenient to translate between the Laplace transform and
the Fourier transform. Fortunately, this translation is straightforward and we can
also use the Laplace-domain pole-zero plot to determine the frequency response of
a system. Being able to analyse the frequency response of a system is a prerequisite
for studying and designing analogue filters, as we will see in Lesson 5.

4.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Apply knowledge of the Laplace transform to find the frequency response of
an input to an analogue system.

2. Understand the Fourier transform and its relation to the Laplace transform.

4.2 Frequency Response

The frequency response of a system is its output in response to a sinusoid input of
unit magnitude and some specified frequency. The frequency response is measured as
2 components: a magnitude and a phase angle. Typically, we show the frequency
response in two plots (1 for magnitude; 1 for phase) as a function of the input
frequency.

Generally, a system may be given inputs at different frequencies, but it is common
when we design a system to do so for a particular target frequency or range of
frequencies. Some examples:

38

4.2. FREQUENCY RESPONSE 39

� Telephone technologies are designed for processing the frequency ranges com-
monly used by a human voice.

� Household appliances are designed to operate with a mains frequency of about
50Hz (in Europe; 60Hz in North America, etc.)

� Different radio frequency bands are licensed (or open) to different technologies.
Wifi commonly operates at 2.4GHz and 5GHz; other bands are reserved for
specific use such as television transmissions or the military.

To find the frequency response, recall the definition of the Laplace transform:

F (s) =

∫ ∞

t=0

f (t) e−stdt, (4.1)

for s = σ+ jω. Let us ignore the real component of s and only consider the Laplace
transform on the imaginary s-axis, such that s = jω. We can then re-write the
Laplace transform as

F (jω) =

∫ ∞

t=0

f (t) e−jωtdt. (4.2)

We emphasise that ω is the radial frequency, measured in rad
s
, and we can convert

to and from the frequency f in Hz via ω = 2πf .
The special case of the Laplace transform in Eq. 4.2 is better known as the con-

tinuous Fourier transform and the result F (jω) is referred to as the spectrum
of f (t) or as the frequency response. Similarly, we can also write the inverse of
the continuous Fourier transform as

f (t) =
1

2π

∫ ∞

ω=−∞
F (jω) ejωtdω. (4.3)

We recall from Lesson 3 that we wrote a system’s transfer function as a ratio of
products that included its poles and zeros. We can re-write with s = jω as

H (jω) = K

∏M
i=1 jω − zi∏N
i=1 jω − pi

. (4.4)

This form of H (jω) (which we may also simply write as H (ω)) is incredibly
useful for determining the frequency response of a system. We can treat H (jω) as a
function of vectors from the system’s poles and zeros to the imaginary jω-axis (i.e.,
each pole and zero corresponds to 1 vector; effectively a line from that pole or zero
to the jω-axis at frequency ω). Thus, from a pole-zero plot, we can geometrically
determine the magnitude and phase of the frequency response.

40 LESSON 4. ANALOG FREQUENCY RESPONSE

Recall that the phasor form of a complex number separates it into its magnitude
and phase, i.e.,

H (jω) = |H (jω) |ej ̸ H(jω), (4.5)

such that the magnitude component has a phase of 0 and the phase component has
a magnitude of 1. First we consider the magnitude. We can take the magnitude of
both sides of Eq. 4.4 as follows:

|H (jω) | = |K|
∏M

i=1 |jω − zi|∏N
i=1 |jω − pi|

. (4.6)

In words, themagnitude of the frequency response (MFR) |H (jω) | is equal
to the gain multiplied by the magnitudes of the vectors corresponding to the zeros,
divided by the magnitudes of the vectors corresponding to the poles.

The phase depends on the sign of K. If K > 0, then

̸ H (jω) =
M∑
i=1

̸ (jω − zi)−
N∑
i=1

̸ (jω − pi). (4.7)

If K < 0, then it effectively adds a phase of π and we have

̸ H (jω) =
M∑
i=1

̸ (jω − zi)−
N∑
i=1

̸ (jω − pi) + π. (4.8)

In words, the phase angle of the frequency response (PAFR) ̸ H (jω) is
equal to the sum of the phases of the vectors corresponding to the zeros, minus the
sum of the phases of the vectors correspond to the poles, plus π if the gain is negative.
Each phase vector is measured from the positive real s-axis (or a line parallel to the
real s-axis if the pole or zero is not on the real s-axis).

We will now look at examples of frequency responses.

4.3 Frequency Response Examples

Example 4.1: First Order Low Pass Filter

We will consider filters in greater detail in Lesson 5, but for now consider this
transfer function of a simple low pass filter:

H (s) =
1

1 + τs
.

We first re-write H (s) to match the form of Eq. 4.4 so that the coefficients

4.3. FREQUENCY RESPONSE EXAMPLES 41

of all roots are equal to 1:

H (s) =
1/τ

1/τ + s
,

so the gain is K = 1
τ
and there is a pole at s = − 1

τ
. We sketch the pole-zero

plot and draw a vector from the pole to an arbitrary (usually positive) ω in
Fig. 4.1(a).

Consider what happens to the vector as we vary ω. The vector has a
minimum magnitude when ω = 0 and rises monotonically (i.e., sign doesn’t
change) with increasing (or decreasing) ω. So, the magnitude of this vector
increases with ω, but since it is a pole the magnitude of the system decreases
with ω.

The magnitude of the frequency response is shown in Fig. 4.1(b). Note
that the magnitude of the pole vector at frequency ω = 0 is 1/τ , but K = 1

τ
,

so the overall system magnitude is 1. This system is a low pass filter because
it “passes” a strong signal (i.e., higher magnitude) at lower frequencies and
passes a weak signal (i.e., attenuates) at higher frequencies.

The phase of the pole vector also increases monotonically with the fre-
quency, but it converges to a maximum of π/2. Thus, the phase of the
system is a negative monotonic function and is shown in Fig. 4.1(c).

ω

0
Re {s}

Im {s}

(− 1
τ
,0) θp

(a) Pole-zero plot.

1

ω

|H (jω) |

(b) Magnitude plot.

0

−π
4

−π
2

ω

̸ H (jω)

(c) Phase plot.

Figure 4.1: Plots for Example 4.1

Example 4.2: Second Order Low Pass Filter

42 LESSON 4. ANALOG FREQUENCY RESPONSE

Consider a system with the transfer function

H (s) =
1

s2 + 2αs+ (α2 + ω2
0)
,

for positive real constants α and ω0. This transfer function has no zeros, but
a pair of complex conjugate poles at s = −α ± jω0. There are now two pole
vectors to deal with and they do not lie on the real s-axis. The corresponding
pole-zero plot is in Fig. 4.2(a).

The magnitude of the 2 pole vectors has a minimum value at ω = ±ω0 (or
just ω = ω0 when assuming ω > 0). The pole magnitude rises monotonically
as the frequency moves away from ω0. The frequency response magnitude of
the system will do the opposite and decrease as we move away from ω0, as
shown in Fig. 4.2(b). However, this is still a low pass filter because the
frequency response magnitude does not tend to 0 as ω → 0 whereas it does
tend to 0 as ω → ∞. The filter is second order because the denominator
polynomial is second order.

By symmetry, the phase of the frequency response is 0 at ω = 0. As ω
increases, the angle associated with one pole vector increases while the other
decreases, which results in a slow net decrease of the system phase, until
both vector angles increase and the system phase decreases to −π, as shown
in Fig. 4.2(c).

We have not used actual numbers for the pole coordinates in this example,
but you will see if you try substituting different values of α that a smaller α
results in a more pronounced peak in the magnitude of the frequency response.

ω

0
Re {s}

Im {s}

(−α,ω0)

(−α,−ω0)

(a) Pole-zero plot.

ω0

ω

|H (jω) |

(b) Magnitude plot.

ω00

−π
2

−π

ω

̸ H (jω)

(c) Phase plot.

Figure 4.2: Plots for Example 4.2

4.4. SUMMARY 43

Example 4.3: All Pass Filter

Consider the following filter transfer function:

H (s) =
s− a

s+ a
,

for positive real constant a. The pole-zero plot is shown in Fig. 4.3(a). By
symmetry of the pole and zero, the pole vector will always have the same
magnitude as the zero vector for any ω. Thus, the magnitude of the frequency
response is always 1, as shown in Fig. 4.3(b). This is known as an all pass
filter. While the magnitude does not change, the phase does; the zero vector
has a phase of π when ω = 0 whereas the pole vector has a phase of 0, then
the phases of both vectors tend to π/2 with increasing ω such that their
difference tends to 0. This is shown in Fig. 4.3(c).

ω

0
Re {s}

Im {s}

(-a,0)

(a,0)

(a) Pole-zero plot.

1

0
ω

|H (jω) |

(b) Magnitude plot.

0

π

ω

̸ H (jω)

(c) Phase plot.

Figure 4.3: Plots for Example 4.3

4.4 Summary

� The frequency response of a system is its response to an input with unit
magnitude and a fixed frequency. The response is given by the magnitude and
phase of the system output as a function of the input frequency.

� The continuous Fourier transform is the Laplace transform evaluated on
the imaginary s-axis at some frequency s = jω.

� The frequency response can be found geometrically by assessing the vectors
made by the poles and zeros of the system’s transfer function to the imaginary

44 LESSON 4. ANALOG FREQUENCY RESPONSE

s-axis.

4.5 Further Reading

� Section 2.1 of “Essentials of Digital Signal Processing,” B.P. Lathi and R.A.
Green, Cambridge University Press, 2014.

4.6 End-of-Lesson Problems

Note: For additional practice, you can try plotting the frequency response for any
Laplace-domain transfer function in this part of the notes. As we will see in Lesson 7,
all results can be readily verified in MATLAB.

1. Sketch the pole-zero plot, magnitude of the frequency response, and phase of
the frequency response of the system with the transfer function:

H (s) =
s

s+ 1
.

2. Sketch the pole-zero plot, magnitude of the frequency response, and phase of
the frequency response of the system with the transfer function:

H (s) =
1

s2 + 3s+ 2
.

3. Consider the all pass filter from Example 4.3. The transfer function is

H (s) =
s− a

s+ a
.

for real positive constant a. Prove mathematically that the magnitude of the
frequency response is always 1, and that the phase of the frequency response
is given by

̸ H (jω) = π − 2 tan−1 ω

a
.

4. Sketch the pole-zero plot, magnitude of the frequency response, and phase of
the frequency response of the system with the transfer function:

H (s) =
s+ 0.5

s2 + 4s+ 8
.

5. You are asked to design a stable LTI system that has a transfer function gain
of K = 2 and a gain of 0 dB = 1 at ω = 0 (Note: conversion between dB and
linear gains will be covered in the next Lesson). The system should have one
pole and one zero. If there is a zero placed at s = 1, then where should the
pole be placed?

Lesson 5

Analogue Filter Design

In Lesson 4 we started to talk about some types of simple filters and their frequency
responses. Filtering is a very common use of signal processing and practically any
signal processing system will include some form of filtering. In this lesson, we focus
on some of the practical details of filter design and how to design an analogue filter
to meet target specifications (i.e., how to engineer a filter . . . did you wonder when
engineering would appear in this module?).

5.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Understand the basic classifications of analogue filters and common filter
designs.

2. Understand the constraints on filter realisability.

3. Design analogue filters to meet specified performance criteria.

5.2 Ideal Filter Responses

Our discussion of analogue filter design begins with ideal filter responses, as we show
in Fig. 5.1. This enables us to define the different types of filters and helps us to
establish the targets that we will try to realise with practical filters. Each ideal filter
has unambiguous pass bands, which are ranges of frequencies that pass through
the system without distortion, and stop bands, which are ranges of frequencies
that are rejected and do not pass through the system without significant loss of
signal strength. The transition band between stop and pass bands in ideal filters
has a size of 0; transitions occur at single frequencies.

45

46 LESSON 5. ANALOGUE FILTER DESIGN

ωc

1

ω

|H (jω) |

(a) Low Pass

ωc

1

ω

|H (jω) |

(b) High Pass

ω1 ω2

1

ω

|H (jω) |

(c) Band Pass

ω1 ω2

1

ω

|H (jω) |

(d) Band Stop

Figure 5.1: Frequency response magnitudes of common ideal analogue filters.

The four main types of filter magnitude responses are as follows:

� Low pass filters pass frequencies less than cutoff frequency ωc and reject
frequencies greater than ωc.

� High pass filters reject frequencies less than cutoff frequency ωc and pass
frequencies greater than ωc.

� Band pass filters pass frequencies that are within a specified range, i.e., be-
tween ω1 and ω2, and reject frequencies that are either below or above the
band.

� Band stop filters reject frequencies that are within a specified range, i.e.,
between ω1 and ω2, and pass all other frequencies.

Unfortunately, none of these filters are realisable. We can show this mathemat-
ically in a very important example.

5.2. IDEAL FILTER RESPONSES 47

Example 5.1: Realisability of an Ideal Filter

Consider an ideal low pass filter, which acts as a rectangular pulse in the
Laplace domain. We will focus on its double-sided frequency response, so we
consider that it passes signals within the range −ωc < ω < ωc. Is it realisable?
Let’s apply the inverse Fourier transform to determine the impulse response.

h (t) =
1

2π

∫ ∞

ω=−∞
H (jω) ejωtdω

=
1

2π

∫ ωc

ω=−ωc

ejωtdω

=
1

2πjt
ejωt
∣∣ω=ωc

ω=−ωc

=
1

2πjt

[
ejωct − e−jωct

]
=

1

πt
sin(ωct)

ωct

ωct

=
ωc

π
sinc(ωct).

Thus the impulse response is a scaled sinc function, which has non-zero
values for t < 0 as shown in Fig. 5.2. This means that the system starts to
respond to an input before that input is applied, so this filter is unrealisable .
In fact, none of the ideal filters are realisable.

ωc−ωc

1

ω

|H (jω) |

(a) Frequency response magnitude.

π
ωc

2π
ωc

− π
ωc

− 2π
ωc

ωc

π

t

hi (t)

(b) Impulse Response.

Figure 5.2: Responses of ideal low pass filter in Example 5.1.

48 LESSON 5. ANALOGUE FILTER DESIGN

5.3 Realising Filters

So, how to realise a practical filter? Even if we cannot implement an ideal filter, we
seek smooth behaviour in the pass bands and steep transitions to the stop bands.
We have seen simple realisations of filters in Lesson 4, but their frequency responses
deviated quite significantly from the ideal filter behaviour. It turns out that we
can do much better with filters that are not only (theoretically) realisable but also
practical to implement with circuits.

First, let’s consider what we could do to the impulse response in Fig. 5.2(b)
to make it realisable. If we just dropped the portion of hi (t) for t < 0, i.e., used
hi (t)u(t) then we would not get suitable behaviour in the frequency domain because
we have discarded 50% of the system energy. However, if we are able to tolerate
delays, then we can shift the sinc function to the right so that more of the energy is
in causal time, i.e., use hi (t− τ)u(t). As we recall from Laplace transforms, a shift
in the time domain corresponds to scaling by a complex exponential in the Laplace
domain. This is also true for the Fourier transform. So, a delay in time maintains
the magnitude of the frequency response but it changes the phase.

Is waiting sufficient to realise a filter? If we can wait forever for our filter output,
then yes. But in practice we will have a delay tolerance Td that we are willing to
wait for signal output, which means that we need to further truncate our impulse
response hi (t) so that it is finite, i.e., hi (t− τ)u(t) = 0 for t > Td. We show the
combined effects of causality, shifting, and truncating in Fig. 5.3.

ωc

π

t

(a) Causal response
hi (t)u(t)

τ

ωc

π

t

(b) Shifted response
hi (t− τ)u(t).

τ Td

ωc

π

t

(c) Truncation of shifted
response.

Figure 5.3: Realising a filter by transforming unrealisable behaviour.

Are we done? Not quite. Truncation can cause unexpected problems in the
frequency domain, so we also usually apply windowing, which scales the non-
truncated impulse response to improve the frequency response behaviour. We won’t
worry about windowing for analogue systems, but we will re-visit this idea for digital
systems. A more serious issue is the actual physical implementation of a filter with
a truncated impulse response, which do not generally produce a rational transfer
function H (s). However, fortunately, there are families of practical filters that have

5.4. PRACTICAL FILTER FAMILIES 49

rational transfer functions, which make them implementable with standard electric
circuit components. We will see some examples of these in the following section.

5.4 Practical Filter Families

Before we discuss specific practical filters, we need to define terminology that is used
to set and describe practical filter performance. For the rest of this lesson, we focus
on low pass filters, but the same ideas apply to the other types of filter as well. A
practical filter tends to have a frequency response magnitude in the form of that in
Fig. 5.4. The main characteristics are the following:

� There tends to not be a true stop band, as there is always some non-zero
magnitude for any finite frequency. So, we define a small maximum stop
band gain Gs, such that the gain in a stop band is less than or equal to this
value. The threshold frequency that needs to satisfy this constraint is the stop
band frequency ωs.

� The magnitude of the frequency response is not actually flat over the entire
pass band. So, we define a minimum pass band gain Gp such that the gain
in a pass band is greater than or equal to this value. The threshold frequency
that needs to satisfy this constraint is the pass band frequency ωp.

� There is a non-zero gap between the pass band frequency and the stop band
frequency that we call the transition band. We typically want this to be as
steep as possible, but in generally to do so also increases the complexity of the
filter and its implementation.

The gain and frequency characteristics above are often used as design con-
straints, i.e., to form a specification, that a given filter design must satisfy. It
would be uncommon for all constraints to be met exactly, i.e., for the gain to be
precisely the stop band gain at the stop band frequency while also precisely the pass
band gain at the pass band frequency. A designer might ”over-deliver” at one band
in order to satisfy the requirements at another band. This kind of intuition about
filter design is best developed through practice.

Typically, the gains Gp and Gs are defined on a logarithmic scale in decibels
(dB). We convert between a linear gain and dB gain as follows:

GdB = 20 log10Glinear (5.1)

Glinear = 10
GdB
20 . (5.2)

Note: the transfer function gain K that appears in the pole-zero factorization
form of H (s) is different from the filter gain G that refers to the magnitude of the

50 LESSON 5. ANALOGUE FILTER DESIGN

Pass Band

Transition Band

Stop Band

ωp ωs

Gp

Gs

ω

|H
(j
ω
)
|

Figure 5.4: Frequency response magnitude of realizable analogue low pass filter.

frequency response at a particular frequency. Unfortunately, naming conventions
mean that we need to refer to both of them as gains.

5.4.1 Butterworth Filters

A common filter design is the Butterworth filter. Butterworth filters are max-
imally flat in the pass band, i.e., their frequency response magnitudes are as flat
as possible for the given order of the filter. The transfer function of an Nth order
Butterworth low pass filter is

H (s) =
ωN
c∏N

n=1(s− pn)
, (5.3)

where pn is the nth pole and ωc is the half-power cutoff frequency, i.e., the
frequency at which the filter gain is Glinear = 1/

√
2 or GdB = −3dB. The poles are

located at

pn = jωce
jπ
2N

(2n−1) (5.4)

= −ωc sin

(
π(2n− 1)

2N

)
+ jωc cos

(
π(2n− 1)

2N

)
, (5.5)

for n = {1, 2, . . . , N}. So, given a desired filter order N and cutoff frequency ωc, we
can use Eq. 5.5 to find the poles and then Eq. 5.3 to determine the transfer function.
You would find that the poles form a semi-circle to the left of the imaginary s-axis.

5.4. PRACTICAL FILTER FAMILIES 51

In practice the magnitude of the Butterworth filter frequency response is more
common. For a low pass Butterworth filter, it is

|H (jω) | = 1√
1 +

(
ω
ωc

)2N . (5.6)

To standardise design, we usually assume a normalised cutoff frequency ωc = 1
radian per second. The frequency response magnitude is then just

|H (jω) | = 1√
1 + ω2N

. (5.7)

To convert the normalised frequency as used in Eq. 5.7 to non-normalised form,
we just multiply ω by the actual ωc.

A sample of frequency response magnitudes for Butterworth filters with nor-
malised frequency is shown in Fig. 5.5. We see that increasing the order improves
the approximation of ideal behaviour.

ωc

1

1√
2

ω

|H
(j
ω
)
|

N = 1
N = 2
N = 3
N = 4

Figure 5.5: Frequency response magnitude of Butterworth low pass filter for different
orders.

EXTRA 5.1: Converting Filter Designs

Our design of practical filters has focused on low pass filters and converting
between different filter specifications. This is not an inherent limitation be-
cause we can also convert between different types of filters. For example, we

52 LESSON 5. ANALOGUE FILTER DESIGN

can replace s with 1/s to convert a low pass filter transfer function into a
corresponding high pass filter transfer function. More complex conversions
exist for band pass and band stop filters. More details can be found in Section
2.6 of Lathi and Green.

For a given low pass Butterworth filter specification, we have the following steps
to find a corresponding filter that meets the specification:

1. Translating pass band and stop band requirements (via Gp, ωp, Gs, ωs) to a
suitable order N .

2. Determine the cut-off frequency ωc

3. Scaling the normalised frequency ωc = 1.

It can be shown that the minimum order N is the following:

N =

log
(

10−Gs/10−1
10−Gp/10−1

)
2 log

(
ωs

ωp

)
, (5.8)

where ⌈·⌉ mean that we have to round up (i.e., so that we over-satisfy and not
under-satisfy the specification) and the gains are in dB. Given the order, we have
two ways to determine the low pass cut-off frequency ωc:

ωc =
ωp

(10−Gp/10 − 1)
1

2N

(5.9)

ωc =
ωs

(10−Gs/10 − 1)
1

2N

, (5.10)

such that we meet the pass band specification exactly in the first case and we
meet the stop band specification exactly in the second case. Due to component
imperfections, we may choose a cut-off frequency that is in between these two cases.

EXTRA 5.2: Proof of Butterworth Filter Specification Equations

Let us demonstrate the validity of Eqs. 5.8, 5.9, and 5.10. We can write Gp (in
dB) as a function of ωp by converting to linear gain and using the definition

5.4. PRACTICAL FILTER FAMILIES 53

of the Butterworth filter frequency response, i.e.,

Gp = 20 log10 |H (jωp) |

= 20 log10

 1√
1 +

(
ωp

ωc

)2N

= 10 log10

(
1 +

(
ωp

ωc

)2N
)

which we can re-arrange to solve for ωc and arrive at Eq. 5.9. Similarly, we
can write Gs (in dB) as a function of ωs and re-arrange to solve for ωc and
arrive at Eq. 5.10. By setting Eqs. 5.9 and 5.10 equal to each other, we can
re-arrange and arrive at Eq. 5.8. The ceiling function in Eq. 5.8 comes from
the fact that we need an integer order and rounding down will make the filter
unable to meet the specification.

Given Eqs. 5.8, 5.9, and 5.10 (which you would not be expected to memorise),
we can design Butterworth filters to meet target specifications. We see this in the
following example.

Example 5.2: Butterworth Filter Design

Design a Butterworth filter with a pass band gain no less than −2 dB over
0 ≤ ω < 10 rad

s
, and a stop band gain no greater than −20 dB for ω > 20 rad

s
.

From the specification, we have Gp = −2 dB, ωp = 10 rad
s

Gs = −20 dB,
and ωs = 20 rad

s
. From Eq. 5.8, we find that N = 3.701. We need an integer

order, so we choose N = 4. We are then free to choose whether to exactly
meet the pass band or stop band specification. If we choose to satisfy the
pass band specification, then we solve Eq. 5.9 and get ωc = 10.69 rad

s
. If

we choose to satisfy the stop band specification, then we solve Eq. 5.10 and
get ωc = 11.26 rad

s
. We could leave a “buffer” on both bands and choose

10.69 rad
s

< ωc < 11.26 rad
s
.

EXTRA 5.3: Other Filter Families

54 LESSON 5. ANALOGUE FILTER DESIGN

We could do a whole module on practical analogue filters, but we’ve just
covered the Butterworth filter to give you some sense of practical filter design.
Here we briefly summarise a few other common filter families to give you an
idea of some of the trade-offs available. You can find more details in Lathi
and Green.

The Chebyshev filter has “ripples” in the pass band (i.e., there are oscil-
lations instead of being smooth like a Butterworth filter), but the transition
band behaviour is steeper than the Butterworth filter. In practice, a lower
order N is needed to meet a specification with Chebyshev filter than a But-
terworth one.

While the pass band of a Chebyshev filter has ripples, its stop band is
smooth. Since pass band behaviour is usually more important than the stop
band, the inverse Chebyshev filter does the reverse and can be derived
from a Chebyshev response.

Elliptic filters have ripples in both the pass band and stop band, in
exchange for an even sharper transition band.

We haven’t considered the phase of the frequency response in our dis-
cussion, but some filters are designed specifically for phase characteristics.
Bessel-Thomson filters are designed for a maximally flat time delay over a
specified frequency band, such that the phase response is close to linear over
that band.

We are not covering time domain circuits implementations of practical analogue
filters in this module, but you should be aware that they exist and commonly include
op-amps. We will focus more on time-domain implementations when we consider
digital filters.

5.5 Summary

� The common classifications of filters are low pass, high pass, band pass,
and band stop. They are defined according to ideal transitions between pass
bands and stop bands.

� Ideal filter magnitude responses are not realisable but we can obtain practical
filter designs to approximate ideal responses.

� Butterworth filters can be readily designed to meet specified performance cri-
teria.

5.6. FURTHER READING 55

5.6 Further Reading

� Chapter 2 of “Essentials of Digital Signal Processing,” B.P. Lathi and R.A.
Green, Cambridge University Press, 2014.

5.7 End-of-Lesson Problems

1. Explain in words why the ideal low pass filter frequency response is unrealis-
able.

2. If a low pass Butterworth filter is 12th order with a 3 dB cut-off frequency at
500Hz, calculate the gain of the filter at 750Hz.

3. Design the lowest order low pass Butterworth filter that meets the specification
ωp ≥ 10 rad

s
, Gp ≥ −2 dB, ωs ≤ 30 rad

s
, Gs ≤ −20 dB. Find the order and

feasible range of cut-off frequencies.

4. A subwoofer is a loudspeaker designed for low-pitch audio frequencies. Pro-
fessional subwoofers typically produce sounds below 100Hz. Design an audio
filter for a speaker input that produces Gp ≥ −1 dB for frequencies below
100Hz and Gs ≤ −30 dB for frequencies above 250Hz. Find a suitable or-
der and cut-off frequency (in Hz) for a Butterworth filter that meets these
requirements.

Lesson 6

Periodic Analogue Functions

As we saw in Lesson 4, the Fourier transform is used to determine the spectra of
signals. This is fine when we focus on the response of a system to a particular input
frequency, but it isn’t convenient when the input signal of interest has multiple
components with different frequencies. We complete the theoretical material on
analogue systems and signals with a brief look at the Fourier Series, which is useful
for representing more complicated periodic signals.

6.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Understand and Apply the Fourier Series to model complex periodic wave-
forms in the frequency domain.

2. Understand how periodic signals are affected by linear systems.

6.2 Representing Periodic Analogue Signals

There are multiple ways to represent periodic signals. We have been relying on Eu-
ler’s formula to convert between an exponential representation and a trigonometric
representation:

ejx = cosx+ j sinx (6.1)

From Eq. 6.1, we can convert trigonometric functions into exponentials:

cosx = Re
{
ejx
}
=

ejx + e−jx

2
(6.2)

sinx = Im
{
ejx
}
=

ejx − e−jx

2j
(6.3)

56

6.2. REPRESENTING PERIODIC ANALOGUE SIGNALS 57

A key point here is that a trigonometric function has an exponential form, and
vice versa. Generally, the exponential form is more compact, and we have seen from
Laplace and Fourier transforms that system responses to exponential signals are
much easier to determine and manipulate than responses to trigonometric signals.
However, there is a trade-off; complex exponential signals are more difficult to visu-
alise. Thus, it is often more convenient to use exponential forms for mathematical
manipulations and trigonometric forms for plots and intuition.

The exponential form of the Fourier series represents the period signal x (t) as a
sum of complex exponentials. There is an underlying fundamental frequency f0, such
that all frequencies contained in the signal are multiples of f0. The corresponding
fundamental period is T0 = 1/f0. The Fourier series is written as

x (t) =
∞∑

k=−∞

Xke
jkω0t, (6.4)

where ω0 = 2πf0 = 2π/T0 and the Fourier coefficients are

Xk =
1

T0

∫
T0

x (t) e−jkω0tdt, (6.5)

which integrates the signal over its fundamental period.
One important property of the Fourier series is how it represents signals x (t) that

are real. A real x (t) has an even magnitude spectrum and an odd phase spectrum,
i.e.,

|Xk| = |X−k| and ̸ Xk = − ̸ X−k (6.6)

Example 6.1: Fourier Series of Periodic Square Wave

A very important Fourier series is that for the periodic square wave. Consider
that shown in Fig. 6.1, which is centred around t = 0, has amplitude A, and
within a period remains high for τ seconds. We wish to write the function
as a Fourier series and plots its magnitude. The period of the wave is by
definition the fundamental T0. We can then find the Fourier coefficients as

58 LESSON 6. PERIODIC ANALOGUE FUNCTIONS

follows:

Xk =
1

T0

∫
T0

x (t) e−jkω0tdt

=
1

T0

∫ τ
2

− τ
2

Ae−jkω0tdt

=
A

T0

[
−e−jkω0t

jkω0

] τ
2

− τ
2

=
A

T0

(
ejkω0

τ
2 − e−jkω0

τ
2

jkω0

)
=

2A

T0

sin
(
kω0

τ
2

)
kω0

τ
2
τ
2

=
Aτ

T0

sinc
(
kω0

τ

2

)
,

which we note is an even function as expected for a real x (t). In this partic-
ular case, the Fourier coefficients are also real (though generally they can be
complex).

The signal x (t) as a Fourier series is then

x (t) =
∞∑

k=−∞

Aτ

T0

sinc
(
kω0

τ

2

)
ejkω0t,

which we could also equivalently write by converting the sinc back to expo-
nential form or converting the complex exponential to trigonometric form.
More importantly, let us consider the magnitudes of the Fourier coefficients
for different values of T0 relative to τ , i.e., for different fundamental frequen-
cies. For T0 = 2τ , we note that ω0 = π/τ , and thus

Xk =
Aτ

2τ
sinc

(
k
π

τ

τ

2

)
=

A

2
sinc

(
kπ

2

)
,

so we are sampling a sinc function at multiples of π/2. Similarly, for T0 = 5τ ,
we are sampling a (different) sinc function at multiples of π/5. The Fourier
coefficients in both cases are plotted in Fig. 6.2.

It is important to emphasise that Fourier spectra only exist at the harmonic
frequencies, i.e., at integer multiples of the fundamental frequency. The overall
shape made the data points at these frequencies, i.e., the envelope, depends on the

6.3. PROCESSING PERIODIC SIGNALS IN LINEAR SYSTEMS 59

τ
2− τ

2

T0

2

T0

−T0

2

−T0

A

t

x (t)

Figure 6.1: Periodic square wave in Example 6.1.

2ω0−2ω0 −ω0 ω0

A/2

ω

Xk

(a) T0 = 2τ .

5ω0−5ω0 −ω0 ω0

A/5

ω

Xk

(b) T0 = 5τ .

Figure 6.2: Fourier coefficients for periodic square wave in Example 6.1.

shape of the time-domain signal. It is as if we are sampling in the frequency domain,
which results in a repeated signal in the time domain. In some sense, this is the
opposite of what happens in analogue-to-digital conversion, where a time-domain
signal is sampled and this results in repeated spectra. We will see this in more detail
in the digital part of these notes.

6.3 Processing Periodic Signals in Linear Systems

We recall that for the Fourier transform we considered a single test sinusoid as the
input to an LTI system. With the Fourier series, we have a (potentially infinite) sum

60 LESSON 6. PERIODIC ANALOGUE FUNCTIONS

of sinusoids for the system input. Fortunately, besides the increase in complexity,
there is no fundamental difference in the analysis. Due to the superposition property
of LTI systems, the system will produce an output for each corresponding input,
based on the frequency response at the corresponding frequency. In other words,
the system will change the amplitude and the phase of each frequency in the input.
Thus, we can write

y (t) =
∞∑

k=−∞

H (jkω0)Xke
jkω0t, (6.7)

or in other words

Yk = H (jkω0)Xk. (6.8)

Example 6.2: Filtering a Periodic Signal

Consider passing the periodic square wave in Fig. 6.1, with T0 = 2τ , as the
input into an ideal low pass filter with gain 1 for 0 ≤ ω < 1.5π

τ
. What is the

output of this filter in trigonometric form?
If T0 = 2τ , then the fundamental frequency is ω0 = π/τ . The filter will

attenuate any sinusoids with frequencies outside of −1.5π/τ < ωc < 1.5π/τ ,
so the only terms remaining in the summation are k ∈ {−1, 0, 1}. Therefore,
the output is

y (t) =
1∑

k=−1

H (jkω0)Xke
jkω0t

= X0 +X−1e
−jk π

τ
t +X1e

jk π
τ
t

=
A

2

[
1 + sinc

(
−π

2

)
e−

jπt
τ + sinc

(π
2

)
e

jπt
τ

]
=

[
1 +

2

π
e−

jπt
τ +

2

π
e

jπt
τ

]
=

A

2

[
1 +

4

π
cos

(
πt

τ

)]
.

We determined the output in trigonometric form because this is easier to
plot (see Fig. 6.3). We also see that the output has 2 components: a constant
plus a sinusoid with frequency π/τ . These match the frequencies of the input

6.3. PROCESSING PERIODIC SIGNALS IN LINEAR SYSTEMS 61

signal components that passed through the filter without being attenuated.

Low Pass Filter

2ω0−2ω0 −ω0 ω0

A/2

1

ω

Xk

(a) Input spectra with T0 = 2τ . Here ω0 = π/τ .

2ω0−2ω0 −ω0 ω0

A/2

ω

Yk

(b) Output spectra with T0 = 2τ . Here ω0 = π/τ .

τ
2− τ

2

T0

2

T0

−T0

2

−T0

A

t

y (t)

(c) Time-domain filter output y (t).

Figure 6.3: Filter input and output in Example 6.2.

EXTRA 6.1: Fourier Series Properties

We can show that the Fourier series has many properties that are similar
to those for the Fourier transform. However, since we will place a bigger
emphasis on digital analysis, we will not elaborate on these here. You can
find more discussion of these in Section 1.9 of Lathi and Green.

62 LESSON 6. PERIODIC ANALOGUE FUNCTIONS

6.4 Summary

� The Fourier Series is used to model signals with multiple frequency compo-
nents in the frequency domain.

� The output of an LTI system due to a signal with multiple frequency com-
ponents can be found by superposition of the outputs due to the individual
frequency components.

6.5 Further Reading

� Section 1.7 of “Essentials of Digital Signal Processing,” B.P. Lathi and R.A.
Green, Cambridge University Press, 2014.

6.6 End-of-Lesson Problems

1. Consider a periodic square wave with period T0 = 0.3 s that is passed into an
ideal low pass filter that attenuates components with frequencies above 8Hz.
What are the frequencies of the components that remain in the signal at the
output of the filter?

2. Consider passing the periodic square wave in Fig. 6.1, with T0 = 5τ , as the
input into an ideal band pass filter with gain 1 for 1.5π

τ
< ω < 2.5π

τ
(and gain

0 elsewhere). How many sinusoidal terms will there be at the output? What
will the frequencies of those terms be?

3. Consider passing the periodic square wave in Fig. 6.1, with T0 = 2τ , as the
input into a low pass Butterworth filter of the 3rd order and cut-off frequency
ωc = 3/τ . What is the output amplitude of the complex exponential compo-
nent of frequency π/τ?

Lesson 7

Computing with Analogue Signals

This lesson is the end of Part 1 of these notes. Our time to focus on purely analogue
signals and systems is coming to a close. Here we shift our attention from primar-
ily mathematical analysis to computing and applications. Analogue systems are by
definition not digital systems, but we still find it useful to represent them on com-
puters to help with design and analysis. In this lesson, we will see how MATLAB
can be used as a computing tool for analogue systems. We should emphasise that
MATLAB is not the only tool available for such purposes, as there are comparable
features available in other platforms such as Mathematica, and also in programming
languages. We use MATLAB since you may have used it in other modules and it
has a relatively low learning curve for programming.

The computing examples are implementations and demonstrations of tasks that
we’ve done “by hand” in previous lessons, so they should be helpful as a learning tool,
e.g., to help verify your calculations and plots, and to investigate systems that are
too complex to readily do so manually. Furthermore, the MATLAB functions used
for digital systems are very similar (or sometimes the same) as those for analogue
systems, so understanding the code here will offer some additional return later.

7.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Understand how analogue signals and systems are represented in digital
hardware.

2. Analyse analogue signals and systems with a computing package.

3. Design and Implement analogue filters with a computing package.

63

64 LESSON 7. COMPUTING WITH ANALOGUE SIGNALS

7.2 Analogue Signals in MATLAB

Computers are inherently digital systems. Information is stored in discrete contain-
ers such as arrays and matrices, and individual numbers are restricted to take on a
finite number of values. Thus, they are ideal for implementing discrete-time digital
signals and systems, and in fact they are why we have digital signal processing to
begin with. So how can computers effectively model analogue systems?

While it is not possible to precisely implement an analogue system in a computer,
we are able to store precise information about an analogue system via symbolic
math (also known as computer algebra). In other words, we can store the func-
tions that describe the analogue system, e.g., the impulse response, the transfer
function, the input signal, and the output signal. For example, we have seen that
we can write the Laplace-domain transfer function H (s) of an LTI system as a ratio
of polynomials. Therefore, to represent this system as a computer, we can use arrays
to store the polynomial coefficients. This is the approach used in MATLAB.

Even though digitally-represented numbers have a finite number of values, the
number of values is sufficiently large that granularity is not a problem for most
practical systems. For example, a double-precision floating point number, which is
the standard precision for most modern computing systems, uses 64 bits and has
15-17 decimal digits of precision over its range. This is far more precision than what
we usually ever need. Thus, we can approximate double-precision numbers as being
over a continuous range. When we want to know the behaviour of an analogue
system at a particular time, we sample at the time of interest within the resolution
of a double-precision number, and behaviour of the system at that time is calculated
and returned within the resolution of a double-precision number.

EXTRA 7.1: Aside on Double-Precision Granularity

Strictly speaking, as we perform more and more calculations with double-
precision numbers, we lose more and more accuracy as the precision errors
accumulate. This is usually not an issue in practice, but it can be useful to
keep in mind if you get unexpected behaviour from code where you expect
two calculated values to be identical. For example, it is often helpful to round
values to the nearest integer to mitigate such effects.

Let’s now discuss how to create and study analogue systems in MATLAB. These
is not a definitive discussion, as there is often more than one way to do something
in MATLAB, but this will give you some ways to get started. Some particularly
relevant toolboxes are the Symbolic Math Toolbox the Signal Processing Tool-

7.2. ANALOGUE SIGNALS IN MATLAB 65

box, and theControl Systems Toolbox, although they can be used independently
from each other.

7.2.1 Analogue Systems in the Symbolic Math Toolbox

With the Symbolic Math Toolbox, you can create symbolic variables. These are
not variables in the traditional programming sense, but in the more abstract math-
ematical sense as they can be used to define functions and solve them analytically.
Symbolic variables can be created using the syms function, and for an analogue
system we usually find it convenient to create symbolic variables for time t and for
s, i.e., enter

syms t s

We can now write expressions using s or t and they will be stored as symbolic
functions that can be evaluated analytically. For example, we can create a time-
domain input signal as a function of t and a Laplace-domain transfer function as a
function of s. We can translate between the two domains using the laplace and
ilaplace functions. Similar, we can use the fourier and ifourier functions for
the Fourier and inverse Fourier transforms, respectively. There are a large number
of pre-built functions available, such as rectangularPulse, dirac, heaviside (step
function), cos (and other trigonometric functions as you might expect), and sign.
You can also write your own functions.

Example 7.1: Finding Expression for System Output

Find the output of a simple low pass filter with transfer function

H (s) =
1

s+ 1
,

when the input is a cosine x (t) = cos (ωt). Using our knowledge of LTI
systems, we can find the answer in a short function using symbolic math.

function y = lowpassOutput(omega)

% Find output to my low pass filter

% Create symbolic variables

syms t s

% Create symbolic functions for input and system

x = cos(omega*t);

H = 1/(s+1);

66 LESSON 7. COMPUTING WITH ANALOGUE SIGNALS

% Convert input to Laplace, solve, and convert output to time

X = laplace(x); Y = H*X; y = ilaplace(Y);

If you call this function with frequency ω = 5, then the output will be y

= cos(5*t)/26 - exp(-t)/26 + (5*sin(5*t))/26.

We can visualise a symbolic function using fplot, where an optional second
argument specifies the range of coordinates of the domain, e.g.,

y = lowpassOutput(5);

figure; % New figure

fplot(y,[0,10])

This works for either the time or s-domain, but only for real values of s.
Finally, we can substitute the variables in a symbolic expression with a numerical

value using the subs function, and then convert the expression to a double-precision
number using the double function, e.g.,

syms s

y = s^2 + 2*s;

yEval = subs(y,’s’,5); % Substitute value

yDbl = double(yEval); % Convert to double-precision

7.2.2 Analogue Systems in the Signal Processing Toolbox

The Signal Processing toolbox provides the freqs function for plotting frequency
responses for analogue transfer functions (the “s” in freqs stands for s-domain).
The first two input arguments for this function are two arrays, one describing the
coefficients of the numerator polynomial and one describing the coefficients of the
denominator polynomial. The standard naming convention for these arrays matches
the form that we used in Lesson 3; a b vector lists the numerator coefficients in
decreasing order and an a vector lists the denominator coefficients in decreasing
order. For the system in Example 7.1, we have b=1 and a=[1,1]. We can then plot
the frequency response of this filter:

b = 1; a = [1, 1];

figure; % New figure

w = 0.1:0.1:10;

freqs(b,a,w)

The figure is shown in Fig. 7.1. The argument w is a vector of (radial) frequencies,
but if you make it scalar instead then it defines the number of frequency points are

7.2. ANALOGUE SIGNALS IN MATLAB 67

determined automatically. Importantly, freqs plots the magnitude and phase of
the frequency response on a logarithmic scale (for both the frequencies and for
the magnitude). If you want to evenly space the data points along the domain of
each plot, then you can use the logspace function to create these for you (e.g.,
logspace(1,2,10) will create 10 logarithmically spaced points between 101 and
102).

10
-1

10
0

10
1

Frequency (rad/s)

-100

-50

0

P
h
a
s
e
 (

d
e
g
re

e
s
)

10
-1

10
0

10
1

Frequency (rad/s)

10
-1

10
0

M
a
g
n
it
u
d
e

Figure 7.1: Frequency response of the system in Example 7.1.

If you assign freqs to an output argument, then it will store the complex fre-
quency response values for each of the frequencies. If you append a semi-colon ;

after the function then it will omit the plot.

7.2.3 Analogue Systems in the Control Systems Toolbox

If you also have the Control Systems Toolbox then you can also have functions
that can automatically generate pole-zero plots from a transfer function. With this
toolbox, transfer functions are defined using the tf function, where the input is of
the form sys = tf(b,a), where b and a are once again vectors that describe the
descending coefficients of the numerator and denominator polynomials. You can
then create a pole-zero plot using the pzplot function:

b = 1; a = [1, 1];

figure; % New figure

H = tf(b,a);

pzplot(H)

68 LESSON 7. COMPUTING WITH ANALOGUE SIGNALS

The figure is shown in Fig. 7.2. For this particular system the result is rather
boring as there is a single pole and no zeros.

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Pole-Zero Map

Real Axis (seconds
-1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

Figure 7.2: Frequency response of the system in Example 7.1.

7.3 Analogue Filter Design

A particular strength of the Signal Processing Toolbox is that it has practical filter
families included, even for analogue systems. In fact, all of the filter families de-
scribed in Lesson 5 are available, i.e., Butterworth, Chebyshev, elliptic, Bessel, and
more. The corresponding function names are somewhat intuitive but we list them
here:

� Butterworth: butter

� Chebyshev: cheby1 (i.e., type 1)

� Inverse Chebyshev: cheby2 (i.e., type 2)

� Elliptic: ellip

� Bessel (i.e., Bessel-Thomson): besself

The syntax and use of these functions are consistent, so we will focus on using
the butter function. The default input arguments are the order of the filter and
the cut-off frequency, where the order is half the total order for a band pass or band

7.4. SUMMARY 69

stop filter. By default the filter will be low pass, but a third optional argument
can indicate whether the filter is to be a different type, i.e., one of ’low’, ’high’,
’bandpass’, or ’stop’. To actually make this an analogue filter instead of a digital
one is to make the final argument ’s’. For the output, we will consider one of 2
formats. If you define two input arguments then they will be of the form [b,a], i.e.,
the coefficients of the transfer function’s numerator and denominator polynomials,
respectively. If you define three input arguments then they will be of the form
[z,p,k], i.e., you will get the poles, zeros, and the transfer function gain K. From
our knowledge of transfer functions, either of these two forms are sufficient to fully
define the transfer function. You can also convert between the two forms using the
zp2tf or tf2zp functions.

Example 7.2: Analgoue Butterworth Filter in MATLAB

Design a 4th order analogue low pass Butterworth filter with cutoff frequency
ωc = 50 rad

s
. What are its poles and zeros? Plot its frequency response and a

pole-zero plot.
We can complete all of these tasks directly in a script.

[z,p,k] = butter(4,50,’low’,’s’) % Omitting semi-colon will

print output

[b,a] = zp2tf(z,p,k); % Convert to [b,a] form for freqs

figure; freqs(b,a) % Plot frequency response

H = tf(b,a);

figure; pzplot(H) % Pole-zero plot

The output states that there are no zeros and 4 poles. The generated
plots are shown in Fig. 7.3.

7.4 Summary

� We can analytically represent analogue systems in computing platforms, ei-
ther formally using symbolic math or indirectly with vectors that represent
system components.

� MATLAB has toolboxes with functions that enable us to implement most of
the tasks that we have completed mathematically and “by hand” throughout
these notes.

70 LESSON 7. COMPUTING WITH ANALOGUE SIGNALS

10
0

10
1

10
2

10
3

Frequency (rad/s)

-200

-100

0

100

200

P
h

a
s
e

 (
d

e
g

re
e

s
)

10
0

10
1

10
2

10
3

Frequency (rad/s)

10
-6

10
-4

10
-2

10
0

M
a

g
n

it
u

d
e

(a) Frequency response.

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
-50

-40

-30

-20

-10

0

10

20

30

40

50

Pole-Zero Map

Real Axis (seconds
-1

)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

(b) Pole-zero plot.

Figure 7.3: Output plots of script in Example 7.2.

7.5 Further Reading

� The MATLAB documentation is an excellent resource, whether online or
within the MATLAB help browser.

� Chapter 17 of “Essential MATLAB for engineers and scientists,” B. Hahn and
D. Valentine, Academic Press, 7th Edition, 2019.

7.6 End-of-Lesson Problems

1. Find the output of a filter with transfer function

H (s) =
R2

s2LCR1 + s(L+ CR1R2) +R1 +R2

,

where R1 = R2 = 2Ω, C = 1F, and 2H. The input is the sinusoid x (t) =
sin(10t). Do not try to solve this by hand!

2. The butter function requires the target order N and cut-off frequency ωc.
Write a function that will calculate these from the more general low pass filter
specifications (i.e., from the pass band and stop band gains and frequencies).

Part II

Digital Signals and Systems

71

Lesson 8

Signal Conversion Between
Analogue and Digital

The second part of this module is the study of Digital systems and signals.
Although most practical physical phenomena can be represented as continuous-
time analogue signals, most modern signal processing is done in the digital domain.
Not surprisingly, we need to be able to convert between the analogue and digital
domains. This lesson provides an overview of the main steps involved in signal
conversion in both directions, i.e., analogue-to-digital and digital-to-analogue. We
describe conversion within the context of the end-to-end workflow of digital signal
processing.

8.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Understand the basic signal processing workflow.

2. Understand and Apply sampling theory and the presence of aliasing.

3. Understand the quantisation and hold operations for signal conversion.

8.2 Basic Signal Processing Workflow

Many practical digital signal processing systems need an interface with the real
world, e.g., to perform sensing and control. We show the basic end-to-end workflow
in Fig. 8.1, which has 5 key components:

1. A low pass filter is applied to the time-domain input signal x (t) to limit its
frequencies.

72

8.2. BASIC SIGNAL PROCESSING WORKFLOW 73

x (t)
Low Pass
Filter

ADC DSP Chip DAC
Low Pass
Filter

y (t)
x [n] y [n]

Figure 8.1: Digital signal processing workflow

2. An analogue-to-digital converter (ADC) samples and quantises the continuous-
time analogue signal to convert it into a discrete-time digital signal x [n].

3. The digital signal processing chip (DSP) performs the operations required and
generates the output signal y [n].

4. A digital-to-analogue converter (DAC) uses hold operations to reconstruct
an analogue signal from y [n].

5. An output low pass filter removes the high frequency components introduced
by the DAC operation to give the final output y (t).

It is important to note that a practical signal processing system might not always
have all of these stages, in particular if the input does not need to come from an
analogue system (i.e., we omit the ADC and input filter) or if the output does not
need to be translated back into analogue (i.e., we omit the DAC and the output
filter). Some examples:

� A weather monitoring station takes in analogue sensor measurements to store
data digitally but does not need to convert back to analogue.

� Radar systems detect real objects using advanced digital signal processing
techniques.

Nevertheless, there are many practical systems that will use the entire digital
signal processing chain:

� Smart temperature control systems measure the temperature to turn the heat-
ing system on and off and require a digital interface for remote scheduling and
history tracking. Generally, any kind of control system will need analogue-to-
digital-to-analogue conversion.

� Digital cameras take images of the real world that we can touch up before
printing.

� Wireless repeaters need to receive and re-send analogue signals, but the inter-
mediate processing is digital.

� Video games convert some form of analogue input (e.g., touchscreen, gamepad)
and provide a visual response.

74LESSON 8. SIGNAL CONVERSION BETWEEN ANALOGUE AND DIGITAL

� Digital audio amplifiers take vibration information from an instrument, apply
different digital effects, and send the output to a speaker.

While there are also isolated systems that are almost entirely digital, such as
computer simulations and virtual currencies, there are usually analogue interfaces
for humans to monitor these systems.

We covered analogue filtering in the first part of this module. Later lessons in
this part will cover signal processing within the digital domain. The rest of this
lesson on the ADC and DAC processes.

8.3 Sampling Analogue Signals

The first step in analogue-to-digital conversion is to convert a signal from continuous-
time to discrete-time. This is done by sampling, where we record the amplitude
of the analogue signal at specified times. Usually, the time between the samples is
fixed, such that we have a sampling period Ts and a sampling frequency fs, as shown
in Fig. 8.2.

n

x [n]

Ts

Figure 8.2: Sampling an analogue signal with sampling period Ts = 1/fs.

The challenge with sampling is to determine the best sampling rate, but this is
straightforward if we know something about the frequencies present in the signal
that we are sampling. If we over-sample, i.e., sample too often, then we are using
more complexity than we need and we are wasting energy. However, if we under-
sample, then we may get aliasing of our signal, which happens when multiple
signals of different frequencies yield the same data when sampled. We show an
example of this visually in the time-domain in Fig. 8.3. If we sample the black
sinusoid at the times indicated with the blue marker, it could be mistaken for the
red dashed sinusoid. This happens when under-sampling, and the lower frequency
signal is called the alias. The alias makes it impossible to recover the original data.

8.3. SAMPLING ANALOGUE SIGNALS 75

Time

Amplitude

Figure 8.3: Aliasing of a signal in the time-domain.

To better understand how we determine the necessary sampling rate, we go to
the frequency domain. Consider a signal f (t) with the magnitude response shown
in Fig. 8.4(a). We show its double-sided frequency response, which includes
negative frequencies that mirror the positive frequency behaviour. It is constrained
so that it has no components with a frequency greater than ωB (which we can
guarantee because of the input low pass filter!). We call ωB the bandwidth of the
signal.

−ωB ωB
ω

|F {jω} |

(a) Original signal.

−ωB ωB
ω

|F {jω} |

(b) Sampling ωs < 2ωB.

−ωB ωB
ω

|F {jω} |

(c) Sampling at ωs = 2ωB.

Figure 8.4: Impact of sampling frequency on magnitude response.

We will see that discrete-time signals have repeating spectra. This means that
when we sample f (t) with sampling frequency ωs = 2πfs, we get infinite copies of
the spectra, each separated by the sampling frequency ωs. When ωs is too small, as
shown in Fig. 8.4(b), the spectra overlap and we get aliasing. However, if we have
ωs ≥ 2ωB, then the spectra remain distinguishable. Thus, the minimum anti-aliasing
sampling frequency is ωs = 2ωB or equivalently fs = 2fB. This minimum frequency
is also known as the Nyquist rate.

The sampling theorem is the formalisation of the minimum sampling idea.
It states that for a continuous-time analogue signal with frequency components
less than fB, the signal can be adequately represented by a sampled version if the

76LESSON 8. SIGNAL CONVERSION BETWEEN ANALOGUE AND DIGITAL

sampling rate exceeds fs ≥ 2fB. Otherwise, aliasing will occur. Thus, we need to
sample at a frequency that is at least twice the highest frequency of the signal. In
practice we may try to sample higher since low pass filters are not ideal, however
the opposing constraint is the cost and complexity of faster sampling (i.e., we need
to collect samples faster and store more of them in memory).

Example 8.1: Nyquist sampling

If we have music that ranges from 0 to 100 kHz, but the highest audible
frequency is about 20 kHz, what is the ideal sampling frequency to enable
re-construction of the audible frequencies?

By ideal sampling frequency, we mean the minimum sampling frequency.
This would be twice the audible bandwidth, so we sample at fs = 2fB =
40 kHz .

Mathematically, we can represent sampling as multiplying the time-domain sig-
nal by an infinite train of impulses δ(t). Thus, ignoring quantisation, we can write
the sampled discrete-time signal x [n] as

x [n] =
∞∑
n=0

δ(t− nTs)x (t) , (8.1)

where we use index n instead of time t. We can refer to x [n] as a sequence because
of the discrete sampling times.

8.4 Quantisation

Our discussion here is important from a practical perspective but will not have
a significant impact on the derivations in the rest of this part of the module, as
mathematical manipulation is generally easier to apply to signals with continuous
amplitude. Thus, we will be brief.

Digital systems are based on a binary representation of data, where discrete bits
of memory are used to store values. Quantisation is the mapping of continuous
amplitude levels to a binary representation. If we are coding with W bits, then
there are 2W quantisation levels available and we say that the ADC word length is
W . Continuous amplitude levels must be approximated to their nearest level (e.g.,
by rounding), and the resulting error between the nearest level and the actual level
is known as quantisation noise.

8.5. ANALOGUE RECONSTRUCTION 77

−1

0

1

2

3

Time

Amplitude

x [n]
x (t)

Figure 8.5: Analogue signal x (t) that is sampled and quantised to the nearest integer
to give digital signal x [n].

EXTRA 8.1: More on Quantisation

There are many variations of quantisation, including where to start the map-
ping and how to separate the levels. Signals that vary by orders of mag-
nitude, such as human speech, can benefit from non-uniform quantisa-
tion. By giving smaller separation between the lower amplitude levels, we
can capture more detail than if we had equal separation between all levels,
i.e., uniform quantisation. Double precision floating point numbers use
non-uniform quantisation.

Example 8.2: Quantisation Levels

Let’s say that we have a uniform ADC with W = 3 bits and the range of
possible values is 0 to 2. What is the separation between quantisation levels?

There are 2W = 23 = 8 levels. The range of values has a length of 2, and

there will be 8− 1 = 7 intervals. Thus, the separation between levels is 2/7 .

8.5 Analogue Reconstruction

To convert a digital signal back to the analogue domain, we need to reconstruct
a continuous signal from a discrete-time series of points. This is achieved via data
interpolation. The simplest interpolation in a DAC is a hold circuit, where the

78LESSON 8. SIGNAL CONVERSION BETWEEN ANALOGUE AND DIGITAL

amplitude of the continuous-time signal matches that of the previous discrete-time
signal, i.e., we hold the amplitude until the next discrete-time value. The result is
that the DAC produces a “staircase”-like output, such as that shown in Fig. 8.6.

t

y (t)

Figure 8.6: DAC re-construction with an ideal hold circuit.

EXTRA 8.2: Zero-Order Hold

The simplest hold circuit is also known as a zero-order hold. This is because
if we write the signal f (t) between times t = nTs and t = (n+1)Ts as a power
series, then the term f (t) = f (nTs), for nTs ≤ t ≤ (n+1)Ts, is the first term
in the series. The transfer function for the zero-order hold circuit can be
found to be

F (s) =
1

s
− 1

s
e−sTs ≈ Ts

1 + sTs

.

The approximation of this response matches that of a simple low pass
filter, as we saw in Lesson 4. Thus, we can see that the zero-order hold helps
to repress higher order harmonics.

Two commonly defined DAC parameters are the resolution and dynamic
range. The resolution refers to the space between the levels, and it is often repre-
sented as a percentage. For a W -bit DAC with uniform levels, the DAC resolution
is then 1

2W
× 100%. The dynamic range describes the range of signal amplitudes

that the DAC can resolve between its smallest and largest (undistorted) values. It
is calculated as 20 log10 2

W ≈ 6W dB.

Example 8.3: DAC Resolution

8.6. SUMMARY 79

What is the resolution of an 8-bit DAC?
Resolution is 1

2W
× 100% = 1

28
× 100% = 0.39%.

8.6 Summary

� The basic end-to-end signal processing workflow includes an input low pass
filter, an ADC, the DSP chip, a DAC, and an output low pass filter.

� To be resolvable, a signal must be sampled at a frequency that is at least twice
the signal bandwidth, otherwise aliasing can occur.

� Quantisation maps the amplitude of an analogue signal to discrete values,
and hold operations convert a discrete-time signal back to continuous-time.

8.7 Further Reading

� Chapter 3 of “Essentials of Digital Signal Processing,” B.P. Lathi and R.A.
Green, Cambridge University Press, 2014.

8.8 End-of-Lesson Problems

1. Consider sampling the signal f (t) = cos (20πt) + sin (30πt). What is the
minimum sampling frequency (in Hz) needed to avoid aliasing?

2. There are two analogue signals f1 (t) = cos (ω1t) and f2 (t) = cos ((ω1 + ωs)t),
where ωs = 2πfs is the sampling frequency. The sampled versions of these
signals are f1 [n] = cos (nω1Ts) and f2 [n] = cos (n(ω1 + ωs)Ts). Show that
these must be aliased signals.

3. Consider that we are sampling the signal f1 (t) = cos (20πt) at a sampling
frequency of fs = 35Hz. Can f1 (t) be an alias for a sinusoid with a frequency
of 25Hz? If yes, what is the sinusoid f2 (t)? If not, what is the lowest frequency
signal for which f1 (t) is an alias?

4. Suppose that we have a uniform W -bit quantiser that rounds a sample to
the nearest level, and where the levels are distributed over the range [0, 1]
(inclusive). What is the size of the largest quantisation error that can occur?

5. What are the resolution and dynamic range of a 12-bit digital-to-analogue
converter?

Lesson 9

Z-Transforms and LSI Systems

For analogue systems we used the Laplace transform to transform LTI signals and
systems to the Laplace domain. For digital systems, we have a different class of
signal and we need a different kind of transform. In this lesson, we present linear
shift invariant (LSI) systems and the Z-transform. This forms the basis for all of the
analysis of digital signal processing that we will perform in this part of the module.
Many of the ideas will seem familiar from our analogue analysis, so in some sense
we are translating everything from the analogue domain, but beware that there
are distinct differences between continuous-time and discrete-time analysis, so it’s
important to not confuse the two.

9.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Apply the Z-transform and the inverse Z-transform.

2. Apply properties of the Z-transform and inverse Z-transform.

3. Understand what a Linear Shift Invariant (LSI) system is and its common
components.

4. Analyse LSI systems to find their transfer function and time-domain output.

9.2 Linear Shift Invariant Systems

Linear shift invariant (LSI) systems are precisely the discrete-time equivalent of
LTI systems. We will update our notation and we will see that it corresponds very
closely with that of LTI systems. Given an LSI system defined by the functional

80

9.2. LINEAR SHIFT INVARIANT SYSTEMS 81

F {·} acting on discrete-time input signals (or sequences) x1 [n] and x2 [n], where n
is the discrete-time sampling index, the following properties hold:

1. The system is linear, meaning that:

(a) The system is additive, i.e.,

F {x1 [n] + x2 [n]} = F {x1 [n]}+ F {x2 [n]} (9.1)

(b) The system is scalable (or homogeneous), i.e.,

F {ax1 [n]} = aF {x1 [n]} (9.2)

for any real or complex constant a.

2. The system is shift-invariant, i.e., if output y [n] = F {x1 [n]}, then

y [n− k] = F {x1 [n− k]} . (9.3)

In other words, shifting (i.e., delaying) the input by some constant number of
time steps k will delay the output and make no other changes.

b [1]
x [n] y [n]

(a) Multiplier.

+

x2 [n]

x1 [n] y [n]

(b) Adder.

D
x [n] y [n]

(c) Unit delay.

Figure 9.1: Common components of LSI systems.

In continuous-time, we saw some examples of implementing LTI systems using
circuit components. However, we did not take a deliberate approach. For digital
signal processing, we are taking a closer look at how digital systems are implemented
in the time domain. Fortunately, we only need to learn 3 types of LSI circuit
components (shown in Fig. 9.1). All digital systems that we will consider in this
part of the module can be composed of combinations of these components:

1. A multiplier scales the current input by a constant, i.e., y [n] = b [1]x [n].

2. An adder outputs the sum of two or more inputs, e.g., y [n] = x1 [n] + x2 [n].

3. A unit delay imposes a delay of one sample on the input, i.e, y [n] = x [n− 1].

82 LESSON 9. Z-TRANSFORMS AND LSI SYSTEMS

Example 9.1: Writing Output of an LSI System

Consider the LSI circuit shown in Fig. 9.2. Write the output y [n] as a function
of the input x [n].

We see the x [n] is added to a delayed version of itself, and then the sum
is scaled by 1/2. Therefore, the output is

y [n] =
x [n] + x [n− 1]

2
.

This is a simple moving average filter.

D

+ 1
2

x [n] y [n]

Figure 9.2: LSI system in Example 9.1.

The notion of an impulse response is very similar in the digital domain, as it is
the system output when the input is an impulse, but now we have a discrete-time
impulse function δ[n]. The impulse response sequence h [n] is then

h [n] = F {δ[n]} . (9.4)

Given an LSI system’s impulse response h [n], the output is the discrete con-
volution of the input signal with the impulse response, i.e.,

y [n] =
∞∑

k=−∞

x [k]h [n− k] = x [n] ∗ h [n] = h [n] ∗ x [n] . (9.5)

Because Eq. 9.5 has a summation instead of an integral, discrete convolution
is actually much easier to evaluate by hand than continuous-time convolution. In
fact, as we saw in Example 9.1, it is also easier to directly write the output y [n]
by inspection of an LSI circuit. Nevertheless, due to the insight that we get by
considering digital systems in other domains, we will still find it very helpful to
identify suitable transforms. We will start with the Z-transform, which will enable
comparable system analysis to that from the Laplace transform.

9.3. THE Z-TRANSFORM 83

9.3 The Z-Transform

The Z-transform Z {·} converts a discrete-time domain function f [n], which we
will assume is causal, i.e., f [n] = 0,∀n < 0, into a complex domain function F (z)
that we say is in the z-domain. It is defined as follows:

Z {f [n]} = F (z) =
∞∑
k=0

f [k] z−k, (9.6)

which makes it the discrete-time equivalent of the Laplace transform. However,
unlike the Laplace transform, the Z-transform can be written by direct inspection
of the data sequence of the function being transformed. This is because we have
a summation instead of an integral. The inverse Z-transform Z−1 {·} is equally
simple in such cases and can be written by observation. We can show conversion
between the time domain and z-domain as

f [n] ⇐⇒ F (z) . (9.7)

EXTRA 9.1: More on the Z-Transform

Just as we did for the Laplace transform, we are actually using the definition
of the unilateral Z-transform which is specifically for causal signals. Once
again, we will not be concerned with using the more general bilateral Z-
transform. Furthermore, we are not going to write out the formal definition
of the inverse Z-transform, because it involves a contour integral. You can
read more about the bilateral Z-transform in Section 3.7 of Lathi and Green,
and more about the inverse Z-transform in Section 3.9.

Example 9.2: Finding the Z-Transform by Inspection

What is the Z-transform of the following function?

f [n] = {2, 1, 4, 0, 4}.

84 LESSON 9. Z-TRANSFORMS AND LSI SYSTEMS

By Eq. 9.6, the Z-transform is

F (z) = 2z0 + z−1 + 4z−2 + 0z−3 + 4z−4

= 2 + z−1 + 4z−2 + 4z−4

Example 9.3: Finding the Inverse Z-Transform by Inspection

What is the inverse Z-transform of the following function?

F (z) = 1− z−4

By inspection, the inverse Z-transform is

f [n] = {1, 0, 0, 0,−1}.

We cannot always find the inverse Z-transform by immediate inspection, in par-
ticular if the Z-transform is written as a ratio of polynomials of z. However, some-
times we can use the Binomial theorem to convert such cases into a single (but
sometimes infinite-length) polynomial of z. The Binomial theorem is

∞∑
n=0

an =
1

1− a
(9.8)

Example 9.4: Using Binomial Theorem to Find Inverse Z-Transform

What is the inverse Z-transform of the following function?

F (z) =
z−2 − z−7

1− z−1

We can apply the Binomial theorem to write

1

1− z−1
= 1 + z−1 + z−2 + z−3 + z−4 + . . .

=⇒ F (z) = (z−2 − z−7)(1 + z−1 + z−2 + z−3 + z−4 + . . .)

= z−2 + z−3 + z−4 + z−5 + z−6.

9.3. THE Z-TRANSFORM 85

We can then apply the inverse Z-transform by inspection and write

f [n] = {0, 0, 1, 1, 1, 1, 1, 0, . . .}.

Just as with the Laplace transform, there are transform pairs between the time
and z-domains, and furthermore many of them are similar to Laplace transform
pairs. Common function pairs are published in tables and there is a Z-transform ta-
ble in the Engineering Data Book; a brief list of common transform pairs is presented
here in Example 9.5.

Example 9.5: Sample Z-Transform Pairs

f [n] , n > 0 F (z)

1 for n = 0 only ⇐⇒ 1

1 for n = k only ⇐⇒ z−k

1 for all n ⇐⇒ 1

1− z−1

9.3.1 Z-Transform Properties

The Z-transform has several properties that we will find relevant in this module.
They are as follows:

1. Linearity - the Z-transform of a sum of scaled functions is equal to the sum
of scaled Z-transforms of the individual functions, i.e.,

af1 [n] + bf2 [n] ⇐⇒ aF1 (z) + bF2 (z) . (9.9)

2. Time Shifting - a delay in the time-domain corresponds to multiplication by
a power of z in the z-domain, i.e.,

f1 [n] = f2 [n− k] ⇐⇒ F1 (z) = z−kF2 (z) . (9.10)

3. Convolution - convolution in the time-domain is equal to multiplication in
the z-domain.

f1 [n] ∗ f2 [n] ⇐⇒ F1 (z)F2 (z) . (9.11)

86 LESSON 9. Z-TRANSFORMS AND LSI SYSTEMS

Example 9.6: Z-Transform of a Step Function

Let’s prove the Z-transform of the discrete step function u[n] = 1,∀n ≥ 0,
knowing that the Z-transform of the discrete delta function is 1. We let
f [n] = u[n], and then write the delta function in terms of step functions, i.e.,

δ[n] = u[n]− u[n− 1] = f [n]− f [n− 1] .

We take the Z-transform of the left and right sides and get

1 = F (z)− z−1F (z)

=⇒ F (z) =
1

1− z−1

9.4 Z-Domain Transfer Functions

We saw in the Z-transform properties that convolution in the (discrete) time
domain is equal to multiplication in the z-domain. We can therefore apply
this to LSI systems by taking the Z-transform of the input signal x [n] and the
impulse response h [n] to write the Z-transform of the output signal, i.e.,

Y (z) = Z {y [n]} = Z {x [n] ∗ h [n]} = Z {x [n]}Z {h [n]} = X (z)H (z) (9.12)

=⇒ Y (z) = X (z)H (z) (9.13)

where H (z) is referred to as the pulse transfer function, as it is also the system
output when the time-domain input is a unit impulse. However, by our convention
we will just refer to H (z) as the transfer function.

So, we can find the time-domain output y [n] of an LSI system by

1. Transforming x [n] and h [n] into the z-domain.

2. Finding the product Y (z) = X (z)H (z).

3. Taking the inverse Z-transform of Y (z).

We have already seen that time-domain analysis is simpler in the discrete-time
case than in the continuous-time case. This is because we avoid having to solve
integrations when modelling LSI components, so we can write the time-domain
output y [n] directly as a function of the time-domain input x [n], as well as previous

9.5. SUMMARY 87

time-domain outputs (i.e., there can be feedback). We call this formulation a
difference equation. We will consider difference equations in greater detail in
later lessons, but for now we consider a simple example of finding H (z).

Example 9.7: Determining H (z) From a Difference Equation

Find the transfer function H (z) of the LSI system described by the following
difference equation:

y [n] = −1

2
y [n− 2] + x [n] + x [n− 1]

We take the Z-transform of both sides and re-arrange as follows:

Y (z) = −1

2
z−2Y (z) +X (z) + z−1X (z)

=⇒ H (z) =
Y (z)

X (z)
=

1 + z−1

1 + 1
2
z−2

=
z2 + z

z2 + 1
2

.

We note that the convention is to write H (z) in terms of positive powers
of z, as this facilitates analysis (as we will see in future lessons).

9.5 Summary

� The output of a linear shift invariant (LSI) system can be found by con-
volving the time-domain input with the system impulse response.

� We can use the Z-transform to convert an LSI system into the z-domain, where
the impulse response is known as the transfer function. Convolution in the
discrete time-domain is equivalent to multiplication in the z-domain.

� LSI circuits can be implemented using adders, multipliers, and delays. We
can often write the time-domain system output directly from inspection of the
implementation.

9.6 Further Reading

� Section 4.5 and Sections 7.1 to 7.5 of “Essentials of Digital Signal Processing,”
B.P. Lathi and R.A. Green, Cambridge University Press, 2014.

88 LESSON 9. Z-TRANSFORMS AND LSI SYSTEMS

9.7 End-of-Lesson Problems

1. Determine the Z-transforms of the following sequences:

(a) f1 [n] = {1, 1, 0, 0, 0, . . .}
(b) f2 [n] = {1, 1, 1, 1, 1, . . .}
(c) f3 [n] = {1, 0.5, 0.25, 0.125, . . .}
(d) f4 [n] = f1 [n] + f2 [n]

2. Determine the time-domain sequences that correspond to the following Z-
transforms:

(a) F1 (z) =
1−z−5

1−z−1

(b) F2 (z) =
1+z−4

1−z−4

3. Given f1 [n] = {5, 4, 3, 2, 1} and f2 [n] = {0, 5, 4, 3, 2, 1}, show that F2 (z) =
z−1F1 (z).

4. Consider the input x [n] = {1, 1, 2, 1, 2, 2, 1, 1} to a filter with impulse response
h [n] = {1, 2,−1, 1}. What is the discrete-time output y (n)?

5. Find the Z-transform of the convolution of x [n] = 3δ[n] + 2δ[n − 1] and
h [n] = 2δ[n]− δ[n− 1].

6. Find the transfer function H (z) corresponding to the moving average system
in Example 9.1.

7. Find the difference equation and transfer function corresponding to the discrete
integrator LSI circuit shown in Fig. 9.3.

Ts +

D

x [n] y [n]

Figure 9.3: Discrete integrator circuit.

Lesson 10

Stability of Digital Systems

Now that we have established the Z-transform as the discrete-time equivalent of
the Laplace transform, we can proceed to study digital systems in a similar way
to analogue systems. We saw that stability was an important consideration in the
design of analogue systems, and that is also the case for digital systems. In this
lesson, we consider the stability of digital systems. z-domain analysis makes this
possible by looking at the roots of the system’s transfer function.

10.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Use a digital system’s transfer function to identify its poles and zeroes.

2. Apply the criterion for digital system stability.

10.2 Digital Poles and Zeros

Just as in the Laplace domain, we can write a transfer function H (z) as a fraction
of two polynomials, i.e.,

H (z) =
b [M] z−M + b [M − 1] z1−M + . . .+ b [1] z−1 + b [0]

a [N] z−N + a [N − 1] z1−N + . . .+ a [1] z−1 + 1
, (10.1)

where for notational purposes we find it useful to write the transfer function with
negative powers of z. We still have that the numerator is a Mth order polynomial
with coefficients b [n], and the denominator is a Nth order polynomial with coef-
ficients a [n], but generally we have a [0] = 1 (which we will also see why in later
lessons). We will find that coefficient indexing in the form of b [n] and a [n] is more

89

90 LESSON 10. STABILITY OF DIGITAL SYSTEMS

convenient for digital systems than the form bn and an. Unlike analogue systems,
we have no constraint on the values of M and N for a system to be real, but in
practice we often assume that M = N .

If we factorize Eq. 10.1 into its roots, then we can re-write H (z) as a ratio of
products, i.e.,

H (z) = K
(z − z1)(z − z2) . . . (z − zM)

(z − p1)(z − p2) . . . (z − pN)
(10.2)

= K

∏M
i=1 z − zi∏N
i=1 z − pi

(10.3)

where we emphasise that the coefficient on each z in this form is 1. We now see
poles pi and zeros zi. They carry the same meaning as for analogue system. When
z is equal to any zi, the transfer function H (z) = 0. When z is equal to any pi, the
transfer function H (z) will be infinite. Unfortunately, the symbols for the variable
z and the zeros zi are very similar, so we will need to be very careful to be sure that
the meaning is clear for a given context.

We will find it insightful to plot poles and zeros on the z-domain, i.e., to make
pole-zero plots.

Example 10.1: First Digital Pole-Zero Plot

Plot the pole-zero plot for the transfer function

H (z) =
(z − 0.9)(z2 − z + 0.5)

(z − 0.2)(z2 + z + 0.5)

First we need to figure out the poles and zeros, i.e., the roots of the transfer
function. We can see that the numerator is zero when z = 0.9 or z = 0.5±0.5j,
and the denominator is zero when z = 0.2 or z = −0.5± 0.5j.

We draw a 2D axes, where the real components of z lie along the horizontal
axis and the imaginary components of z lie along the vertical axis. The
convention is also to draw a circle of radius 1 that is centred around the
origin, i.e., where |z| = 1 (the motivation for doing so will soon be clear).
The plot is shown in Fig. 10.1.

10.3. POLES AND STABILITY 91

1-1

1

-1

Re {z}

Im {z}

|z| = 1

Figure 10.1: Pole-zero plot for Example 10.1.

10.3 Poles and Stability

In Lesson 3, we tried to infer information about the time-domain output y (t) based
on the locations of the poles and zeros. Here, this will not be as necessary, as we
can already write the output y [n] as a difference equation. However, the notion of
stability is still important, and the poles once again play a role.

We stated in Lesson 3 that a system is considered to be stable if its impulse
response tends to zero in the time domain. However, for digital systems, it is more
convenient for us to describe stability from the context of the input signal x [n]
and output signal y [n]. Therefore, we will use the notion of bounded input and
bounded output (BIBO) stability. A system is BIBO stable if a bounded input
sequence yields a bounded output sequence. An input sequence x [n] is bounded if
each element in the sequence is smaller than some value A. An output sequence
y [n] corresponding to x [n] is bounded if each element in the sequence is smaller
than some value B.

Our practical criterion for BIBO stability is as follows. A system is BIBO stable
if all of the poles lie inside the |z| = 1 unit circle (hence why we draw the circle on a
z-domain pole-zero plot!). If there is at least 1 pole directly on the unit circle, then
the system is said to be conditionally stable (as it will depend on the input used).
We show the digital system stability criterion visually in Fig. 10.2. The motivation
for using the unit circle for stability in the z-domain will become clearer once we
discuss the frequency response of digital systems in Lesson 11.

92 LESSON 10. STABILITY OF DIGITAL SYSTEMS

Re {z}

Im {z}

(0,1)

(1,0)

|z| = 1

Figure 10.2: Pole-zero plot highlighting where poles must be located for system to
be stable. There is pole on the |z| = 1 circle in this example, so this system is
conditionally stable.

10.4 Summary

� Digital filters also have the concept of poles and zeros.

� We use the BIBO stability criterion for digital systems, such that a system
is stable if any bounded input leads to a bounded output.

� We can infer stability of a digital system from whether all of its poles lie inside
the |z| = 1 unit circle.

10.5 Further Reading

� Section 5.7 of “Essentials of Digital Signal Processing,” B.P. Lathi and R.A.
Green, Cambridge University Press, 2014.

10.6 End-of-Lesson Problems

1. Find the transfer function H (z) of the LSI system described by the following
difference equation:

y [n] = x [n] + 0.6y [n− 1]− 0.5y [n− 2] .

Determine the poles and zeros of the system, draw a pole-zero plot, and state
whether it is stable.

10.6. END-OF-LESSON PROBLEMS 93

2. Draw a pole-zero plot and comment on the stability for the transfer function
of the moving average system:

H (z) =
1 + z

2z
.

3. Draw a pole-zero plot and comment on the stability for the transfer function
of the discrete integrator:

H (z) =
Tsz

z − 1
.

4. Determine the z-domain transfer function H (z) of the LSI system described
by the pole-zero plot in Fig. 10.3. State whether the system is stable.

1-1

1

-1

Re {z}

Im {z}

|z| = 1

(1.3,0)

Figure 10.3: Pole-zero plot for Question 4.

Lesson 11

Digital Frequency Response

In Lesson 10, we saw how a LSI system’s pole-zero plot enabled us to describe
the stability of a system. Unlike analogue systems, the stability of digital systems
relies on the magnitude of the poles. In this lesson, we will focus on the behaviour
of LSI systems in response to periodic inputs of a particular frequency. This will
enable our discussions of digital filters in Lesson 12, and will also help to justify
the digital stability criterion. Similar to how we converted between the Laplace and
Fourier transforms for analogue systems, we will find it convenient to introduce the
discrete-time Fourier transform from the Z-transform. Once again, this translation
is straightforward, and we can then use the z-domain pole-zero plot to determine
the frequency response of a system.

11.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Understand the Discrete-Time Fourier transform and its relation to the Z-
transform.

2. Analyse the frequency response of digital systems.

3. Determine and Analyse magnitude and phase plots of digital systems.

11.2 Digital Frequency Response

Similarly to what we saw for analogue systems, the frequency response of an LSI
system is its output in response to a sinusoid input of unit magnitude and some
specified frequency. We still show the frequency response in two plots (1 for the

94

11.2. DIGITAL FREQUENCY RESPONSE 95

magnitude and 1 for the phase) as a function of the input frequency. System
design typically targets a specific frequency or range of frequencies.

To find the digital frequency response, we recall the definition of the Z-transform:

F (z) =
∞∑
k=0

f [k] z−k, (11.1)

for complex z. Let us specify z is polar coordinates, such that z = rejΩ , i.e., we fix
the magnitude to r and the angle Ω. We can then re-write the Z-transform as

F
(
rejΩ

)
=

∞∑
k=0

f [k] r−ke−jkΩ . (11.2)

When we set r = 1, then any point z = ejΩ lies on the unit circle, and this
special case of the Z-transform is known as theDiscrete-Time Fourier Transform
(DTFT), i.e.,

F
(
ejΩ
)
=

∞∑
k=0

f [k] e−jkΩ . (11.3)

The angle Ω is the angle of the unit vector measure from the positive real z-axis.
It denotes digital radial frequency and is measured in radians per sample (rad

sample
).

We refer to F
(
ejΩ
)
as the spectrum of f [n] or as its frequency response. Our

convention for writing the DTFT will include F
(
ejΩ
)
or simply F (Ω). We can also

write the inverse DTFT as

f [k] =
1

2π

∫ π

−π

F
(
ejΩ
)
ejkΩdΩ. (11.4)

We recall from Lesson 10 that we can write an LSI system’s transfer function
H (z) as a ratio of products that included its poles and zeros. We can now re-write
the transfer function using z = ejΩ as

H
(
ejΩ
)
= K

∏M
i=1 e

jΩ − zi∏N
i=1 e

jΩ − pi
. (11.5)

Just as we used H (jω) to determine the frequency response of an analogue
system, we can use H

(
ejΩ
)
to determine the frequency response of a digital LSI

system. H
(
ejΩ
)
is a function of vectors from the system’s poles and zeros to the

unit circle at angle Ω. Thus, from a pole-zero plot, we can geometrically determine
the magnitude and phase of the frequency response.

Even though the z-domain vectors are pointing somewhere different than in the
s-domain case (i.e., to the |z| = 1 unit circle instead of the imaginary s-axis),

96 LESSON 11. DIGITAL FREQUENCY RESPONSE

the approach for calculating the frequency response is the same. Thus, we find the
magnitude of the frequency response as

|H
(
ejΩ
)
| = |K|

∏M
i=1 |ejΩ − zi|∏N
i=1 |ejΩ − pi|

. (11.6)

In words, the magnitude of the frequency response (MFR) |H
(
ejΩ
)
| is

equal to the gain multiplied by the magnitudes of the vectors corresponding to the
zeros, divided by the magnitudes of the vectors corresponding to the poles.

If we assume that the gain K > 0, then the phase of the frequency response is

̸ H
(
ejΩ
)
=

M∑
i=1

̸ (ejΩ − zi)−
N∑
i=1

̸ (ejΩ − pi). (11.7)

In words, the phase angle of the frequency response (PAFR) ̸ H
(
ejΩ
)
is

equal to the sum of the phases of the vectors corresponding to the zeros, minus the
sum of the phases of the vectors corresponding to the poles.

Notably, both the magnitude and phase of the frequency response repeat every
2π. This is clear to see using Euler’s formula:

ej(Ω+2π) = ejΩej2π (11.8)

= ejΩ(cos(2π) + j sin(2π)) = ejΩ(1 + 0) = ejΩ . (11.9)

Furthermore, due to usual symmetry of poles and zeros about the real z-axis,
the frequency response is also symmetric about Ω = π. Thus, we only need to find
the magnitude and phase over one interval of π. It is sometimes common (e.g.,
in MATLAB) to normalise the frequency response by π, such that the normalised
frequency range is 0 to 1.

We recall that sampling resulted in “infinite” copies of our spectrum in the
frequency domain. One perspective to understand this is that, as we increase Ω,
we cycle around and around the unit circle. If we sample an analogue signal fast
enough to avoid aliasing (i.e., at double the signal bandwidth), then we guarantee
that we encounter all of the unique signal components within one half circle.

11.3 Digital Frequency Response Example

In this section, we consider an example of determining digital frequency responses
from a system’s transfer function via the z-domain pole-zero plot.

11.4. SUMMARY 97

Example 11.1: Simple Digital High Pass Filter

Consider this transfer function of a simple high pass filter:

H (z) =
z − 1

z + 0.5
,

which has a pole at z = −0.5 and a zero at z = 1. We sketch the pole-zero
plot and draw a vector from the pole to an arbitrary (usually positive) Ω
along the unit circle in Fig. 11.1.

Rather than try to write a general equation for the magnitude and phase
of the frequency response for any frequency Ω, we will rely on evaluating at
several test frequencies and making a rough sketch from those. Due to the
behaviour of the frequency response around the unit circle, we only need to
consider frequencies between 0 and π. A good first choice of test frequencies
is to include these two and at least one more. We will consider π/2. If there
were many poles or zeros, particularly near the unit circle, then additional
points may be needed.

At Ω = 0, we have |H
(
ejΩ
)
| = 0 and ̸ H

(
ejΩ
)
= π/2 rad

sample
. For the

angle, note the angle of the zero-vector as Ω → 0.
At Ω = π/2, we have |H

(
ejΩ
)
| = 1.265 and ̸ H

(
ejΩ
)
= 1.257 rad

sample
.

At Ω = π, we have |H
(
ejΩ
)
| = 4 and ̸ H

(
ejΩ
)
= 0.

From these points we sketch the frequency response in Fig. 11.2. We have
chosen to plot linear magnitudes and radial phase angles over linear radial
frequency. However, it is also possible to plots over ordinary frequency or
over logarithmic scales (we will see that MATLAB does both). Recall that
we can convert linear filter gain Glinear to dB gain GdB via

GdB = 20 log10Glinear.

11.4 Summary

� The frequency response of a system is its response to an input with unit
magnitude and a fixed frequency. The response is given by the magnitude and
phase of the system output as a function of the input frequency.

� The discrete-time Fourier transform (DTFT) is the Z-transform evaluated
on the |z| = 1 unit circle at some frequency Ω.

98 LESSON 11. DIGITAL FREQUENCY RESPONSE

1-1

1

-1

Re {z}

Im {z}

z = ejΩ

θp

θz

|z| = 1

Figure 11.1: Pole-zero plot for Example 11.1.

π
2

0

1

2

3

4

Ω

|H
(
ejΩ
)
|

(a) Magnitude plot.

π
2

π0

π
4

π
2

Ω

̸ H
(
ejΩ
)

(b) Phase plot.

Figure 11.2: Sketch of frequency response for Example 11.1

� The frequency response can be found geometrically by assessing the vectors
made by the poles and zeros of the system’s transfer function to the |z| = 1
unit circle.

11.5 Further Reading

� Sections 6.1, 6.2, and 7.6 of “Essentials of Digital Signal Processing,” B.P.
Lathi and R.A. Green, Cambridge University Press, 2014.

11.6. END-OF-LESSON PROBLEMS 99

11.6 End-of-Lesson Problems

1. Consider a digital filter with 2 poles at z = −0.9 and 2 zeros at z = 0. Write
the transfer function for this filter. What is the phase when Ω = π?

2. Consider a digital filter with poles at z = 0.5e±j π
2 , and zeros at z = −1 and z =

1. From the pole-zero plot and without numerical calculations, determine the
minimum magnitude of the frequency response and the angular frequency at
which this occurs. Also determine the angular frequency where the magnitude
of the frequency response is maximum.

3. Sketch the pole-zero plot, magnitude of the frequency response (at frequencies
Ω = {0, π/2, π}), and phase of the frequency response of the system with the
transfer function:

H (z) =
z + 0.5

z − 0.5
.

Lesson 12

Filter Difference Equations and
Impulse Responses

In Lesson 11 we presented the digital frequency response and how it depended on
the locations of poles and zeros in the z-domain. We considered one example of a
simple filter, but here we begin an in-depth discussion of digital filter design. We are
going into more detail than what we saw for analogue filters in Lesson 5, because
here we discuss how to implement a filter design in the time-domain and discuss
the notion of finite versus infinite impulse responses. This lesson then goes on to
define ideal digital filters and simple filter implementations. The fundamentals in
this lesson will inform our discussion of practical digital filter design in the next
lesson.

12.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Understand the basic types and properties of digital filters.

2. Understand and Compare finite impulse response (FIR) and infinite im-
pulse response (IIR) filters.

3. Understand the constraints on filter realisability.

4. Analyse digital filter stability.

5. Design and Evaluate digital filter implementations, including their frequency
responses.

100

12.2. FILTER DIFFERENCE EQUATIONS 101

12.2 Filter Difference Equations

In Lesson 9 we introduced how LSI systems could be implemented in the time
domain using LSI circuit components (i.e., multipliers, adders, and delays). An LSI
implementation could be inferred from the system’s difference equation, which
writes the system output as a function of current input as well as previous inputs and
outputs. We now re-visit this concept more formally. We may recall from Lesson 10
that we wrote the transfer function H (z) in the form

H (z) =
b [M] z−M + b [M − 1] z1−M + . . .+ b [1] z−1 + b [0]

a [N] z−N + a [N − 1] z1−N + . . .+ a [1] z−1 + 1
. (12.1)

It turns out that the general difference equation can be written as

y [n] =
M∑
k=0

b [k]x [n− k]−
N∑
k=1

a [k] y [n− k] , (12.2)

and the real coefficients b [·]s and a [·]s are the same as those that appear in Eq. 12.1
(and we note that a [0] = 1 so that there is no coefficient corresponding to y [n]).
So, rather than use the time-domain impulse response h [n], it is usually easier to
convert directly between the transfer function H (z) (written with negative powers
of z) and the difference equation for the output y [n]. This is particularly suitable
when we seek an implementation of the system.

Example 12.1: Proof that y [n] can be Obtained Directly from H (z)

Let’s prove using the Z-transform that Eq. 12.1 can lead us directly to Eq. 12.2.
Recall that H (z) = Y (z) /X (z). We can substitute this into Eq. 12.1 and

cross-multiply to get

b [M]z−MX (z) + b [M − 1] z1−MX (z) + . . .+ b [1] z−1X (z) + b [0]X (z) =

Y (z) + a [N] z−NY (z) + a [N − 1] z1−NY (z) + . . .+ a [1] z−1Y (z) .

We can now immediately take the inverse Z-transform and write

b [M]x [n−M] + b [M − 1]x [n−M + 1] + . . .+ b [1]x [n− 1] + b [0]x [n] =

y [n] + a [N] y [n−N] + a [N − 1] y [n−N + 1] + . . .+ a [1] y [n− 1] .

We re-arrange and combine terms into summations to arrive at Eq. 12.2.
In practice, we do not need to memorize this relationship, especially since

we may not always have H (z) in a form that directly matches Eq. 12.1. Thus,

102LESSON 12. FILTER DIFFERENCE EQUATIONS AND IMPULSE RESPONSES

we tend to work through the steps in this proof for a specific H (z) to find
the corresponding y [n].

Given Eq. 12.2, and what we know about LSI implementations, the general
implementation of a difference equation is presented in Fig. 12.1 where we have
assumed that M = N . For a particular system, if there is a coefficient b [k] = 0 or
a [k] = 0, then we simply omit the corresponding multiplier and its wiring from the
implementation. We immediately see that a higher N or M increases the complexity
(and hence the cost) of the implementation by requiring more components. We refer
to the order of a filter as the greater of N and M . The number of taps in a filter is
the minimum number of unit delay blocks required, which is also equal to the order
of the filter.

b [N]

+ D

−a [N]

b [1]

+ D

−a [1]

b [0]

+

x [n]

y [n]

Figure 12.1: General difference equation implementation where M = N .

Example 12.2: Filter Order and Taps

Let’s say that we need to implement a 2nd order filter. How many delay
blocks will we need?

A 2nd order filter is a 2-tap filter and will need 2 unit delays. This is a
rather simple example, but we emphasise the reuse of delay blocks for both
the inputs and delayed outputs, as shown with adders in Fig. 12.1. While

12.2. FILTER DIFFERENCE EQUATIONS 103

it would also be possible to instead use 2 unit delays for the inputs and 2
separate unit delays for the outputs, this would use more components and
hence be more expensive (more space, more energy, and more money).

EXTRA 12.1: State Variables

We see from the use of delay blocks in Fig. 12.1 that digital filter implemen-
tations have memory stored in them. We can refer to the states of internal
memory using state variables, with one corresponding to the output at each
delay block. It is possible to write equations for states as functions of other
states and the system input and not explicitly include the function output.
While relevant for digital computing, this concept is not necessary for our
understanding of filters in this module.

12.2.1 Tabular Method for Difference Equations

Since the output to a digital system is generally written as a difference equation,
it can be challenging to visualise the system output for a specific input. Given a
system difference equation and its input x [n], we can write the specific output y [n]
using the tabular method. We apply the tabular method as follows:

1. Starting with input x [n], make a column for every input and output that
appears in the system’s difference equation.

2. Assume that every output and delayed input is initially zero, i.e., the filter
is causal and there is initially no memory in the system (we also call such a
system quiescent).

3. Fill in the column for x [n] with the given system input for all rows needed,
then fill in the delayed inputs (as relevant) with delayed versions of x [n].

4. Evaluate y [0] from the initial input, then propagate the value of y [0] to delayed
outputs (as relevant).

5. Evaluate y [1] from x [0], x [1], and y [0].

6. Continue evaluating the output and propagating delayed outputs as necessary.

The tabular method can also be used as an alternative approach for finding the
time-domain impulse response h [n].

104LESSON 12. FILTER DIFFERENCE EQUATIONS AND IMPULSE RESPONSES

Example 12.3: Tabular Method to Find Step Response

Use the tabular method to find the step response of the filter implementation
in Fig. 12.2.

By inspection, we write the difference equation of this filter as

y [n] = x [n] + 0.6y [n− 1]− 0.5y [n− 2] .

We complete a table for the output in Table 12.1, and sketch the output
in Fig. 12.3.

+

D0.6

D-0.5

x [n] y [n]

Figure 12.2: LSI Circuit for Example 12.3.

Table 12.1: Tabular method for Example 12.3

x [n] y [n− 2] y [n− 1] y [n]

1 0 0 1

1 0 1 1.6

1 1 1.6 1.46

1 1.6 1.46 1.08

1 1.46 1.08 0.92

1 1.08 0.92 1.01

1 0.92 1.01 1.15

12.3. INFINITE IMPULSE RESPONSE FILTERS 105

1 2 3 4 5 60

1

n

y [n]

Figure 12.3: Ouput y [n] for Example 12.3.

12.3 Infinite Impulse Response Filters

Now that we have more intuition about translating between a digital system’s trans-
fer function and its implementation, we can begin discussion about the two major
classes of digital filters: those with finite impulse responses (FIR filters) and
those with infinite impulse responses (IIR filters). We start with IIR filters
because they have a more general form.

As implied by their name, IIR filters have impulse responses that are infinite in
length because they are recursive, i.e., there are feedback terms associated with non-
zero poles in the transfer function. They can be represented by the general form of
the transfer function in Eq. 12.1, difference equation in Eq. 12.2, and implementation
in Fig. 12.1. For an IIR filter, it is not possible to have a linear phase response (so
there are different delays associated with different frequencies), and they are not
always stable (depending on the exact locations of the poles). However, IIR filters
are more efficient than FIR designs at controlling the gain of the response. And
although the impulse response is technically infinite, in practice it often decays
towards zero or can be truncated to zero (i.e., we assume that the response is
h [n] = 0 beyond some finite value of n).

Example 12.4: IIR Filter Example

Given the IIR transfer function

H (z) =
1− 5z−1

1− 0.995z−1
,

find the difference equation and draw an LSI implementation.
Using H (z) = Y (z) /X (z), we can write

Y (z)− 0.995z−1Y (z) = X (z)− 5z−1X (z)

=⇒ y [n] = x [n]− 5x [n− 1] + 0.995y [n− 1]

106LESSON 12. FILTER DIFFERENCE EQUATIONS AND IMPULSE RESPONSES

Using the difference equation, we can draw the implementation shown in
Fig. 12.4.

Finally, note what the coefficient 0.995 implies about the stability of this
system. There is a pole very close to the unit circle, but the system is still
stable.

-5

+ D

0.995

+

x [n]

y [n]

Figure 12.4: Implementation of the IIR filter in Example 12.4.

12.4 Finite Impulse Response Filters

FIR filters are non-recursive, i.e., they have no feedback components. From the
general form of the transfer function in Eq. 12.1, we say that a [k] = 0 for k ̸= 0.
This means that the difference equation is simply

y [n] =
M∑
k=0

b [k]x [n− k] , (12.3)

and the implementation is just the “upper half” of Fig. 12.1, as shown in Fig. 12.5.
Since there is no feedback, we can readily write the impulse response h [n] as

h [n] = b [n] , (12.4)

and this is what we show in Fig. 12.5 to emphasise that the impulse response comes
directly from the knowledge of the numerator coefficients.

12.4. FINITE IMPULSE RESPONSE FILTERS 107

h [N]

D

h [1]

+ D

h [0]

+

x [n]

y [n]

Figure 12.5: Generic LSI FIR Filter.

FIR filters are “finite” because their impulse response is finite in length and
strictly zero beyond that, i.e., h [n] = 0 for n > M . Thus, the number of filter taps
dictates the length of an FIR impulse response.

The pole-zero plot of an FIR filter is easy to identify and leads us to a universal
property about FIR filter stability. To see this, let’s simplify the transfer function
in Eq. 12.1 for an FIR filter:

H (z) = b [M] z−M + b [M − 1] z1−M + . . .+ b [1] z−1 + b [0] , (12.5)

since the denominator is simply 1. To write H (z) as a function of its roots, we
will find it more convenient to work with positive powers of z, so we multiply the
numerator and denominator by zM and then factor:

H (z) =
b [M] + b [M − 1] z + . . .+ b [1] zM−1 + b [0] zM

zM
= K

∏M
k=0(z − zk)

zM
.(12.6)

We see that while there is no particular constraints on the locations of the zeros,
all M poles are at the origin of the complex z-plane, which also places them inside
of the |z| = 1 unit circle. Thus, FIR filters are always stable.

Finally, we note that FIR filters often have a linear phase response. This
means that the phase shift at the output corresponds to a time delay.

Example 12.5: FIR Filter Example

Find the impulse response and transfer function of the FIR filter given by the
implementation in Fig. 12.6. Write the transfer function with positive powers
of z.

108LESSON 12. FILTER DIFFERENCE EQUATIONS AND IMPULSE RESPONSES

By inspection, we can write the difference equation as

y [n] = x [n] + 2x [n− 1] + x [n− 2] ,

and the impulse response is h [n] = {1, 2, 1, 0, 0, . . .} . We can apply the Z-
transform to write

Y (z) = X (z) + 2z−1X (z) + z−2X (z)

=⇒ H (z) = 1 + 2z−1 + z−2 =
z2 + 2z + 1

z2
,

from which we could then also go on to find the pole-zero plot and frequency
response.

2

+D D +

x [n]

y [n]

Figure 12.6: FIR filter for Example 12.5.

EXTRA 12.2: Filter Realisations

Our method for realising LSI implementations is taken directly from the dif-
ference equation. It is the most direct approach but not the only one. Sec-
tion 7.5 of Lathi and Green discusses several methods of implementation,
and there is further discussion specific to IIR and FIR filter realisations in
Sections 8.1.5 and 8.2.2, respectively. For example, it is common to partially
factor the transfer function and then implement a filter by cascading two or
more filters together.

12.5. IDEAL DIGITAL FILTERS 109

12.5 Ideal Digital Filters

We now focus our discussion to the types of digital filters by considering the ideal
filter frequency responses, as we show in Fig. 12.7. As with analogue filters, this
enables us to clearly define the different types of filters and helps us to establish
the targets that we will try to realise with practical filters. Each ideal filter has
unambiguous pass bands, which are ranges of frequencies that pass through the
system without distortion, and stop bands, which are ranges of frequencies that
are rejected and do not pass through the system at all. The transition band
between stop and pass bands in ideal filters has a size of 0; transitions occur at
single frequencies. The biggest difference with analogue frequency responses is that
digital responses repeat every 2π.

We re-iterate that the four main types of filter magnitude responses are as follows
(where behaviour is defined over 0 ≤ Ω ≤ π, mirrored over π ≤ Ω < 2π, and
repeated every 2π):

� Low pass filters pass frequencies less than cutoff frequency Ωc and reject
frequencies greater than Ωc.

� High pass filters reject frequencies less than cutoff frequency Ωc and pass
frequencies greater than Ωc.

� Band pass filters pass frequencies that are within a specified range, i.e., be-
tween Ω1 and Ω2, and reject frequencies that are either below or above the
band within [0, π].

� Band stop filters reject frequencies that are within a specified range, i.e.,
between Ω1 and Ω2, and pass all other frequencies within [0, π].

These ideal responses appear to be fundamentally different from the ideal ana-
logue responses that we considered in Lesson 5. However, we only really care about
the behaviour over the fundamental band [−π, π), over which the behaviour of ideal
digital filters is identical to that of ideal analogue filters.

12.6 Simple Digital Filters

In Lesson 5, we went into rather great detail about why ideal analogue filters are
ideal and not realisable. This is somewhat more cumbersome for ideal digital filters,
but we will return to that discussion in the following lesson. For now, we focus
on the design of simple (low order) digital filters, where we consider the intuitive
placement of poles and zeros to obtain a target filter type that is also stable. Intuition

110LESSON 12. FILTER DIFFERENCE EQUATIONS AND IMPULSE RESPONSES

πΩc 2π − Ωc 2π

1

Ω

|H
(
ejΩ
)
|

(a) Low Pass

πΩc 2π − Ωc 2π

1

Ω

|H
(
ejΩ
)
|

(b) High Pass

πΩ1 Ω2 2π − Ω2 2π − Ω1 2π

1

Ω

|H
(
ejΩ
)
|

(c) Band Pass

πΩ1 Ω2 2π − Ω2 2π − Ω1 2π

1

Ω

|H
(
ejΩ
)
|

(d) Band Stop

Figure 12.7: Frequency response magnitudes of common ideal digital filters.

is somewhat easier for digital filters than for analogue filters because we only need
to consider the response over the fixed and finite frequency band [−π, π).

It’s helpful to keep a few concepts in mind:

� To be physically realisable, complex poles and zeros need to be in conjugate
pairs.

� We can place zeros anywhere, so we will often place them directly on the unit
circle when we need a frequency or range of frequencies to be attenuated.

� Poles on the unit circle should generally be avoided. If we can keep all of

12.6. SIMPLE DIGITAL FILTERS 111

the poles at the origin, then our design is FIR; otherwise it is IIR and there
is feedback. Poles are used to amplify the response in the neighbourhood of
some frequency.

From these concepts, and what we know about the ideal filter responses, we can
have the following intuition for each kind of filter:

� Low pass – place zeros at or near Ω = π. Poles near Ω = 0 can amplify the
maximum gain or be used at a higher frequency to increase the size of the pass
band.

� High pass – literally the inverse of low pass. Place zeroes at or near Ω =
0. Poles near Ω = π can amplify the maximum gain or be used at a lower
frequency to increase the size of the pass band.

� Band pass – place zeros at or near both Ω = 0 and Ω = π; such a filter must
be at least second order. Place poles if needed to amplify the signal in the
neighbourhood of the pass band.

� Band stop – place zeros at or near the stop band. These zeros must be
complex so such a filter must be at least second order. Place poles at or near
both Ω = 0 and Ω = π if needed.

We will now highlight these ideas in an example.

Example 12.6: Simple High Pass Filter Design

Design a high pass FIR filter with 1 tap, a gain of 1 at high frequency, and a
gain of 0 at low frequency. Sketch the pole-zero plot and LSI implementation.

Since there is only one tap, we can have no more than one pole and one
zero. It makes sense to place a zero on the unit circle at frequency Ω = 0.
Since the filter is FIR, the pole must be at the origin. With this orientation
of pole and zero, we know that the magnitude of the frequency response at
Ω = π is 2. So, we need to include a multiplier in the implementation that
imposes a gain of K = 0.5. The transfer function is then

H (z) = 0.5
z − 1

z
= 0.5(1− z−1),

so we know that the numerator coefficients are b [0] = 1 and b [1] = −1. We
sketch the pole-zero plot and LSI implementation in Fig. 12.8. We emphasise
that we don’t need a multiplier for b [0] = 1 because it has a value of 1.

Consider what we could do if the design were IIR. We would then have

112LESSON 12. FILTER DIFFERENCE EQUATIONS AND IMPULSE RESPONSES

flexibility to place the pole somewhere besides the origin. This would be
helpful if we have a specific multiplier available.

1-1

1

-1

Re {z}

Im {z}

|z| = 1

(a) Pole-zero plot.

-1

D + 0.5

x [n]

y [n]

(b) LSI implementation.

Figure 12.8: Filter design for Example 12.6.

12.7 Summary

� The difference equation of a digital filter can be obtained directly from the
z-domain transfer function.

� The two major classes of digital filters are infinite impulse response (IIR)
filters and finite impulse response (FIR) filters. IIR filters have feedback.
FIR filters have no feedback and are always stable.

� We can design simple digital filters of any of the major filter types by starting
with a pole-zero plot.

12.8 Further Reading

� Sections 6.3.2, 7.5.1, and 8.2.2 of “Essentials of Digital Signal Processing,”
B.P. Lathi and R.A. Green, Cambridge University Press, 2014.

12.9 End-of-Lesson Problems

You might notice that many questions can be asked about any one digital filter. In
particular, we have an LSI implementation, difference equation, transfer function,
pole-zero plot, frequency response, filter type, filter class (FIR/IIR), and stability.

12.9. END-OF-LESSON PROBLEMS 113

Even when not explicitly asked in one of the following problems or previous exam-
ples, you can consider all of the representations and analysis of a given system. This
makes for excellent practice.

1. Consider the filter LSI implementation in Fig. 12.9. Determine the transfer
function of the filter. Is it FIR or IIR? Sketch a pole-zero plot and state the
type of filter (low pass, high pass, band pass, or band stop). Compare the
implementation with that in Fig. 12.6. Comment on the difference (if any) in
filter type.

-2

+D D +

x [n]

y [n]

Figure 12.9: Filter for Question 1.

2. Consider the pole-zero plot in Fig. 12.10. Is the filter FIR or IIR? Determine
the magnitude of the filter’s frequency response. What type of filter is it (low
pass, high pass, band pass, or band stop), and is it an effective filter of that
type? Why or why not?

3. Consider the pole-zero plot in Fig. 12.11. Is the filter FIR or IIR? Determine
the magnitude of the filter’s frequency response. What type of filter is it (low
pass, high pass, band pass, or band stop)? Comment on the quality of the
filter.

4. Consider an LSI system in the form of Fig. 12.1 where b [0] = 1, b [1] = 1,
b [2] = 0.5, a [1] = −1, and a [2] = 0.5. Sketch the pole-zero plot, state the
type and order of filter, and comment on its stability.

5. Consider a digital filter with zeros at z = 1 ± j and poles at z = −0.25 ±
j0.25. Sketch the pole-zero plot and use it to find the magnitude of the filter’s
frequency response (at frequencies Ω = {0, π/2, π}) and hence the type of filter.
Write the system’s transfer function and provide an LSI implementation.

114LESSON 12. FILTER DIFFERENCE EQUATIONS AND IMPULSE RESPONSES

1-1

1

-1

Re {z}

Im {z}

(-0.5,0)

|z| = 1

Figure 12.10: Pole-zero plot for Question 2.

1-1

1

-1

Re {z}

Im {z}

(0.5,0.866)

(0.5,-0.866)

|z| = 1

Figure 12.11: Pole-zero plot for Question 3.

6. Consider the following transfer function for a second-order system:

H (z) =
z2

z2 − z + 0.5
.

Determine the difference equation for this system and use the tabular method
to find the impulse response. Is this system stable?

7. You are asked to design a simple digital filter (i.e., you can work out by
hand where to place all of the poles and zeros). The filter must be stable,
first-order, and high pass. The filter will process signals that are sampled at
fs = 1kHz and have a transfer function gain of K = 0.8. The filter must have

12.9. END-OF-LESSON PROBLEMS 115

ideal performance for constant magnitude input signals, and a gain of 0 dB for
input signals at a frequency of 250Hz. Where are the possible locations to
place poles that will meet all of the design constraints? Sketch the pole-zero
plot of each valid design.

8. You are asked to design a simple digital filter (i.e., you can work out by hand
where to place all of the poles and zeros). The filter must be stable, first-
order, FIR, and low pass. The filter will process signals that are sampled
at fs = 1kHz. The filter must have ideal stopband performance for input
signals at a frequency of 500Hz, and ideal passband performance for constant
magnitude input signals. Where should poles and zeros be placed? What
should be the value of the transfer function gain K? Sketch the pole-zero plot
of the design.

Lesson 13

FIR Digital Filter Design

In this lesson, we build upon the digital filter fundamentals that we introduced in
Lesson 12. We discuss practical digital filter design, including the roles of truncation
and windowing for effective and efficient FIR filters. As with analogue filters, we
focus our discussion on the implementation of low pass filters.

13.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Understand the constraints on filter realisability.

2. Design and Evaluate practical digital filter implementations, including their
frequency responses.

3. Apply Fourier series for digital filter design.

13.2 Realising the Ideal Filter Response

Our aim in practical digital filter design is to get as close as we can to ideal be-
haviour. We will recall the inverse DTFT from Eq. 11.4:

f [n] =
1

2π

∫ π

−π

F
(
ejΩ
)
ejnΩdΩ. (13.1)

We have the ideal magnitude of the impulse response in Fig. 12.7, i.e., |H
(
ejΩ
)
| =

1 for |Ω| < Ωc. We will ignore the phase and assume in the following example that
̸ H
(
ejΩ
)
= 0.

116

13.2. REALISING THE IDEAL FILTER RESPONSE 117

Example 13.1: Realisability of an Ideal Digital Filter

Let us consider the ideal low pass filter response that we presented in Les-
son 12 and attempt to transform this response into the time domain to assess
its realisability. Using the inverse DTFT, the ideal impulse response is as
follows:

hi [n] =
1

2π

∫ π

−π

H
(
ejΩ
)
ejnΩdΩ =

1

2π

∫ Ωc

−Ωc

1× ejnΩdΩ

=
1

2π

[
ejnΩ

jn

]Ω=Ωc

Ω=−Ωc

=
1

j2πn

[
ejnΩc − e−jnΩc

]
=

1

πn
sin (nΩc)

nΩc

nΩc

=
Ωc

π
sinc (nΩc)

This is analogous to the inverse Fourier transform of the ideal analogue
low pass frequency response that we performed in Example 5.1. We have
a sampled scaled sinc function, which has non-zero values for n < 0. This
implies that the ideal system needs to respond to an input before that input
is applied, so this ideal response (and all ideal responses) is unrealisable .

We can plot hi [n] over discrete-time samples without knowing the sam-
pling frequency ωs, however ωs would be needed if we wanted to indicate the
actual time between samples of h [n]. We plot hi [n] for Ωc = π/3 in Fig. 13.1.

EXTRA 13.1: Filter Realisation Methods

In the rest of this Lesson, we focus on FIR filter design using the windowing
method, which tries to match the ideal filter response in the time domain. It
is also possible to take a frequency domain approach, which is more intuitive
for complicated frequency responses, but the steps are more involved and are
thus outside the scope of this module. You can read more about the frequency
domain approach in Section 8.2.6 of Lathi and Green.

There are also IIR filter implementations. These relate nicely to analogue
filter design, because it is common for digital IIR filters to start with a realis-
able analogue filter (e.g., Butterworth) and then convert it into an equivalent

118 LESSON 13. FIR DIGITAL FILTER DESIGN

1 2 3 4 5 6-1-2-3-4-5-6

1
3

n

hi [n]

Figure 13.1: Impulse response hi [n] of ideal low pass digital filter in Example 13.1
for Ωc = π/3.

digital filter. This conversion uses the bilinear transform, which is outside
the scope of this module but will be discussed in Lesson 16. You can read
more about realising IIR filters in Section 8.1 of Lathi and Green.

13.3 Practical Digital Filters

Unlike the simple digital filters that we considered in Lesson 12, we pose that a good
digital low pass filter will try to realise the (unrealisable) ideal response in Fig. 13.1
(or for whatever Ωc as specified). We will try to do this with FIR filters, which
are always stable and tend to have greater flexibility to implement different ideal
frequency responses. Following similar arguments to what we used for realisable
analogue filters in Lesson 5, we note the following:

� We need to introduce a delay to capture most of the ideal signal energy in
causal time, i.e., use hi [n− k]u[n].

� We truncate the response according to a delay tolerance kd, such that h [n] =
0 for n > kd. Truncation also limits the complexity of the filter as a shorter
filter corresponds to a smaller order.

� We window the response, which scales each sample in the impulse response
according to a particular window w [n]. For example, a rectangular window
is simply truncation alone, but other windows try to mitigate the negative
effects of truncation.

13.3. PRACTICAL DIGITAL FILTERS 119

We refer to the above approach as the window method, as our design process
is starting with an ideal hi [n] and windowing this infinite time-domain response
to obtain a realisable h [n] that we can then immediately implement following the
guidance of Lesson 12.

If we use a simple rectangular window (i.e., just truncate), then we are multi-
plying the ideal response by a rectangle function in the time domain. While we
will not go into the mathematical details, the discrete-time rectangle function corre-
sponds to a sinc function in the spectral domain (see Fig. 13.2), and multiplication
in time corresponds to convolution in frequency, so we end up with non-ideal stop
band behaviour. Nevertheless, the rectangle window is simple and is also known as
the Fourier series method, because the windowed filter coefficients that remain
are the first Fourier series coefficients that describe the ideal frequency-domain be-
haviour.

Main Lobe
Side Lobe

2π
L

4π
L− 2π

L− 4π
L

−π π

1

Ω

|Hrect

(
ejΩ
)
|

Figure 13.2: Magnitude of the frequency response of discrete-time rectangular win-
dow of length L = 5.

To discuss and compare windows, we need to understand lobes. The main lobe
is the largest portion of the frequency response magnitude, and for a low pass filter
is centred around the origin Ω = 0. The side lobes are all of the other portions of
the magnitude response. Picture the response in Fig. 13.2 where we have labelled
the main lobe and one of the side lobes, and consider how it compares to the ideal
response for a low pass filter. We observe a rather gradual roll-off in the pass band as
the magnitude of the main lobe goes to 0, and all of the side lobes are contributing
non-zero responses in the stop bands. Thus, the criteria that we are interested in
are:

1. Main lobe width – the width in frequency of the main lobe (4π/L for the
rectangular window).

2. Roll-off rate – how sharply the main lobe decreases, measured in dB/dec
(i.e., dB per decade).

120 LESSON 13. FIR DIGITAL FILTER DESIGN

3. Peak side lobe level – the peak magnitude of the largest side lobe relative
to the main lobe, measured in dB.

Given these criteria, we are able to compare different window designs. We list
several common windows and their (approximate) performance criteria in Table 13.1.
We observe that the rectangular window, while simple, has a much poorer peak side
lobe level than the other windows. The other windows have larger main lobe widths,
which means that longer filters are needed to maintain a comparable pass band.
The Hann and Hamming windows have very similar forms but different trade-offs
between the roll-off rate and the peak side lobe level. The Blackman window has
the best combination of roll-off rate and peak side lobe level but the largest main
lobe width (thus requiring the longest implementation for given cut-off and sampling
frequencies).

Table 13.1: Common FIR Window Functions. Windows are w [n] = 0 outside of
0 ≤ n ≤ L− 1.

Name
Window w [n] for
0 ≤ n ≤ L− 1

Main
Lobe
Width

Roll-off
Rate

[dB/dec]

Peak Side
Lobe Level

[dB]

Rectangular 1 4π
L

-20 -13.3

Hann 1
2

[
1− cos

(
2πn
L−1

)]
8π
L

-60 -31.5

Hamming 0.54− 0.46 cos
(
2πn
L−1

)
8π
L

-20 -42.7

Blackman 0.42− 0.5 cos
(
2πn
L−1

)
+ 0.08 cos

(
4πn
L−1

)
12π
L

-60 -58.1

With the use of Table 13.1, combined with our knowledge of the ideal filter
realisation and the discrete-time Fourier transform (DTFT), we can compare the
time-domain implementations of practical filters with their spectra to visualise both
their implementations and their performance.

Example 13.2: Practical FIR Filter Design

Design a low pass FIR filter for a cut-off frequency of Ωc = π/2 using L =
7 coefficients with a rectangular window. Compare the time-domain and
magnitude spectra with that of a Hamming window.

From Ωc = π/2, we know that the ideal time domain response is hi [n] =
1
2
sinc

(
nπ
2

)
. We need L = 7 coefficients from this function. They should be

centred about n = 0, so we consider n = {0,±1,±2,±3}. By symmetry, we

13.3. PRACTICAL DIGITAL FILTERS 121

only need to evaluate for non-negative values of n. We find that

hi [0] = 0.5

hi [1] = 0.3183 = hi [−1]

hi [2] = 0 = hi [−2]

hi [3] = −0.1061 = hi [−2]

For the rectangular window, we just need to shift these coefficients so that
the filter is causal. We get

hrect [n] = {−0.1061, 0, 0.3183, 0.5, 0.3183, 0,−0.1061}, 0 ≤ n ≤ 6.

To apply a Hamming window, we just need to multiply each of these
coefficients by the corresponding Hamming weights. For L = 7, we evaluate
the Hamming weights as wHamming [n] = {0.08, 0.31, 0.77, 1, 0.77, 0.31, 0.08},
such that the filter is

hHamming [n] = {−0.0085, 0, 0.245, 0.5, 0.245, 0,−0.0085}, 0 ≤ n ≤ 6.

We plot a time-domain comparison of the two filters in Fig. 13.3(a), where
we also include the envelope of the corresponding shifted sinc wave. We see
that the Hamming weights are much smaller at the edges of the window.

To compare the spectra, we need to find the Z-transform of each filter and
set z = ejΩ , or equivalently find the DTFT. We will find it easiest to find
the spectra using the unshifted filters, which will have the same magnitude
responses as the actual filters (since a shift in time corresponds to multiplica-
tion by a complex exponential in frequency). The frequency response of the
rectangular window filter is then

Hrect

(
ejΩ
)
=

∞∑
n=−∞

hrect [n] e
−jnΩ

= −0.1061ej3Ω + 0.3183ejΩ + 0.5 + 0.3183e−jΩ − 0.1061e−j3Ω

= 0.5 + 0.3183(ejΩ + e−jΩ)− 0.1061(ej3Ω + e−j3Ω)

= 0.5 + 0.6366 cos(Ω)− 0.2122 cos(3Ω),

where we have applied Euler’s formula to write the complex exponentials as
cosines. Similarly, we can show that the frequency response of the Hamming

122 LESSON 13. FIR DIGITAL FILTER DESIGN

window filter is

HHamming

(
ejΩ
)
= 0.5 + 0.49 cos(Ω)− 0.017 cos(3Ω).

We plot the two spectra and compare with the ideal response in Fig. 13.3(b)
over the range [−π, π].

1 2 3 4 5 6 7 8

1
2

n

h [n]

Rectangular Filter Hamming Filter

π−π π
2−π

2

1

Ω

|H
(
ejΩ
)
|

Rectangular Filter
Hamming Filter
Ideal Filter

Figure 13.3: Responses of FIR filters designed in Example 13.2.

13.4 Designing Filters for Target Specifications

Before we discuss filter design for target specifications, we need to clarify the re-
lationship between Hz and radial frequencies in digital signals. We note that the
discrete-time radial frequency Ω is related to continuous-time radial frequency ω via
Ω = ω/fs, as long as Ω ≤ π (otherwise there will be an alias at a lower frequency).
From the definition of ω in terms of f, we can then write

Ω =
2πf

fs
, (13.2)

from which we also know that we need 2f ≤ fs to avoid aliasing.
The target specifications for digital filters are somewhat different than those for

analogue filters. Rather than define pass band and stop band gains, we instead
define pass band and stop band ripples:

� The gain over the pass band, defined by the pass band frequency Ωp, can vary
about unity between 1− δp/2 and 1 + δp/2. δp is the pass band ripple.

13.4. DESIGNING FILTERS FOR TARGET SPECIFICATIONS 123

� The gain over the stop band, defined by the stop band frequency Ωs, must be
less than the stop band ripple δs.

We define the stop band ripple δs in dB analogously to the stop band gain for
analogue filters, such that GdB = 20 log10 δs. The pass band ripple in dB is defined
by the pass band ripple parameter rp:

rp = 20 log10

(
1 + δp

2

1− δp
2

)
. (13.3)

Interestingly, when using the window method for filter design, we cannot inde-
pendently specify pass band and stop band ripples. Generally, a filter’s stop band
ripple will equal half of its pass band ripple δs =

δp
2
. Furthermore, the ripple char-

acteristics of the windowing filters are approximately fixed for the type of window
and change very little with window length (i.e., filter order). The transition band
Ω∆ = Ωs−Ωp, i.e., the difference between the pass band and stop band frequencies,
does change with filter length. All of these details are typically found in a table such
as Table 13.2.

Table 13.2: Band Characteristics of Common FIR Window Functions.

Name
Main
Lobe
Width

Peak Side
Lobe Level

[dB]
Ω∆ δs =

δp
2

Gs

[dB]
rp
[dB]

Rectangular 4π
L

-13.3 1.84π
L−1

0.090 -20.9 1.57

Hann 8π
L

-31.5 6.22π
L−1

0.0064 -43.9 0.11

Hamming 8π
L

-42.7 6.64π
L−1

0.0019 -54.5 0.033

Blackman 12π
L

-58.1 11.13π
L−1

0.00017 -75.3 0.0030

In practice, for a given target specification, we need to trial the determined
parameters to confirm that the specification can be met. Otherwise, we need to
adjust the window length or change the window type until the specification can be
confirmed.

Example 13.3: Specification for FIR Filters

Design an FIR low pass filter with cut-off frequency at 20 kHz, pass band
frequency no less than 19 kHz, pass band ripple rp ≤ 0.1 dB, stop band fre-
quency no greater than 21 kHz, and stop band gain Gs ≤ −50 dB. Set the
sampling frequency to be 4 times the cut-off frequency, i.e., 80 kHz.

124 LESSON 13. FIR DIGITAL FILTER DESIGN

From Table 13.2 we see that a Hamming window could meet this specifi-
cation because rp = 0.033 dB and Gs = −54.5 dB. We need to translate each
of the frequencies based on the sampling frequency:

Ωc =
2π(20000)

80000
=

π

2
,

Ωp =
2π(19000)

80000
=

19π

40
,

Ωs =
2π(21000)

80000
=

21π

40
,

so we find that Ω∆ = Ωs−Ωp = 0.05π. We then apply the Hamming window
formula for Ω∆ and calculate that we need a filter of length L = 134. You
would not be expected to find these terms by hand (!), though a computer
program could be helpful.

13.5 Summary

� Realisable filters are constrained by causality and delay.

� The windowing method is an effective means to design filters based on
truncations of the ideal filter response in the time domain.

� We can use the DTFT to determine the spectra of an FIR filter.

13.6 Further Reading

� Sections 8.2.3 to 8.2.5 of “Essentials of Digital Signal Processing,” B.P. Lathi
and R.A. Green, Cambridge University Press, 2014.

13.7 End-of-Lesson Problems

1. Design an FIR low pass filter with cut-off frequency Ωc = π/4 using L = 5
coefficients with a rectangular window. Compare the time-domain and mag-
nitude spectra with that of a Hamming window. Note: You would not be
expected to sketch the spectra in an exam, since it is a sum of sinusoids.

2. Consider an FIR low pass digital filter implementation of the subwoofer design
in Question 5.4. This filter was to have a pass band frequency of at least 100Hz

13.7. END-OF-LESSON PROBLEMS 125

and a stop band frequency of no more than 250Hz. The stop band gain was
to be Gs ≤ −30 dB. Assume that the signal is being sampled at 5 kHz.

(a) What are the radial pass band and stop band frequencies in rad
sample

?

(b) What length of a Hann window filter is needed to achieve this perfor-
mance?

(c) Can a rectangular window filter meet the specification?

Lesson 14

Discrete Fourier Transform and
the FFT

We have seen in previous lessons that discrete-time systems produce continuous
spectra. While we can readily plot continuous spectra, it would be more convenient
for analysis and design to have discrete spectra, since computers are fully digital
platforms. In this lesson we discuss the discrete Fourier transform (DFT) to provide
discrete spectra. Importantly, the DFT can be efficiently computed with the FFT,
which is a very widely used and practical algorithm. In the words of Lathi and
Green, “it is nearly impossible to exaggerate the importance” of the DFT using the
FFT algorithm.

14.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Apply the Discrete Fourier Transform (DFT) to produce discrete spectra of
fixed-length data.

2. Understand that the Fast Fourier Transform (FFT) efficiently evaluates the
DFT.

14.2 Discrete Fourier Transform

Let us re-visit the discrete-time Fourier transform (DTFT), which takes a discrete-
time signal and provides a continuous spectrum that repeats every 2π:

X
(
ejΩ
)
=

∞∑
n=0

x [n] e−jnΩ . (14.1)

126

14.2. DISCRETE FOURIER TRANSFORM 127

The DTFT is defined for the infinite-length sequence x [n] and gives a continuous
spectrum with values at all frequencies. We saw in the previous lesson that we often
have finite-length sequences, and for digital computation it would be convenient
to have a finite number of frequencies. Furthermore, the IDTFT requires solving
an integration that in general must be approximated. We can address all of these
concerns at once. Let’s suppose that our sequence x [n] is of length N . The DTFT
is then

X
(
ejΩ
)
=

N−1∑
n=0

x [n] e−jnΩ . (14.2)

Now suppose that we sample the spectrum X
[
ejΩ
]
. We know that X

[
ejΩ
]

repeats every 2π, so it should be sufficient to sample over the window [0, 2π). We will
find it convenient to take that same number of samples in the frequency domain as
the length of the time-domain signal, such that we take N evenly-spaced samples of
X
(
ejΩ
)
. These samples occur at multiples of the fundamental frequency Ω0 = 2π/N ,

i.e., at the frequencies

Ω =

{
0,

2π

N
,
4π

N
, . . . ,

2π(N − 1)

N

}
, (14.3)

which we can substitute into the DTFT and write the sampled form of the spectrum
as

X [k] =
N−1∑
n=0

x [n] e−jnk 2π
N , k = {0, 1, 2, . . . , N − 1}. (14.4)

This sampled spectrum is known as the forward discrete Fourier transform
(DFT). We emphasize that this is not the discrete-time Fourier transform, but
samples of it over the interval [0, 2π). The kth sample frequency in Hz is

fk = k
fs
N
, 0 ≤ k ≤ N − 1 (14.5)

where fs is the sampling frequency and we emphasise the periodicity in the frequency
domain. It is common to refer to the sampled DFT frequencies as bins. We can
also reverse the transform using the inverse discrete Fourier transform (IDFT):

x [n] =
1

N

N−1∑
k=0

X [k] ejnk
2π
N , n = {0, 1, 2, . . . , N − 1}. (14.6)

Importantly for implementation, the DFT and IDFT look very similar; very
similar algorithms can be used for both transforms. Computers can evaluate both
of them exactly and without any approximation. The length N can be as large as
we wish.

128 LESSON 14. DISCRETE FOURIER TRANSFORM AND THE FFT

Example 14.1: DFT of a Sinusoid

Calculate the DFT of a sine wave that is evenly sampled N = 6 times over
one period, as shown in Fig. 14.1(a). Plot the magnitude and phase spectra.
The time-domain signal is

x [n] =

{
0,

√
3

2
,

√
3

2
, 0,−

√
3

2
,−

√
3

2

}
.

The DFT is then

X [k] =
5∑

n=0

x [n] e−jnk 2π
N

= 0 +

√
3

2
e−j kπ

3 +

√
3

2
e−j 2kπ

3 + 0−
√
3

2
e−j 4kπ

3 −
√
3

2
e−j 5kπ

3 ,

which we solve for each value of k. We find that

X [0] = 0

X [1] =

√
3

2

[
e−j π

3 + e−j 2π
3 − e−j 4π

3 − e−j 5π
3

]
=

√
3

2

[
cos
(π
3

)
− j sin

(π
3

)
+ cos

(
2π

3

)
− j sin

(
2π

3

)
− cos

(
4π

3

)
+ j sin

(
4π

3

)
− cos

(
5π

3

)
+ j sin

(
5π

3

)]
=

√
3

2

[
1

2
− j

√
3

2
− 1

2
− j

√
3

2
+

1

2
− j

√
3

2
− 1

2
− j

√
3

2

]
= −j3

X [2] = 0,

and so on, and we find that

X [k] = {0,−j3, 0, 0, 0, j3}
|X [k] | = {0, 3, 0, 0, 0, 3}
̸ X [k] =

{
0,−π

2
, 0, 0, 0,

π

2

}
.

14.2. DISCRETE FOURIER TRANSFORM 129

We plot the magnitude and phase spectra in Figs. 14.1(b) and (c). We
note these both have periodic extensions of length N ; the 3 at k = 5 is the
same as being at k = −1. Also, for sampling frequency fs, the separation
between samples in frequency is fs/N = fs/6.

1 2 3 4 5 6

1

n

x [n]

(a) Time-domain signal.

1 2 3 4 50

1

2

3

k

|X [k] |

(b) Magnitude spectra.

1 2 3 4 50

π
2

−π
2

k

̸ X [k]

(c) Phase spectra.

Figure 14.1: Plots for Example 14.1.

As we have noted, the DFT provides a sampled view of the DTFT. It is referred
to as a picket fence, since we only see the DTFT at N frequencies. If we want to see
more detail in the DTFT, then we can artificially increase the length of the time-
domain signal x [n] by adding zeros to the end. This is known as zero padding.
We will see the effect of zero padding in an example.

Example 14.2: Effect of Zero Padding

Find the DFT X [k] of the signal x [n] = {3,2,3} as shown in Fig. 14.2(a).
Compare the DFT magnitude with 1) the corresponding DTFT X

(
ejΩ
)
; and

2) the DFT when we pad x [n] to be length N = 6.
Since N = 3 know that the frequencies are separated by Ω0 = 2π/3. The

DFT is then

X [k] =
2∑

n=0

x [n] e−jnk 2π
3 = 3 + 2e−jk 2π

3 + 3e−jk 4π
3 ,

130 LESSON 14. DISCRETE FOURIER TRANSFORM AND THE FFT

which we need to solve for k = {0, 1, 2}. We find that

X [0] = 3 + 2 + 3 = 8

X [1] = 3 + (−1− j
√
3) +

(
−3

2
+ j

3
√
3

2

)
= 0.5 + j0.866

X [2] = 0.5− j0.866

We plot the magnitude of X [k] in Fig. 14.2(b) using a radial frequency
scale (where each DFT point is at frequency kΩ0).

Since x [n] has a finite duration, there is a corresponding DTFT:

X
(
ejΩ
)
=

2∑
n=0

x [n] e−jnΩ

= 3 + 2e−jΩ + 3e−2jΩ

= e−jΩ
(
2 + 3ejΩ + 3e−jΩ

)
= e−jΩ (2 + 6 cos(Ω)) .

The DTFT is defined for all Ω but we plot its magnitude in Fig. 14.2(b)
over [0, 2π). We see that the DFT is sampling the DTFT, as expected, though
it doesn’t capture the shape of the DTFT particularly well.

Now consider zero-padding x [n] (as in Fig. 14.2(c)) so that N = 6 and
re-calculating the DFT. The frequency separation is now Ω0 = π/3 and the
DFT is then

Xpad [k] =
5∑

n=0

x [n] e−jnk 2π
6 = 3 + 2e−jk 2π

6 + 3e−jk 4π
6 ,

and we can evaluate the DFT as

Xpad [k] =
{
8, 5e−j π

3 , ej
π
3 , 4, e−j π

3 , 5ej
π
3

}
,

and we plot the magnitude of Xpad [k] in Fig. 14.2(d) with the same corre-
sponding DTFT. By increasing N the DFT has a better representation of the
DTFT.

EXTRA 14.1: DFT Properties

We will not go over properties of the DFT in detail, but we note the DFT

14.3. FAST FOURIER TRANSFORM 131

1 2 3 4 5 60

1

2

3

n

x [n]

(a) Time-domain signal.

|X
(
ejΩ
)
|

2π
3

4π
3

2π0

1
2
3
4
5
6
7
8

kΩ0

|X [k] |

(b) Magnitude spectra.

1 2 3 4 5 60

1

2

3

n

xpad [n]

(c) Zero-padded time-domain signal.

|X
(
ejΩ
)
|

2π
3

4π
3

2π0

1
2
3
4
5
6
7
8

kΩ0

|Xpad [k] |

(d) Zero-padded magnitude spectra.

Figure 14.2: Plots for Example 14.2.

has some properties that are similar to others that we have seen throughout
the module, in addition to properties that derive from its periodicity such as
circular convolution and circular correlation. More details are in Section 9.3
of Lathi and Green.

14.3 Fast Fourier Transform

As N increases, it quickly becomes cumbersome to evaluate the DFT and inverse
DFT manually by hand. The computational complexity is O(N2), so even in a
computer implementation this is inefficient with increasing N . The key detail is that
there are algorithms that simplify the complexity of the DFT. The fast Fourier
transform (FFT) is a family of algorithms that do this and they only have a
complexity of O(N log2N). The complexity gain is about an order of magnitude for
sequences with just 16 samples and two orders of magnitude with sequences of 1000
samples. This gain is achieved with no approximations, which has made the FFT
extremely popular in practice.

The precise details of the FFT are beyond the scope of this module, as they

132 LESSON 14. DISCRETE FOURIER TRANSFORM AND THE FFT

are still cumbersome to evaluate by hand. However, importantly, the FFT and its
inverse are readily available in MATLAB (and other computing platforms). The
syntax of the fft and ifft functions in MATLAB is quite simple:

% Given discrete-time sequence x (already zero-padded if desired)

X = fft(x); % FFT

x2 = ifft(X); % Inverse FFT; should have x2 == x

While we give a more extensive presentation of computing with digital signals
in Lesson 15, here we repeat Example 14.1 with a larger N where we sample the
sinusoid more frequently (i.e., not zero padding).

Example 14.3: FFT of a Sinusoid

Calculate the DFT of a sine wave that is evenly sampled N = 64 times over
one period, as shown in Fig. 14.3. Plot the magnitude spectra.

The sequence length is too long to calculate by hand, so will use the FFT
in MATLAB. The following code can do this:

N=64; % Sequence length

nVec = 0:(N-1); % Vector of index values

x = sin(2*pi*nVec/N); % Sample N times over one period of 2*pi

X = fft(x); % FFT

XMag = abs(X); % Magnitude

figure; stem(nVec, XMag);

xlabel(’Spectral Index k’)

ylabel(’|X[k]|’)

We plot the magnitude of the frequency response in Fig. 14.4. As in
Example 14.1, the separation between the samples in frequency is fs/64, so
the frequency of the observed sinusoid is fs/64 (which is consistent with the
time-domain signal, as we observe one period over 64 samples).

EXTRA 14.2: Double-Sided vs Single-Sided FFT

We should note that many of the examples of the FFT in the MATLAB

14.3. FAST FOURIER TRANSFORM 133

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

1

n

x [n]

Figure 14.3: Time-domain signal for Example 14.3.

0

5

10

15

20

25

30

35

|X
[k

]|

0 10 20 30 40 50 60 70

Spectral Index k

Figure 14.4: Magnitude spectrum for Example 14.3.

help documentation refer to and use the “single-sided” FFT, which can be
obtained from the “double-sided” FFT. The FFT as we have introduced it
here, and as calculated by the fft function, is the “double-sided” FFT. For
simplicity, we will always mean the “double-sided” FFT in this module.

134 LESSON 14. DISCRETE FOURIER TRANSFORM AND THE FFT

14.4 Summary

� Discrete spectra are more convenient than continuous spectra for computa-
tions.

� The discrete Fourier transform (DFT) provides samples of the DTFT to
show discrete spectra of a fixed-length signal.

� The fast Fourier transform (FFT) is a highly efficient implementation of
the DFT that is widely used in practice.

14.5 Further Reading

� Chapter 9 of “Essentials of Digital Signal Processing,” B.P. Lathi and R.A.
Green, Cambridge University Press, 2014.

� Section 15.2 of “Essential MATLAB for engineers and scientists,” B. Hahn
and D. Valentine, Academic Press, 7th Edition, 2019.

14.6 End-of-Lesson Problems

1. Find the DFTX [k] of the signal x [n] = {2,0,2}. Compare the DFT magnitude
with 1) the corresponding DTFT X

(
ejΩ
)
; and 2) the DFT when we pad x [n]

to be length N = 8. Try verifying your manual calculations using the fft

function.

2. Demonstrate the linearity property of the FFT by plotting the spectra of a
signal composed of two sinusoids of different frequencies. Let N = 64 and let
the frequencies of the two sinusoids be fs/16 and fs/4.

Lesson 15

Computing with Digital Signals

This lesson is the digital counterpart to Lesson 7, where we saw how MATLAB can
be used as a computing tool for analogue systems. It is even more “natural” to
represent digital signals and systems in a computer (in fact this is by design). While
we have already covered some cases of digital signal processing on a computer, e.g.,
when computing the FFT in Lesson 14, this lesson provides a more general overview
for working with digital signals and systems. In particular, we will cover tasks that
we’ve already done “by hand” in the previous lessons of this part of the module, so
this should facilitate revision of previous learning concepts.

We once again re-iterate that MATLAB is not the only tool available for these
purposes; practically any programming language has (or should have) libraries avail-
able for common digital signal processing tasks.

15.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Understand how digital signals and systems are represented in computing
systems.

2. Analyse digital signals and systems with a computing package.

3. Design and Implement digital filters with a computing package.

15.2 Digital Signals in MATLAB

Computers are inherently digital, and are designed for storing information in discrete
containers such as arrays and matrices. This makes them well-suited for discrete-
time signals and systems. It is intuitive to think of a one-dimensional discrete-time

135

136 LESSON 15. COMPUTING WITH DIGITAL SIGNALS

signal (e.g., voltage level) being stored in a one-dimensional array, where each el-
ement in the array corresponds to one discrete-time index of the signal. This can
also be extended to multi-dimensional signals being stored in multi-dimensional ar-
rays, e.g., as we will see with images in the Image Processing part of the module.
MATLAB stands for “MATrix LABoratory,” in case the relevance wasn’t sufficiently
apparent, though really any modern program language or general computing plat-
form should have functionality to work with and manipulate arrays of data.

Throughout this module we have referred to “digital” signals even though we
have treated them as continuous in amplitude. This has facilitated our mathematical
analysis and has minimal impact on implementation, especially given the precision
of floating point numbers (see more on this in Lesson 7).

We now discuss some common ways to represent digital systems and signals
in MATLAB, in particular those that are most relevant to the material covered
throughout this part of the module.

15.2.1 Digital Signals in Arrays

This should be obvious if you have previously done any programming (in any lan-
guage), but arrays can be direct implementations of digital signals. However, for
completeness, we provide the MATLAB syntax here and list some useful functions
for creating arrays with certain properties. For example, we can create an array
directly from its elements:

x1 = [1, 0, 1, 1, 0, 1, 0, 0]; % Array of length 8

x2 = 1:10; % Array of integers from 1 to 10

x3 = 4:2:20; % Array of even numbers from 4 to 20

x4 = 0:-0.5:-5; % array of values from 0 to -5, decreasing by -0.5

2D arrays can also be readily assembled, using a semi-colon between rows:

x5 = [2:6; 9:13]; % 2 rows, 5 columns

There are also function for creating arrays with pre-determined values. These
can be in any number of dimensions by supplying additional arguments.

x6 = ones(1,10); % Create array of ones with 1 row and 10 columns

x7 = ones(2,5,3); % Create a 2x5x3 array of ones

x8 = zeros(3); % Create a 3x3 matrix of zeros (or use zeros(3,3))

We have noted that convolution is easier in discrete-time than in continuous
time. We can evaluate it directly in MATLAB using the conv function:

x = ones (1,100); % Input

15.2. DIGITAL SIGNALS IN MATLAB 137

h = [1,2,-1,1,2,0]; % System impulse response

y = conv(x,h); % System output

We note that the length of the output from conv is one less than the sum of the
length of the inputs (i.e., the length of the full convolution vector).

Signals can also be readily converted to the spectral domain using the FFT
implementation of the DFT. We have already seen examples of this in Lesson 14.

15.2.2 Digital Systems in the Symbolic Math Toolbox

EXTRA 15.1: Digital Systems in the Symbolic Math Toolbox

We discussed in Lesson 7 how analogue systems can be represented symboli-
cally, where can define arbitrary variables and use them in functions. While
this was particularly helpful for analogue systems since we cannot precisely
represent continuous-time on a computer, symbolic math can also be used
for digital systems, though it is not recommended - hence why this is EXTRA
content. We can begin by creating symbolic variables for n and z:

syms n z

If we create functions using these variables, we can convert between the
time and z domains using the ztrans and iztrans functions. We can use the
same pre-built functions that apply to continuous-time systems (e.g., rectan-
gularPulse, dirac, heaviside). Here we repeat Example 7.1 for an equivalent
digital system.

138 LESSON 15. COMPUTING WITH DIGITAL SIGNALS

Example 15.1: Finding Expression for System Output

Find the output of a simple low pass filter with transfer function

H (z) =
z + 1

z
,

when the input is a cosine x (t) = cos (Ωn). Using our knowledge of
LSI systems, we can find the answer in a short function using symbolic
math.

function y = lowpassOutputDigital(omega)

% Find output to my low pass filter

% Create symbolic variables

syms n z

% Create symbolic functions for input and system

x = cos(omega*n);

H = (z+1)/z;

X = ztrans(x); Y = H*X; y = iztrans(Y);

If you call this function with frequency Ω = 5, then you will find
that the output is different from that which we saw in Example 7.1.

Some additional useful functions when using the Symbolic Math Toolbox:

� subs – substitute a numeric value in place of a variable in a symbolic
function.

� double – convert a symbolic value into a double-precision number that
can then be processed by non-symbolic numeric functions.

15.2.3 Digital Systems in the Signal Processing Toolbox

We described the freqs function for plotting the frequency response of analogue
systems. Similarly, the freqz function is used for plotting the frequency response of
digital systems. The syntax is quite similar; the first two input arguments for this
function are two arrays, one describing the coefficients of the numerator polynomial
and one describing the coefficients of the denominator polynomial, both with neg-
ative powers of z. The standard naming convention for these arrays is consistent
with the form that we used in Lesson 10; the b vector lists the numerator coefficients

15.2. DIGITAL SIGNALS IN MATLAB 139

in decreasing order and the a vector lists the denominator coefficients in decreasing
order (and normally with 1 as the first term in a). We do emphasise that MATLAB
numbers indexing from index “1” and not index “0.” For the system in Example 15.1
and converting the transfer function to have negative powers of z, we have b=[1,1]
and a=[1]. We can then plot the frequency response of this filter:

b = [1,1]; a = 1;

figure; % New figure

w = 0.1:0.1:pi;

freqz(b,a,w)

The figure is shown in Fig. 15.1. The argument w is a vector of normalised
(radial) frequencies that can range from 0 to π, but if you make it scalar instead
then it defines the number of frequency points are determined automatically. As we
noted for freqs, freqz plots the magnitude and phase of the frequency response
on a logarithmic scale (for both the frequencies and for the magnitude). Also, if
you assign freqz to an output argument, then it will store the complex frequency
response values for each of the frequencies. If you append a semi-colon ; after the
function then it will omit the plot.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Frequency (rad/sample)

-100

-50

0

P
h
a
s
e
 (

d
e
g
re

e
s
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Frequency (rad/sample)

-30

-20

-10

0

10

M
a
g
n
it
u
d
e
 (

d
B

)

Figure 15.1: Frequency response of the system in Example 15.1.

Correspondingly, we can use the impz function to return the digital system im-
pulse response using the transfer function coefficients in the same format:

b = [1,1]; a = 1;

h = impz(b,a);

140 LESSON 15. COMPUTING WITH DIGITAL SIGNALS

15.2.4 Digital Systems in the Control Systems Toolbox

We have seen that the Control Systems Toolbox has the function pzplot to generate
a pole zero plot from an LTI transfer function. This also works for LSI systems since
the way of identifying roots is the same.

b = [1,1]; a = [1];

figure; % New figure

H = tf(b,a);

pzplot(H)

15.3 Digital Filter Design

In Lesson 13 we focused on the design of digital FIR filters. MATLAB’s Signal
Processing Toolbox provides tools for both FIR and IIR filter design, and we will
discuss both of them here. To get an overview of all of the approaches available,
as well as functions for analysing filters, go to the Signal Processing Toolbox in the
MATLAB help documentation and visit the section on “Digital and Analog Filters”
and then “Digital Filter Design.”

One general and powerful function provided for either FIR or IIR filter design
is designfilt. There are many options to define the filter specification and it will
return a structure that includes the corresponding filter coefficients. A corresponding
GUI is available by calling filterDesigner; it is highly recommended that you
check this out and explore the options available. However, it contains many more
features that what we need for this module, so we will not discuss it here in detail.

15.3.1 IIR Filters

The IIR filter families correspond to those that we have already discussed for ana-
logue filters and they have the following functions for determining transfer functions:

� Butterworth: butter

� Chebyshev: cheby1 (i.e., type 1)

� Inverse Chebyshev: cheby2 (i.e., type 2)

� Elliptic: ellip

� Bessel (i.e., Bessel-Thomson): besself

15.3. DIGITAL FILTER DESIGN 141

Since the syntax and use of these functions is consistent, we focus discussion on
the butter function. The default input arguments are the order of the filter and the
cut-off frequency. By default the filter will be low pass, but a third optional argument
can indicate whether the filter is to be a different type, i.e., one of ’low’, ’high’,
’bandpass’, or ’stop’. For the output, we will consider one of 2 formats. If you
define two input arguments then they will be of the form [b,a], i.e., the coefficients
of the transfer function’s numerator and denominator polynomials, respectively. If
you define three input arguments then they will be of the form [z,p,k], i.e., you
will get the poles, zeros, and the transfer function gain K. From our knowledge of
transfer functions, either of these two forms are sufficient to fully define the transfer
function. You can also convert between the two forms using the zp2tf or tf2zp

functions.

15.3.2 FIR Filters

In Lesson 13 we focused on window-based design of FIR filters. This is one of many
approaches available in the Signal Processing Toolbox and can be achieved directly
using the fir1 function. The first argument is the order of the filter, the second
argument is the vector (or scalar) of cut-off frequency constraints (normalised from
0 to 1), the third is the type of filter (default is ’low’), the fourth is the type of
window (default is hamming; length must be one more than the order), and the fifth
argument is a switch to normalise the coefficients for gain 1 (0dB) at the centre of
the pass band (default is to normalise). The output is the vector of filter coefficients;
it is only one vector because the filter is FIR (i.e., all poles are at the origin). We
see use of this filter in the following example.

Example 15.2: FIR Filter Design in MATLAB

Design a 20th order band pass FIR filter with a Hann window that processes
signals sampled at 1 kHz and passes signals between 100Hz and 200Hz.

If fs = 1kHz then the filter is designed for signals with frequencies between
0 and 500Hz. Thus, the normalised cut-off frequencies are 0.2 and 0.4.

b = fir1(20, [0.2,0.4], ’band’, hann(21)); % Design FIR filter

freqz(b,1) % Plot filter’s frequency response

stem(0:20,b) % Plot FIR filter coefficients

xlabel(’n’) % Label stem plot

ylabel(’h[n]’) % Label stem plot

We plot the impulse response and frequency response in Fig. 15.2.

142 LESSON 15. COMPUTING WITH DIGITAL SIGNALS

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

h
[n

]

0 2 4 6 8 10 12 14 16 18 20

n

(a) Impulse response.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (rad/sample)

-500

0

500

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (rad/sample)

-150

-100

-50

0

M
a
g
n
it
u
d
e
 (

d
B

)

(b) Frequency response.

Figure 15.2: Filter in Example 15.2.

15.3.3 Filter Outputs

Once we have designed a filter, we want to be able to put it to use, i.e., pass inputs
to and observe the output. We have already discussed the use of the convolution
function conv, which we can use to find an FIR filter output given its impulse
response and an input signal. We briefly discuss a few alternatives and their uses:

� filter – similar to conv but takes transfer function coefficients (or filter design
returned by designfilt) instead of the impulse response, which means that
it can be used for FIR or IIR filters. Also, the output length is the same as
that of the input.

y = filter(b,a,x); % Default call with coefficient vectors a and

b. If FIR, a = 1

y = filter(d,x); % Call with filter "d" returned by call to

designfilt

� filtfilt – similar to filter but it actually filters twice (once forward and
once backward) so that there is zero phase distortion. As a result, the function
squares the magnitude (and doubles the order) of the original filter defined by
the transfer function.

y = filtfilt(b,a,x); % Default call with coefficient vectors a

and b. If FIR, a = 1

15.4. SUMMARY 143

y = filtfilt(d,x); % Call with filter "d" returned by call to

designfilt

15.4 Summary

� Digital signals and systems are easy to represent directly in digital computers.

� Approaches for analytical representations, such as symbolic math and vectors
for transfer function coefficients, apply to digital systems as well as analogue
systems.

� MATLAB has very powerful tools for FIR and IIR filter design and analysis.
We can use these tools to implement many of the tasks that we have completed
“by hand” throughout this part of the notes, or to design systems that are more
complex than what we can readily do on paper.

15.5 Further Reading

� The MATLAB documentation is an excellent resource, whether online or
within the MATLAB help browser.

� Chapter 17 of “Essential MATLAB for engineers and scientists,” B. Hahn and
D. Valentine, Academic Press, 7th Edition, 2019.

15.6 End-of-Lesson Problems

1. Consider the response to a moving-average filter h = [.2 .2 .2 .2 .2] when
the input is the discrete-time sinusoid x = cos(pi*n/4) for 0 ≤ n ≤ 39. Find
the output using

(a) conv

(b) ztrans and iztrans (subs and double will also help)

(c) filter

Plot the outputs (using stem or some comparable plotting function) and com-
ment on differences.

2. Verify the results of Question 12.1, where you were asked to design an FIR
low pass filter with cut-off frequency Ωc = π/4 using L = 5 coefficients with

144 LESSON 15. COMPUTING WITH DIGITAL SIGNALS

a rectangular window, and compare the time-domain and magnitude spectra
with that of a Hamming window. Find the impulse responses and spectra
using MATLAB.

Lesson 16

Digital Vs Analogue Recap

We now end the Digital part of the module in the way we started by re-visiting
analogue systems. However, we are not discussing signal conversion as we did in
Lesson 8. Instead, in this lesson we recap and highlight key similarities and differ-
ences between analogue and digital systems, signals, and their analysis. One of our
goals is to avoid confusion over which tools and transforms apply to which class of
systems. We also draw attention to the conversion of designs developed for one class
to be translated to the other, i.e., using the bilinear transform.

16.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Understand which transforms apply to which types of signals.

2. Understand the bi-linear transform to map between the analogue and digital
domains.

16.2 Comparison of Transforms

We re-iterate that our primary distinction (for mathematical purposes) between ana-
logue and digital systems is that analogue systems are continuous-time and digital
systems are discrete-time. Thus, we can highlight differences between the transforms
that correspond to continuous-time and discrete-time systems.

We summarize the transforms in the following (and as shown in Fig. 16.1). We
refer to f (t) and f [n] as signals in the generic sense (i.e., they are functions that
could be a system input, output, or impulse response):

145

146 LESSON 16. DIGITAL VS ANALOGUE RECAP

� For an aperiodic (or simple periodic) continuous-time signal f (t), we can con-
vert to the Laplace domain (or s-domain) via the Laplace transform, which
for s = jω is the (continuous) Fourier transform. The Fourier transform of the
signal is its frequency response F (jω), and is generally defined for all ω. The
Laplace and Fourier transforms also have corresponding inverse transforms to
convert F (s) or F (jω) back to f (t).

� For a more complex periodic continuous-time signal f (t), the Fourier series
representation decomposes the signal into its frequency components Fk at mul-
tiples of the fundamental frequency ω0. This can be interpreted as samples of
the frequency response F (jω), which then corresponds to periodicity of f (t)
over time. The coefficients Fk are found over one period of f (t).

� For discrete-time signal f [n], we can convert to the z-domain via the Z-
transform, which for z = ejΩ is the discrete-time Fourier transform. The
discrete-time Fourier transform of the signal is its frequency response F

(
ejΩ
)

and repeats every 2π (i.e., sampling in time corresponds to periodicity in
frequency). There are corresponding inverse transforms to convert F (z) or
F
(
ejΩ
)
back to f [n].

� For discrete-time signal f [n] with finite length (or truncated to) N , we can
convert to the frequency domain using the discrete Fourier transform, which
is also discrete in frequency. The discrete Fourier transform also has N points
distributed over 2π and is otherwise periodic. Here, we see sampling in both
frequency and time, corresponding to periodicity in the other domain (that we
usually ignore in analysis and design because we define both the time domain
signal f [n] and frequency domain signal F [k] over one period of length N).

With familiarity with the above, one could be given an arbitrary f (t), f [n], or
some transform F, and in principle we should know which transforms would apply.
In practice, you are not expected to memorise these differences. The emphasis here
is to present the transforms together so that we can see how they are qualitatively
related and distinguish between the circumstances where they can be applied.

One detail that is important to memorise is the nature of frequency when used
for continuous-time versus discrete-time systems. As noted above, any frequency
ω can be observed in a continuous-time function. The frequency range Ω in a
discrete-time function is only 2π, i.e., one trip around the unit circle, and the range
of frequencies covered by this circle varies according to the sampling frequency (if
we have frequencies beyond the range −π < Ω ≤ π, then they are aliased). This
difference is evident when we consider system stability, as shown by the comparison
of stability regions in Fig. 16.2. For a system to be stable, its poles in the s-domain

16.2. COMPARISON OF TRANSFORMS 147

t

f (t)

(a) Continuous-Time Signal

FT⇐⇒
IFT

ω

|F (jω) |

(b) Continuous Fourier Transform

t

f (t)

(c) Continuous-Time Periodic Signal

FS⇐⇒

ω0
ω

|Fk|

(d) Fourier Series

n

f [n]

(e) Discrete-Time Signal

DTFT⇐⇒
IDTFT

−π π
Ω

|F
(
ejΩ
)
|

(f) Discrete-Time Fourier Transform

n

f [n]

(g) Finite Discrete-Time Signal

DFT⇐⇒
IDFT

kΩ0

|F [k] |

(h) Discrete Fourier Transform

Figure 16.1: All frequency-based transforms that we have seen in this module.

148 LESSON 16. DIGITAL VS ANALOGUE RECAP

must have negative real components, but poles in the z-domain must lie inside the
unit circle.

Re {s}

Im {s}

(a) Stability in s-domain

Re {z}

Im {z}

|z| = 1

(b) Stability in z-domain

Figure 16.2: Stability comparison of analogue and digital systems.

16.3 Bilinear Transform

Except for signal conversion in Lesson 8, we have kept our discussion of analogue and
digital systems relatively isolated, although the narratives progressed similarly (i.e.,
linear transforms, stability, frequency response, filtering, periodicity). However,
analogue and digital systems are not always clearly isolated from each other in
design. In fact, it is very common to take a design for one domain and translate it
to the other. Our final topic is a (beyond scope) discussion of the bilinear transform,
which is used for this purpose.

EXTRA 16.1: Bilinear Transform

Let’s take a closer look to compare the Laplace and Z-transforms. We see
that there is a similar role being played by e−st and z−k. If we were to say
that we have a sampling period of Ts, then we could sample the complex
exponential at times t = kTs. By setting e−st = z−k, we then have z = esTs .
We can use this to do an approximate mapping between the s-domain and
z-domain. If we apply a Taylor series approximation (ea ≈ 1 + a), then we

16.4. SUMMARY 149

can write the following:

z = esTs =
esTs/2

e−sTs/2

≈ 1 + sTs/2

1− sTs/2
,

which we can also re-arrange to write

s ≈ 2

Ts

z − 1

z + 1
.

This conversion is known as the bilinear transform, and it enables us to
take a filter that was designed in the s-domain and map it to the z-domain.
Doing so preserves stability and maps low frequency features very well. We
will not apply the transform directly in this module, but you may see it
elsewhere during your course.

16.4 Summary

� The transforms that we have applied throughout this module are generally
related to each other, but primarily differ in whether they apply to functions
that are continuous or discrete in frequency or time.

� Sampling in frequency or time corresponds to periodicity in the other domain.

� The bilinear transform enables conversion of analogue systems into digital
systems (or vice versa).

16.5 Further Reading

Most material in this lesson is a recollection of material from previous lessons.

� Sections 8.1.2-8.1.4 of “Essentials of Digital Signal Processing,” B.P. Lathi and
R.A. Green, Cambridge University Press, 2014. These sections cover use of
the bilinear transform to translate analogue filter family designs to IIR digital
filters.

150 LESSON 16. DIGITAL VS ANALOGUE RECAP

16.6 End-of-Lesson Problems

As this is a summary lesson, there are no specific end-of-lesson problems. If you
have a particular interest in using the bilinear transform for filter design (which is
beyond the scope of this module), you will find examples of doing so in Sections
8.1.2-8.1.4 of Lathi and Green.

Part III

Random Signal Processing

151

Lesson 17

Probabilities and Random Signals

The third part of this module is a brief study of Random Signal Processing.
Most practical signals contain an unknown component that could be undesirable
(e.g., thermal noise impairs all sensors) or intentional (e.g., communication signals
have embedded information that we need to learn). In this lesson, we provide a brief
overview of random probability distributions and some of the roles that random
variables can play in practical signal processing applications. Subsequent lessons
consider the estimation of signals in the presence of noise and measuring additional
characteristics of random signals.

17.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Understand how random variable distributions are defined.

2. Understand common random variable distributions.

3. Evaluate common properties of random variables.

4. Understand the role of random variables in practical signal processing appli-
cations.

17.2 Random Variables

A random variable is a quantity that takes non-deterministic values, i.e., we
do not know what the value will be in advance. Instead, there is a probability
distribution (which may also be unknown) that defines the probability that the
random variable will take some value. The value could be voltage, time, temperature,

152

17.2. RANDOM VARIABLES 153

or practically any measurable quantity. Random variables can also be discrete (e.g.,
result of a coin toss) or continuous (e.g., impairments in a wireless communication
signal).

Mathematically, continuous random variables are described by their probability
density function (PDF), whereas discrete random variables are described by their
probability mass function (PMF). The notation for both types of distribution is
very similar. For random variable X that can take values between xmin and xmax

(which could be ±∞), p (x) is the probability that X = x. If X is discrete, then the
summation of these probabilities over all x is equal to 1, i.e.,

xmax∑
x=xmin

p (x) = 1, (17.1)

and if X is continuous, then the integration of these probabilities over all x is equal
to 1, i.e., ∫ xmax

x=xmin

p (x) dx = 1. (17.2)

We can take the PMF summation or PDF integral over a subset of the domain of
X to calculate the probability of X being within that subset.

An important feature of a random variable is its moments. Roughly speaking,
they summarise the values that a random variable can take. The general formula
for the nth order moment of X E [Xn] is

E [Xn] =
xmax∑

x=xmin

xnp (x) E [Xn] =

∫ xmax

x=xmin

xnp (x) dx, (17.3)

for discrete and continuous X, respectively.
When n = 1, the moment is called the mean value µX , and it is the expected

(average) value of the random variable. When n = 2, the moment is called the
mean-squared value, and it describes the spread of the random variable. For
second-order moments, we more commonly refer to the variance σ2

X , which is the
mean-squared value with a correction for the mean, i.e.,

σ2
X = E

[
(X − µX)

2
]
= E

[
X2
]
− (E [X])2 , (17.4)

so it can be directly calculated from the first and second order moments. The
standard deviation is the square root of the variance.

Many distributions are defined in terms of their moments, as we will see in the
following.

154 LESSON 17. PROBABILITIES AND RANDOM SIGNALS

17.2.1 Random Variable Distributions

There are a number of well-known PDFs and PMFs that are commonly found in
engineering. We will discuss several of them here. Generally, the name of a distri-
bution is also the name of a random variable that is drawn from that distribution
(e.g., a uniform random variable is drawn from a uniform distribution).

The uniform distribution has an equal probability for a random variable to
take any value in its domain, i.e., over xmin ≤ x ≤ xmax. The PDF of the continuous
version of a uniform random variable is shown in Fig. 17.1. There are also many
practical examples of discrete uniform distributions (e.g., the result of a dice roll,
coin toss, or roulette wheel). Intuitively, the mean is simply the average of the limit
values, i.e., µX = xmin+xmax

2
.

xmin xmax0
x

p (x)

1
xmax−xmin

Figure 17.1: Uniform distribution. There is no constraint that xmin ≤ 0 ≤ xmax;
there can be any xmin < xmax.

A Bernoulli random variable has a discrete probability distribution with only
two possible values (nominally 1 and 0, but could be yes and no, blue and red,
wet and dry, etc.). These two values can have different probabilities, and in general
p (1) = 1−p (0). The mean is simply µX = p (1), and the variance is σ2

X = p (1) p (0).
A Gaussian (or normal) random variable has a continuous probability distri-

bution over (−∞,∞) where values closer to the mean are more likely. Specifically,
the PDF is

p (x) =
1√
2πσ2

X

exp

(
−(x− µX)

2

2σ2
X

)
, (17.5)

which we see is an explicit function of the mean µX and variance σ2
X , and we plot

the PDF in Fig. 17.2. The Gaussian distribution is arguably the most important
continuous distribution because it appears very frequently in practical systems, even
for phenomena that are not inherently Gaussian distributed. This is thanks to the
Central Limit Theorem (CLT), which states that a sum of independent random
variables can be approximated with a Gaussian distribution, and the approximation
improves as more random variables are included in the sum. This is true for any
probability distribution. Independent random variables are random variables

17.2. RANDOM VARIABLES 155

that have no dependency on each other (i.e., if knowing the value of one random
variable gives you no information to be able to better guess another random vari-
able, then those random variables are independent of each other). While we won’t
worry about the mathematical details of the CLT, we emphasise the relevance of
the Gaussian distribution and we will see it repeatedly in Lesson 18 when modelling
estimation problems.

1√
2πσ2

exp
(
− (x−µX)2

2σ2

)

0
x

p (x)

Figure 17.2: Gaussian distribution with mean µX = 0.

17.2.2 Empirical Distributions

0
x

p (x)

True Distribution
Empirical Distribution

Figure 17.3: Example empirical distribution for a Gaussian random variable.

We have seen PDFs and PMFs that are analytical. Even though they describe
non-deterministic quantities, the distributions themselves can be written with an
equation. We emphasise that this does not mean that a set of samples that are drawn
from a distribution will exactly re-create the distribution. To observe behaviour that
would match a PDF or PMF, we require an infinite number of samples (random
variables drawn from the distribution). In practice, for a set of random variables
drawn from a distribution, we can make a histogram that divides our domain into
bins and we count the number of random variables that belong to each bin. If
we scale a histogram by the total number of samples, then we have an empirical

156 LESSON 17. PROBABILITIES AND RANDOM SIGNALS

distribution. We show a sample empirical distribution for a Gaussian random
variable in Fig. 17.3 in comparison with the actual distribution.

Example 17.1: Binary Empirical Distribution

Consider flipping a coin 20 times. Even though the probability of heads or
tails is 0.5, we may not get exactly 10 heads and 10 tails. Suppose that
we our results are 11 heads and 9 tails. We find that the heads and tails
events occurred 55% and 45% of the time, respectively, and plot the empirical
distribution in Fig. 17.4.

p (x)

0.5

Heads Tails

Figure 17.4: Empirical distribution from flipping a coin for Example 17.1.

EXTRA 17.1: Bell Curve Grading

The Gaussian distribution has a somewhat notorious reputation among stu-
dents everywhere. This is not because of the complexity of the PDF itself in
Eq. 17.5, but how it presents itself. Many phenomena behave according to
the Gaussian distribution, including student grades. If you plot a histogram
of student marks from an assessment, then you will likely see a “bell shape”,
i.e., as in Fig. 17.2. The key word is likely ; a PDF is a measure of probabil-
ities. Controversy arises if it is suspected that measured marks are adjusted
so that the data set more closely resembles a bell curve.

17.3 Random Signals

Random variables can appear in signals in fundamentally different ways. Here are
some examples:

17.4. SUMMARY 157

1. All electronics exhibit thermal noise due to the agitation of electrons. This is
often modelled by adding a Gaussian random variable to the signal of interest.

2. Signal processing techniques themselves introduce noise terms. We have al-
ready seen the imperfections in aliasing, quantisation, and non-ideal filters.
For example, if we quantise a continuous signal, we have uncertainty about
the signals true value that can be modelled as a uniform random variable.

3. Random variables can be used to store information, e.g., data can be encoded
into bits and delivered across a communication channel. A receiver does not
know the information in advance and can treat each bit as a Bernoulli random
variable that it needs to estimate.

4. Signals can be drastically transformed by the world around them before they
reach a transducer. Wireless signals can be obstructed by buildings and trees,
chemicals can react, musical instruments can have defects, etc. Effectively,
these analogue signals are passing through an unknown system h (t) and this
system can also vary with time. The variations in the system can be repre-
sented using random variables that describe the phenomenon under consid-
eration, e.g., there are particular distributions for the obstruction of wireless
signals.

17.4 Summary

� Continuous random variables are described by a probability density func-
tion (PDF) and discrete random variables are described by a probability
mass function (PMF).

� Some common random variable distributions are the uniform, Bernoulli,
and Gaussian (normal) distributions.

� Randomness has many roles to play in signal processing, including uncertainty
in a signal, uncertainty in the system that it passes through, and noise intro-
duced to convert an analogue signal to digital.

17.5 Further Reading

� Chapters 3-5 of “Probability and Statistics for Engineering and the Sciences,”
J. L. Devore, Brooks/Cole, 9th edition, 2016.

158 LESSON 17. PROBABILITIES AND RANDOM SIGNALS

17.6 End-of-Lesson Problems

1. Can a random variable distribution have xmin = xmax? Why or why not?

2. Prove using the definition of the mean for a continuous random variable that
the mean of a uniformly-distributed random variable is µX = xmin+xmax

2
.

3. A random variable X is non-negative and has the PDF p (x) = kxe−x. Find
the following:

(a) The only possible value of k.

(b) The probability that 0 ≤ X ≤ 1.

(c) E [X].

(d) E [X2] and σ2
X .

(e) The most likely value of X.

(f) The probability that 0 ≤ X ≤ E [X].

Lesson 18

Signal Estimation

In this lesson we provide an introduction to signal estimation problems. These prob-
lems encompass a diverse range of signal processing applications, and are also closely
related to signal detection. We are covering several specific estimation approaches
to gain some broad exposure to the topic. While we will be restricting ourselves to
relatively simple techniques and problems, we are building upon material you may
have seen in previous modules and we intend to give you some motivation to pursue
more complex problems and approaches beyond this module.

18.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Understand the scope of signal estimation problems and their applications.

2. Apply simple signal estimation methods.

3. Apply signal estimation methods in a computing platform.

18.2 The Estimation Problem

Signal estimation refers to estimating the values of a parameter (or parameters)
that are embedded in a signal. We can interpret this as trying to infer information
about a signal. Estimation is a key problem in many signal processing applications.
Some examples in different fields are as follows:

� Radar, sonar – estimating the position and trajectory of distant objects (e.g.,
aircraft, submarines).

� Speech – voice recognition estimating the words that are spoken.

159

160 LESSON 18. SIGNAL ESTIMATION

� Image processing – estimating location of an object in an image.

� Biomedicine – estimating fetal heart rate.

� Communications – estimating the transmission channel quality based on the
attenuation of a pilot signal.

The above examples all involve estimating parameters from continuous-time sig-
nals, however in practice we perform estimation in discrete-time to facilitate compu-
tation. The general estimation problem is as follows. We have a discrete-time data
signal (or sequence) of length N , y [n], and this signal depends on some unknown
parameter ϕ. To estimate ϕ, we apply some estimating function (or estimator)
g (·) to calculate ϕ̂, i.e.,

ϕ̂ = g (y [0] , y [1] , . . . , y [N − 1]) , (18.1)

where ϕ̂ is the estimate of ϕ. We can also generalise Eq. 18.1 to a vector of unknown
parameters. The study of signal estimation involves selecting and applying a suitable
estimator g (·) while understanding its ability to estimate ϕ in the given situation.

Why are we “estimating” and not just “calculating”? The issue is that in practice
the signal y [n] is impaired by noise, so we have to deal with imperfect information
(this is also why we are discussing estimation in the context of random signal pro-
cessing). In general, if there were no noise in a signal, then estimation would be
trivial and we can just observe (calculate) ϕ directly.

It is important to distinguish estimation from the complementary problem of
signal detection. Detection is when we do not know whether the signal of interest
is currently present from among noise or possibly other candidate signals. Detection
is the fundamental problem in applications such as communication, where a receiver
ultimately needs to decide which message was transmitted from among possible
candidate messages (i.e., transmission symbols).

For the rest of this lesson, we provide a brief survey of some popular and use-
ful estimation methods. We focus on their implementation and use rather than a
rigorous study of their derivation and performance, as these details can get quite
mathematically dense and are well beyond the scope of an undergraduate module.
We do note that a significant portion of engineering practice and research is in the
development and application of signal estimation (and detection) methods.

EXTRA 18.1: Our Context of Signal Estimation

To be precise about what are we presenting in this lesson, we make several
additional distinctions. We study estimation where there is some function
f (·) that is a function of the unknown parameter ϕ, i.e., y [n] = f (ϕ, n)

18.3. LINEAR MODEL 161

We assume that know the form of the function f (·) but not the value of ϕ.
However, we do assume that ϕ is constant. This is referred to as the classical
approach to estimation.

The Bayesian approach to estimation still assumes the form of the
function f (·) but it also assumes that ϕ is a random variable and we need
to estimate the current realisation of that random variable. In particular, it
is assumed that the probability distribution (whether a PDF or PMF) of ϕ
is known. This approach, which is based on the Bayes’ theorem, is useful
because it enables us to take advantage of any prior information that we
have about ϕ in the design of our estimator. Some popular approaches based
on the Bayesian approach include minimum mean square error estimation,
maximum a posteriori estimation, and Kalman filtering. You can read more
about these in Chapters 10-13 of Kay.

A common feature about both classical and Bayesian approaches is that
we assume knowledge about the function f (·). There are also more automated
methods that make no assumptions about the underlying function f (·). In-
stead, we try to learn about ϕ from simply the signal y [n] alone. Artificial
neural networks follow this approach.

18.3 Linear Model

One class of problems where it is “easy” to determine a suitable estimator are those
that follow a linear model. You may have seen this model in ES197 and ES2C7. For
example, consider a straight-line model for y [n], such that we have

y [n] = A+Bn+ w [n] , (18.2)

where A and B are unknown constants and w [n] refers to noise that is corrupting the
signal. We will assume that w [n] is a sequence of Gaussian random variables with
mean µw = 0 and variance σ2

w (we are also making assumptions about the spectral
nature of the noise, such that we call the noise white, but we will not elaborate on
this detail here). If we take Eq. 18.2 for each value of n, and there are N data points
in total, then we have a system of N equations to solve the 2 unknowns (A and B).
The most convenient and compact way to describe these equations is in matrix form.
We can write the data sequence, parameters, and noise in column vector form, i.e.,

y⃗ =

y [0]
y [1]
y [2]
...

y [N − 1]

 , ϕ⃗ =

[
A
B

]
, w⃗ =

w [0]
w [1]
w [2]
...

w [N − 1]

 , (18.3)

162 LESSON 18. SIGNAL ESTIMATION

and to include how A and B affect y [n] we build the observation matrix Θ. Since
here we have two parameters, the observation matrix is an N × 2 matrix structured
as follows:

Θ =

1 0
1 1
1 2
...

...
1 N − 1

 , (18.4)

where the first column reflects the fact that y [n] is a constant function of A and the
second column reflects the fact that y [n] is a linear function of B where the scaling
factor in the nth row is n.

This linear model problem can now be written as

y⃗ = Θϕ⃗+ w⃗, (18.5)

and this form can be achieved for any linear model. Assuming that w⃗ is a vector of

white Gaussian noise, then the optimal estimate
ˆ⃗
ϕ (which minimises the variance

of the error) for the parameters is

ˆ⃗
ϕ = (ΘTΘ)−1ΘTy⃗, (18.6)

where ΘT is the transpose of the matrix Θ (i.e., every element swaps its row and
element indices). In this particular example, ΘT is

ΘT =

[
1 1 1 · · · 1
0 1 2 · · · N − 1

]
. (18.7)

From the estimate
ˆ⃗
ϕ, we can calculate the corresponding predictions for y [n]

for each value of n (even n ≥ N if we wanted to extrapolate). We write these
predictions as

ˆ⃗y = Θ
ˆ⃗
ϕ, (18.8)

where here we omit the noise vector.
It can be shown that the estimate

ˆ⃗
ϕ minimises the mean square error (MSE),

which we calculate for the signal y [n] as follows:

MSE(ˆ⃗y) =
1

N

N−1∑
n=0

(ŷ [n]− y [n])2, (18.9)

where ŷ [n] is the nth element of ˆ⃗y.

18.3. LINEAR MODEL 163

EXTRA 18.2: Optimality in a Minimum Variance Sense

It is useful for us to clarify what we mean by “optimal” in a minimum variance
sense, without getting into too much mathematical detail. We recall the
definition in Lesson 17 for the variance of random variable X:

σ2
X = E

[
(X − µX)

2
]
, (18.10)

where the mean of X is µX and we were able to separately derive µX . Vari-
ance in estimation has a similar meaning, except that here µX becomes our
predicted model ŷ [n] and the random variable X becomes our observed signal
y [n]. The variance σ2

X becomes a measure that we want to minimise, as obvi-

ously the best that we can do is if ϕ̂ = ϕ. We cannot take a true expectation
from a finite number of samples, so the mean square error in Eq. 18.9 acts as
a tractable equivalent.

We emphasise that Eq. 18.6 is optimal if the noise w⃗ is white Gaussian
noise. If the noise were not white, then we could include information about
the noise in a modified version of Eq. 18.6 to maintain optimality. For more
detail, see Section 4.5 of Kay.

Importantly, our signal y [n] can be more generally defined than in Eq. 18.2 and
still follow a linear model whose optimal estimate is given by Eq. 18.6. In particular:

� y [n] can depend on more variables than just the index n. For example, y [n]
could depend on the underlying continuous time t, or some other variable
that we must know or be able to measure for each sample in the sequence.
Importantly, y [n] does not need to depend on time at all, though we are
usually interested in time-varying signals in the context of this module.

� y [n] can include polynomial terms of the function variables. The linearity of
the linear model means that y [n] must be a linear function of the unknown
parameters.

For completeness, let us now write a more general form for the components in
Eq. 18.3. We assume that there are P unknown parameters and Q known variables
that can vary for each sample n. The structures of y⃗ and w⃗ are the same as in

164 LESSON 18. SIGNAL ESTIMATION

Eq. 18.3. The parameter vector becomes

ϕ⃗ =

ϕ1

ϕ2

ϕ3
...
ϕP

 . (18.11)

It is inconvenient to write a general form for the observation matrix Θ, which
has size N × P , thanks to the possibility of multiple variables. It is easier for us to
see formulations in examples.

Example 18.1: Curve Fitting

Suppose that we have data that we want to match to a polynomial curve that
is a function of the underlying continuous time t, such that the nth sample is
at t = nTs. We write the time-domain function as

y (t) = ϕ1 + ϕ2t+ ϕ3t
2 + . . . ϕP t

P−1 + w (t) ,

which we sample at times {0, Ts, 2Ts, . . . , (N − 1)Ts}. For this problem, the
observation matrix is

Θ =

1 0 0 . . . 0
1 Ts T 2

s . . . T P−1
s

1 2Ts 4T 2
s . . . (2Ts)

P−1

...
...

...
. . .

...
1 (N − 1)Ts (N − 1)2T 2

s . . . ((N − 1)Ts)
P−1

 .

To consider a more specific example, suppose that we have data that we
want to fit to the function

y (t) = A+Bt+ Ct2 + w (t) ,

18.3. LINEAR MODEL 165

which we sample every Ts = 0.1 s for 10 s, then the observation matrix is

Θ =

1 0 0
1 0.1 0.01
1 0.2 0.04
...

...
...

1 10 100

 .

Example 18.2: FIR Filter Estimation

We recall from Lesson 12 that the difference equation for an Mth order FIR
filter is

y [n] =
M∑
k=0

b [k]x [n− k] ,

where the b [·] terms are the transfer function numerator coefficients (recall
that FIR filters have no feedback and hence there are no denominator coef-
ficients). The b [·] terms are also the tap multiplier coefficients in the imple-
mentation of the filter. In practice, there are many natural systems that we
can describe as a (noisy) FIR filter, where we need to estimate the filter taps
to learn about the system. We assume that we have a noise term such that
our actual observed signal is

y [n] =
M∑
k=0

b [k]x [n− k] + w [n] ,

and we seek to estimate the taps from N samples (where N ≥ M +1) given a
known input sequence x [n]. While it can actually be shown to be suboptimal,
let us assume that the input sequence is a step function, i.e., x [n] = 1, ∀n ≥ 0.
The observation matrix is of size N × (M + 1) and is

Θ =

1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

 .

166 LESSON 18. SIGNAL ESTIMATION

More generally, for any input function x [n], the observation matrix is

Θ =

x [0] 0 0 . . . 0
x [1] x [0] 0 . . . 0
x [2] x [1] x [0] . . . 0
...

...
...

. . .
...

x [N − 1] x [N − 2] x [N − 3] . . . x [N − (M + 1)]

 .

EXTRA 18.3: The DFT Solves a Linear Model

We recall from Lesson 14 that the discrete Fourier transform (DFT) converts
a sequence of N data points into N spectral points. It can be shown that
the DFT is equivalently a linear estimation of the amplitudes of the sinusoid
components in the signal, such that Eq. 18.3 is equivalent to finding the DFT
coefficients. For more detail, refer to Example 4.2 of Kay. We clarify that
Kay uses the sinusoidal representation of the DFT, which is equivalent to the
complex exponential one that we studied in Lesson 14.

We make note of another generalisation of the linear model. Suppose that x [n]
includes a known signal component, such that is of the form

y⃗ = Θϕ⃗+ s⃗+ w⃗, (18.12)

where s⃗ is an N × 1 vector of known samples. It is straightforward to account for
this in the estimator by subtracting both sides by s⃗, such that the optimal solution
becomes

ˆ⃗
ϕ = (ΘTΘ)−1ΘT(y⃗ − s⃗). (18.13)

The form of Eq. 18.13 is convenient if we know that our signal is contaminated
by some large interference with known characteristics.

18.3.1 Solving Linear Models

The wary student will observe that we have not yet discussed how to solve Eq. 18.3.
Because of its inclusion of matrix multiplications and inversions, it is very cum-
bersome to evaluate by hand, even for very short signals. For this module, we are
more interested in setting up the observation matrix Θ and then evaluating on a

18.4. LEAST SQUARES 167

computer. Given data signal y (as a column vector) and linear observation matrix
Obs defined in MATLAB, the model estimate is simply

theta = Obs\y;

This method is also known as linear regression or ordinary least squares
(OLS). We note that the form of the observation matrix Θ had to be assumed and
may be unknown. In practice, we may need to test multiple candidate models, each
with a different corresponding Θ, and choose the one that is most accurate. We can
compare accuracies by calculating the MSE associated with each model as found
using Eq. 18.9 where we use the estimate to find the corresponding predicted signal
vector ˆ⃗y. If we find multiple models that produce a very similar MSE, then intuition
would lead us to select the simplest model (and we would assume that more complex
models have too many parameters).

18.4 Least Squares

The solution in Eq. 18.3 to the linear model is more generally also known as the
least squares estimate, whether or not it is the optimal estimate (as this would
depend on the statistics of the noise w⃗). Here we discuss a variation of least squares
estimation and how it modifies the ordinary least squares (OLS) estimate.

Weighted least squares includes a symmetric weight matrix W . The simplest
weighting matrix, where each sample is associated with a positive weight W [n] > 0,
is diagonal where the nth diagonal element is W [n]. The benefit of including a
weight matrix is to place more emphasis on more reliable samples (without simply
discarding any that are deemed less reliable). For example, if the variance of the
noise is known to vary with n, such that the variance of the noise in the nth sample is
σ2
n, then a reasonable choice of weight is W [n] = 1/σ2

n. Given W , the least squares
estimate becomes

ˆ⃗
ϕ = (ΘTWΘ)−1ΘTW y⃗, (18.14)

and we must rely on a more general approach for solving Eq. 18.14. Fortunately,
MATLAB has such a general purpose function for least squares problems called
lscov. First, we show that lscov can be used to find OLS estimates which is
equivalent to using the backslash operator:

theta = lscov(Obs,y);

Once again, we note that the signal y must be a column vector. To perform
weighted least squares, where we have a diagonal weight matrix W where the nth

168 LESSON 18. SIGNAL ESTIMATION

diagonal element is W [n], we simply add the column vector of weights W [n] as a
third argument:

theta = lscov(Obs,y,W);

EXTRA 18.4: Other Variations of Least Squares

There are other interesting variations of least squares estimation available,
but the corresponding mathematics is too cumbersome for us to even present
final results. Sequential least squares (or recursive least squares) en-
ables us to update a least squares estimate as we add new data points, without
needing to recalculate the estimate from the entire data set. It can be per-
formed in MATLAB using the rlsFilt function in the DSP System Toolbox.
Constrained least squares is a generalisation where the unknown param-
eters must have constraints applied. For example we might know that some
parameters must be within a certain range, e.g., positive or negative, or that
some of the unknown parameters depend on other unknown parameters in
some way. When the both the model and the constraints are linear, con-
strained least squares can be performed using the lsqlin function in the
Optimization Toolbox.

18.5 Maximum Likelihood Estimation

While we will not elaborate on the mathematical details, we will find it useful to
introduce the concept of maximum likelihood estimation (MLE). MLE is quite
popular as it can be readily computed for complicated estimation problems. It is
also approximately optimal in a minimum variance sense if we have a large number
of signal samples available.

We recall the concept of probability density functions (PDFs) from Lesson 17.

The MLE is found by determining
ˆ⃗
ϕ that maximises the PDF of the signal y [n],

which depends on the statistics of the noise w [n]. The PDF is maximised by taking
the derivative of the signal PDF with respect to the estimation parameters. Once
again, we will not cover the mathematical details, but we only need to assume the
shape of the PDF. Given some type of probability distribution, the MLE can be
found.

MATLAB has the mle function in the Statistics and Machine Learning Toolbox.
The only arguments needed are the data set and the assumed probability distribu-

18.6. COMMENTS ON BIAS AND ACCURACY 169

tion (the default is a Gaussian distribution). A wide selection of distributions are
available (see the documentation for mle), or you can define a custom distribution.

Example 18.3: MLE Estimation

Write a MATLAB script that generates 1000 realisations of a Gaussian ran-
dom variable with mean 1 and variance 4. Try to estimate the mean and
variance using mle.

x = 1 + 2*randn(1,1000); % Create vector of random elements

with mean 1 and variance 4 (so standard deviation is 2)

phat = mle(x); % Maximum likelihood estimation. Output

arguments are estimated 1) mean, 2) standard deviation

meanX = phat(1);

varX = phat(2)^2;

18.6 Comments on Bias and Accuracy

EXTRA 18.5: Comments on Bias and Accuracy

There are important concepts regarding the formal performance of estimators
that we have omitted for clarity, but we briefly comment on here for your
interest.

We have omitted the notion of bias in an estimator. If an estimator is
unbiased, then on average it will estimate the true value of a parameter.
In the case of the linear model, the optimal minimum variance estimator is
also unbiased. The maximum likelihood estimator is in general biased, but
it becomes unbiased as we take an asymptotically large number of samples.
Bias isn’t necessarily bad; we may be able to find an estimator with lower
variance if we are willing to accept some bias. You can read more about bias
and unbiased estimation in Chapter 2 of Kay.

For a given estimator, we can always wonder if we can do better. It is
helpful to be aware of bounds on estimator variance, and in particular on
the variance of an unbiased estimator. A lower bound on estimator variance
enables us to evaluate any proposed estimator with what is possible, and in-
forms whether any improvement is physically possible. One such bound that
is (relatively) easy to determine is the Cramer-Rao lower bound (CRLB).

170 LESSON 18. SIGNAL ESTIMATION

The CRLB is quite useful because, upon finding it, we can also determine
whether an estimator exists that can attain the bound. However, the mathe-
matics of the CRLB are quite involved and include taking derivatives of the
logarithm of the probability distribution of interest (as is also needed in max-
imum likelihood estimation). You can read more about the CRLB in Chapter
3 of Kay.

18.7 Summary

� Signal estimation problems involve finding the values of unknown parame-
ters that are embedded in a signal of interest. These are found across all areas
of signal processing.

� If the signal of interest follows a linear model of the unknown parameters,
then the parameters can be estimated using linear regression, which is a
least squares solution.

� Variations of least squares includeweighted least squares, sequential least
squares, and constrained least squares.

� Maximum likelihood estimation can find the parameters of a probability
distribution as long as we know the shape of the distribution.

18.8 Further Reading

� Chapters 1, 4, 7-8 of “Fundamentals of Statistical Signal Processing, Volume
1: Estimation Theory,” S. M. Kay, Prentice Hall, 1993.

18.9 End-of-Lesson Problems

1. Suppose that we want to fit the signal y (t) to the function

y (t) = A+Bt+ Ct2 +Dt3 + w (t) ,

where we sample every Ts = 0.5 s for 3 s. Write out the complete observation
matrix Θ.

2. Suppose that we are try to estimate the filter coefficients b [·] of the system
defined by the difference equation

y [n] = b [0]x [n] + b [1]x [n− 1] + b [2]x [n− 2] + w [n] .

18.9. END-OF-LESSON PROBLEMS 171

Determine the observation matrix Θ where we perturb this system with the
input sequence x [n] = {1, 0, 1, 1, 0}.

3. Suppose that we want to estimate the parameters in a linear model where we
know that the first 5 samples were contaminated with noise of variance σ2 = 2
and the last 5 samples were contaminated with noise of variance σ2 = 5. What
would be a suitable weight vector to perform weighted least squares?

4. Poisson random variables are commonly used to describe the occurrence of
random events. One of their pioneering applications was to model the number
of Prussian soldiers killed by horse kicks, but they can be used for counting any
kind of independent event, e.g., phone calls to a call centre, chemical reactions
in some volume, photons emitted by a light source, etc. A convenient feature of
Poisson random variables is that they are characterised by a single parameter:
the mean λ. Use the poissrnd function in MATLAB to generate 100 Poisson
realisations with mean λ = 1, then see how well the mle function can estimate
the mean.

Lesson 19

Correlation and Power Spectral
Density

We finish our brief study of random signal processing with additional mathematical
tools for comparing signals in both the time and frequency domains. These enable
us to quantify similarities between signals or how a signal varies with time. While
we will not cover the use of these tools in detail, they give us additional methods
for performing estimation of random signals.

19.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Apply cross-correlation to compare two signals in the time domain.

2. Apply autocorrelation to compare one signal with its future values.

3. Understand properties of power spectral density (PSD).

4. Understand that the PSD characterises the frequency spectra of signals.

19.2 Correlation

Correlation gives us a measure of time-domain similarity between two signals. Con-
sider pairs of data in Fig. 19.1. The data sets paired to make the blue circles are
highly correlated, whereas the data sets paired to make the red triangles are less

172

19.2. CORRELATION 173

correlated. Given discrete-time sequences x1 [n] and x2 [n] of length N , the cross-
correlation between them can be approximated as

RX1X2 [k] ≈
1

N − k
(x1 [0]x2 [k] + x1 [1]x2 [k + 1] + x1 [2]x2 [k + 2]+

. . .+ x1 [N]x2 [k +N]) (19.1)

=
1

N − k

N−1∑
n=0

x1 [n]x2 [k + n] , (19.2)

where k is the time shift of the x2 [n] sequence relative to the x1 [n] sequence. It is an
approximation because the signal lengths are finite and the signals could be random,
but in practice this is the form that is used to calculate the cross-correlation.

1 2 3 4 50

1

2

3

4

Variable 1

Variable 2

High Correlation
Moderate Correlation

Figure 19.1: Signal correlation of two pairs of sets of data.

EXTRA 19.1: Cross-Correlation of Analogue Signals

For this module we are more concerned with calculating the cross-correlation
for specified sequences and not deriving it for random processes or continuous-
time signals. However, for completeness, the cross-correlation between deter-

174 LESSON 19. CORRELATION AND POWER SPECTRAL DENSITY

ministic analogue signals x1 (t) and x2 (t) is

RX1X2 (τ) = lim
T→∞

1

2T

∫ T

t=−T

x1 (t)x2 (τ + t) dt, (19.3)

where τ is the continuous-time shift between the two signals.

Example 19.1: Discrete Cross-Correlation

Calculate the cross-correlation between

x1 [n] = {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5}
x2 [n] = {6, 8, 10, 0, 2, 4, 6, 8, 10, 0, 2, 4}

We have N = 12 and from Eq. 19.2 we can write

RX1X2 [0] =
1

12
(0 + 8 + 20 + 0 + 8 + 20 + 0 + 8 + 20 + 0 + 8 + 20) = 9.33

RX1X2 [1] =
1

11
(0 + 10 + 0 + 6 + 16 + 30 + 0 + 10 + 0 + 6 + 16) = 8.55

RX1X2 [2] =
1

10
(0 + 0 + 4 + 12 + 24 + 40 + 0 + 0 + 4 + 12) = 9.60

RX1X2 [3] =
1

9
(0 + 2 + 8 + 18 + 32 + 50 + 0 + 2 + 8) = 13.33,

and so on. We find that

RX1X2 [k] = {9.33, 8.55, 9.60, 13.33, 10.50, 8.86, 9.33, 6.40, 4.00, 3.33, 2.00, 0} .

We observe that the peak value of 13.33 occurs when k = 3. This makes sense
because we see that x2 [n] is twice x1 [n] and delayed by 3.

A special case of a correlation function is when we correlate a signal with itself,
i.e., x2 [n] = x1 [n] or x2 (t) = x1 (t). We call this the autocorrelation. It gives us
a measure of whether knowing the current value of the signal says anything about
a future value, which is particularly useful for random signals. The autocorrelation
of a signal has several important properties:

1. The autocorrelation for zero delay is the same as the signal’s mean square
value. The autocorrelation is never bigger for any non-zero delay.

19.2. CORRELATION 175

2. Autocorrelation is an even function of k or τ , i.e., RX1X1 [k] = RX1X1 [−k].

3. The autocorrelation of the sum of two uncorrelated signals is the sums of the
autocorrelations of the two individual signals. In other words, for x1 [n] and
x2 [n] uncorrelated, we have

y [n] = x1 [n] + x2 [n] =⇒ RY Y [k] = RX1X1 [k] +RX2X2 [k] . (19.4)

Example 19.2: Discrete Autocorrelation

Calculate the autocorrelation of

x [n] = {0, 1, 2, 3, 2, 1, 0}

We have N = 7 and from Eq. 19.2 we can write

RXX [0] =
1

7
(0 + 1 + 4 + 9 + 4 + 1 + 0) = 2.71

RXX [1] =
1

6
(0 + 2 + 6 + 6 + 2 + 0) = 2.67

RXX [2] =
1

5
(0 + 3 + 4 + 3 + 0) = 2.00

and so on. We find that

RXX [k] = {2.71, 2.67, 2.00, 1.00, 0.33, 0, 0} .

As expected for autocorrelation, the peak value RXX [0] = 2.71 occurs when
k = 0, and this is also the mean square value of the signal.

Example 19.3: Correlation in MATLAB

We can calculate the cross-correlation and autocorrelation of discrete signals
in MATLAB using the xcorr function. To be consistent with our definitions,
we use the syntax

R = xcorr(X2, X1, ’unbiased’)

and this will normalise the result properly. The input signals X1 and X2
must be of the same length (N); also note their ordering. The output R will

176 LESSON 19. CORRELATION AND POWER SPECTRAL DENSITY

actually be of length 2N − 1 because it includes negative values of k. Since
our definition does not account for negative values of k, simply index the last
N elements in R, e.g., R((end-N+1):end).

EXTRA 19.2: Estimation Using Correlation

One common application of cross-correlation and autocorrelation is for esti-
mation. Here are a few examples, which we will not cover in detail:

1. Ranging – we can estimate the distance to an object by measuring the
delay in a signal reflected by that object. The reflected signal might
be strongly attenuated and buried in noise, but we can cross-correlate
with the original signal to help recover the delay.

2. Detect a Periodic Signal – we may want to detect the presence of
a periodic signal under heavy noise. We could use autocorrelation and
look for the signal at high delay k or τ (since noise would have no
correlation at high delay), or we could cross-correlate against a target
periodic signal. In the latter case we could also measure a phase shift
but we would need to accurately know the frequency in order to do so.

19.3. POWER SPECTRAL DENSITY 177

Example 19.4: Detecting Periodic Signal in Noise

Consider the noisy signal in Fig. 19.2(a). Let’s say that we are trying to
detect whether the signal contains a sinusoid of a particular frequency
ω, i.e., whether

y (t) = A sin(ωt+ θ) + w (t) = x (t) + w (t) ,

where w (t) is a random noise signal. We can assume that x (t) and
w (t) are uncorrelated. From the properties of autocorrelation, we know
that the autocorrelation of y (t) is the sum of the autocorrelations of
the two components (shown in Fig. 19.2(b) and (c)). Since random
noise should have no correlation at high τ , only the autocorrelation of
x (t) should remain after a certain time, so we should be able to recover
ω.

Alternatively, we could cross-correlate y (t) with another sinusoid
of our desired frequency ω. From this method the phase θ is also
recoverable, but we need to accurately know ω for this method.

t

y (t)

(a) Original Noisy Signal.

τ

Rnoise (τ)

(b) Autocorrelation of
Noise

τ

RXX (τ)

(c) Autocorrelation of Sig-
nal

Figure 19.2: Plots for Example 19.4.

19.3 Power Spectral Density

178 LESSON 19. CORRELATION AND POWER SPECTRAL DENSITY

EXTRA 19.3: Power Spectral Density

Suppose that we have a “very long” random signal that it is effectively infinite
in duration. Such a signal is also infinite in energy, so we cannot find its
transform directly. However, we are not prevented from applying spectral
analysis because we can transform a function of the delay in the signal (i.e.,
the autocorrelation). The Fourier transform of an autocorrelation function is
known as the Power Spectral Density (PSD) SXX (ω) of the signal, and
in continuous-time it is defined as

SXX (ω) =

∫ ∞

−∞
RXX (τ) e−jωτdτ. (19.5)

The PSD gives the power per frequency interval in a signal. We can also
recover the autocorrelation from the PSD via an inverse Fourier transform:

RXX (τ) =
1

2π

∫ ∞

−∞
SXX (ω) ejωτdω. (19.6)

We are not focusing here on the math of the power spectral density, but
we make note of several properties:

� PSD is a measurement of power per unit bandwidth of a signal

� PSD has non-negative real values as both power and frequency are real

� Phase information is lost in the PSD

� PSD is an even function of frequency, i.e., SXX (ω) = SXX (−ω)

� A PSD will contain impulses at frequencies that correspond to sinusoidal
components in the time domain signal. If the time domain signal has a
sinusoid component with frequency ω, then the PSD will contain pulses
at ±ω.

Following up on our earlier discussion of detection with correlation, we
can also supplement with the PSD. If we find the autocorrelation of a noisy
signal, then we can then take the PSD to more easily detect the frequency of
the underlying time-domain signal.

19.4. SUMMARY 179

19.4 Summary

� Correlation enables us to compare a signal with itself or with another signal.

� Cross-correlation measures the time-domain correlation between one signal
and the delay in another signal.

� Autocorrelation measures the time-domain correlation between a signal and
its future values.

� The Power Spectral Density is the Fourier transform of the autocorrelation
and measures power per unit bandwidth.

19.5 Further Reading

� Chapters 1-4 and Chapter 9 of “Signal processing: Principles and Applica-
tions,” D. Brook and R. J. Wynne, Edward Arnold, 1988.

19.6 End-of-Lesson Problems

1. Calculate the cross-correlation between x1 [n] = {3, 2, 1, 3, 2, 1} and x2 [n] =
{−4,−2,−6,−4,−2,−6}. Verify your result using MATLAB. When are the
signals most correlated and why?

2. Calculate the autocorrelation of x [n] = {1,−2, 3,−1, 0,−2, 1, 3, 2}. Verify
your result using MATLAB. What is the mean square value of the signal?

Part IV

Introduction to Image Processing

180

Lesson 20

Image Processing

The fourth and final part of this module is a very brief study of Image Processing.
We introduce image processing as an application of filtering as we have studied it
in this module. Image processing is ideal for this purpose because we can “see” the
results, but we also need the concept of multi-dimensional signals. We are going
to take a simplified approach and focus on very small black-and-white or greyscale
images that can be readily processed by hand. We will also demonstrate several
MATLAB functions that can efficiently perform these tasks on much larger images
and in colour.

20.1 Learning Outcomes

By the end of this lesson, you should be able to . . .

1. Understand images as two-dimensional signals with colour data.

2. Apply filters to images.

3. Implement image filters in a computing package.

20.2 Images as Signals

We discussed in Lesson 1 that physical signals are usually defined over time, fre-
quency, or space. Images are inherently spatial signals (and when they are also
defined over time then we have a video). Image processing generally relies on a
digital representation of signals, such that signals are discretised both spatially and
in amplitude. Thus, we note that we consider images as truly digital signals. In ad-
dition, there are a few other practical differences compared with our earlier studies
of discrete-time systems:

181

182 LESSON 20. IMAGE PROCESSING

1. Images are typically defined over two-dimensional space, so we need an ad-
ditional indexing component to accommodate the additional dimension. A
discrete 2-D image point is referred to as a pixel.

2. Image signal amplitudes can also have multiple components corresponding to
the colour information. Depending on how the colour information is encoded,
each pixel will include one or more colour values.

As a result, images are generally represented as three-dimensional arrays, where
the first two dimensions describe the location and the third dimension gives the
colour information for each pixel. There are many different ways to represent colour
information. Here are the main four methods used by MATLAB (and shown in
Fig. 20.1):

1. Binary – each pixel has value 0 or 1 to represent black and white, respectively.

2. Indexed – each pixel has one value within a range corresponding to a single
colour map. A colour map is a pre-determined list of colours and the index
refers to a row of colour data within the list.

3. Grayscale – each pixel has one value within a grayscale range between 0
(black) and 1 (white).

4. Truecolor – each pixel has three associated values corresponding to red, blue,
and green channels. These are referred to as RGB values, but it is also possible
to translate from other colour definition formats (e.g., HSV).

For convenience in applying image signal processing “by hand,” we will focus
on binary and grayscale images. These only need a single value to define a pixel,
and the meaning of each value is fairly intuitive (i.e., black, white, or something in
between). Thus, we only need a two-dimensional array to define an image signal,
which we will generally refer to using the notation f [i] [j]. We will follow the same
indexing conventions as MATLAB, where i refers to the vertical coordinate (i.e.,
row), j refers to the horizontal coordinate (i.e., column), and the numbering is such
that (i, j) = (1, 1) refers to the top left pixel. We show an example of pixel values
and coordinates in Fig. 20.2.

While grayscale colour values are supposed to be defined within the range [0, 1],
we will often write in whole numbers for convenience. We just need to normalise
the signal (e.g., by the highest value) before we try to view it as an image.

20.3. RE-VISITING DIGITAL CONVOLUTION 183

Figure 20.1: Colour representations in MATLAB using official MATLAB example
image file ’peppers.png’. Clockwise from top left: binary, indexed (with colour
map winter), truecolor, and grayscale.

8 1 6

3 5 7

4 9 2

(a) Image pixel values f [i] [j].

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(b) Image pixel coordinates of form (i, j).

Figure 20.2: Our representation of images.

20.3 Re-Visiting Digital Convolution

Back in Lesson 9, we defined discrete convolution for a one-dimensional system (i.e.,
the signal was a single quantity that varied over time). Recall that we wrote the

184 LESSON 20. IMAGE PROCESSING

system output y [n] as

y [n] =
∞∑

k=−∞

x [k]h [n− k] = x [n] ∗ h [n] = h [n] ∗ x [n] . (20.1)

where x [n] is the input and h [n] describes the system’s impulse response. While
we noted that discrete-time convolution was easier to evaluate than continuous-
time convolution, we focused on the use of difference equations for our time-domain
analysis. Here, we re-introduce ourselves to discrete convolution with an example.

Example 20.1: 1D Discrete Convolution

Find the output of a system where

h [n] =

{
1

3
,
1

3
,
1

3
, 0, 0, . . .

}
x [n] = {1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 0, . . .},

and we assume for consistency with MATLAB that the indexing starts at
n = 1 (such that h [n] = 0 and x [n] = 0 for n < 1). Sketch and compare the
input and output.

Using Eq. 20.1, we can find that

y [1] = x [1]h [1] = 1× 1

3
=

1

3

y [2] = x [1]h [2] + x [2]h [1] = 1× 1

3
+ 2× 1

3
= 1

y [3] = x [1]h [3] + x [2]h [2] + x [3]h [1] = 1× 1

3
+ 2× 1

3
+ 3× 1

3
= 2,

and so on. We will find that the output is

y [n] = {0.33, 1.00, 2.00, 3.00, 4.00, 4.33, 4.00, 3.00, 2.00, 1.00, 0.33} ,

and 0 for higher values of n. We plot the input and output to the same scale
in Fig. 20.3. We see that the output “follows” the input somewhat. In fact,
by inspection of h [n], this system is a moving-average filter that averages
over 3 samples.

The system in Example 20.1 can be readily translated as applying to a one-
dimensional image. We can interpret each system component (input, output, and

20.4. IMAGE FILTERING 185

1 2 3 4 5 6 7 8 9 10 11 12 130

1

2

3

4

5

n

x [n]

(a) System Input.

1 2 3 4 5 6 7 8 9 10 11 12 130

1

2

3

4

5

n

y [n]

(b) System Output.

Figure 20.3: Input and output for Example 20.1.

impulse response) as a 1-D vector. We do this by repeating the problem visually in
the following example.

Example 20.2: Visual 1D Discrete Convolution

Let’s repeat Example 20.1 visually, as shown in Fig. 20.4. We start by drawing
out the arrays h [n] and x [n]. To convolve, we need to “flip” h [n] (which
in this case brings no change) and picture moving the flipped h [n] along the
array x [n]. Every time we advance h [n] by one element, we find the products
of the corresponding h [n] and x [n], add them together, and enter the sum in
the element of y [n] corresponding to the lead element of h [n]. By progressing
in this manner we find all of the elements of y [n]. We note that if h [n] has
length N and x [n] has length M , then y [n] has length N +M − 1.

20.4 Image Filtering

Now that we have re-visited 1D convolution and understood it from the perspective
of 1D image signals, we are ready to consider the filtering of 2D images. We refer
to the impulse response h [i] [j] as the filter or the kernel. Besides the additional
dimension, the filtering process to determine the output y [i] [j] from the input x [i] [j]
is effectively the same:

1. “Flip” the impulse response h [i] [j] to get h⋆ [i] [j]. Flipping is achieved by

186 LESSON 20. IMAGE PROCESSING

1
3

1
3

1
3

(a) Impulse response h [n].

1 2 3 4 5 4 3 2 1

(b) Input signal x [n].

1× 1
3
= 1

3

(c) Finding y [1].

0.33 1.00 2.00 4× 1
3
+ 3× 1

3
+ 2× 1

3
= 3

(d) Finding y [4].

0.33 1.00 2.00 3.00 4.00 4.33 4.00 3.00 2.00 1.00 0.33

(e) Output signal y [n].

Figure 20.4: Visually solving Example 20.2.

mirroring all elements in h [i] [j] around the centre element. By symmetry,
h⋆ [i] [j] is sometimes the same as h [i] [j].

2. Move the “flipped” impulse response h⋆ [i] [j] along the input image x [i] [j].

3. Each time the kernel is moved, multiply all of the elements of h⋆ [i] [j] by
the corresponding covered pixels in x [i] [j]. Add together the products and
store the sum in the output pixel y [i] [j] that corresponds to the “middle” pixel
covered by the kernel (we generally impose that h [i] [j] is a square matrix with
an odd number of rows and columns, so there is an unambiguous “middle”.).
We only need to consider overlaps between h⋆ [i] [j] and x [i] [j] where the
middle element of the kernel covers a pixel in the input image.

EXTRA 20.1: Which Pixel to Draw

Strictly speaking, if we are doing proper 2D convolution, then we should
write the sum of products (of multiplying the image pixels by the kernel) into
the output pixel corresponding to the “lower right” pixel covered by kernel,
and not the “middle” pixel. However, this is not convenient for images, as
repeated filtering will make the image details start to drift. Using the middle
pixel for the output keeps the image “in place,” so to speak.

20.4. IMAGE FILTERING 187

The conv2 function for 2D convolution in MATLAB will use the lower
right element for output by default, but the middle element is used if passing
the option ’same’, i.e., keep the size of the output the same as the input.
The middle element is the default for the imfilter function.

We must also decide what to do when we are filtering at the edges of the image.
There are different possible conventions, including:

� Treat all “off-image” pixels as having value 0, i.e., x [i] [j] = 0 beyond the
defined image. This is known as zero-padding. This is the simplest but
could lead to unusual artefacts at the edges of the output image. This is the
only option for the conv2 function for 2D convolution in MATLAB, and the
default for the imfilter function which is specifically for images.

� Assume that “off-image” elements have the same values as the nearest element
along the edge of the image. For example, we could assume x [0] [1] = x [0] [0] =
x [1] [0] = x [1] [1], i.e., the pixels at the outside of a corner take the value of the
corner pixel. This is known as replicating the border, and is one of several
options for the imfilter function.

Now it is appropriate to discuss some common designs for the filter kernel h [i] [j].
We show several 3×3 examples in Fig. 20.5 (larger kernels have increased sensitivity
but are more expensive to compute). You will notice that the elements in a kernel
often add up to 0 or 1, such that the filter either removes signal strength to accen-
tuate certain details or maintains signal strength by re-distributing it, respectively.
The sample kernels are as follows:

� Low pass filter – shown in Fig. 20.5(a). It is equivalent to taking a weighted
average around the neighbourhood of a pixel.

� Blurring filter – shown in Fig. 20.5(b). It is very similar to the low pass
filter, but the sum of the elements adds up to more than one which “washes
out” an image more.

� High pass filter – shown in Fig. 20.5(c). This kernel accentuates transitions
between colours and can be used as a simple edge detector. Edge detection
is an important task in image processing since it is the first step towards
detecting objects in an image.

� Sobel operator – shown in Figs. 20.5(d) and (e). This kernel is more effective
for detecting edges than a high pass filter, but we need to apply separate
kernels for different directions. The X-gradient operator shown is for detecting
vertical edges of objects, and the Y-gradient operator shown is for detecting
the horizontal edges of objects.

188 LESSON 20. IMAGE PROCESSING

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

(a) Low pass filter.

1 1 1

1 1 1

1 1 1

(b) Blurring filter.

0 1 0

1 -4 1

0 1 0

(c) High pass filter.

-1 0 1

-2 0 2

-1 0 1

(d) X gradient Sobel operator.

1 2 1

0 0 0

-1 -2 -1

(e) Y gradient Sobel operator.

Figure 20.5: Examples of filter kernel h [i] [j]. h⋆ [i] [j] is the same for (a), (b), and
(c), but we need to swap the signs of the elements in (d) and (e).

We now consider an example that filters an image “by hand.”

Example 20.3: Image Filtering

Apply the high pass filter shown in Fig. 20.5(c) to the image matrix in
Fig. 20.6(a). Assume that the image is zero-padded.

We note that the kernel is the same as its mirror, i.e., h⋆ [i] [j] = h [i] [j]
We start by placing the middle element of h⋆ [i] [j] (-4) over the top left pixel
of x [i] [j] and add up the products of overlapping elements to determine the
output value at this pixel. Going element-by-element, we show the result in
Fig. 20.6(b). We see that there are accentuated transitions along what were
the edges of the boundary in x [i] [j]. As expected, this filter kernel can be
used as an edge detector.

EXTRA 20.2: More on Filtering

Although what we have covered is the foundation of image filtering and could
be used for practical applications, there are other ways to filter an image

20.5. IMAGE FILTERING IN MATLAB 189

0 0 0 0 0

0 0 0 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

(a) Input image x [i] [j].

0 0 0 0 0

1 1 1 0 0

-2 -1 -2 1 0

-1 0 -1 1 0

-2 -1 -2 1 0

(b) Output image y [i] [j].

Figure 20.6: Input and output for Example 20.3.

that we do not cover here. For example, we could define a function-based
filter instead of having a fixed kernel h [i] [j], where we perform mathematical
operations besides multiplication. A median-based noise filter will take the
median value of the pixels in a kernel.

20.5 Image Filtering in MATLAB

Many programming languages are suitable for processing images, and MATLAB is
no different. In fact, MATLAB has a dedicated toolbox (the Image Processing
Toolbox) for this purpose, although if you have understanding of the mathematical
operations (particularly 2D convolution) then you can implement many of the tools
yourself or with default MATLAB functions. We have mentioned some MATLAB
functions throughout this lesson, and we have already summarised how colours are
interpreted, but here we provide a (very) brief guide on filtering images in MATLAB.
The MATLAB documentation is an excellent resource for more information on this
topic.

As with other data types, MATLAB stores images as arrays. Depending on
how the colour information is stored, these could be in two or three dimensions.
However, filtering with the Image Processing Toolbox is straightforward no matter
what colouring scheme is used.

MATLAB has many pre-loaded images available to study. We have used (and will
continue to use) ’peppers.png’, which you can load into your current MATLAB
directory via

P = imread(’peppers.png’);

190 LESSON 20. IMAGE PROCESSING

which your workspace will show is a 384×512×3 array of unit8s (i.e., unsigned 8-bit
integers for each of red, green, and blue in every pixel). Other interesting examples
include ngc6543a.jpg and coins.png. There doesn’t appear to be a centralised
list (unless you do a web search), but most example images are used throughout
the MATLAB documentation for the Image Processing Toolbox. Of course, you can
also import your own images using imread and referring to the relative directory
where your images are stored. Most image formats are compatible (e.g., tif, png,
jpg, bmp). Finally, you could create your own images directly in code, which could
be helpful to verify filtering that you perform by hand.

MATLAB provides many default filter kernels available (see the MATLAB doc-
umentation page on “Image Filtering and Enhancement” for an overview), but we
will focus on using the simple kernels that we have already defined in this lesson.
These kernels can be implemented by creating a 3× 3 matrix with the appropriate
elements. To apply a kernel to an image, we can use the default 2D convolution func-
tion conv2 for grayscale images, or the Image Processing Toolbox function imfilter

more generally.

Example 20.4: Filtering Images in MATLAB

Apply all of the filters described in Fig. 20.5 to the image ’peppers.png’.
Code to apply the low pass filter is as follows:

h = ones(3)/9; % Equivalently h =

[1/9,1/9,1/9;1/9,1/9,1/9;1/9,1/9,1/9]

P = imread(’peppers.png’);

output = imfilter(P,h,’conv’);

figure; imshow(output)

We show the result for this and all other filters in Fig. 20.7. We note that
the Sobel operators accentuate edges much more strongly than the high pass
filter, but the high pass filter is able to accentuate edges in all directions at
once.

EXTRA 20.3: Using the imfilter function

We note that imfilter uses correlation and not convolution for filtering by
default. We added the ’conv’ argument to force convolution for consistency
with our discussion here. In practice the two operations are quite similar;

20.5. IMAGE FILTERING IN MATLAB 191

(a) Original image. (b) Low pass filter.

(c) Blurring filter. (d) High pass filter.

(e) X gradient Sobel. (f) Y gradient Sobel.

Figure 20.7: Simple filter operations from Example 20.4.

correlation is essentially the same but without the “flipping” of the impulse
response. For symmetric kernels like the low pass filter, blurring filter, and

192 LESSON 20. IMAGE PROCESSING

high pass filter there is no difference, but for the Sobel operators it would
be necessary to mirror the kernel in order to achieve the same result with
correlation.

We also note that, when applied to standard image arrays (typically com-
posed of unsigned 8-bit integers), the imfilter function will discard results
with negative values and set the values in those pixels to 0.

20.6 Summary

� Images are signals defined over two-dimensional space. We can extend signal
processing ideas covered earlier in this module once we account for the extra
dimension(s).

� We can apply filters to images and visualise the differences.

� MATLAB has extensive options for image filtering.

20.7 Further Reading

� The MATLAB documentation is an excellent resource, whether online or
within the MATLAB help browser.

� Section 9.6 of “Essential MATLAB for engineers and scientists,” B. Hahn and
D. Valentine, Academic Press, 7th Edition, 2019.

20.8 End-of-Lesson Problems

1. Apply the low pass filter kernel in Fig. 20.5 to the image in Fig. 20.8. What
does the filter do? Verify your result in MATLAB.

2. Consider the image in Fig. 20.9. We want to detect the object in the im-
age. What kernel options do we have to detect the edges and what are their
strengths? Filter with the possible kernels and comment on the results. Verify
your results in MATLAB.

20.8. END-OF-LESSON PROBLEMS 193

0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

Figure 20.8: Input image x [i] [j] for Question 1.

0 0 0 0 0

0 0 1 1 0

0 0 1 1 0

0 0 1 1 0

0 0 0 0 0

Figure 20.9: Input image x [i] [j] for Question 2.

Part V

Appendices

194

Appendix A

Mathematical Background

ES3C5: Signal Processing is quite mathematically-focussed and it is assumed that
you have mathematical background from previous modules in your degree program.
In this appendix we provide a quick overview of several topics. Generally, we will
recall concepts as needed when we go through sample problems.

A.1 Partial Fractions

When working with transfer functions, whether in continuous-time or discrete-time,
we will often find it helpful to use partial fraction expansion when transforming back
to the time domain. We will start with a ratio of polynomials, which will be of the
form

H (s) =
b0s

M + b1s
M−1 + . . .+ bM−1s+ bM

a0sN + a1sN−1 + . . .+ aN−1s+ aN
, (A.1)

where s is the transform domain variable (in this case the Laplace domain), the nu-
merator is a Mth order polynomial and the denominator is a Nth order polynomial.
The bs and as are the constant polynomial coefficients. You should be able to factor
polynomials up to second order by hand (as well as factor out additional s terms),
and re-write the ratio into the form

H (s) = K
b0s

M + b1s
M−1 + . . .+ bM−1s+ bM

(s− p1)(s− p2) . . . (s− pN)
, (A.2)

where K and the ps are constants. Partial fraction expansion re-writes this ratio
as a sum of ratios. The key detail is that we want each denominator to be a linear
function of s. Thus, we need our transfer function in the form

H (s) =
A

(s− p1)
+

B

(s− p2)
+

C

(s− p3)
+ . . . (A.3)

195

196 APPENDIX A. MATHEMATICAL BACKGROUND

and we need to solve for the numerators. To do so, we need to cross-multiply the
ratios in Eq. A.3 so that we get a polynomial that we equate with the numerator of
Eq. A.1. We can then write a linear equation for each power of s. In other words,
we equate

A(s− p2)(s− p3) · · ·+B(s− p1)(s− p3) · · ·+ . . . = (A.4)

K(b0s
M + b1s

M−1 + . . .+ bM−1s+ bM), (A.5)

multiply through the terms on the left, and compare powers of s on both sides to
solve for A,B, etc. The following is a simple example.

Example A.1: Partial Fraction Expansion

5s+ 10

s2 + 3s− 4
=

5s+ 10

(s+ 4)(s− 1)
=

A

s+ 4
+

B

s− 1
.

We cross multiply to get

5s+ 10 = A(s− 1) +B(s+ 4) = s(A+B) + 4B − A.

So we compare powers of s and see that we need to solve

A+B = 5

4B − A = 10

We can use substitution to see that 5B = 15 =⇒ B = 3 and then A = 2,
so we can then write

5s+ 10

s2 + 3s− 4
=

2

s+ 4
+

3

s− 1
.

Next, we consider a more challenging example where there is a repeated root.
In such a case, we will find it more useful to leave the corresponding denominator
term(s) as higher order (usually second order) functions of s. This approach is also
useful when there are complex conjugate roots. The key thing to remember in these
cases is that the corresponding numerator term(s) need to be 1 order lower than the
denominator terms. The following is an example of this with a repeated root.

A.2. INTEGRATION BY PARTS 197

Example A.2: Partial Fraction Expansion with Repeated Root

2s− 7

s3 + 2s2 + s
=

2s− 7

s(s2 + 2s+ 1)
=

A

s
+

Bs+ C

s2 + 2s+ 1
.

We cross multiply to get

2s− 7 = A(s2 + 2s+ 1) + s(Bs+ C) = s2(A+B) + s(2A+ C) + A.

So we compare powers of s and see that we need to solve

A+B = 0

2A+ C = 2

A = −7

We immediately have A − 7, then we can use substitution to find that
C = 16 and B = 7. So, the final expanded result is

2s− 7

s3 + 2s2 + s
=

7s+ 16

s2 + 2s+ 1
− 7

s
.

A.2 Integration by Parts

Integration by parts is used when we need to solve the integral with an integrand
that is the product of something that is easy to integrate (which we label dv) and
something that is easy to differentiate (which we label u). We can then use the
property

∫
udv = uv −

∫
vdu to solve the integral. The following is an example.

Example A.3: Integration by Parts

Find

y =

∫ ∞

0

xe−xdx,

198 APPENDIX A. MATHEMATICAL BACKGROUND

We let u = x and dv = e−xdx, so then du = dx, v = −e−x, and we have

y = −xe−x
∣∣x=∞
x=0

−
∫ ∞

0

−e−xdx

= −(0− 0)− e−x
∣∣x=∞
x=0

= 0− (0− 1) = 1.

A.3 Euler’s Formula

We will occasionally need Euler’s formula, which translates between sinusoids and
complex exponentials:

ejx = cos(x) + j sin(x), (A.6)

where j =
√
−1. This formula can be manipulated to create many trigonometric

identities, for example to write

cos(x) =
ejx + e−jx

2
(A.7)

sin(x) =
ejx − e−jx

2j
. (A.8)

Example A.4: Using Euler’s formula

Show the validity of Eq. A.7. From Eq. A.6 we can write

e−jx = cos(−x) + j sin(−x) = cos(x)− j sin(x), (A.9)

because cos(−x) = cos(x) and sin(−x) = − sin(x). We can then combine
Eq. A.6 and Eq. A.9 to write

ejx + e−jx = cos(x) + j sin(x) + cos(x)− j sin(x) = 2 cos(x), (A.10)

which can then be re-arranged to write Eq. A.7.

A.4 The Sinc Function

It is quite likely that you are not familiar with the sinc function, but it plays such
an important role in signal processing that we define it here. The sinc function is

A.5. INTERVAL LIMITS 199

simply a sine function that is scaled by the argument, i.e.,

sinc(x) =
sin(x)

x
, (A.11)

and when x = 0 we have sinc(0) = 1 (this can be proven from l’Hopital’s rule).
Thus, the sinc function is a sine that decays away from x = 0. A plot of the sinc
function evaluated in radians is shown below.

π 2π−π−2π

1

x

sinc(x)

Figure A.1: Sinc function sinc(x).

A.5 Interval Limits

There will be several occasions where we need to be very precise about the definitions
of the limits for an interval, so we specify these definitions here:

� A square bracket means that the corresponding value is included in the
interval.

� A round bracket means that the corresponding value is not included in the
interval.

Thus the interval [a, b) includes a but not b, the interval (a, b) excludes both a
and b, and so on. These conventions are independent of the type of number in the
interval (e.g., integers, real numbers, negative numbers) and are consistent with the
MATLAB convention for defining arrays with square brackets.

Appendix B

Answers/Hints to End-of-Lesson
Problems

B.1 Lesson 2

1. The Laplace transforms are

(a) F (s) = 8
s3

(b) F (s) = 4s
(s2+4)2

(c) F (s) = 2
(s−2)2

+ 2
s3

(d) F (s) = s−1
(s−3)2+4

(e) F (s) = 4(s+3)
(s2+6s+13)2

2. The inverse Laplace transforms are

(a) f (t) = e2t sin(3t)
3

(b) f (t) = 2e−4t + 3et

3. f (t) = e2t − et.

4. This question is a proof.

5. This question is a proof. You can get started by writing L
{

df ′(t)
dt

}
= sL{f ′ (t)}−

f ′ (0) and substitute in the definition of L{f ′ (t)}.

6. i) y (t) = 1− e−t/τ ; ii) y (t) = t− τ(1− e−t/τ).

200

7. Write equations for voltage drops over each loop.

H (s) =
R2

s2LCR1 + s(L+ CR1R2) +R1 +R2

8. Write 3 equations for currents (current coming out of node to right of R1 and
C1, current through R2, and current through C2). These are all the same
current. Combine to solve.

H (s) =
(1 + sR1C1)(1 + sR2C2)

s2R1C1R2C2 + s(R1C1 +R2C2 +R1C2) + 1

9. A perfect op-amp has no current coming in or out of any of its terminals, and
there is no voltage drop across the input terminals. This enables you to write
2 current equations that are equal (current through the capacitor and R1, and
current through R2).

H (s) =
−sR2C

1 + sR1C

B.2 Lesson 3

1. There are zeros at s = {−25,− 1
11
}; poles are at s = {−0.08,−29.56}

2. The poles are at s = −23.33± j11.06 and the system is stable.

3. The transfer function is H (s) = s2−s
s2+2s+2

and the system is stable.

4. (a) s = 1, unstable; (b) s = ±jω, marginally stable; (c) s = −1± 3j, stable.

B.3 Lesson 4

1. The plots are as shown in Fig. B.1.

2. The plots are as shown in Fig. B.2.

3. This question is a proof.

4. The plots are as shown in Fig. B.3.

5. For the system to remain stable and have the required gain, the pole must be
placed at s = −2.

201

Re {s}

Im {s}

(-1,0)

(a) Pole-zero plot.

1

ω

|H (jω) |

(b) Magnitude plot.

0

π
4

π
2

ω

̸ H (jω)

(c) Phase plot.

Figure B.1: Plots for Question 4.1.

Re {s}

Im {s}

(-1,0)

(-2,0)

(a) Pole-zero plot.

0.5

ω

|H (jω) |

(b) Magnitude plot.

0

−π
2

−π

ω

̸ H (jω)

(c) Phase plot.

Figure B.2: Plots for Question 4.2.

2

−2

Re {s}

Im {s}
(-2,2)

(-2,-2)

(-0.5,0)

(a) Pole-zero plot.

2

0.0625

0.23

ω

|H (jω) |

(b) Magnitude plot.

20

−π
2

π
2

0.219 ω

̸ H (jω)

(c) Phase plot.

Figure B.3: Plots for Question 4.4.

202

B.4 Lesson 5

1. The ideal low pass filter frequency response is unrealisable because a rectangle
function in the frequency domain is a sinc function in the time domain. The
sinc function is defined for all time, including t < 0, so the ideal filter must
respond to input before the input is applied, which is impossible.

2. G = −42.3 dB.

3. Order N = 3. Cut-off frequency 10.94 rad
s

≤ ωc ≤ 13.95 rad
s
.

4. Order N = 5. Choose cut-off frequency between 114.47Hz ≤ f ≤ 125.31Hz.

B.5 Lesson 6

1. The signal components at the output of the filter will have frequencies 0Hz,
3.33Hz, and 6.67Hz.

2. There will be 2 sinusoidal terms at the output with frequencies 1.6π/τ and
2.4π/τ .

3. Amplitude will be 0.209A.

B.6 Lesson 7

1. The following function will find the system output for any input frequency
omega:

function y = analogue_output_example(omega)

% Find output to my low pass filter

R = 2; C = 1; L = 2;

% Create symbolic variables

syms t s

% Create symbolic functions for input and system

x = sin(omega*t);

H = R/(s^2*L*C*R + s*(L+C*R^2)+2*R);

% Convert input to Laplace, solve, and convert output to time

X = laplace(x); Y = H*X; y = ilaplace(Y);

Calling this function with frequency omega=10 returns

203

y = (5*exp(-(3*t)/4)*(cos((7^(1/2)*t)/4) +

(267*7^(1/2)*sin((7^(1/2)*t)/4))/7))/6684 -

(11*sin(10*t))/2228 - (5*cos(10*t))/6684

Note that symbolic math will leave real numbers as fractions whenever possi-
ble.

2. The following function should work and return both the upper bound and
lower bound cutoff frequencies. All of the equations are implementations of
those in Lesson 5.

function [cutoff, order] = butterworth_design(gainPass,

gainStop, radPass, radStop)

% gainPass - target pass band gain in dB

% gainStop - target stop band gain in dB

order =

ceil(log10((10^(-gainStop/10)-1)/(10^(-gainPass/10)-1))...

/2/log10(radStop/radPass));

cutoff(1) = radPass/(10^(-gainPass/10)-1)^(1/2/order);

cutoff(2) = radStop/(10^(-gainStop/10)-1)^(1/2/order);

B.7 Lesson 8

1. Minimum sampling frequency is fs = 30Hz.

2. This question is a proof. You need to show that f2 [n] = cos (nω1Ts) = f1 [n].

3. Yes, the sinusoid cos(−50πt) = cos(50πt) is a 25Hz sinusoid that would have
f1 (t) as an alias.

4. Largest error is 1
2(2W−1)

.

5. Resolution is 0.024%; dynamic range is 72.25 dB.

B.8 Lesson 9

1. The Z-transforms are

(a) F1 (z) = 1 + z−1

204

(b) F2 (z) =
1

1−z−1

(c) F3 (z) =
1

1−0.5z−1

(d) F4 (z) =
2−z−2

1−z−1

2. The sequences are

(a) f1 [n] = {1, 1, 1, 1, 1}
(b) f2 [n] = {1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, . . .}

3. This question is a proof. Take the Z-transform of each time-domain sequence.

4. This question can be solved two ways, but it is faster to solve in the z-domain.
y [n] = {1, 3, 3, 5, 3, 7, 4, 3, 3, 0, 1}.

5. Y (z) = 6 + z−1 − 2z−2.

6. H (z) = 1+z
2z

.

7. y [n] = y [n− 1] + Tsx [n], H (z) = Tsz
z−1

.

B.9 Lesson 10

1. H (z) = z2

z2−0.6z+0.5
. There are poles at z = 0.3± 0.64j and two zeros at z = 0.

The system is stable.

2. There is one pole at z = 0, so the system is stable.

3. There is one pole at z = 1, so the system is conditionally stable.

4. The transfer function is H (z) = z2−0.3z−1.3
z3−0.5z2+z−0.5

. There are poles on the unit
circle so the system is conditionally stable.

B.10 Lesson 11

1. H (z) = z2

(z+0.9)2
. When Ω = π, the phase is 0.

2. The minimum frequency response magnitude is 0 at Ω = 0 and Ω = π. The
maximum frequency response magnitude is at Ω = π

2
.

3. Pole-zero plot is as shown in Fig. B.4. Frequency response is as shown in
Fig. B.5.

205

1-1

1

-1

Re {z}

Im {z}

|z| = 1

(-0.5,0) (0.5,0)

Figure B.4: Pole-zero plot for Question 11.3.

π
2

π

1

2

3

1/3
Ω

|H
(
ejΩ
)
|

(a) Magnitude plot.

π
2

π0

−π
4

-0.927

Ω

̸ H
(
ejΩ
)

(b) Phase plot.

Figure B.5: Sketch of frequency response for Question 11.3.

B.11 Lesson 12

1. y [n] = x [n]− 2x [n− 1] + x [n− 2]; H (z) = (z2 − 2z + 1)/z2; this is an FIR
high pass filter. The filter in Fig. 12.6 has a multiplier of 2 instead of −2 and
it is a low pass filter.

2. This is an IIR filter. The frequency response has a magnitude of 0.67 at Ω = 0,
0.89 at Ω = π/2, and 2 at Ω = π. It might be best described as high pass as
the highest gain is at high frequencies, but it is a poor high pass filter because
low frequencies are not attenuated very much.

3. This is an FIR filter (no poles are shown so they are assumed to be at the
origin). The frequency response has a magnitude of 1 at Ω = 0, 0 at Ω = π/3,

206

and 3 at Ω = π. This is a band stop filter. Although the pass bands have
different gains, the stop band is implemented effectively.

4. This filter has 2 zeros at z = −0.5 ± j0.5 and poles at z = 0.5± j0.5. It is a
stable 2nd order low pass filter.

5. The magnitude of the frequency response is 0.6154, 2.2188, and 8 at the fre-
quencies Ω = {0, π/2, π}, respectively. Hence, this is a high pass filter. The
transfer function is

H (z) =
1− 2z−1 + 2z−2

1 + 0.5z−1 + 0.125z−2
,

and the LSI implementation is given in Fig. B.6.

2

+ D

−1
8

−2

+ D

−0.5

+

x [n]

y [n]

Figure B.6: LSI implementation for Question 12.5.

6. The difference equation is y [n] = x [n] + y [n− 1] − 0.5y [n− 2]. Using the
tabular method we can find that the impulse response is h [n] = {1, 1, 0.5, 0.−
0.25,−0.25,−0.125, 0, . . .}. The response is oscillating but decaying, so we
infer that it is stable. This can be confirmed by finding that the poles are at
z = 0.5± j0.5, which are inside the unit circle.

7. Since the filter is stable and first-order, then there can only be one pole and it
must be placed within the unit circle. A single pole must be on the real axis

207

for realisability. The filter must have a zero placed at (1, 0) in order to filter
out constant magnitude input signals. Here, 250Hz signals correspond to a
digital radial frequency of Ω = π/2. In order to have a gain of 0 dB (i.e., 1) at
Ω = π/2, then the pole must be placed 1.1314 from (0, 1). There are 2 valid
locations, i.e., (−0.529, 0) and (0.529, 0). The corresponding pole-zero plots
are included in Fig. B.7.

1-1

1

-1

Re {z}

Im {z}

|z| = 1

(0.529,0)

(a) Solution 1

1-1

1

-1

Re {z}

Im {z}

|z| = 1

-(0.529,0)

(b) Solution 2

Figure B.7: Valid pole-zero plots for Question 12.7.

8. Since the filter is first-order and FIR, then there can be at most one pole and
one zero and the pole must be at the origin (which also satisfies stability).
Ideal stopband gain (0) must be at Ω = 2π × 500/1000 = π, so we place the
zero at z = (−1, 0). Ideal passband band (0 dB, i.e., 1) must be at Ω = 0,
where the magnitude of the zero vector is 2. Thus we need K = 0.5. The
corresponding pole-zero plot is in Fig. B.8.

B.12 Lesson 13

1. The filters are:

hrect [n] = {0.159, 0.225, 0.25, 0.225, 0.159}, 0 ≤ n ≤ 4

hHamming [n] = {0.013, 0.122, 0.25, 0.122, 0.013}, 0 ≤ n ≤ 4.

208

1-1

1

-1

Re {z}

Im {z}

|z| = 1

K = 0.5

Figure B.8: Valid pole-zero plot for Question 12.8.

The unshifted spectra are:

Hrect

(
ejΩ
)
= 0.25 + 0.45 cos(Ω) + 0.318 cos(2Ω)

HHamming

(
ejΩ
)
= 0.25 + 0.244 cos(Ω) + 0.026 cos(2Ω).

We plot the FIR impulse responses and magnitude spectra in Fig. B.9.

1 2 3 4 5 6 7 8

1
4

n

h [n]

Rectangular Filter Hamming Filter

π−π

1

ω

|H
(
ejΩ
)
|

Rectangular Filter
Hamming Filter
Ideal Filter

Figure B.9: Responses of FIR filters designed in Question 13.1.

2. (a) Ωp = π
25

rad
sample

, Ωs =
π
10

rad
sample

.

(b) Need L = 105.

209

(c) The stop band gain of the rectangular filter is only Gs = −20.9 dB, which
is less than the target stop band gain, so such a filter cannot meet the
design specification.

B.13 Lesson 14

1. From calculations we find that

X [k] = {4, 1 + j
√
3, 1− j

√
3}, 0 ≤ n ≤ 2

X
(
ejΩ
)
= 4e−jΩ cos(Ω)

Xpad [k] = {4, 2− j2, 0, 2 + j2, 4, 2− j2, 0, 2 + j2}.

We plot the magnitudes in Fig. B.10. We see that the zero-padded DFT
captures much more of the detail in the DTFT.

|X
(
ejΩ
)
|

2π
3

4π
3

2π0

1

2

3

4

kΩ0

|X [k] |

(a) Magnitude spectra.

|X
(
ejΩ
)
|

π
2

π 2π0

1

2

3

4

kΩ0

|Xpad [k] |

(b) Zero-padded magnitude spectra.

Figure B.10: Plots for Question 14.1.

2. To sample the sinusoids with frequencies fs/16 and fs/4, multiply the sinusoid
argument in Example 14.3 by 4 and 16, respectively. The magnitude spectra
of their sum are shown in Fig. B.11.

B.14 Lesson 15

1. Code to find and plot the outputs is as follows:

syms n z

h = 0.2*ones(1,5); % Impulse response

i = 0:39; % Input signal sample index

210

0

5

10

15

20

25

30

35

|X
[k

]|

0 10 20 30 40 50 60 70

Spectral Index k

Figure B.11: Magnitude spectrum for Question 14.2

x = cos(pi*i/4); % Input signal

L = length(i) + length(h) -1; % Length of conv output

xSym = cos(pi*n/4); % Input signal in symbolic math

HSym = 0.2*(1 + z^-1 + z^-2 + z^-3 + z^-4); % Transfer function

in symbolic math

y1 = conv(x,h); % Output using conv function

X = ztrans(xSym);

Y = X*HSym;

y2Sym = iztrans(Y); % Output in symbolic math

y2 = double(subs(y2Sym,0:(L-1))); % Symbolic math output

converted to numeric values

y3 = filter(h,1,x); % Output using filter function

figure; hold on;

subplot(3,1,1)

stem(0:(L-1),y1,’k’)

legend(’conv’)

subplot(3,1,2)

stem(0:(L-1),y2,’b’)

legend(’symbolic’)

211

subplot(3,1,3)

stem(0:(length(i)-1),y3,’r’)

legend(’filter’)

We plot the resulting figure in Fig. B.12. We see that the results look nearly
identical, except that filter does not evaluate the final 4 time steps (i.e.,
those beyond the existence of the input) and the symbolic approach behaves
as if the input continues indefinitely. In each case the filter output is a sinusoid
with about half the amplitude of the input signal.

-0.5

0

0.5

0 5 10 15 20 25 30 35 40 45

conv

-0.5

0

0.5

0 5 10 15 20 25 30 35 40 45

symbolic

-0.5

0

0.5

0 5 10 15 20 25 30 35 40

filter

Figure B.12: Output for Question 15.1

2. Code to design the filters and plot their responses is as follows (we set the
filter design to not scale to make sure we can directly compare with our design
by hand):

bRect = fir1(4, 0.25, ’low’, rectwin(5), ’noscale’); %

Rectangular filter

bHamm = fir1(4, 0.25, ’low’, hamming(5), ’noscale’); % Hamming

filter

figure; hold on;

subplot(2,1,1)

stem(0:4, bRect);

xlabel(’n’)

212

ylabel(’h[n]’)

title(’Rectangular Window Impulse Response’)

subplot(2,1,2)

stem(0:4, bHamm);

xlabel(’n’)

ylabel(’h[n]’)

title(’Hamming Window Impulse Response’)

figure

freqz(bRect,1)

title(’Rectangular Window Filter’)

figure;

freqz(bHamm,1)

title(’Hamming Window Filter’)

We plot the resulting figures in Figs. B.13-B.15. We include several data points
in the magnitude responses (that we can convert to linear form) to help verify
the design in Question 12.1.

0

0.1

0.2

0.3

h
[n

]

Rectangular Window Impulse Response

0 0.5 1 1.5 2 2.5 3 3.5 4

n

0

0.1

0.2

0.3

h
[n

]

Hamming Window Impulse Response

0 0.5 1 1.5 2 2.5 3 3.5 4

n

Figure B.13: Impulse responses for Question 15.2

213

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (rad/sample)

-200

-100

0

100

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (rad/sample)

-100

-50

0

M
a
g
n
it
u
d
e
 (

d
B

)

Rectangular Window Filter

X 0

Y 0.1589
X 0.25

Y -4.908

Figure B.14: Rectangular frequency response for Question 15.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (rad/sample)

-400

-300

-200

-100

0

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (rad/sample)

-30

-20

-10

0

M
a
g
n
it
u
d
e
 (

d
B

)

Hamming Window Filter

X 0.25

Y -7.496

X 0

Y -5.704

Figure B.15: Hamming frequency response for Question 15.2

B.15 Lesson 17

1. If xmin = xmax, then the random variable is deterministic and not actually a
random variable.

2. This question is a proof.

3. (a) Use integration by parts to show that k = 1.

(b) 0.264.

(c) E [X] = 2.

214

(d) E [X2] = 6 and σ2
X = 2.

(e) The most probable value occurs when dp(x)
dx

= 0. It occurs when X = 1.

(f) 0.594.

B.16 Lesson 18

1. The observation matrix is

Θ =

1 0 0 0
1 0.5 0.25 0.125
1 1.0 1.0 1.0
1 1.5 2.25 3.375
1 2.0 4 8.0
1 2.5 6.25 15.625
1 3.0 9 27

.

2. The observation matrix is

Θ =

1 0 0
0 1 0
1 0 1
1 1 0
0 1 1

 .

3. The weight vector should be

W⃗ =

0.5
0.5
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2

.

4. Code to generate the Poisson realisations and estimate the mean using a max-
imum likelihood estimator is as follows:

215

lambda = 5; % Poisson mean

y = poissrnd(lambda,1,100); % Generate random numbers from

Poisson distribution

lambdaEst = mle(y, ’distribution’, ’poiss’); % Max. Likelihood

estimate of lambda

B.17 Lesson 19

1. RX1X2 [k] = {−7.33,−8.00,−11.50,−7.33,−9.00,−18}. The highest correla-
tion occurs when k = 5 because these two signals differ by a factor of −2
except that the second signal is shifted by 5 (which in this case is also equal
to 5−N = −1).

2. RXX [k] = {3.67,−0.50, 0.43,−2.00, 0.80, 0.75, 0.33,−0.50, 2.00}. The mean
square value is RXX [0] = 3.67.

B.18 Lesson 20

1. The filter output is shown in Fig. B.16. This low pass filter kernel has smoothed
the abrupt transitions between 0s and 1s.

0.22 0.33 0.33 0.33 0.22

0.33 0.44 0.56 0.44 0.33

0.33 0.56 0.44 0.56 0.33

0.33 0.44 0.56 0.44 0.33

0.22 0.33 0.33 0.33 0.22

Figure B.16: Output image y [i] [j] for Question 20.1.

2. To detect the edges we could use a high pass filter or Sobel operators. The
high pass filter only needs to be applied once, but Sobel operators will ac-
centuate the edges more clearly. We show the output to the high pass filter
and the X gradient Sobel operator in Fig. B.17. From the high pass filter we

216

see transitions from negative to positive values along all 4 edges. The Sobel
filter output only has negative to positive transitions along the right edge and
positive to negative transitions along the left edge, but they are much stronger
transitions.

0 0 1 1 0

0 1 -2 -2 1

0 1 -1 -1 1

0 1 -2 -2 1

0 0 1 1 0

(a) High pass filter output.

0 -1 -1 1 1

0 -3 -3 3 3

0 -4 -4 4 4

0 -3 -3 3 3

0 -1 -1 1 1

(b) X gradient Sobel filter output.

Figure B.17: Output images y [i] [j] for Question 20.2.

217

	Acknowledgements
	Preface
	Introduction
	I Analogue Signals and Systems
	Laplace Transforms and LTI Systems
	Poles, Zeros, and Stability of Analogue Systems
	Analog Frequency Response
	Analogue Filter Design
	Periodic Analogue Functions
	Computing with Analogue Signals

	II Digital Signals and Systems
	Signal Conversion Between Analogue and Digital
	Z-Transforms and LSI Systems
	Stability of Digital Systems
	Digital Frequency Response
	Filter Difference Equations and Impulse Responses
	FIR Digital Filter Design
	Discrete Fourier Transform and the FFT
	Computing with Digital Signals
	Digital Vs Analogue Recap

	III Random Signal Processing
	Probabilities and Random Signals
	Signal Estimation
	Correlation and Power Spectral Density

	IV Introduction to Image Processing
	Image Processing

	V Appendices
	Mathematical Background
	Answers/Hints to End-of-Lesson Problems

