
Build Framework and Runtime

Abstraction for Partial

Reconfiguration on FPGA SoCs

by

Alex R. Bucknall

Thesis

Submitted to the University of Warwick

in fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

School of Engineering

January 2022



Contents

List of Tables vi

List of Figures vii

Acknowledgments x

Declarations xi

Abstract xii

Acronyms xiv

Chapter 1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Open Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Background 8

2.1 Computing Platforms . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 General Purpose Processors . . . . . . . . . . . . . . . . . . . . 9

2.2.1 x86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 ARM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Graphical Processing Units . . . . . . . . . . . . . . . . . . . . 10

2.4 Application Specific Integrated Circuits . . . . . . . . . . . . . 11

2.5 Field Programmable Gate Arrays . . . . . . . . . . . . . . . . . 12

2.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.2 Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.3 Development Process . . . . . . . . . . . . . . . . . . . . 21

2.5.4 PR Design Challenges . . . . . . . . . . . . . . . . . . . 22

2.6 FPGAs compared to GPPs, GPUs & ASICs . . . . . . . . . . . 25

2.7 Heterogeneous SoCs . . . . . . . . . . . . . . . . . . . . . . . . 27

i



2.7.1 Intel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.2 Xilinx . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Operating Systems (Linux) . . . . . . . . . . . . . . . . . . . . 30

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3 Literature Review 33

3.1 Design Methodologies . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Vendor PR Tools . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Academic PR Tools . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Build Workflows & Floorplanning . . . . . . . . . . . . 38

3.2.2 PR Runtime Management . . . . . . . . . . . . . . . . . 43

3.3 Applications of Partial Reconfiguration . . . . . . . . . . . . . . 47

3.3.1 Communications Systems . . . . . . . . . . . . . . . . . 48

3.3.2 Networking . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Image Processing . . . . . . . . . . . . . . . . . . . . . . 49

3.3.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . 49

3.3.5 Automotive . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.6 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.7 Autonomous Adaptive Systems . . . . . . . . . . . . . . 52

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 4 Over the Network FPGA Reconfiguration 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Traditional Approach . . . . . . . . . . . . . . . . . . . 59

4.4.2 DMA Proxying . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.3 Network Partial Reconfiguration . . . . . . . . . . . . . 61

4.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 Advanced Encryption Standard . . . . . . . . . . . . . . 65

4.5.2 PRESENT . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.1 Frame Decoding in PS (PCAP) . . . . . . . . . . . . . . 66

4.6.2 Frame Decoding in PS (Integrated Controller in PL) . . 67

4.6.3 Frame Decoding in PL (Custom PR Controller) . . . . . 69

4.6.4 Bitstream Over Network . . . . . . . . . . . . . . . . . . 70

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 5 Design and Build Framework for Partial Reconfigur-

ation on FPGAs 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ii



5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Vendor Tools . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 Current Research . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Heterogeneous Systems on Chip . . . . . . . . . . . . . 82

5.4.2 Operating Systems . . . . . . . . . . . . . . . . . . . . . 83

5.4.3 Partial Reconfiguration . . . . . . . . . . . . . . . . . . 83

5.4.4 PR Design Workflow . . . . . . . . . . . . . . . . . . . . 84

5.5 Build Toolflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Edalize & FuseSoC . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.7 Hardware Abstraction . . . . . . . . . . . . . . . . . . . . . . . 88

5.8 Infrastructure Generation . . . . . . . . . . . . . . . . . . . . . 89

5.8.1 Compile-time Generated Interfacing . . . . . . . . . . . 90

5.8.2 Automatic PR Region Generation . . . . . . . . . . . . 91

5.8.3 PR Module Chaining . . . . . . . . . . . . . . . . . . . . 93

5.8.4 Customised Base Design . . . . . . . . . . . . . . . . . . 94

5.8.5 Internal Configuration Access Port . . . . . . . . . . . . 94

5.9 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.9.1 PMU Firmware . . . . . . . . . . . . . . . . . . . . . . . 95

5.9.2 Device Tree . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9.3 Device Tree Overlay . . . . . . . . . . . . . . . . . . . . 96

5.9.4 Kernel Drivers . . . . . . . . . . . . . . . . . . . . . . . 97

5.10 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.10.1 FPGA Resource Consumption . . . . . . . . . . . . . . 98

5.10.2 Build Time Complexity . . . . . . . . . . . . . . . . . . 99

5.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Chapter 6 Partial Reconfiguration Runtime & Configuration

Management 102

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 FPGA Manager . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Runtime Abstraction . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.1 Hardware Resources . . . . . . . . . . . . . . . . . . . . 106

6.4.2 Device Tree Overlay . . . . . . . . . . . . . . . . . . . . 106

6.4.3 Linux Userspace Drivers . . . . . . . . . . . . . . . . . . 107

6.4.4 Xilinx AXI DMA . . . . . . . . . . . . . . . . . . . . . . 107

6.5 ICAP DMA Provisioning . . . . . . . . . . . . . . . . . . . . . 108

6.6 Configuration Manager . . . . . . . . . . . . . . . . . . . . . . . 108

iii



6.6.1 Runtime API . . . . . . . . . . . . . . . . . . . . . . . . 109

6.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.7.1 Accelerator Performance . . . . . . . . . . . . . . . . . . 112

6.7.2 Partial Reconfiguration Performance . . . . . . . . . . . 113

6.8 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.8.1 PR Region Data Chaining . . . . . . . . . . . . . . . . . 116

6.8.2 Design Process . . . . . . . . . . . . . . . . . . . . . . . 117

6.8.3 Comparison to Existing Tools . . . . . . . . . . . . . . . 118

6.8.4 Runtime Application . . . . . . . . . . . . . . . . . . . . 118

6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Chapter 7 Autonomous Adaptive Systems Framework using

Partial Reconfiguration 121

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3.1 Adaptive System Concepts . . . . . . . . . . . . . . . . 123

7.3.2 Robot Operating System . . . . . . . . . . . . . . . . . 124

7.3.3 Configuration Terminology . . . . . . . . . . . . . . . . 125

7.3.4 FPGA Acceleration of Adaptive Systems . . . . . . . . 125

7.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4.1 Adaptive Hardware Design Tooling . . . . . . . . . . . . 128

7.4.2 Runtime Configuration Schemas . . . . . . . . . . . . . 129

7.4.3 Configuration Manager . . . . . . . . . . . . . . . . . . 130

7.4.4 Configuration API . . . . . . . . . . . . . . . . . . . . . 131

7.5 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5.1 ROS2 Architecture . . . . . . . . . . . . . . . . . . . . . 133

7.5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 134

Chapter 8 Conclusion and Future Work 137

8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . 137

8.1.1 Network-Enabled FPGA Reconfiguration . . . . . . . . 138

8.1.2 Python Library for SoC Interfaces Extraction and Gen-

eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.1.3 Automated End-to-End PR Development Flow . . . . . 139

8.1.4 High Performance Runtime PR Manager . . . . . . . . . 139

8.1.5 Abstracted Configuration Manager for CPSs . . . . . . 140

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.2.1 Containerization of vendor tooling within ZyCAP2 . . . 140

8.2.2 Integration of FuseSoC into ZyCAP2 tools . . . . . . . . 141

8.2.3 FuseSoC Vitis HLS Support . . . . . . . . . . . . . . . . 141

iv



8.2.4 Xilinx DFX Abstract Shell Workflow . . . . . . . . . . . 141

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Appendix A Code Snippets 143

v



List of Tables

2.1 Comparison of FPGA Hard & Soft Processors . . . . . . . . . . 16

2.2 Intel FPGA SoC Families . . . . . . . . . . . . . . . . . . . . . 28

2.3 Xilinx FPGA SoC Families . . . . . . . . . . . . . . . . . . . . 29

4.1 Resource Utilization on Zynq-7020 . . . . . . . . . . . . . . . . 65

4.2 Network PR Experiment Results . . . . . . . . . . . . . . . . . 67

5.1 Build Tool Comparison. . . . . . . . . . . . . . . . . . . . . . . 79

5.2 PR Manager static PL resources. . . . . . . . . . . . . . . . . . 99

6.1 Runtime Comparison . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Runtime Latency Breakdown Average Across 25 Runs. . . . . . 113

vi



List of Figures

1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Generic Xilinx FPGA Architecture [1] . . . . . . . . . . . . . . 12

2.2 Ultrascale CLB LUT6 and dual LUT5 blocks [2] . . . . . . . . 14

2.3 Ultrascale CLB LUT and storage elements (1 of 6 in a Slice) [2] 14

2.4 Ultrascale CLB Shift Register Logic [2] . . . . . . . . . . . . . . 14

2.5 Ultrascale Kintex Floor plan [3] . . . . . . . . . . . . . . . . . . 15

2.6 Xilinx Static Bitstream Layout (7 Series FPGAs) [4] . . . . . . 16

2.7 Example of partially reconfigurable regions and PR bitstreams 18

2.8 Xilinx Partial Bitstream Layout (7 Series FPGAs) [4] . . . . . 18

2.9 Xilinx ICAPE2 Primitive (7 Series FPGAs) [5] . . . . . . . . . 20

2.10 PR Build Process where n is the number of configurations

required to be generated . . . . . . . . . . . . . . . . . . . . . . 23

2.11 General comparison of GPP, GPU, FPGA and ASIC . . . . . . 26

2.12 Generic FPGA SoC Architecture [6] . . . . . . . . . . . . . . . 28

2.13 Zynq-7000 Architecture [7] . . . . . . . . . . . . . . . . . . . . . 29

3.1 Standard DFX vs Abstract Shell implementation logic [8] . . . 35

3.2 Example of Vitis HLS Pragma for AXI Stream Slave/Masters. 36

3.3 ReConOS toolchain with ARTICO3 extensions [9] . . . . . . . 41

3.4 FOS compared to traditional development abstraction [10] . . . 42

3.5 ARTICO3 kernel wrapper [9] . . . . . . . . . . . . . . . . . . . 43

3.6 ZyCAP highlighting interfaces between PS and PL [11] . . . . . 47

3.7 Concept of a cognitive radio with control and data planes split

across a CPU and FPGA [12] . . . . . . . . . . . . . . . . . . . 48

3.8 Xilinx ZynqMP Example ADAS Application [13] . . . . . . . . 51

4.1 Network Enabled PR Architecture. . . . . . . . . . . . . . . . . 64

4.2 Zynq Processing Ethernet Packets in PL. . . . . . . . . . . . . 67

4.3 Sequence of events when Ethernet frames are handled by PS

and reconfiguration is managed by an integrated PR controller

in PL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vii



4.4 Variation in partial reconfiguration triggered over the network

interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Sequence of events when the packet decoding is handled within

the network interface in PL, while the reconfiguration is initiated

from the PS using a custom reconfiguration manager. . . . . . 70

5.1 Example Linux PR workflow. Designers are required to propag-

ate their changes up from the accelerator, through to the shell,

the Linux kernel, as well as track PL changes from their high

level applications. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 The Xilinx Linux build flow. . . . . . . . . . . . . . . . . . . . . 78

5.3 FuseSoC to Edalize workflow with example EDA tooling . . . . 86

5.4 Stages of the PR build flow [14] . . . . . . . . . . . . . . . . . . 89

5.5 PL architecture generated using the ZyCAP2 build tooling. . . 90

5.6 Synthesis schematic after build tool generates wrappers for each

PRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 ICAPE2 and ICAPE3 macros. . . . . . . . . . . . . . . . . . . 95

5.8 Applying DT fragment via configuration . . . . . . . . . . . . 96

5.9 Example of Vitis HLS Pragma for AXI Stream Slave/Masters. 97

5.10 Avnet Ultra96v2 Development Kit . . . . . . . . . . . . . . . . 98

6.1 Loading of the PCAP from FPGA Manager (ZynqMP)[15]. . . 105

6.2 ZyCAP Linux Stack [14]. . . . . . . . . . . . . . . . . . . . . . 106

6.3 Sequence diagram for the ZyCAP Runtime (Loading and Data

transfer). (A) Setup of the ZyCAP and driver. (B) Application

of PR bitstream. (C) Application of PR modes. (D) Data

transfer between accelerator and software application. . . . . . 110

6.4 DMA Driver Benchmark across 1000 transfers (PL clocked at

200 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 PR Runtime Performance (time to load bitstream) . . . . . . . 114

6.6 Overview of HLS Vitis Vision chained accelerator demo . . . . 115

6.7 PS uses histogram to determine accelerators to apply. Blue

graph indicates original histogram, Orange indicates the new

histogram after configuration. . . . . . . . . . . . . . . . . . . . 116

7.1 Visualisation of hardware abstraction and definition. . . . . . . 124

7.2 An outline of the Xilinx PR build flow, from generating hardware

within Vivado, to exporting hardware data into PetaLinux. . . 127

7.3 Simplified example of a potential unmanned aerial vehicle ROS2

application, where camera data could be used for object avoidance133

7.4 Architecture of the ROS2 wrapper using the CM and ZeroMQ. 133

7.5 Round trip time to transfer 1000 images between PS and PL. . 134

viii



7.6 ZeroMQ latency measured with varying sized payloads. . . . . 134

ix



Acknowledgments

I would like to thank my supervisor Suhaib Fahmy for his guidance and support

throughout my research. His advice has been invaluable and helped me to

shape the way I approach my work.

I would like to thank my colleagues, Ryan and Lenos, who undertook their

PhDs during the same period as myself. Their advice and company has been

much appreciated and assisted me with many of the technical and challenging

issues I faced during my research.

Lastly I would also like to thank my friends, Catriona, Joe, Phil and Lizzie

who have supported me through this difficult period, both with challenges I

faced with my work as well as externally with the stresses of the pandemic.

x



Declarations

Parts of this thesis have been previously published in the following:

[16] Alex R. Bucknall, Shanker Shreejith, and Suhaib A. Fahmy. Network

enabled partial reconfiguration for distributed FPGA edge acceleration.

In Int. Conf. on Field-Programmable Technology (ICFPT), pages 259–262,

2019. doi: 10.1109/ICFPT47387.2019.00042

[14] Alex R. Bucknall, Shanker Shreejith, and Suhaib A. Fahmy. Build

automation and runtime abstraction for partial reconfiguration on Xilinx

Zynq UltraScale+. In Int. Conf. on Field-Programmable Technology

(ICFPT), pages 215–220, 2020. doi: 10.1109/ICFPT51103.2020.00037

[17] Alex R. Bucknall and Suhaib A. Fahmy. Runtime abstraction for autonom-

ous adaptive systems on reconfigurable hardware. In Design, Automation

Test in Europe Conf. Exhibition (DATE), pages 1616–1621, 2021. doi:

10.23919/DATE51398.2021.9474199

Parts of this thesis are pending publication in the following:

[18] Alex R. Bucknall and Suhaib A. Fahmy. ZyCAP2: End-to-end build tool

and runtime manager for partial reconfiguration of FPGA SoCs at the

edge. In submitted to: TRETS, 2021

xi



Abstract

Growth in edge computing has increased the requirement for edge systems

to process larger volumes of real-time data, such as with image processing and

machine learning; which are increasingly demanding of computing resources.

Offloading tasks to the cloud provides some relief but is network dependant,

high latency and expensive. Alternative architectures such as GPUs provide

higher performance acceleration for this type of data processing but trade

processing performance for an increase in power consumption. Another option

is the Field Programmable Gate Array; a flexible matrix of logic that can be

configured by a designer to provide a highly optimised computation path for

incoming data. There are drawbacks; the FPGA design process is complex,

the domain is dissimilar to software and the tools require bespoke expertise. A

designer must manage the hardware to software paradigm introduced when

tightly-coupled with general purpose processor. Advanced features, such as

the ability to partially reconfigure (PR) specific regions of the FPGA, further

increase this complexity. This thesis presents theory and demonstration of

custom frameworks and tools for increasing abstraction and simplifying control

over PR applications. We present mechanisms for networked PR; a mechanism

for bypassing the traditional software networking stack to trigger PR with

reduced latency and increased determinism. We developed a build framework

for automating the end-to-end PR design process for Linux based systems as

well as an abstracted runtime for managing the resulting applications. Finally,

we take expand on this work and present a high level abstraction for PR

on cyber physical systems, with a demonstration using the Robot Operating

System. This work is released as open source contributions, designed to enable

future PR research.
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Chapter 1

Introduction

Heterogeneous computing is construction of differing compute architectures

within close proximity, where exchanging of data is performed bi-directionally

using the most efficient computing architecture for a specific operation. Often

this will be mapped to a host and follower hierarchy where a system such

as a general purpose processor (GPP) may offload tasks to a co-processing

system. This approach often lends itself to higher performance, lower energy

consumption as well as reduced latency for performing computation, when an

alternative computation platform is optimised for that workload.

Throughout history, co-processors have changed and advanced as the de-

mands of computing have increased in complexity. Early co-processing cores

were utilised by GPPs for simple tasks such as floating point operations per-

formed on a discrete floating point unit (FPU), which was optimised specifically

for floating point arithmetic. These operations were demanding enough to

require custom compute and thus freed the GPP from performing these opera-

tions on non-optimised architecture, reducing latency and core utilisation. Due

to the rise of screens and displays as human-computer interfaces, graphical pro-

cessing units (GPUs) became more commonplace for compute offload for GPPs,

where powerful GPUs could be accessed over high performance external bus

interfaces such as the peripheral component interface (PCI). Recently offload-

ing tasks have become increasingly discrete with cryptographic, digital signal

processing and networking tasks passed to co-processors that are optimised for

these kinds of operations.

The evolving nature of computing tasks has lead to an interest in flexible

hardware accelerators for task offloading where devices, such as Field Program-

mable Gate Arrays (FPGA), can customise their internal architecture to best

serve the computation, are gaining popularity. This type of co-processing can

be described as custom hardware acceleration, where computation paths made

from logic on the FPGA, allow it to be optimised for the specific task at hand.

Compared against traditional GPP software operations, where the processor
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must follow the fetch, decode and execute cycle to run code, an FPGA can

perform compute operations on incoming data in a pipelined manner through

a custom datapath for increased throughput. FPGAs are reconfigurable at

runtime, allowing them to dynamically change their behaviour on demand or

in response to a specific type of task. This unique feature has seen popular use

cases for in-network processing such as with switches and radio base stations,

ideal for inline packet processing operations. Reconfiguration at runtime makes

FPGAs ideal for constrained edge of network type devices, allowing resource

limited systems to adjust their compute while deployed, enabling hardware to

be updated remotely. This flexibility is a major differentiator compared against

other types of hardware acceleration, such as ASICs and TPUs, better enabling

remote edge systems to adapt as their environment demands. In Chapter 2

we provide a comprehensive background and literature review discussing the

specifics of architectures and implementations of various types of hardware

accelerators.

1.1 Motivations

Many modern computing systems combine varying types of compute archi-

tectures with the intention to offload tasks that may benefit from a specific

architecture, such as GPUs for video processing and network interfaces for

network processing. GPU-based architectures have significant support across

operating systems with popular software development kits (SDKs) as well as

drivers with low level acceleration. This specific combination has also seen

a rise in edge-of-network acceleration, such as in the internet of things, as

the parallelism of GPUs is beneficial for vision processing as well as machine

learning tasks. These systems need to be highly optimised for efficient com-

puting, where events are abstractly passed between the most suited hardware

for the target task. Typically IoT applications are producers of sensor data,

with historical use-cases simply forwarding the generated data up to the cloud

for aggregation and processing at a later date. While this is sufficient for

applications that may tolerate significant latency, when sending data to and

from the cloud, real-time applications, such as RF baseband processing or

image processing systems operating in millisecond or even nanosecond response

times, cannot afford such delays. As edge devices become more powerful and

provide heterogeneous computing, the ability to dynamically offload tasks to

localised compute becomes increasingly interesting for developers.

This has lead to the development of heterogeneous Application Processor

Unit (APU) that are tightly coupled with FPGAs, where the APU can support

an operating system such as Linux and the FPGA can be configured at runtime

for dedicated acceleration operations. Xilinx’s Zynq and Zynq Ultrascale+
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platforms are examples of such powerful embedded ARM APUs, extended

with the programmable logic and resources of an FPGA. FPGA acceleration

provides a number benefits to edge computing including increased performance

of pipelined tasks such as image processing, higher energy efficiency than the

equivalent compute on a GPP. While GPUs run software instructions and can

thus be more flexible, FPGAs are best placed to serve applications that do not

map well to GPUs and where the energy cost of powerful GPUs is too great

for the given application.

Additionally, FPGAs do not require a GPP host to move data into and

out of acceleration, they are capable of hosting their own processors and

even network controllers for data transfer and bitstream provisioning. These

FPGA System on Chip (SoC) devices locate the ARM APU and FPGA on

the same silicon die with multiple high performance interfaces for bidirectional

communication between them. There are numerous layers of complexity for

managing control of the FPGA from the APU, where the APU typically directs

control of the FPGA as a co-processor, while running a fully featured operating

system.

While FPGAs excel at optimised compute, when designed specifically for

an acceleration operation, they are less desirable for general purpose compute

as supporting an operating system or managing complex networking stacks.

While significant research has been undertaken to optimise and explore the

co-processing power of FPGA SoCs, the abstractions for software interfaces and

data exchange between the APU and FPGA are limited. Many implementations

of the APU to FPGA interfaces require low level drivers, complicated memory

management between virtual and physical memory as well as limited abstraction

for provisioning the FPGA on demand.

A greater investigation of the APU to FPGA interface and abstraction is

needed to increase the accessibility and adoption of FPGAs as co-processing

offload for higher level software libraries and SDKs that are popular in modern

edge computing applications. This thesis aims to understand, explain and offer

tools to reduce these barriers for FPGA accelerated applications.

1.2 Objectives

The main objectives of this research are as follows:

1. To develop an architecture for rapidly re-provisioning FPGA SoCs over

the network, bypassing the software networking stack typically used by

their coupled APU to decode and initiate reconfiguration.

2. To design build tools capable of absorbing/reducing the complexity

associated with designing and building FPGA accelerators for non-experts,
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including:

• The ability to abstract the build pipeline for hardware description

language files and PR configurations into FPGA bitstreams

• The capacity to gather the exported bitstreams and metadata to

construct a Linux operating system image with full support and

abstraction for underlying PR hardware

3. To develop a high performance runtime manager that is capable of

abstracting the complexity of software hooks for low level memory man-

agement of FPGA logic, provisioning of full and partial bitstreams as

well as the ability to configure the Linux kernel to accommodate the

corresponding FPGA logic.

4. To design an abstraction for managing the complexities of configurations

and modes of operation of cyber physical systems while being managed

by the APU. This should allow of high levels of abstraction and usage

within popular IoT frameworks and tooling.

1.3 Contributions

The main contributions of this work are a collection of build tools, runtime

managers, and case studies that are intended to assist with the complexities of

designing and developing partially reconfigurable acceleration applications on

heterogeneous computing platforms. Throughout the thesis, these tools are

described as the ZyCAP2 framework; where we draw on the work of authors

in [11] to extend abstraction, features and utility of the tools, specifically

supporting the Linux operating system. Figure 1.1 shows how the contributions

in this thesis can be categorised. A number of these contributions are grouped

together as the ZyCAP2 build framework and runtime manager, where other

contributions may be combined at a later date as plugins or extensions to the

base build framework.

These can be summarised as follows:

1. An arbitration mechanism for parsing networked reconfiguration frame

headers directly in the FPGA, before forwarding reconfiguration com-

mands on to the processing system.

2. An extensible end-to-end FPGA PR and Linux build tool, for partially

reconfigurable designs that automates the generation of infrastructure to

support user logic and manages device tree overlays, drivers, and memory

mapped IO, with particular focus on edge computing platforms. This

includes:
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Figure 1.1: Thesis Contributions

(a) A standalone Python library for interface extraction and wrapping

PR module interfaces to enable easily building soft SoC infrastruc-

ture.

(b) Extension of the FuseSoC/Edalize libraries to support Partial Recon-

figuration; an open source tool for managing cross-platform building

of hardware description language IP cores and libraries.

3. A PR runtime manager and configuration API for PS-PL management

that enables simple software abstraction of memory mapped IO, DMA

streaming as well as loading/unloading partial and complete bitstreams as

part of our described mode and configuration abstractions. This includes:

(a) Improved high performance asynchronous PR controller for load-

ing the ZynqMP ICAP interface at near theoretical throughput

(approximately 757 MiB/s).

(b) A case study using Vitis HLS generated OpenCV edge accelerators

in a PR application that demonstrates our software abstraction and

benchmarks the performance impact and logical resource consump-

tion.

4. An abstracted Linux configuration manager, built on an adaptive sys-

tems model to automate reconfigurable hardware management and allow

control from a PubSub (ZeroMQ) architecture.

5. A case study for the Robot Operating System 2 designed to utilise con-

figuration abstraction to allow for simplified software control of hardware

on cyber physical systems.
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1.4 Thesis Roadmap

The thesis is organised as follows:

Chapter 2 provides a comprehensive research background and overview of

the objectives of the work in this thesis.

Chapter 3 presents a detailed literature review and comparison of design

tools, partial reconfiguration workflows, abstractions for adaptive systems as

well as academic applications of partial reconfiguration.

Chapter 4 presents our work on improving network responsiveness for the

loading and provisioning partial reconfigurable systems through bypassing the

networking stack in software with arbitration on the FPGA.

Chapter 5 discusses our FPGA and Linux build workflows for generating

partially reconfigurable bitstreams with accompanying design abstractions and

generating accompanying drivers, APIs and configurations under Linux.

Chapter 6 examines our PR runtime manager and API as well as discussing

and benchmarking the tool with an image processing case study, highlighting

features enabled by the build and runtime components.

Chapter 7 examines an abstraction for controlling autonomous cyber phys-

ical systems from a heterogeneous reconfigurable systems approach, with

demonstration of the configuration manager built on the Robot Operating

System 2.

Chapter 8 summarises the work presented in this thesis and provides

suggestions for potential future research opportunities.

1.5 Publications

The work presented in this thesis has featured in the following publications:

1. Alex R. Bucknall, Shanker Shreejith, and Suhaib A. Fahmy. Network

enabled partial reconfiguration for distributed FPGA edge acceleration.

In Int. Conf. on Field-Programmable Technology (ICFPT), pages 259–262,

2019. doi: 10.1109/ICFPT47387.2019.00042 [16] (Conference)

2. Alex R. Bucknall, Shanker Shreejith, and Suhaib A. Fahmy. Build

automation and runtime abstraction for partial reconfiguration on Xilinx

Zynq UltraScale+. In Int. Conf. on Field-Programmable Technology

(ICFPT), pages 215–220, 2020. doi: 10.1109/ICFPT51103.2020.00037

[14] (Conference)

3. Alex R. Bucknall and Suhaib A. Fahmy. Runtime abstraction for autonom-

ous adaptive systems on reconfigurable hardware. In Design, Automation

Test in Europe Conf. Exhibition (DATE), pages 1616–1621, 2021. doi:

10.23919/DATE51398.2021.9474199 [17] (Conference)
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The work pending publication:

1. Alex R. Bucknall and Suhaib A. Fahmy. ZyCAP2: End-to-end build tool

and runtime manager for partial reconfiguration of FPGA SoCs at the

edge. In submitted to: TRETS, 2021 [18] (Journal)

1.6 Open Source

The following work, presented in this thesis, are provided as open source:

1. ZyCAP2 Build Framework — End-to-End Partial Reconfiguration

Build and Runtime Framework for Zynq and Zynq Ultrascale+ Devices.

https://github.com/warclab/zycap2.

2. ZyCAP2 Runtime Manager — C++ Runtime Manager API for

High Throughput DMA PR Provisioning on the Zynq and ZynqMP.

https://github.com/warclab/zycap2.

3. Interfacer Library — Python Library for Verilog Interface Extraction.

https://github.com/warclab/interfacer.

The work pending contribution (to be accepted):

1. Edalize/FuseSoC PR Extension — An extension to Edalize and

FuseSoC libraries that provides support for PR module and static region

generation from within the Vivado tools. To be contributed to https://

github.com/olofk/edalize & https://github.com/olofk/fusesoc.
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Chapter 2

Background

Adaptive systems are systems that can provide capacity for compute in un-

certain or changing operating conditions. Such systems can be described with

layers of abstraction, defining their behaviour and functionality. [19] describes

a number of models for autonomous systems, outlining an advanced model for

how such systems could be designed.

At runtime, the system may be required to adjust its operating parameters,

either via alternative software routines or utilising co-processing hardware to

handle demanding data rates. General purpose processing enables autonomous

adaptive systems (AAS) to easily and rapidly respond to stimuli however such

approaches are limited to the processing capabilities, which are typically low

power and energy efficient for edge systems. Such systems that must interface

with the physical environment, via sensors and peripherals such as cameras and

networking interfaces, may be required to process large streams of data as well

as meet strict real time requirements. Often the limited compute capability

of such systems is insufficient for high performance embedded applications,

due to the power and energy restrictions. This type of scenario lends itself

to application acceleration via co-processing hardware, such as GPUs and/or

FPGAs.

This Chapter explores processing architectures available to edge computing

platforms, comparing and contrasting their advantages and disadvantages.

Then it moves into exploring specific characteristics of FPGAs, highlighting

Partial Reconfiguration as a key feature for acceleration. The next Chapter

examines the concept of partial reconfiguration in adaptive systems and their

applications in the real world. Finally it examines autonomous adaptive systems

and the abstractions required to enable and extend such systems to span the

hardware-software paradigm.
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2.1 Computing Platforms

In the context of this thesis, a computing platform can be defined as any

hardware architecture capable of performing compute. This includes a range

of varying platforms from traditional general purpose processing on a CPU

through to task specific dedicated compute on application specific integrated

circuits. As the demands for compute have changed alongside technological

advancements in fields such as image processing and machine learning, the

requirements for compute have adapted to keep pace.

2.2 General Purpose Processors

General Purpose Processors also described as generalised compute are backbone

of many traditional computing systems. Numerous processing architectures

exist, where compromises are made between best service performance, energy

efficiency and thermal properties. Operations and compute tasks are defined by

a software program, often a high level abstraction on the GPP’s instruction set

architecture (ISA) or fundamental compute operations. Software programs are

stored in memory and are executed sequentially, defined by their composition

in the program. There are a number of different types of GPP; in this thesis

Central Processing Units (CPU) are referenced as desktop or server class

compute and Application Processing Units (APU) as referred to the hybrid

architectures often found in mobile computing or System on Chip platforms.

2.2.1 x86

Traditionally personal computers and datacenter compute such as CPUs have

been based upon the x86 architecture. This architecture is largely power

inefficient and while it succeeds in terms of performance delivery, is less useful

to edge platforms where energy efficiency is key. The two major vendors and

manufacturers of x86 based architectures are Intel and AMD, who both design

and fabricate processors of this architecture. Intel briefly explored low power

internet of things style x86 processors such as their Quark [20] portfolio but

these failed to gain commercial adoption and have since been discontinued.

2.2.2 ARM

ARM introduced an alternative offering with their own ISA, which optimised

for power efficiency through the use of a heterogeneous computing architecture

which offered to share workloads across high and low performance GPP cores

to best optimise for a low thermal design power (TDP), as required by mobile

applications. While x86 processors tend to use fewer high performance cores,
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ARM processors optimise workloads across many small processing cores, often

task specific cores. This is described as ARM’s big.LITTLE architecture,

where higher power and less energy efficient cores are coupled with smaller

more power efficient cores to spread the compute load across a heterogeneous

multi-processing system. [21] offers a comparison of performance and energy of

ARM’s big.LITTLE against Intel’s Sandy Bridge architecture, where the Intel

processors were shown to have an average 12.6× to 152.4× higher power demand

than the ARM processors. For this reason, ARM processors have become the

major architecture in mobile computing such as with smart phones, tablets

and internet of things devices. ARM-based processing cores are interesting for

acceleration due to their advantages for low power edge applications as well

as their custom heterogeneous compute cores. Unlike Intel or AMD, ARM

licenses their processor architecture to commercial customers such as Xilinx

who can integrate their IP into heterogeneous systems.

Recent ARM architectures such as ARMv8-A and ARMv9-A support

trusted firmware which is used at boot time to ensure that the bootloader/kernel

are signed and allowed to execute at specified levels of hardware privilege. This

is used to limit or restrict application access from hardware such as attached

FPGAs or secure keys.

2.3 Graphical Processing Units

Graphical Processing Units are another compute platform traditionally used for

image and video processing. Like the processor, the GPU interprets compute

tasks through a software program and are typically coupled to a GPP for

acceleration. Where the GPU differs from the processor is that it is composed

of a significantly larger numbers of simple compute cores that operate in parallel.

Each compute core is computationally similar to that of a GPP but optimised

for floating point arithmetic operations. Unlike a GPP which may be required

to handle and manage system IO, the GPU is considerably more dense, able to

compact a high number of compute cores into its silicon die. GPU cores may

also be grouped and used to perform specific operations, reducing the need to

fetch sequential operations from memory.

Traditional GPUs are typically attached to a GPP via high throughput

data buses such as PCIe, where the throughput can be multiple gigabits per

seconds. For embedded devices, GPUs may be tightly coupled to the processor,

existing on the same System on Chip (SoC) using hardened bus interfaces.

Given that image manipulation typically occurs with large matrices of

pixel data, GPUs are optimised for operations that can be distributed across

parallel workloads, allowing for the time taken to perform complex processing

to be drastically reduced. More recently GPUs have found applications in

10



accelerating machine learning such as in [22], [23] and [24]. While GPUs

have a significant performance advantage over general purpose processors for

massive parallel operations, they still are susceptible to limitations regarding

memory access, also described by Von Neumann’s Bottleneck [25]. Operations

are executed sequentially such that memory must be accessed to retrieve the

next operation, resulting in limitations on throughput and increasing energy

consumed. Additionally, applications that are not easily expressed through

parallel matrix operations are not well suited for GPU acceleration.

2.4 Application Specific Integrated Circuits

Application Specific Integrated Circuits (ASIC) are task specific computation

devices, exclusively fabricated to carry out a specific set of tasks. The ar-

chitecture of an ASIC is fixed; unlike a processor or GPU which are able to

interpret a instructions within software, an ASIC operates like a pipeline of

fixed logical operations, able to perform a specific task extremely efficiently

but are specific to their designed application. ASICs are capable of performing

at significantly higher clock rates than GPPs or FPGAs as at design time,

they are not restricted to a specific architecture or clocking interconnect. The

drawback of designing applications for ASICs is the initial cost required to de-

velop custom silicon devices. Unlike an FPGA, which has custom architecture

that can be defined in-field, once an ASIC is manufactured, it will only ever

perform the task it was originally designed for. Any change in functionality or

application will require a new ASIC to be manufactured; typically reserved for

large production runs due to the cost of fabricating silicon devices.

A common example of ASICs for compute offload are cryptographic co-

processors, such as Trusted Platform Modules (TPM), which enable an applica-

tion designer to generate, store and limit the use/access to cryptographic keys.

For security applications, the advantage of an ASIC in this specific application

is that master keys are physically burnt to the device at manufacture and are

never exposed to any other component or software. Both GPPs and FPGAs

can be susceptible to key extraction attacks where private keys used for en-

cryption/decryption can be extracted thought bypassing software restrictions

or dumping the data stored within firmware/bitstreams.

Another popular use case of ASICs is machine learning, where platforms

such as Google’s Tensor Processing Unit (TPU) offer commerical ASICs for

acceleration TPUs are designed to accelerate the computation of tensor models,

used in the neural networks required for machine learning. For tensor model

acceleration a specialised matrix processor is able to handle massive multiplic-

ation and addition operations rapidly, while consuming significantly less power

than an equivalent GPP or GPU. Google’s Coral TPU [26] platform offers
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significant performance improvements over the traditional GPU acceleration;

[27] shows how Google Cloud TPU can accelerate training of CNNs at a rate

of 2-3× faster than an Nvidia V100 GPU. [28] offers a comparison for CNN

interference on FPGAs against TPUs, comparing Xilinx’s Deep Processing

Unit [29] (DPU) in differing configurations against the Coral TPU. The DPU

is shown to outperform the TPU in inference time, in specific configurations

of the DPU. The DPU implementation has some flexibility advantages where

it can exchange logical resource consumption on the FPGA for performance,

although the DPU architecture itself is proprietary.

2.5 Field Programmable Gate Arrays

Field Programmable Gate Arrays are configurable silicon devices that consist

of a matrix of logical elements. FPGAs are unique compared to software centric

processing platforms (processor, GPU, etc.) as user logic is described using

to logical elements and hardened macros such as digital signal processing and

memory elements embedded within the device. Figure 2.1 provide a overview

of the generic architecture of a Xilinx FPGA, showing generally how elements

are arranged. There are many other vendors offering FPGAs for market niches,

such a Lattice for low powered applications, but the two major vendors are

Xilinx and Intel.

Figure 2.1: Generic Xilinx FPGA Architecture [1]

FPGAs can be used as adaptive compute platforms where reconfiguration of
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the internal logic of the device may be performed either before or during runtime

and adapted to logic designed by the user. While ASICs may offer lower latency

and a highly optimised data path, FPGAs provide respectable performance for

operations that lend themselves to pipelining and customer architectures while

being able to be reconfigured in the field. FPGAs enable efficient acceleration

of operations such as extraction of key information or features, controlling

the data-flow and analysing data [30], for a range of applications including

image recognition [31], in-network security [32], predictive maintenance [33],

machine learning [34], amongst many others. Academic works and real world

applications are later explored in Chapter 3.

2.5.1 Architecture

While fundamentally all FPGAs are composed of loop-up tables (LUTs) and

a routing matrix, vendors have their own custom architectures that devices

are composed from. The FPGA fabric is often described as the programmable

logic (PL). Often vendors will provide a wide variety of processing elements

(PEs) to best serve the logic that is intended to be synthesised for them. For

example, Xilinx’s latest current generation Ultrascale device architecture is

composed of Configurable Logic Blocks (CLBs) that contain:

• Real 6-input LUTs

• Dual 5-input LUTs

• Distributed Memory and Shift Register logic (SRL)

• Dedicated high-speed carry logic for arithmetic operations

• Wide multiplexers

• Dedicated storage elements that can be configure into flip-flops or latches

Figure 2.2 shows the two types of LUTs available to Ultrascale devices

and Figure 2.3 highlights one of six elements, contains eight 6-input LUTs

and sixteen storage elements, found in the single slice of a CLB. There are

two types of slices; SLICEL (Logic), which contains just LUTs and SLICEM

(Memory), which also contains memory elements such as shift registers and

distributed RAMs.

These are then further organised into columns on the devices, interleaved

with hardened blocks such as SRL, DSP and IOB blocks. Figure 2.4 shows

a shift register logical element that SLICEM blocks are composed of. DSP

blocks are used to reduce the number of LUTs required to implement complex

arithmetic functions when synthesising logic, in particular for digital signal

processing operations. In addition to DSP blocks, Block RAM (BRAM) blocks
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Figure 2.2: Ultrascale CLB LUT6 and dual LUT5 blocks [2]

Figure 2.3: Ultrascale CLB LUT and storage elements (1 of 6 in a Slice) [2]

are typically implemented to provide local, in chip storage on the FPGA. This

reduces the need for high latency reads and writes to external memory units.

IO-blocks (IOBs) are placed around the edge of the architecture, enabling

translation to the appropriate signal properties, such as voltage required to

communicate with external devices. IOBs are organised into banks of IO, where

IOBs may be specialised for high-speed transfers such as serializer-deserializer

(SERDES) IO, which is typically used to communicate with protocols requiring

high-speed clocks and differential data channels, like Ethernet and PCIe. These

hardened resources are implemented to reduce the number of CLBs required

to implement the equivalent logic or to provide signal conditioning that would

not be possible, internal to the FPGA.

Figure 2.4: Ultrascale CLB Shift Register Logic [2]
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IOB, CLB, BRAM and DSP columns are organised into clocking regions

and distributed across the device as shown in Figure 2.5.

Figure 2.5: Ultrascale Kintex Floor plan [3]

CLBs are connected to each other, using a dedicated routing matrix. The

routing matrix may be connected to multiple clocks, specified at design time.

During the build process, implementation algorithms determine optimal place-

ments for synthesised logic and optimise the routing matrix to minimize clock

skew between LUTs. Other vendors organise their FPGAs in similar man-

ners but use varying terminology to describe components. For example, Intel

organises their LUTs into Adaptive Logic Modules (ALM) with 8-input LUTs.

A bitstream used to program and reprogram the FPGA, contains the

information require to define the of logic within the LUTs and the how the LUTs

are connected via the routing/switching matrix. This field re-programmability

means that the cost to deploy custom FPGA based compute has a lower

initial cost than developing an ASIC while still maintaining high levels of

performance and/or throughput. Additionally, it is possible for FPGAs to

function standalone since a soft-processor can be implemented, providing

support for bare-metal (directly executing instructions with no operating

system) and even full operating system support. Xilinx offers the MicroBlaze

and Intel provides the NIOS II/V processors; support for soft ARM and

RISCV-based processors also exists.
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Table 2.1: Comparison of FPGA Hard & Soft Processors

Vendor Processor Type Architecture

Xilinx MicroBlaze Soft RISC32 or RISC64

Intel NIOS II Soft RISC32

Intel NIOS V Soft RISC-V

ARM Cortex-M Hard ARM32

ARM Cortex-A Hard ARM32 or ARM64

2.5.2 Reconfiguration

The major advantage of FPGAs over ASICs is their ability of reconfigure in

the field. This allows for changes to be made to the acceleration hardware

during and after deployment. Reconfiguration offers the ability to completely

change the function of the FPGA and provide dynamic acceleration. There are

a number of types of reconfiguration including static, parametric, partial and

dynamic. Each of these methods has various advantages and disadvantages with

regards to build and runtime implementations. For the purpose of relevance

and maturity of partial reconfiguration, this Section will exclusively explore

reconfiguration on Xilinx FPGA SoCs.

2.5.2.1 Static Reconfiguration

FPGAs are flashed through a process known as static reconfiguration. Static

reconfiguration involves a fixed or static bitstream, containing information

about how to connect LUTs, populate memory registers and how to route

the interconnect matrix. Hardened circuitry internal to the FPGA reads a

bitstream file and extracts the information to flash the FPGA accordingly.

This configuration circuitry can occur over a number of protocols, including

JTAG, serial flash, parallel flash as well as high speed protocols like PCIe. The

procedure can be controlled by a host PC using the vendor’s software as well

as an accompanying microcontroller or SoC. For the ZynqMP devices, this can

be managed by the PMU, which passes a bitstream to the FPGA from the

processing system.

Startup CRC Data Header Config Clear

Figure 2.6: Xilinx Static Bitstream Layout (7 Series FPGAs) [4]

For complex applications, data that is transferred between the processing

systems and PL may need to take multiple pathways for logical propagation.
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Under static reconfiguration, all of these pathways must exist at any instance

of time as the bitstream that has been flashed onto the FPGA is immutable

at runtime. To satisfy complex designs, demanding more hardware resources,

this may require a larger FPGA device. This leads to design complexity as

well as an increase in cost and power consumption. Larger designs are more

difficult to achieve higher operating frequencies as the clock path may need to

be extended to match the datapath. Additionally if the design in the FPGA is

static, this means that new functions or module logic will require a full redesign

of the logic in the PL.

Additionally the FPGA itself can be completely reprogrammed with a new

bitstream at runtime however this is typically slow, in the region of multiple

seconds for small bitstreams (over JTAG or Flash mechanisms), proportional

to the size of the bitstream being loaded.

2.5.2.2 Parametric Reconfiguration

One option for managing changing datapaths is a design methodology known as

parametric reconfiguration. This is performed by using accelerators that utilise

internal registers to specify their operating mode, such as an image processing

block changing the resolution of images that it can process. Parametric

reconfiguration can potentially reduce the resource consumption of a design and

limit the effects of an increasing datapath on clock frequency by condensing the

operating modes into a single function/module. While this means that a number

of configurations can be supported, this increases design time complexity as

the FPGA must now support communication from an internal/external logic

to specify the desired parametric changes and modules must be designed to

support all valid configurations internally.

2.5.2.3 Partial Reconfiguration

Partial reconfiguration provides an alternative to the drawbacks of static and

parametric reconfiguration. PR provides the ability to time-multiplex hardware

by segmenting the FPGA into partially reconfigurable regions (PRRs) that

can be isolated from the static FPGA bitstream.

Figure 2.7 shows how an FPGA can be divided into PRRs where the sub-

sequently labelled bitstreams contain the logic that is mappable to that specific

region. The rest of the FPGA can be described as statically reconfigurable,

unlike partial reconfiguration, requiring the FPGA to be completely re-flashed

in order to reconfigure. A partial bitstream is smaller than a complete static

bitstream as the startup and configuration segments are not required for PR,

shown in Figure 2.8. PR also provides a mechanism for rapidly updating the

behaviour of a system without the need to re-provision the entire static region.
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Figure 2.7: Example of partially reconfigurable regions and PR bitstreams

Rather than re-programming the entire device with large bitstreams using

slower flashing mechanisms, PR allows for only the PRRs being exchanged to

be replaced and can utilise higher throughput interfaces to do so.

CRC Data Header

Figure 2.8: Xilinx Partial Bitstream Layout (7 Series FPGAs) [4]

As PR enables logic to be time-multiplexed, this allows the datapath

required by the accelerator to be drastically shortened as data may be sent

through different acceleration logic at different points in time, using PR to

replace acceleration hardware as needed. Reducing the required resources of

programmable logic to implement behaviour allows for smaller, cheaper FPGAs

to be used that provide the same effective acceleration.

Additional accelerator functions (as PR bitstreams) can be stored in non-

volatile memory, such as on the attached filesystem of ARM processor, for

loading as required, where the fixed datapaths ensure that the PR hardware is

mapped to the same memory addresses or interconnects as previous PR logic.

A common method of encapsulating PR logic is through the use of static shells,

that expect the same interfaces for any PRMs that are loaded within them.

This provides an easier design path for building additional accelerator functions

but restricts the availability of the interfaces and buses that are connected to

the specific function.

Another feature of PR is the ability to enhance fault-tolerance or the ability

for a system to recover from faults or errors. A popular use case for FPGAs is

in space applications, often used in satellite communication systems, where a

high exposure to radiation can lead to store bits being flipped and changing the

behaviour of the logic. PR can potentially provide resilience for these systems;

if errors are detected in a PR region, they can be rapidly reloaded using PR
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and could even be loaded with a more fault tolerant accelerator module. Using

methods like dynamic PR would also prevent the need for the dataflow to be

halted during operation, an important feature to critical systems such as those

required in satellite control applications.

Additionally, it has been demonstrated that PR can have beneficial power

savings over classic methods of parametric control [35] as well as reducing PL

resource consumption.

The advantages of a system that incorporates PR can be described as:

• Time-multiplexed Logic — The logical resources required for an applica-

tion drastically decrease as acceleration functions can be swapped in and

out on demand.

• Performance for reconfiguration of the PL is improved — Reducing the

requirement to reprogram the entire device, reduces the overall time

required to configure a device. This also allows for higher performance

reconfiguration ports built into the device itself, rather than external

ports.

• Power efficiency is improved — a design may be partitioned in a way to

allow for regions to be unloaded with PR to reduce power consumption.

It is also important to note that Xilinx’s FPGAs can not startup directly

with PR and must be initialized with a static bitstream using external flashing

mechanisms such as JTAG on first boot.

2.5.2.4 Dynamic Partial Reconfiguration

Despite being used interchangeably in literature, Partial Reconfiguration and

Dynamic Partial Reconfiguration (DPR) have slightly different definitions. PR

refers to the modification of part of an FPGA, typically described as a region,

while the remainder of the device is left unaltered. This does not specify the

state of operation of the FPGA; dataflow could be paused and the device held

in a reset state during the process of reconfiguration. DPR specifically refers to

the state of operation of an FPGA undergoing PR as functional, data can flow

through the static and non-reconfiguring PR regions of the FPGA whilst a PR

operation is ongoing. This is critical to applications where the system must

remain operational. Functional modules that are not critical to the operation

of the system can be placed into PR regions and the surrounding static region

can be kept operational. For autonomous applications such as UAVs or drones

[36], this type of behaviour is critical. Considering that dataflow continues

under DPR, designers must consider and account for the reconfiguration time

as part of task latency to ensure that real-time critical event deadlines can be
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met. Throughout this thesis, PR is assumed to be synonymous with DPR and

that it can be assumed that the FPGA is in an operational state during PR.

2.5.2.5 PCAP

The Processor Configuration Access Port (PCAP) is an interface available

to the processing system to enable reconfiguration of the FPGA. It both

supports static reconfiguration as well as partial reconfiguration and can be

triggered from both bare metal and a fully fledge operating system. Under

the Zynq-7000 architecture, the processing system (PS) has a dedicated DMA

controller that can be used to transfer bitstreams from external memory into

the PCAP for reconfiguration. Within the ZynqMP architecture, the PCAP

is accessed via ATF which makes requests to the the Platform Management

Unit (PMU) and transfers bitstreams from external memory into the PCAP

using the CSU DMA driver [15]. The use of the ATF interface ensures that

access to programming the FPGA with known bitstreams is restricted to

authenticated users at boot or within Linux. The process is complex due

to the available security aspects but Xilinx provides an abstraction kernel

driver within Linux known as FPGA Manager. This interface is restricted to

a maximum throughput of 128 MBytes/s but does not require any resource

utilisation on the FPGA itself and thus can be used for the initial FPGA

reconfiguration.

2.5.2.6 ICAP

The Internal Configuration Access Port (ICAP) is an IP block provided by

Xilinx that abstracts a hardened primitives integrated into the FPGA fabric

that allows for reading and extracting bitstream configuration information,

known as ICAPE2 for the Zynq and ICAPE3 on the Zynq UltraScale. Figure

2.9 shows the ICAPE2 macro for Xilinx’s 7 series FPGAs. The ICAP allows

for commands and data concerning reconfiguration to be written to/read from

the configuration logic of the FPGA. Unlike PCAP, the ICAP can only be

used once the FPGA has been programmed as well as only be used for partial

bitstreams as it requires the internal ICAPE2/3 macro, accessible only from

within the FPGA itself.

Figure 2.9: Xilinx ICAPE2 Primitive (7 Series FPGAs) [5]
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The ICAP, however, is an internal resource on the Xilinx devices and

cannot be utilised until the FPGA has been first programmed via an external

mechanism such as PCAP.

2.5.2.7 MCAP

The Media Configuration Access Port (MCAP) is an interface on UltraScale

FPGAs that enables a similar provisioning mechanism as the ICAP integrated

block but for use over PCIe. An initial complete bitstream can be used to

establish the PCIe interface and then additional configuration can be performed

using the PCIe interface, described as Tandem PCIe. Similarly to ICAP, the

MCAP can only be used after initial configuration has been applied. Unlike

the ICAP, it does not support a bitstream read-back mechanism.

2.5.3 Development Process

In order to develop acceleration applications for an FPGA, there is an extended

workflow that the designer must undertake to realise their designs in hardware.

Due to the nature of hardware applications being synthesised into physical

logic, as opposed to a sequence of instructions such as with a software program

on a processor or GPU, the build tools must take a description of logic and map

it onto the FPGA. Given the complexity of designing for individual LUT and

wire logic, designers typically use an abstraction known as the register transfer

level to describe their logic. Within a register transfer level (RTL) description

a designer can model their applications as combinational transformations of

the logic in the datapath. Using typical hardware description languages (HDL)

such as Verilog and VHDL, the designer can describe registers for storage as

well as wires and buses to move data around as well as arithmetic operations

that should be applied to the data. There is no fetch, decode and execute

path, as per a software paradigm, so the logic described in the HDL must

be able to be synthesised into a low-level netlist of logical elements. Next

the FPGA must be constrained, the inputs and outputs pins and ports of

the FPGA must be defined along with any requirements for timing, i.e. the

minimum frequency of the clock that the tools must attempt to establish during

implementation. After the constraints have been established and synthesis has

been performed, the vendor tools can perform the implementation, where the

logic netlist is mapped to the FPGA device itself. This process is known as

place-and-route, often a time consuming process where the tools attempt a

number of optimisations, in order to most efficiently place and connect the

logic on the FPGA such that it will represent the logic as described by the

designer. Upon placing logic and meeting the timing requirements of the logic

circuit, the tools can then generate a device bitstream, containing all of the
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LUT configuration and routing data. This is used to provision the FPGA with

the appropriate logic, prior to runtime.

FPGAs are capable of operating as standalone devices, however they are

better supported as accelerators for a general purpose processing system. Edge

applications that require acceleration are often required to be networked as well

as provide resilience for deployment, such as security and update mechanisms,

which are better optimised for software centric compute. This means that

typically a designer will then need to write software to manage moving data

to and from the FPGA and either a physical or soft processor. A designer

must consider if they intend to run their application on bare metal or under an

operating system as well as consider the interfaces that the processor might have

access to the FPGA with. Linux is a popular choice of lightweight accelerators,

due to its small footprint as well as flexibility for customisation, especially

when managing compute offloading. Common interfaces for managing the

functionality of available hardware are the AXI and AMBA bus protocols to

move data between memory mapped regions. These interfaces allow for high

performance data transfer but generally require complex software drivers to

control the datapath.

After understanding the design requirements of the FPGA, processor,

operating system and designing the processor to FPGA interface the user can

then start to develop their high level applications. These applications may

wish to control reconfiguration of the FPGA, demanding knowledge of the

subsequent bitstream locations and interfaces, etc.

All of these steps lead to a complex, specialised workflow that forces a

high knowledge barrier to entry for designers choosing to leverage FPGAs for

acceleration.

2.5.4 PR Design Challenges

PR presents a number of challenges for designers both at build time as well

as at run time and deployment. The PR build flow can generate a number

of bitstreams that must be appropriately tracked and managed, for the users

application at runtime.

2.5.4.1 Abstraction

PR provides a complex challenge to abstract time-multiplexed hardware, in

particular when using a software centric control flow, such from a processing

system, either hardened like the Zynq or a soft-CPU on the FPGA such as

Xilinx’s MicroBlaze. PL hardware can be interfaced from the PS through a

number of buses, typically through high speed buses such as AXI. Providing

an abstraction for managing different methods of transferring data to/from the
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PL/PS as well as the factor of time-multiplexed hardware in the PL requires

control/decision software to be running at all times. This software is typically

described as a runtime manager and should provide a managed method of

accessing hardware on the PL as well as reconfiguring it. Typically a runtime

will be accompanied by a build workflow that will generate associated metadata

for the hardware static and partial bitstreams.

2.5.4.2 Build Workflow

Designing FPGA applications is a low-level process, where the challenges of

translating high level behaviour to low level RTL, is already a challenge itself

before introducing PR to the process. To design for PR, a designer must

follow the standard FPGA workflow of designing an HDL netlist, synthesis,

implementation, place and route as well as additional steps for the partitioning

and floorplanning of the device. Figure 2.10 shows the steps required for each

combination of PRMs to generate bitstreams that will load the respective

modules.

HDL HDLHDLHDL ...

Partitioning

Synthesis

Floor Planning

Place & Route

Bitstream

n

Figure 2.10: PR Build Process where n is the number of configurations required
to be generated

To design a PR application there are two sections of the design process, the

static regions and the reconfigurable regions (one or more). The static region is

the fixed element to the design, that will stay operational during reconfiguration.

This region generally manages dataflow as well as control interfaces between

the PS. Controllers such as DMA, memory interfaces and bus interconnects

will typically be placed into the static regions. The partially reconfigurable

regions (PRRs) are the regions that can be exchanged at runtime. Each region
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can allow for n partially reconfigurable modules to be implemented. A designer

must decide at build time how many regions their design needs as a single

region can, in theory, support many modules as long as the resources defined

within that region will support it. To start the design process, the FPGA must

first be partitioned into the number of regions required by the design. This

process is known as floorplanning, where rectangular regions are selected to

encompass the various logical elements needed for acceleration modules. There

are 3 main types of floorplanning: island, where regions are isolated from one

another and should be sized according to the largest implementable module,

slot and grid where regions are continuous and can be connected to each other

with the difference being the location of regions. The general advantage of

slot/grid floorplanning is that reconfigurable modules can be spread across

multiple contiguous regions depending on the resources of the module. If slots

or grids are small enough, this can decrease the required resources between

differing sized modules. Regions are generally selected base upon tiled regions

but can be allocated unaligned to tiles as well. Modules as either an HDL or a

HLS source are then synthesised. The modules must be synthesised prior to

placement to ensure the partial regions have enough resources to support the

required logic. The initial placement of the synthesised modules must then be

made in these regions (these can be placed as blackboxes or blank functionality

if required). The tools can then be instructed to place and route the logic

in the FPGA as a static placement, in order to implement additional place

and routing runs against, to ensure commonality between PR configurations.

The static run is then locked and the process of placing and routing can be

repeated for all valid combinations of modules. Upon completion of all of the

runs, the tools can perform a design rules check (DRC) to verify that all of the

PR runs are valid. Both a partial and a compete static bitstream can then be

generated for valid combination of modules.

2.5.4.3 Runtime

An FPGA accelerator could contain a number of hardware features accessible

from a processing system that may require drivers or knowledge of such features

from software. This problem extend when there are multiple PRRs and can

quickly become complex for a user to track and manage hardware interfaces

as well as the bitstreams that the PRMs belong to. Each of the PRMs may

also have their own memory maps as well as parametric modes and controls;

as the system loads new states, the underlying configurations must be tracked

somehow.

Given that the PR workflow can generate a number of bitstreams, it is

unfeasible for these to all persist in memory simultaneously so a method
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for caching and providing fast memory access to bitstreams is important.

This might be considered in the form of intelligently caching bitstreams and

dynamically managing which bitstreams are ready to be loaded at any point

in time.

Since kernel v4.4, Linux has supported the FPGA Manager driver, a runtime

which aims to abstract FPGA reconfiguration across a variety of vendors under

a unified API. Xilinx has built a lightweight utility that provides control over

the FPGA Manager API from the userspace and offers a simple but unmanaged

means to flash bitstreams to attached FPGAs. Other vendors such as Intel

have their own implementations of the FPGA manager driver that support

their FPGA SoC platforms. While this runtime manages the loading of FPGA

bitstreams from a processor to an FPGA, it is limited in features and requires

the user to have full awareness of the PR bitstream locations and associated

drivers.

2.6 FPGAs compared to GPPs, GPUs & ASICs

FPGAs, GPUs and ASIC have found usage as acceleration devices for GPPs;

the devices have been compared to each other across numerous academic works.

GPUs are excellent at handling image pipelines such as a manipulation of a

video feed but cannot be directly connected to a camera interface such as CSI,

set up by the processing system. The same task implemented on an FPGA

would be highly resource intensive however the FPGA could be connected

directly to the CSI via IOB blocks at the edge of the device, reducing the

latency and potentially improving performance by bypassing the requirement

for a GPP. ASICs may be more performant than the FPGA implementation

however are highly rigid and require significant design and time resources to

manufacture. Figure 2.11 provides a general overview of where the various

devices compare to each other in relation to flexibility, ease of use, performance,

efficiency and cost.

[37] demonstrates a stereo vision processing algorithm comparing FPGA

performance against an equivalent implementation on a GPU. They conclude

that despite a slower internal clock, the FPGA demonstrates superior per-

formance due to extensive pipelining and no longer being susceptible to the

I/O transfer time cost that the GPU experienced in order to move images

from memory into the GPU. The FPGA did demonstrate limitations in logical

resource consumption, struggling to implement hardware that was able to

support a disparity range of 256 managed by the GPU. An important con-

sideration is that FPGAs can only support a finite arrangement of logic and

unlike a GPU, which will suffer from performance impacts when dealing with

complex computation, an FPGA may simply not be large enough to implement
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Figure 2.11: General comparison of GPP, GPU, FPGA and ASIC

the required logic.

[38] provides a comparison of FPGA, CPU, GPU and ASIC accelerations of

an RNN algorithm, Gated Recurrent Network (GRU). Their results demonstrate

that generally the FPGA was more efficient with better peak performance, at

10× performance/Watt. GPU/CPU performance was improved by batching

data but not significantly enough to compete with the FPGA, which was more

performant and did not suffer from the increased latency and complexity of

batching. As expected the ASIC outperformed the FPGA, where the FPGA

was 7× less efficient than the ASIC. Cost should also be considered when

evaluating a target compute platform as fabrication of an ASIC is significantly

more expensive both in cost and time than the use of a GPP, which are plentiful

and cheap to develop for.

Developing applications for GPUs is dissimilar to FPGA development as

typically developers can write applications in higher level software languages

such as C, C++, Fortran, Python and MATLAB, that leverage GPU specific

frameworks such as OpenCL [39] and Nvidia’s CUDA [40] libraries. These

tools abstract the complexities of operation parallelism to best serve the GPU’s

architecture and allow developers to access acceleration via APIs. OpenCL

enables developers to rapidly build applications that can leverage the parallelism

of the GPU. FPGAs require a lower level understanding of digital logic as well

as knowledge of the target device’s features. This domain specific knowledge is
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typically a contested point for building FPGA accelerated applications where

designers require highly specialised knowledge. Recent developments in HDL

design have seen the introduction of High Level Synthesis Languages (HLS)

for developing hardware applications. HLSs enable designers to work at higher

levels of abstraction and can use programming language paradigm to describe

the algorithms they intend to implement. While these languages, such as

Xilinx’s Vitis HLS [41], have similar constructs to the C++ language and

can be co-simulated against C++ testbenches, still require the designer to be

aware of the context of their designs. Vitis HLS supports macros such C++

functions to instantiate RLT module interfaces as well as simple mechanisms

to parallelising tasks via unrolling loops. Open source HLS languages also

exist such as the Scala-based Chisel [42] and nmigen [43], written in Python.

Developers must still design with awareness that their code will be synthesised

to physical hardware and traditional software paradigms will not directly

translate to an FPGA implementation.

2.7 Heterogeneous SoCs

Heterogeneous System on Chips or FPGA SoCs are devices that integrate both

a hardened processor and FPGA device into a single silicon device. Rather

than standalone processors and loosely-coupled FPGAs, FPGA SoCs offer

lower power, higher bandwidth between devices as well as better integration.

These devices often include high-speed transceivers, a wide range of hardened

peripherals as well as on-chip memory. Integrators of the ARM architecture,

such as Xilinx and Intel’s Altera, have coupled ARM processors with high

capacity FPGA devices, to provide flexible platforms for building and designing

customer hardware for acceleration. A number of vendors offer FPGA SoC

devices such as Microchip’s PolarFire SoC, which couples a RISC-V architecture

processors with an FPGA.

A major advantage of a hardened ARM core is that it frees the FPGA

from having to support complex logic required for a soft CPU of equivalent

performance. Additionally, given that the FPGA is considered as a subsystem

of the CPU, the CPU and FPGA can be clocked independently, allowing the

CPU to run at traditional clock speeds of 1 GHz and higher. The two major

vendors, Intel and Xilinx offer a number of architectures integrating their

FPGA devices with processing systems.

2.7.1 Intel

Intel offers the Agilex-F, Agilex-I, Stratix 10, Arria 10, Arria V and Cyclone V

families of FPGA SoCs, as shown in Table 2.2. Majority of these device families
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Figure 2.12: Generic FPGA SoC Architecture [6]

Table 2.2: Intel FPGA SoC Families

Family Processor FPGA Arch. Cores Year

Agilex-I Intel Xeon &
ARM A53

10nm x86 + arm64 n + 4 2019

Agilex-F ARM A53 10nm arm64 4 2019

Stratix 10 ARM A53 14nm arm64 4 2013

Arria 10 ARM A9 20nm armv7 2 2013

Arria V ARM A9 28nm armv7 2 2011

Cyclone V ARM A9 28nm armv7 1 2011

support ARMv7 or ARM64 processors with the exception of the Agilex-I, which

provides a cache and memory coherent interconnect to Intel’s Xeon platform

of server-grade processors. Despite Intel’s main target architecture being x86

based (for personal computing and enterprise servers), many of its FPGA

SoC families are targeted for embedded deployment and/or acceleration, thus

more commonly use ARM-based processing systems. The Agilex-I series is

the exception provide acceleration support for Intel Xeon (x86), however it is

more common in datacenter applications to use PCIe based FPGA acceleration

cards instead of tightly coupled FPGA SoCs.

2.7.2 Xilinx

Xilinx offers the Versal, Zynq Ultrascale+ (MPSoC & RFSoC) and the Zynq-

7000 families of FPGA SoCs, as shown in Table 2.3. Similar to Intel’s offering,

these FPGA SoCs are based on ARM architectures, targetted at embedded
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Table 2.3: Xilinx FPGA SoC Families

Family Processor FPGA Arch. Cores Year

Versal ACAP ARM A72 7nm arm64 2 2019

Zynq Ultrascale+ RFSoC ARM A53 16nm arm64 4 2017

Zynq Ultrascale+ MPSoC ARM A53 16nm arm64 2 or 4 2015

Zynq-7000 ARM A9 28nm armv7 1 or 2 2011

devices for accelerating the ARM processor, in field applications. At this time

the Versal ACAP family is a newly release product but has limited academic

or commercial research has been performed against these devices and is not

targetted at embedded applications.

2.7.2.1 Zynq-7000

Figure 2.13: Zynq-7000 Architecture [7]

The Zynq-7000 or Zynq series are Xilinx’s initial FPGA SoC offering, their

first product to offer a tightly coupled in-die FPGA and ARM processor SoC.

This FPGA SoC leverages the general purpose flexibility of the processing

system with the dynamic reconfiguration and performance of the programmable
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logic to provide capable acceleration.

Figure 2.13 shows the Zynq’s architecture, describing the interfaces available

between the PS and PL. The architecture of the Zynq devices supports a

number of high performance interfaces between the hardened ARM cores and

the programmable logic. The most basic communication method is a general

purpose PS master interface where the CPU can move data into two of the

master AXI general purpose ports on the PL via an addressable memory map.

The PL interface receiving this data can be a single AXI slave to receive CPU

requests; this method is relatively slow as 25 MB/s as the CPU must spend

compute cycles to perform these operations rather than on other more complex

tasks. An alternative higher performance approach is to use Direct Memory

Access from the PS DMAC or with a PL DMA Controller. The PS DMAC

is quoted at being able to perform at 600 MB/s and a dedicated PL DMA

Controller at 1200 MB/s when using a high performance interface on the PL.

The disadvantage of the PL DMA Controller is that it required potentially

limited resources from the FPGA fabric, where as the PS DMAC is a hardened

controller driven directly by the PS. Both the Zynq and ZynqMP architectures

support these three methods of PS-PL data transfer.

2.7.2.2 Zynq Ultrascale+

Xilinx’s Zynq UltraScale+ MPSoC (ZynqMP) is positioned to compete directly

with Intel’s Stratix 10. It is available with 1.5 GHz dual or quad ARM A53

APU cores, a Mali-400 MP2 GPU and FPGA. Additionally it supports a dual-

core realtime processing unit (RPU), that is designed to be highly deterministic

and low latency. It advances the platform introduced by the Zynq-7000 with a

new 64-bit architecture, modern FPGA structure built on a 16 nm fabrication

process. The ZynqMP architecture contains a platform management unit

(PMU), that is responsible for number of features including secure access to

peripherals and memory as well as power and programming of the FPGA. The

programmable logic is based on Xilinx’s Ultrascale+ design, with a range of

interconnect options, DSP blocks and hardened marcos.

Xilinx also offers a variant of the ZynqMP, the RFSoC, specifically designed

for radio applications, such as software defined radio and 5G wireless.

2.8 Operating Systems (Linux)

An operating system (OS) is a collection of software layers that manages hard-

ware such as IO, system resources as well as provide interfaces for applications

to interact with. A common feature of an OS is the ability to efficiently schedule

tasks for allocation of processor memory and time, system resources as well as
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Figure 2.14: Zynq Ultrascale+ Architecture [44]

hardware access.

Linux is a popular OS designed to be modular and capable of supporting a

large number of processing architectures, including x86 and ARM64. While

other operating systems such as Real-Time Operating Systems (RTOS) are

popular for adaptive systems, Linux has risen in popularity due to open source

nature as well as wide support for programming paradigms and languages.

Linux is designed to abstract low level and potentially security risky operations

to its direct interface with hardware, the Kernel. The Linux kernel has direct

access to physical hardware that is attached to the processing system, in the

case of an FPGA SoC, this includes the FPGA fabric. Typical user applications

will run in the userspace, an abstraction within Linux to isolate applications

from having direct access to hardware and physical memory addresses. This

abstraction exists to provide isolation that serves to protect memory and

hardware from malicious behaviours. The Linux userspace uses virtual memory

mapping to allocate processes their own sandboxed memory space that restricts

access to the memory of other processes. User processes and applications will

communicate with hardware accelerators through the use of kernel drivers,

that abstract low level functionality with high level system interfaces such as

sysfs, a pseudo-filesystem that provides an interface to kernel data structures.
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2.9 Summary

Acceleration functions are important to a range of applications, where general

purpose processors are inadequate to handle the computing demands, whether

that is performance, latency or parallelism. Many alternative processing plat-

forms have both been proposed and many accepted, such as GPUs for video

processing, however FPGAs have shown to be a promising high performance,

yet flexible custom solution to acceleration. Partial reconfiguration further

increases the flexibility, power efficiency and cost savings of FPGAs as compute

offload as it enables adaptive systems that support rapidly configurable accel-

erators. However, while PR has significantly matured since its introduction,

the tools remain difficult to use for a designer without bespoke knowledge.

The current workflow requires a number of designer inputs across the design

process, requiring low-level knowledge of both FPGA and CPU architectures

to communicate between devices. This is further complicated at runtime where

the designer is expected to manage the abstraction of PR specifically for their

own applications, managing this at an FPGA, Kernel and Userspace level. It

is increasingly important that these tools are made more accessible to software

designers to provide automation and abstraction to non-experts in order to

encourage wider adoption of PR. We believe the research and tools presented in

this thesis begin to democratise the PR workflow and enable a new audience of

autonomous systems designers to build FPGA accelerated edge applications.
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Chapter 3

Literature Review

In this Chapter, we review the state of dynamic partial reconfiguration, design

tools for PR as well as PR management runtimes. We investigate different

approaches to streamlining the development process of PR accelerated applica-

tions for FPGA SoC deployment, examining both vendor and academic build

and runtime tooling.

3.1 Design Methodologies

To understand how PR applications are currently developed as well as the

advantages and disadvantages of these techniques, both design methodologies

from device vendors as well as current academic literature are described.

3.1.1 Vendor PR Tools

This thesis focuses on Xilinx’s FPGA SoC devices and the associated toolflows;

while Intel’s FPGA SoCs support PR, the availability and documentation of the

PR process and tooling is significantly less mature than Xilinx’s offering, hence

our focus on Xilinx. The design process for both major vendors is broadly

similar, where the differences are related to the architecture specifics of the

FPGAs.

3.1.1.1 Vivado Design Studio

Xilinx offers the Vivado Design Studio for FPGA application design, testing

and deployment. Vivado is a visual design tool (with GUI) that is built with a

scripting backend, written in the TCL programming language. It offers three

options for workflows: GUI-based where the Vivado IDE is used to control the

design process, TCL-based where the user can interact with a command-line

to pass commands into/out of Vivado and a mix of GUI/TCL automations.

The Vivado suite provides tools for verification, the functional and behavioural

testing of logic, Synthesis, the translation from HDL/HLS to RLT as well as
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Implementation, for placing, routing and optimizing logic on an FPGA. Within

Vivado a designer can leverage Xilinx’s workflow methodologies for optimising

their implementation for power efficiency, optimal clock frequency as well as

other recommendations. Recently Xilinx added support for a board store,

which allows designers to access a repository of boards and example designs

that are setup with constraints for the designer to immediately start using.

3.1.1.2 Dynamic Function eXchange

Dynamic Function eXchange (DFX) is Xilinx’s PR workflow and tooling,

introduced with Vivado Design Studio 2019.2. DFX is a collection of tools

provided by Xilinx to reduce some of the complexities associated with designing

partially reconfigurable applications. It specifically targets platform-based

design flows, such as for the Alveo FPGAs (PCIe-based), however this workflow

is now the default for Xilinx FPGA SoCs, the Zynq and ZynqMP. DFX allows

for hardware designs that use the TCL-based non-project flow or RTL/IP-based

project flows. DFX provides a number of IP cores that manage aspects of

PR like isolating the PRR during reconfiguration, managing AXI interfaces

to prevent data loss during PR as well as IP cores to monitor and debug PR

bitstreams.

Previously, DFX designs demanded a rigid static structure across the whole

device in order to match the PRMs with existing implementation run. This

requires the complete locked static region to be used for context when placing

and routing for PRMs. This is both RAM heavy and potentially a vulnerability

for proprietary designs as the static region must be loaded into memory for the

implementation of PR regions. Recently Xilinx has introduced two advanced

concept known as Nested DFX and Abstract Shell [8] to their DFX workflow.

Nested DFX enables the placement of one or more RPs within an already

existing RP, to permit further granular reconfiguration. This means that

smaller acceleration functions can be placed more conservatively when a larger

function might also exist. At this time it is a feature only supported by the

Ultrascale+ devices, including the ZynqMP.

DFX Abstract Shell is a workflow available for UltraScale+ FPGAs, in

Vivado Design Studio 2020.2, that allows a trimmed down static design to be

used for RPs. This is a static layer required for the minimum context needed to

implement an PRM and generate a PR bitstream for that RP. The logical shell

contains the boundary interfaces for the PRMs and the Pblock of the partition

is captured in the design constraints including any clocking or boundary timing

requirements.
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Figure 3.1: Standard DFX vs Abstract Shell implementation logic [8]

The DFX Abstract Shell process allows the implementation requirement of

the static region to be separated from the PRM using a trimmed down version

of the static design based upon a given RP. The abstract shell is effectively a

minimal design image required for implementing a new PRM and generating

a partial bitstream for those modules. Figure 3.1 shows the reduction in

static logic required to place and route PRMs from the standard DFX and the

Abstract Shell workflow. Abstract Shell also provides advantages for multi-

user designs; as a minimal static region is required, this can be provided to

acceleration function designers enabling proprietary or custom static logic to

be restricted.

3.1.1.3 Vitis HLS

Vitis HLS allows designers to easily create complex FPGA-based functions

using C/C++ and OpenCL code. The Vitis high level abstraction provides a

number of utilities to simply the design process for software designers looking

to leverage HLS to generate RTL. These accelerated functions can either be

deployed as part of the Vivado workflow or as RTL Kernels for the Vitis IDE

workflow. Vitis HLS enables the generation of complex interfaces through the

use of #pragma keyword within C/C++ functions. This can be used to rapidly

build powerful hardware functions from C/C++ code where traditional software

paradigms such as for loops can be unrolled and pipelined for synthesis. There

are a number of libraries for Vitis HLS that enable the rapid deployment of

acceleration functions such as the Vision, AI and Security libraries. Figure 3.2
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void example(int A[50], int B[50]) {

#pragma HLS INTERFACE axis port=A

#pragma HLS INTERFACE axis port=B

int i;

for(i = 0; i < 50; i++){

B[i] = A[i] + 5;

}

}

Figure 3.2: Example of Vitis HLS Pragma for AXI Stream Slave/Masters.

shows the minimal code required to generate an IP core with an AXI Stream

Master and Slave interface that takes the incoming stream and appends an

integer value of 5 to each element of the stream. While this example is

compilable as C++, designers still must be aware of the constructs that

HLS will generate upon compiling and synthesising this code into logic. The

abstraction is increased but the fundamental implementation still requires

knowledge of the tools and their ability to interpret the designer’s code.

Co-simulation is also possible where the behaviour of an HLS design can

be tested using a software based C++ test bench. This makes it easier for

designers to pass complex data objects such as waveforms or video frames into

a design for testing.

Xilinx’s Model Composer [45] is a DSP design toolbox for MATLAB’s

Simulink tool that offers similar abstraction features to Vitis HLS. In Model

Composer, users can utilise a library of HDL, HLS, and AI Engine blocks for

the design and implementation of acceleration functions on Xilinx devices. The

Model Composer workflow is closer to visual block design tools than Vitis

HLS but provides an alternative workflow that offers high level abstractions.

Xilinx’s System Generator [45] for DSP is a lower level add-on for Simulink

that generates prepared IP cores, exclusively for Xilinx FPGAs, that can be

imported directly into Vivado. Similar to System Generator, MathWorks

provides MATLAB HDL Coder [46] which allows the designer to generate

VHDL and Verilog code from MATLAB functions or Simulink models. This

enables designers familiar with MATLAB to rapidly design HDL code without

needing to be concerned with low level complexity. Additionally it provides a

simple toolchain for simulating HDL logic directly in Simulink and outputs

HDL so can be used with non-Xilinx based devices. Both System Generator

and HDL Coder are lower level abstractions than Vitis HLS or Model Composer

and are intended for RTL level design rather that automatically generating

bus interfaces like AXI and AXI Stream. These tools specifically focus on

generating specific accelerator hardware logic, rather than the integration into
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a complete application.

While Vitis HLS helps to ease the transition from software to hardware

paradigms, it still requires in-depth understanding of how the HLS compiler will

generate hardware based upon its description in C++. Underlying mechanisms,

such as the depth and width of bus interfaces, must be specified by the designer

or otherwise will be inferred by the compiler. This can lead to undesirable

consequences for the optimisations and implementation provided by the tooling.

3.1.1.4 Vitis & PetaLinux

PetaLinux is a Linux build tool that enables designers to build and deploy

embedded Linux for Xilinx based processing systems, including the Zynq and

ZynqMP devices. It is built on top of the Yocto toolchain and extends the stand-

ard Yocto flow with Xilinx specific application, driver and library generators.

It provides a number of tools for testing and debugging Linux applications such

as debug agents as well as GCC and GDB tooling. The PetaLinux tools allow

a designer to automatically generate a custom Linux Board Support Package

including Xilinx device drivers for embedded IP cores, kernel and bootloader

configurations. The tools are able to import Vivado-exported hardware along

with specific data files that allow for device drivers from Xilinx embedded IP

cores to be automatically built and deployed according to specified addresses

of that device. Upon generating a Linux image (BSP, device drivers, core

applications, etc.), the tools allow developers to package libraries and software

components to use in the Vitis IDE for building applications.

The Vitis IDE supports a number of development flows for edge, server

and cloud deployments. For edge development flows Vitis IDE allows for

C/C++ applications to be developed and accelerated with programmable logic

functions. Vitis IDE can import and use exported Linux kernel headers from

PetaLinux for building applications that are intended to run on the built Linux

image. The IDE also has supplied tools that allow for remote application

development of C/C++ applications directly on Xilinx devices.

The PetaLinux workflow helps to abstract some of the complexity from the

underlying Yocto toolchain but generally only works well when the designer

follows the exact design patterns intended by the tools. For example, PetaLinux

does not include a workflow for PR based designs as the tools are both unable

to import metadata from the FPGA build process to assist with Linux kernel

design as well as abstract, manage or import any of the partial bitstreams

generated by Vivado.
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3.1.1.5 Limitations

Vendor tools offer low level control for designing and developing FPGA applic-

ations, that typically focus fixed or static applications with limited support

for interchangeable hardware such as with PR. For example, using Xilinx’s

current workflow, any change in IP core or user hardware (in particular, within

a PRM) will result in breaking effects throughout the rest of the build process,

when targetting a Linux based application deployment. PetaLinux is unable to

handle PR-based designs and the interfaces and drivers requires to communic-

ate with PRMs is not propagated from the FPGA build process. A designer

must manually configure each build run to support their intended PR design

and must replicate this for as many accelerators as they wish to deploy. Recent

tooling, such as Abstract Shell, has made the FPGA process more streamline

but still cannot handle exchanging hardware information, such as PR-linked

memory maps or interfaces, from the FPGA build workflow to the Linux OS

image creation. Additionally, these tools require a high level of knowledge and

expertise across varying layers of abstractions, from low level RTL design for

the hardware accelerators, to writing custom Linux drivers to communicate

with the FPGA as well as designing high level applications to leverage and

accelerate software using PR.

3.2 Academic PR Tools

The complexity in the FPGA workflow has generated numerous works to

automate and better manage the tools surrounding PR application design,

development and deployment. Research has tackled aspects of the design from

designing shell-based accelerators to scheduling the tasks that are accelerated

in the PL.

3.2.1 Build Workflows & Floorplanning

Numerous works have been presented for optimising FPGA floorplanning but

less so for the challenge of floorplanning for PR applications. This Section

explores build tools, including the automation of floorplanning and Linux

building, designed to ease/simplify the FPGA PR application design process.

A further tabulated comparison of these tools are discussed in Sections 5.3.2

and 6.3, where they are evaluated against our own tools.

RAMPSoC [47] presents an early approach to combining multi-processors

and reconfigurable computing with run-time reconfiguration. Their tool

provides a system of exchangeable processing elements and communication

interfaces within the programmable logic to adapt to the demands of algorithms

running within software. Their system supports run-time integration of special-
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ised processors including RISC, CISC and ASIP architectures and hardware

accelerators to achieve a balanced workload fo computing elements. They sug-

gest this approach targetted the gaps presented by homogeneous hardware and

allowed to adaptation of parallelized modular application blocks and/or tasks

by providing a processor or computation element with the required bit-width

or acceleration features for the target task.

ReCoBus [48] is an early PR design tool that provided a number of ad-

vantages for development including a hybrid communication bus that connects

hardware accelerators to a main processor as processing units. It uses dedicated

connections to enable stream-based communication between contiguous hard-

ware tasks. ReCoBus uses templates for accelerators which enforces placement

and routing constraints to simplify how hardware changes are generated within

the FPGA. Users are allowed to use fixed slots to implement their acceleration

logic using more or more as required to implement their application. Accelera-

tion modules can communicate with adjacent modules across as stream-based

interface however a PLB-ReCoBus (Processor Local Bus) bridge is required for

access from the main system bus as well as to provide access to main memory.

GoAhead [49] is a PR floorplanning tool designed for Xilinx’s toolchains.

It advances on the work presented in ReCoBus to provide further flexibility for

PR design, such as with its scripting interface. Their design flow starts with

a designer synthesising their design to generate resource utilisation reports

for their static and partial modules. The reports are then used by GoAhead

which attempts to floor plan the device while optimising for size and location.

GoAhead masks the PR regions with blocker macros that occupy all wires

inside the PR regions while implementing the static region. This prevents

static nets from crossing into PR regions, which is an invalid state for PR

reconfiguration. The PRMs are similarly implemented; blocker macros are

used to prevent wires crossing into the static region. GoAhead can also extract

and generate custom interfaces between PR modules.

CoPR [50] is a toolflow that focuses on the abstraction layer for PR applic-

ations on the Xilinx Zynq. The designer uses configurations and adaptations to

specify system states. They define configurations as valid system configurations

and the corresponding library modules declared in an XML file. Adaptions

specify the software code required to change configuration at runtime. CoPR

does not support Vivado or the ZynqMP architecture.

IMPRESS [51] is a TCL based tool for automating the generation of

relocatable PR bitstreams within Vivado. Their tool specifically focuses on

the implementation for PR systems that include Vivado HLS blocks and that

used standardized buses such as AXI. Their tool has a number of advantages

over vendor (Xilinx) workflows, including its ability to allow for relocation of

RMs, stacking of RPs with a single clock region, hierarchical reconfiguration
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and decoupling the implementation of static and reconfiguration regions. At

the time of writing, their tool only supports the Zynq-7000 and 7 series FPGA

devices.

BITMAN [3] is an open source tool and API for generating and manipulating

bitstreams. It allows for the placement and relocation of FPGA modules for

a variety of applications including PR. PRMs may cross a number of CLBs

and BRAM columns and BITMAN enables the reconfiguration without effect

on other surrounding modules or the static regions. This is performed by

using routing constraints on the static routing using a tool such as GoAhead.

BITMAN also supports the ability to update LUTs and BRAMs within the

FPGA at runtime; this is particular valuable for parametric reconfigurable

applications, such as changing filter coefficients or updating cryptographic keys.

They also provide a demonstration of BITMAN being used to stitch together

Coarse Grained Reconfigurable Arrays (CGRAs) with a processing element

(PE) library as explained in [52], extending the original work by stitching the

PEs at a bitstream level rather than at the netlist, drastically decreasing the

time required to generate a complete bitstream.

RapidWright [53] is an open source pre-implementation tool designed to

help achieve higher performance and\or productivity when designing FPGA ap-

plications. Their approach increases the modularity at design time by exporting

design checkpoints throughout the Vivado design run enabling design check-

points to be manipulated for better reusability and performance. RapidWright

allows for strategic injection of pre-implemented modules with programmable

fabric structures allowing the design process to be deconstructed and use out-

of-run implemented logic to speed up design time. This tool has enabled similar

strategies to BITMAN for injecting and stitching application specific overlays

[54] at build time. The work in [54] showed that they were able to demonstrate

a productivity improvement up to 20× compared to the state of the art FPGA

overlays, while achieving over 1.33× higher maximum clock frequencies than a

direct FPGA implementation along with the possibility of lower resource and

power consumption compared to bare metal implementations on a processor.

While RapidWright is capable of producing pre-implemented modules as partial

IPs, it is not able to generate partial bitstreams independent of the static

design [55].

ReConOS [56, 57] is a framework that is designed to extend the multith-

reading programming model from software to heterogeneous computing with

reconfigurable hardware. They use threading and common synchronisation to

abstract hardware, allowing for portable and flexible multithreaded FPGA SoC

applications. Their automated toolchain provides a scriptable set of Python

and TCL scripts that take an input specification for threads in one of the sup-

ported languages and generate configuration bitstreams for the target FPGA.
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Figure 3.3: ReConOS toolchain with ARTICO3 extensions [9]

This automated process is controlled by a configuration file that uses a specific

hardware template to define the constraints of the target system, including

FPGA device, operating systems and any required hardware IPs. The same

configuration file is used to generate a software project for ReConOS that is

capable of leveraging the multi-threaded paradigms.

FUSE [58] is a similar approach to ReConOS that utilises a slot-based

reconfiguration system with embedded soft MicroBlaze processor to manage

POSIX threads. Shared memory elements are used to exchange data between

software and hardware tasks to attempt to reduce transfer overhead. FUSE

uses a loadable kernel module (LKM) to abstract hardware as memory mapped

I/O peripherals to simplify managing attached accelerators. Under FUSE,

updating a hardware accelerator only requires changes to be made to the

hardware interface and corresponding LKM rather than the user’s application

or the userspace aspects of the FUSE software.

ARTICO3 [9] is a toolchain for the Zynq and ZynqMP that offers a recon-

figurable processing architecture based upon custom kernels that are assembled

as part of their workflow. Their toolchain includes both the build tools [51] for

automating hardware acceleration as well as a runtime for managing reconfig-

uration and hardware acceleration offloading. They describe their architecture

as a DPR-enabled processing architecture for task and data level acceleration

that can trade off performance, energy efficiency and fault tolerance. Their

toolchain takes HDL or HLS input sources and wraps them within a custom

kernel that provides local memory, configurable register banks and the required

interconnection to the main ARTICO3 infrastructure as shown in Figure 3.5.

Software applications can be written to leverage these acceleration kernels by

using a standardized API as accelerator logic is abstracted behind the kernel
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Figure 3.4: FOS compared to traditional development abstraction [10]

interfaces. ARTICO3 shares the base toolchain with ReConOS, where the

ARTICO3 extensions are shown in Figure 3.3.

ZUCL [59] & ZUCL 2.0 [60] are a collection of abstraction services for

hardware applications on ARM-based FPGA SoCs. The original ZUCL frame-

work was designed to enable the development and deployment of OpenCL

applications onto ZynqMP devices. Their framework exploits PR to provide a

plug-and-play approach for loading/unloading hardware modules, where an

automatic compilation process implements the OpenCL modules directly into

relocatable PR modules. This enables a software-centric approach to using

OpenCL for acceleration. ZUCL 2.0 extends the original work by providing

a number of advancements with support for: 1) decoupled implementation,

where the static shells can be implemented separately to the PRMs 2) a number

of HDLs, HLSs as well as directly from netlist 3) variable bus interfaces (e.g.

32/64/128 Bit AXI Stream/Master/Slave) 4) various floorplanning strategies 5)

hardware context switching to enable resource allocation 6) memory isolation

for multi-tenancy applications. They evaluate their framework with context

to performance limitations of the PCAP controller for loading PR bitstreams;

both tools use the PCAP interface for control of reconfiguration.

FOS [10] offers an alternative approach to developing FPGA accelerated

applications by modularising the workflow and splitting it into system compon-

ents that can be developed by independent domain experts without context

of other aspects of the workflow. Their build process attempts to provide a

decoupled and agnostic approach to handling variation in EDA versions as

well as related software and hardware. Their workflow, provided it can be

built using the FOS tools, should work across tooling versions; For example,
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Figure 3.5: ARTICO3 kernel wrapper [9]

importing an IP core that was synthesised in Vivado 2018.2 into Vivado 2019.2

will require re-synthesis as the changes in the synthesis mechanism across tool-

ing cannot be guaranteed however FOS uses the BITMAN [3] tool to extract

and relocate FPGA modules and thus reduce this issue. This process also

significantly reduces development time as the end-to-end process does not need

to be repeated every time a new accelerator is introduced. Figure 3.4 shows

the various stages of the development process between the traditional and

the authors abstracted approach. This highlights the issues of non-reusable

hardware and software dependencies found in the traditional abstraction stack

and where FOS addresses them.

While many of these tools attempt to address the issues with prerequisite

knowledge and domain expertise, such as FOS with its modular workflow, they

often expect and enforce a shell based workflow. The problem with this type

of workflow is that a designer must learn and understand how RTL modules

function and communicate, requiring bespoke hardware knowledge. In addition

to requiring the designer to modify their IP cores to fit the shells, typically

these frameworks also require their own APIs and control flow mechanisms for

interacting with accelerators. An alternative for generalised acceleration could

be to completely abstract the complexity of the accelerator from the user, such

that they can accelerate their software without needing to understand how to

directly control the hardware via wrapping the user’s hardware and exposing

hardware to software via generalised userspace memory maps and/or DMA

transactions.

3.2.2 PR Runtime Management

ReconOS [61] provides a unified hardware/software multithreading program-

ming model for processing acceleration across a central bus that is connected

to the processor, for a Linux based target. The hardware components of the
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ReconOS runtime consists of interfaces, communication channels as well as

memory access and address translation to the hardware functions. ReconOS

offers the ability to perform multithreading across the hardware/software

paradigm where hardware threads (e.g. acceleration functions) can request

functions to be executed from the OS via their OS interface (OSIF) state

machine. Access to the OSIF is performed via a VHDL library that abstracts

the OS calls and is provided to the designer of the application. From the OS

perspective only software threads exist and hardware threads are abstracted

from their delegate threads. Alternatively from the application designer’s

perspective, delegate threads are abstracted with only hardware and software

threads existing. Threads can communicate with a number of established OS

techniques such as message queues or mailboxes, barriers or semaphores or with

mutually exclusive locks. This enables high levels of transparency of execution

for functions running on either hardware or software, adding some additional

overhead for the benefit of reduced complexity. To perform reconfiguration of

hardware, ReconOS uses Xilinx’s FPGA Manager for the Zynq and ZynqMP.

CAP-OS [62] is an early runtime scheduler for task mapping and resource

management on reconfigurable architectures that uses the RAMPSoC [47]

architecture. Their scheduler was implemented on top of a Xilkernel RTOS

on a IBM PowerPC 405 with support for the Virtex-4FX FPGA. While now

based upon older, less relevant hardware, this OS provided a foundation for a

number of works to address managing the abstraction of resource allocation.

Xilinx’s FPGA Manager provides an driver level API for reconfiguration

via the Zynq and ZynqMP’s PCAP. This flashing process can take several

milliseconds and scales linearly with the size of the partial bitstreams. This

is non-negligible in comparison the performance of the processing system,

requiring the system to pause during reconfiguration to await completion

before communication with the FPGA can be resumed.

LinROS [63] is a runtime layer that utilises a novel Linux driver to auto-

matically manage the software and hardware of reconfigurable MPSoCs. It has

an accompanying IP core to facilitate the integration of accelerator functions

using HLS based tools. The IP core manages the data exchange between the

accelerator functions and the processing system. Using an image processing

algorithm on the Zynq SoC, they demonstrate how negligible overhead is

introduced under their runtime during scheduling. The programming of the

accelerators functions is abstracted by their device driver and uses the PCAP

interface for provisioning. LinROS is also able to schedule software threads

across multiple MicroBlaze processors.

The ZUCL [60, 60] runtime uses a combination of kernel and userspace

drivers. Their focus is on sandboxing of hardware application and enabling

memory isolation by utilising the System Memory Management Unit (SMMU)
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in the ZynqMP’s PS with a custom driver. They provide userspace memory

access via a userspace library that creates handles that associate the user’s

page table and accelerators with the SMMU. It is shown that the SMMU adds

non-negligible overhead to initial DMA transfers.

FOS [10] makes use of a resource-elastic scheduler to manage FPGA re-

sources both with spatial and time constrained acceleration. They provide a

demonstration of this mechanism for both single and multi-tennant environ-

ments, where an API is provided in Python and C++. They use a cooperative

scheduler approach to run acceleration tasks for the user by placing them into

request queues. Requests are handled as independent events which allows

them to executed in parallel, where time and spatial constraints allow. The

instantiation of hardware accelerators is handled by FOS to encourage re-use

of modules and reduce the need to reconfigure.

The ARTICo3 [9] framework uses a runtime library that leverages custom

DMA and reconfiguration drivers (Linux) to abstract hardware management

for the user, with a reduced API. The framework is built around contained

kernels that possess their own allocated memory for moving data into and

out of the accelerator. Communication between software application and

hardware kernels is performed via shared memory buffers. Similar to other

frameworks such as [10], they use a physical to virtual memory map driver to

make hardware memory available to the user’s application and thus allow for

DMA requests to and from hardware. They argue that using uncached physical

memory in the userspace penalizes execution performance and thus secondary

memory buffers are also allocated using malloc, where the runtime copies data

between them and the physical memory using standard memcpy calls.

R3TOS [64] is an RTOS that allows for on-chip resources to be used in-

distinguishably for computation or communication tasks using DPR. R3TOS

does not rely on any static infrastructure besides its core circuitry; uncon-

strained parts of the device are kept free of obstacles, such as static routing,

allowing the spare resources to be used as required. At runtime, the hardware

tasks can be scheduled and allocated for improving computation density and

circumventing damaged resources on the FPGA. Users are provided with a

high-level API using mechanisms and services similar to a full OS, such as task

relocation and data exchange, which abstract low-level operations and simplify

the development of PR applications. A demonstration is provided for a Xilinx

Virtex-4 FPGA, with the RTOS running on a soft MicroBlaze processor; a

latter publication [65] implements R3TOS on a Zynq-7000 SoC.

CoPR [50] runtime operates with a two layered architecture, with a control

plane implemented in software that applies hardware configurations based upon

labels generated upon the system’s specification. A configuration manager

controls how and when physical reconfigurations are applied and can be called

45



from user software through an API. PR operations are abstracted and carried

out automatically by the configuration manager. The API attempts to hide

the low level complexity required to initiate PR. CoPR does not support Linux

or the ZynqMP architecture.

Many of the mentioned runtimes propose PR management that enable multi-

tenancy, accelerator scheduling as well as redundancy/sandboxing. Typically

these runtimes expect the designer to have a good understanding of the

underlying accelerator and how to apply the state of the hardware, either

via API calls to shell or kernel interfaces. While some tools such as FOS do

provide generic software abstractions with userspace drivers, this still requires

the assumption that the designer is aware of how to move data into and out of

the shell, rather than simply requesting a state for the hardware to be set to.

3.2.2.1 PR Controllers

In order to reconfigure Xilinx FPGAs, there are typically two main physical

interfaces for writing a bitstream to the device, the ICAP and PCAP interfaces.

Academic research has been conducted to extend the functionality of these

interfaces either with abstraction or performance.

ZyCAP [11] was an early custom hardware controller and software API for

managing the loading of bitstreams via the Zynq-7000’s ICAP interface (the

ZynqMP is unsupported). Their work showed that on the Zynq-7000 device,

using a DMA controller in the PL to the ICAP to flash PR bitstreams, their PR

controller had a 2.96× improvement on performance versus the PCAP, getting

close to achieving the theoretical throughput of the bus at 382 MB/s (theoretical

max. of 400 MB/s). Their implementation was slightly less resource efficient

compared to the other vendor mechanisms and only supported a bare-metal

software implementation rather than full operating system support. Figure. 3.6

shows how the ZyCAP controller is connected to the Zynq’s PS. Work has been

done to attempt to overclock the ICAP primitive [66], however this frequency

depends on manufacturing variation and specific placement and routing.

RT-ICAP [67] is a lightweight PR controller aimed at real-time systems

that require bounded and predictable reconfiguration times. Their controller

supports two operating modes; scratchpad memory (SPM) stream and CPU

stream. In their architecture, SPM is used to store the PR bitstreams and load

them into the ICAP and additionally acts as a local general purpose memory

for the processor. This is important as access time for an SPM is guaranteed

to be a single clock cycle and thus deterministic in terms of bitstream transfer

time. Bitstream compression is used to overcome limitations of the SPM, where

the CPU stream mode is used for when the bitstream is too large for the SPM.

MiCAP [68] implements a PR controller that is designed for dynamic
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Figure 3.6: ZyCAP highlighting interfaces between PS and PL [11]

circuit specialisation (DCS), an FPGA implementation technique that serves

parametric designs. A design is defined as parametrized when some of its inputs

are infrequently changed compared to the rest, specified as constants. Under

DCS, for each change in the parametrized values, a new circuit is generated

and the FPGA is reconfigured at runtime using partial reconfiguration. The

MiCAP controller allows for the current configuration to be read back from

the PL, unlike controllers such as ZyCAP, where the ability to read-back is an

important feature for enabling DCS. MiCAP was extended in [69] to supports

an AXI-DMA engine, improving performance by a factor of 3 but increasing

resource consumption by 4 times when compared against Xilinx’s HWICAP

with AXI-DMA engine.

DyRACT [70] manages to achieve a near theoretical throughput for the

ICAP using a high-speed PCIe interface along with external memory, targetting

FPGAs coupled as co-compute rather than tightly coupled. This is able to

achieve 399.80 MB/s on a Virtex-7 FPGA, where the theoretical throughput

of the ICAPE2 is 400 MB/s. Their implementation assumes that the PCIe

interface is dedicated to reconfiguration and could begin to impact data transfer

if other systems utilise the same interface.

The PR controllers mentioned were introduced as demonstrations rather

than implementations for real world applications; where the control interfaces

are limited and bespoke. Many current academic works reuse Xilinx’s FPGA

Manager driver and PCAP controller, utilising the readily available driver and

documentation. As mentioned the FPGA Manager driver is both limited in

performance (latency and throughput) as well as abstraction as well as forcing

the configuration process to pause while the driver loads a new PR bitstream.

3.3 Applications of Partial Reconfiguration

Across both academic and commerical systems, PR has found applications in

domains ranging from communication systems to autonomous vehicles. The

advantages of time-multiplexed hardware are prevalent across power, efficiency
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Figure 3.7: Concept of a cognitive radio with control and data planes split
across a CPU and FPGA [12]

and cost factors of such applications.

3.3.1 Communications Systems

Wireless communication standards rapidly evolve adding new features and

supporting new technologies. To adapt and support changing standards devel-

opments in software defined radio (SDR) have allowed for increased hardware

flexibility. Given that SDR are typically required to handle complex signal

processing applications, FPGAs are ideal candidates for compute. Combining

this with a general purpose processing system as well as time-multiplexed

hardware using DPR, creates a powerful platform for handling demands of

modern RF systems. Demonstrated in [12] is a platform for enabling radio

designers to build cognitive radios, SDR radios with the capacity to adapt

channel conditions to best utilise the RF spectrum, using DPR on the Xilinx

Zynq. Their cognitive functions exist within the software domain with the

baseband sensing in the FPGA, as shown in Fig. 3.7.

A baseband processing module for 3G, LTE and WiFi standards is compared

for area, power, memory and time overhead in [71], with and without DPR.

They were able to show that time-multiplexing the baseband processing modules

rather than supporting them all simultaneously resulted in an average power

consumption of 57.11 mW compared to 171.47 mW. They showed that the

time overhead for loading the PR bitstreams over the ICAP interface, only

introduced a 1.46 ms delay for a 1.4 MB bitstream.

3.3.2 Networking

Given that FPGAs posses a large resource of logical elements that can be used

to implement complex data paths, utilising them for in-network acceleration is

a key use case. [72] demonstrates a PR-based architecture for ternary content-
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addressable memory (TCAM) emulation. TCAMs are used in networking

for complex matching patterns and lookups and are typically implemented

as soft-modules within the FPGA. They show how PR enables efficient and

effective application of TCAMs in an FPGA’s resources to support the addition

and subtraction of rules engines. Another example is [73], where the authors

show how network function virtualization can be implemented for software

network functions (NF) using PR on an Xilinx FPGA within an Intel server.

Their implementation, Dynamic Hardware Library (DHL) implements the

main architecture of the NF in software running on the CPU and offloads the

computational intensive functions to the FPGA using PR, which is more cost

efficient and improves flexibility. They provide a decoupled software-level API

and hardware-level acceleration to abstract complexity.

3.3.3 Image Processing

FPGAs are well suited to image and video processing due to high performance

IO and the capacity to effectively pipeline incoming images frames for operations.

DPR is well suited to these types of applications as often the implementation of

these algorithms can be resource expensive and consume large areas of smaller

FPGAs. [74] demonstrate a number of edge detection algorithms implemented

under DPR. They provide experiments demonstrating filtering scenarios where

size, complexity and intensity of computation are varied and resource utilization

and timing are evaluated. [75] provides an example of how a two-dimensional

(2-D) Haar wavelet transform IP core can be implemented using DPR and they

compare performance, area, power and maximum clock frequency achievable

for both static and partial implementations. [76] highlights an interesting

demonstration where the FPGA is connected directly to the VGA interface of

a camera and uses PR to filter the image before outputting it to a monitor.

This direct data stream from a camera peripheral is particularly important

to acceleration applications as time critical systems may not be able to suffer

the latency introduced when streaming data first through a processing system

before it reaches acceleration in the hardware.

3.3.4 Machine Learning

Due to the benefits of parallelism in machine learning, flexible hardware and

specifically the ability to time-multiplex hardware has made PR a viable

implementation strategy. Machine learning is a branch of artificial intelligence

where the use of statistical methods and algorithms to make predictions

or classifications are used to imitate the way that humans learn, gradually

improving their precision and accuracy as they are provided with data. In [77]

they develop a support vector machine (SVM) and K-nearest neighbour (KNN)
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multi-classifier architecture for FPGAs using DPR. Their implementation allows

specific regions of the FPGA to work either as an SVM or KNN classifier for

processing bioinformatic data, where applying different classification algorithms

to the same dataset is desirable for decision making. They show that by

using DPR in their design, they can achieve 8× reduction in reconfiguration

time versus the same implementation using traditional reconfiguration as

well as reducing the consumed hardware resources and physical space on the

FPGA device, when compared against deploying both classifiers simultaneously.

Similarly, [78] also uses DPR to build an SVM classification system for seizure

detection, that exploits the advantages of DPR to show how energy spent in

this implementation has a reduction of 64% compare to static reconfiguration.

[79] provides a accelerator for convolution neural networks, which are widely

used for image classification, that utilises DPR for increased efficiency, while

citing that they were able to compose the architecture such that there was no

loss in performance or classification accuracy. Their architecture uses a basic

processing element, similar to a shell, that possesses three main interfaces; a

data interface (AXI Stream), a memory interface (AXI) and a GPIO interface.

3.3.5 Automotive

The rapidly adapting automotive sector has also benefited from FPGA ap-

plications due to the increase in computational nodes as well as a need for

more performant networking within vehicles. Modern vehicles must be able to

control a range of non-essential systems such as climate control and electric

mirrors as well as critical systems like drive-by-wire and adaptive braking

systems. [80] provides an insight into how PR can be used within automotive

systems such as electronic control units (ECUs) to improve computational

capacity as well as reduce power consumption. In [81] the authors propose

a novel ECU architecture specifically designed to enable CPS that improve

security and dependability in the design while citing negligible impacts on

performance, energy and resource overheads.

They implement their architecture onto a Xilinx Automotive Spartan-6

FPGA and suggest that they can achieve an increase in speed of 47.93× with

2.4× less energy than a competitive processor on a quad-core iMX6Q SABRE

automotive control board. They also showed that their architecture was 2.13×
more tolerant to faults than the baseline SABRE control board. They evaluate

their ECU architecture for common in-vehicle networks such as CAN, CAN FD

and FlexRay. In [82], the authors explore how redundancy can be implemented

into safety-critical in-car systems using PR along with a custom bus controller

to provide rapid recovery from faults. Their work provides a custom extension

to an on-chip FlexRay controller that can leverage a high performance PR
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Figure 3.8: Xilinx ZynqMP Example ADAS Application [13]

controller for rapid reconfiguration.

Xilinx provides an example of an automotive adaptive driver assistance

systems (ADAS) in their ZynqMP white paper [13], where extensive usage

of camera systems in vehicles are used to provide additional safety features.

Figure 3.8 provides an overview of how such an ADAS system might look,

where hardware acceleration for events such as lane departure and blind spot

detect can be performed on the incoming video stream from cameras and radars

attached directly to the PL. The high performance bus interfaces between

the PS and PL enables the processed characteristics data extracted from

acceleration to be handed to the PS for appropriate decision algorithms to be

performed on the data under software centric processing.

3.3.6 Space

PR has have proven popular for space applications where detection and recovery

from errors are critical. This is due to an effect known as Single Event Upset

(SEU) [83]. Volatile FPGAs based upon SRAM technologies such as Xilinx

and Altera’s device are particularly susceptible to the effects of SEU which

can result in bits in the FPGAs configuration being incorrectly set and thus

introducing unexpected behaviours and potentially even system failures. In

[84], the authors developed a design flow, IPRDF, that allows the designer

to build fully isolated and reconfigurable systems. One of their case studies
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demonstrates how PR can be used to mitigate from SEUs as well as provide

resilience against ageing and device imperfections. They also argue that the

module insulation introduced by their framework increases the security aspects

of systems designed by this tool, citing that no IP details, code or netlist

are required to be available to the tool. [85] introduced a System-on-Chip

Wire (SoCWire) architecture on a Virtex-4 FPGA. SoCWire is a network-

on-chip protocol used by the space industry for flow control, detecting link

errors, providing error recovery as well as other functions. For their design,

the SoCWire routing structure was implemented into the static region of the

design and the acceleration functions were implemented as PRMs, allowing

the functions to be loaded/unloaded based upon the processing requirements

at any time. [86] uses the R3TOS [64] runtime, a scheduler for allocating

real-time PR hardware tasks onto FPGAs to circumvent the effects of SEUs

and Total Ionizing Doses (TID). The effects of TID can result in permanent

damage to a device and results in oxide breakdown and leakage current. R3TOS

introduces fault-aware heuristics that are designed to reduce the number missed

task deadlines by determining where to best place a hardware task. These

heuristics include Empty Area/Volume Compaction heuristics (EAC, EVC

and EVC2P) which address the state of the whole sandbox to assign a score

for quality, in order to evaluate each potential placement. Their experiments

demonstrate, that with the use of these heuristics, missed deadlines during

hardware tasks are reduced and that the compute provided by the FPGA can

be more effectively utilised. [65] expands on the original work of R3TOS to

the Zynq platform utilising the SoC’s configuration memory for exchanging

data between the hardware partitions. As opposed to fixed partitions, R3TOS

keeps the FPGA’s reconfigurable area free of any partition boundaries and

static routes. They demonstrate their tool by simulating different chip damage

scenarios and show that their R3TOS-based prototypic avionics system can

tolerate an average increase of around 13% more on-chip damaged resources

than a traditional solution.

3.3.7 Autonomous Adaptive Systems

Crucially there are a number of components required to realise autonomous

adaptive systems: high performance hardware to accelerate realtime and latency

sensitive data acquisition, high level abstract software to interface with higher

level operating system functionality as well network capable transports for

communicating with other systems as well as a host platform.

The authors of [87] present a DPR system for autonomous driving systems

(ADS) that is able to provide real-time vehicle and pedestrian detection. Their

approach use a deep learning methodology for detection in poor/dark lighting
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conditions. They utilise a custom PR controller that runs on the Zynq for

managing the vehicle detection block logic, reducing the resource requirements

via time-multiplexing to enable the existence of other ADS functionalities. This

custom PR controller uses a similar approach to [11] but instead utilises a

dedicated DDR module in the PL to store PR bitstreams. They demonstrate

their system’s performance capabilities by detecting pedestrians and vehicles

in varying lighting conditions with a framerate of 50 frames per second at a

resolution of 1080x1920 (where the system is clocked at 125 MHz).

[88] is a commercial documentation and demonstration of a real world

autonomous adaptive system that utilises partial reconfiguration on the Zyn-

qMP SoC for hardware acceleration. The authors explain that the high speed

camera interface (MIPI) is directly attached to the FPGA to reduce CPU

data transfer bottlenecks and to reduce energy consumption. They explain

that due to latency dictating user-experience and safety, their design offloads

localization tasks to the FPGA while performing perception tasks on the GPU.

They cite that offloading the localization task to the FPGA reduces the scene

understanding event from 120 ms to 77 ms compared to when performed on a

Nvidia GTX 1060 GPU.

3.4 Summary

PR has seen many developments in recent years, with new device architectures

from major vendors introducing new challenges. The process for designing

PR applications is still complex, requiring bespoke knowledge across many

domains. Many existing tools, both academic and commerical, require highly

specialised knowledge of the tools themselves before applications can be built,

tested or deployed. Vendors tools are historically proprietary and provide

limited support for academic work looking to extend functionality and thus

limit adoption for tools that must continue to evolve to support unannounced

changes from the vendors. Many tools only support specific versions of vendor

software and FPGA architecture, often rendering academic/open tools useless

upon new releases of vendor software.

PR has been a key design aspect in a wide range of applications, as discussed

in this Chapter, but is often implemented in a bespoke and custom manner

to the target application. A more systematic methodology, with a focus on

minimizing overhead and increasing design abstraction, would allow for a wider

range of applications and their developers to leverage the benefits of PR. A

low design impact tool that does not require learning of a new and custom

framework or enforcing the user to design around custom hardware shells would

have the benefit of making PR applications both more portable as well as more

future proof.
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While some academic tools aim to segment the workload of designing and

developing PR applications, we believe that this is still a significant limitation

for independent designers wishing to accelerate their software applications

with PR. We demonstrate a justification for open source tools that are built

around vendor software that can support version changes while providing

a high level of automation to the design process such that non-expert and

independent designers may develop applications with them. We have developed

a selection of tools and abstractions that enable the design and development of

PR applications, access to high performance reconfiguration both locally and

remotely (over the network) as well as extend the abstraction of software to

support modern cyber physical systems and enable the design of autonomous

adaptive systems.

These tools are organised to form an end-to-end workflow for designers

to implement and integrate PR into their applications. This includes tools

to abstract constructions of PR based projects, automatic generation of PR

modules and regions, integration of these designs into a Linux image builder,

management of PR modes and configurations with a high performance runtime

as well as abstraction of the operation of this runtime into a autonomous systems

centric workflow. Additionally, a number of utilities to improve the design

process were also added; including extensions to open source IP management

libraries and project builders. These works will be further discussed in the

following Chapters.
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Chapter 4

Over the Network FPGA

Reconfiguration

4.1 Introduction

Cloud computing provides a streamlined architecture for handling and ac-

celerating large volumes of data from distributed sources. The centralised

compute model in dedicated data centres allows for increased performance,

scalability and provides access to a wider pool of computational resources

including accelerators such as FPGAs and GPUs.

Although cloud-based approaches provide benefits when information (and

computation) can be aggregated at a central location, it also introduces notable

overheads in latency, bandwidth and resource requirements with respect to the

volume of data being processed [89]. Edge computing through decentralised or

distributed accelerators, that push compute from the data center up into the

network and beyond, aim to address such challenges [90].

Distributed accelerators, owing to their proximity relative to the data source,

are typically spread across the edge of the network’s data sources and sinks.

In addition to processor-based accelerators, non-traditional architectures such

as reconfigurable heterogeneous SoC platforms like Xilinx Zynq and Altera

Arria can be deployed to provide high throughput and parallel processing

compute to edge applications. This interest in reconfigurable SoCs stems from

the tight architectural coupling of a capable ARM-based PS for managing the

tasks and flexible PL that can support custom accelerator kernels. This allows

deployment of operating systems such as Linux to manage networking and

peripherals, while processing can be offloaded to the programmable logic for

acceleration when required. Applications mapped to such SoC architecture

typically utilise the peripherals of the PS such as network and control interfaces

and rely on software to manage the interaction between them.

Software managing the networking interface can lead to issues with control
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prioritisation, due to the nature of task driven processing seen within typical

operating system schedulers. This procedural handling of tasks can lead to non-

deterministic latency in the time taken to process incoming network packets,

such as those containing state control information for the accelerator. Higher

priority tasks may override any control flow events such as decoding networking

packets and potentially lead the accelerator to delay handling/miss critical

tasks such reconfiguration of the compute hardware. An example of task

prioritisation in edge acceleration can be seen in research into automotive ECU

systems where system failures can be mitigated using FPGA based backup

circuits [91].

This effect of latency on the network stack can be mitigated by first directing

control packets into the accelerator, which analyses and performs decision logic

as the packets as arrive at the interface. This technique, employed in many

smart network interface cards (Smart NICs), can be extended to edge devices

based on heterogeneous SoCs to address such challenges. However, building

a low-latency accelerator system around such an architecture with native

offload capability of regular communication as well as reconfiguration requires

considerable FPGA expertise.

In this Chapter we introduce a smart NIC approach to initiating PR

over the Ethernet PHY on the Xilinx Zynq-7000 SoC platform. We compare

performance between traditional methods of initiating PR to a method of

bypassing the PS to load the control packets for reconfiguration directly.

Thereby bypassing the Zynq’s PS Ethernet driver and scheduler, reducing

latency non-determinism. We explore using alternative methods to decoding

incoming Ethernet frames, moving the packets directly into the PL to sniff the

frame header for reconfiguration commands.

The work presented in this Chapter has also been discussed in:

• Alex R Bucknall, Shanker Shreejith, and Suhaib A Fahmy. Network

enabled partial reconfiguration for distributed FPGA edge acceleration.

In Int. Conf. on Field-Programmable Technology (ICFPT), pages 259–262.

IEEE, 2019 [92]

4.2 Contributions

The key contributions of this Chapter can be summarised as:

• A flexible packet sniffing Ethernet framework for dynamically routing &

processing packets in PL

• Custom architecture for provisioning PR bitstreams without PS inter-

vention over the network interface with arbitration
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• Demonstrated performance improvements and latency reduction com-

pared to vendor tools for locally-cached bitstreams

4.3 Related Work

Traditionally, FPGA-based accelerators are coupled with powerful centralised

compute, such as in a cloud data centre. They can provide massive parallel

process offloading and/or deep pipelining for compute bound software tasks, as

required in applications such as artificial intelligence, data analysis and other

traditional high performance applications. An advantage that FPGA-based

acceleration provides is the ability to dynamically reconfigure the hardware

circuitry for the task at hand, unlike similarly style ASIC-based acceleration

units.

PR has several advantages over standard reconfiguration, including use

of the static regions whilst reconfiguring and the ability to retain logical

state whilst under reconfiguration. PR can also provide faster reconfiguration

time intervals than standard reconfiguration as partial bitstreams are often

significantly smaller than complete static bitstreams.

Historically, FPGAs would require an external controller to manage recon-

figuration, which was typically via serial protocols such as JTAG or SWD; as

can be seen Xilinx’s earliest Virtex Flagship FPGA, circa. 1999 [93]. This

approach was slow and cumbersome; requiring each attached device to be indi-

vidually addressed (over serial) via the processing system and was restricted

by the throughput limitations of the low speed programming protocols. As

FPGA offloading within data centres increased in popularity, PCIe became

the standard interface for FPGAs as it provided both high throughput and

low latency to address individual platforms. Additionally this interface could

be both used for reconfiguration as well as a high performance streaming

between the client and the host. The Microsoft SIRC platform presented a

software-hardware API for managing communication and synchronisation for

reconfigurable compute attached over PCIe [94]. Although this makes it easier

to control attached FPGAs, it still requires a host/master entity (such as

a server in a data centre) to manage and address individual FPGAs. This

architecture, forces any accelerator applications to first pass through the central

entity, often a server in a data centre providing software independence, which

then forwarded the tasks onto the attached FPGA/FPGAs. Approaches like

DyRACT [70] extended this approach by utilising custom PR controllers and

software stack to deliver PR bitstreams at high-speed over PCIe. However, for

time critical applications the software stack adds additional layers of processing

before the task reaches the accelerator on top of the existing delay from network

propagation. Furthermore, PCIe protocol is composed of signalling pairs known
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as lanes, which are highly sensitive to interference and do not support long

range communication, restricting the protocol to tightly clustered systems. As

these systems became more independent, such with Xilinx’s Hybrid SoC Zynq

platform, the demand to shift the task of reconfiguration onto the FPGA itself

increased, requiring the FPGA to manage it’s own reconfiguration flow.

Efforts to improve the vendor tools; ZyCAP, DyRACT (for PCIe), there

are a few other high-speed reconfiguration controllers, but all of them are

standalone and integrating them with a network stack would require the design

of appropriate pipelines.

Vendors have developed internal reconfiguration managers to support

FPGA-driven reconfiguration. Xilinx initially allowed for internal reconfigura-

tion using its ICAP interface and later provided a software centric mechanism,

the PCAP. While PCAP uses a software interface and synchronous control

flow to handle reconfiguration, preventing the processor from executing other

compute tasks while reconfiguration, a standalone ICAP also requires users to

design infrastructure around it to enable reconfiguration. Custom controllers

such as the RT ICAP [67] provide the advantage of a real time PR manager

but do not provide software support for hybrid FPGA platforms, restricting

implementation of networking layers within the PL and requiring the user to

have a deep understanding of the network controller implementation. Altern-

atively, buffering bitstream onto internal BRAMs offers a high performance

interface for streaming into the ICAP, while also being processor independ-

ent, though the approach is limited to small PR bitstreams [95]. DyRACT

[70] is PCIe based platform that uses a custom PR controller and software

stack designed to integrate with high speed channels for streaming partial

bitstreams. However, designing a network trigger that can utilise DyRACT

provides challenges as integration with the system’s networking stack would

require a complex understanding of data pipelines. Despite the developments

in custom PR tooling, deterministically triggering PR from within network

infrastructure is still non-trivial, especially on reconfigurable SoC systems that

rely on PS and software for network/packet management.

The problem of deterministically triggering reconfiguration from an external

network interface persists. Moving reconfiguration control from the PS to the

PL, enables the PS to both continue to operate while simultaneously allowing

for a control packet to be processed during the receive transaction. This is

flow is faster than traditionally waiting for a complete frame to arrive before

beginning to process it in software. This allow for lower latency in arriving

control packets and for higher throughput with respect to total time for partial

reconfiguration.

Reconfigurable SoC platforms are highly suited for IoT streaming/edge

accelerators that improve on centralised accelerators by offering improvements
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in energy efficiency, throughput latency and resource cost, as showcased in [90]

for the case of accelerating convolutional neural networks. PR in IoT-type

accelerator applications has a range of potential benefits to data streaming;

placing the acceleration logic in-network and closer to the data source results

in a decrease in latency and a tighter feedback loop for control data. It also

provides advantages for scaling and computation allocation; if a data source

requires additional acceleration units, PR allows nearby acceleration units to

reconfigure for the demand. [96] highlights the advantages of virtualization

in FPGA based acceleration platforms and demonstrates how such allocation

of compute can outperform traditional use of virtual machines. The work

explores full reconfiguration and we believe PR can extend this advantage

further, especially on reconfigurable SoC platforms.

The approach presented in this Chapter enables network triggered partial

reconfiguration, utilising a strategy for remapping the network processing path

from the PS into the PL. This strategy enables inline decoding of control

ethernet frames in order to extract reconfiguration commands with minimal

latency and with deterministic timings compared to traditional networking

approaches.

4.4 System Architecture

This Section presents a comparison between the traditional architecture for

managing a networking stack and the architecture proposed in this Chapter.

This provides the context and comparisons required to understand the motiva-

tions for this work.

4.4.1 Traditional Approach

Off-the-shelf boards based on commercial Hybrid SoC platforms such as the

Xilinx Zynq devices attach the Ethernet interface/PHY directly to the PS-

EMAC cores, allowing operating systems such as Linux to implement complete

TCP/IP networking stacks when loaded on to the ARM Cores in the PS. In

order to communicate with the external Ethernet controller, a driver running on

the PS must be initialised during system set up; where the driver will allocate

a continuous range of n 64-bit locations within memory for both the Receive

Buffer Queue and the Transmit Buffer Queue. Additionally, n corresponding

locations are initialised for the Receive and Transmit Buffer locations, with

their addresses (known as buffer descriptors) and status are stored in the Buffer

Queues. The Ethernet driver will configure the start addresses of the buffer

queues into the base address registers of the Ethernet controller.

Upon receiving an Ethernet packet at the Ethernet interface, it is tempor-
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arily buffered until the frame is completely received and verified to be error

free. The controller will then look up the memory location for the receive

buffer descriptors, perform a DMA transaction to move the frame into memory

and clear the buffer queue status from empty. The Ethernet driver on the

PS will then alert the software stack or application that a frame has arrived

either via internal interrupt or by polling the buffer status; at this point the

raw frame can then be decoded by software. In order to perform a transmit

transaction, the flow is reversed and the PS initialises a buffer location then

clears the status flag, at which point the Ethernet DMA notices the flag change.

The Ethernet DMA then copies the frame to its internal buffer and clears

the status flag. Using the Ethernet PS driver requires that the processor is

involved in all receive and transmit transactions, restricting its operation and

introducing non-deterministic latency when handling RX/TX events under

high computational loads.

In a traditional accelerator, an arrived packet event would then trigger

the PS to begin the decoding process and extract the bitstream information

required to trigger PR. Upon extracting the PR mode information, the PS

could then invoke PR via the PCAP driver interface.

4.4.2 DMA Proxying

In order to initiate a reconfiguration operation from a network packet, the PS

must decode and extract the relevant data from an incoming frame. This may

result in the reconfiguration taking place under non-deterministic latency if

the processor is busy handling higher priority tasks. An alternative to this flow

control would be to offload reception/transmission into the PL and to perform

decoding/encoding in hardware. The architecture presented in this Chapter

utilises a method of indirectly forwarding packets into the PL known as DMA

proxying [97]. DMA proxying remaps buffer locations stored within DRAM

memory addresses, to alternative locations such as within the PL. This allows

a DMA transaction moving data directly in/out of the remapped location,

often a hardened Block RAM (BRAM) or FIFO at the destination, via the

AXI GP port. To move Ethernet packets back into DRAM for processing, a

DMA controller for the Ethernet may be instantiated within the PL to copy

the frame via DMA transaction into DRAM over the Zynq’s HP port. While

this strategy reduces the latency required to receive the complete frame into

the device, it still relies on the PS for unpacking, processing and decision

making. It is possible to implement a complete network protocol stack into the

PL and perform the functionality of the Ethernet PS Driver within hardware,

however this both increases the complexity of the application and requires the

designer to have a complete awareness of how to manage such a controller
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within the FPGA fabric. The major drawback of implementing the entire

networking stack into the FPGA is that even using vendor provided IP cores

are logically resource intensive, leaving limited space for the user’s applications.

Larger FPGAs with increased resources do make this more viable but with the

trade off of increased cost and power consumption. We propose a strategy of

extending the DMA proxying process to include smart controller behaviours

that extend the data path rather than completely replace the functionality of

the PS Ethernet stack.

4.4.3 Network Partial Reconfiguration

With the Network Partial Reconfiguration architecture, received Ethernet

frames are proxied into the PL (using DMA proxying) buffer memory within

the Ethernet bridge, as shown in figure 4.1. The Ethernet bridge implements

the packet handling and decoding logic that is usually done by a software task

in the PS. The bridge is initialised from software upon system start-up; post

initialisation, the bridge can monitor, analyse and redirect incoming packets

based on the PS configuration (based on frame’s header content and/or data

segments), reducing the latency and non-determinism associated with packet

reception and decoding within the software stack. The entire architecture

is designed to support multiple accelerator slots, allowing the designer to

configure the modes of operation via high-level parameters in the application

design process.

As mentioned, the PS configures the Ethernet bridge upon system initial-

isation by writing into the register stack within the bridge itself. The register

stack specifies the fields to look for, the match parameters for frame headers,

specific data patterns to be observed and offset for each of these parameters,

allowing a deep packet inspection to be performed on the received frame. The

register stack is a memory mapped bank of registers (32-bit wide) in the PL,

interfaced to the PS via the AXI GP port; locations within the register stack

can be configured to match OSI layer 2/3 addresses, specific patterns to be

decoded within the data segment, byte offset which marks the start of such

patterns within a data frame, packet type and others. Based on the match, the

bridge configures the egress path for the packet by configuring the multiplexer

within the receive side arbiter (RX Arbiter) logic. The packet can be directed

to one of the accelerator slots configured on the device, the PS for software

processing, the PR Controller to load the received bitstream over Ethernet or

be ignored by dropping it from buffer. The incoming packet is buffered into

the ping-pong RX FIFO within the bridge, allowing packets to be received

and processed in parallel. While the packet gets buffered into the RX FIFO,

the inline sniffing logic within the data path extracts information from packet
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headers (and data segments) to compare against the configured values within

the register stack. The inline logic incorporates a set of shift-registers and state

machines to keep track of the different segments that are extracted from the

packet. The straightforward match would be a packet header match (OSI Layer

2/3 match), that would redirect the packet into one of the accelerator slots

or back into the PS DRAM using the integrated PL DMA logic. The entire

packet is moved to the address/offset loaded into the register stack by the

PS, mimicking the ring-buffer DMA configuration for a regular PS-Ethernet

system.

When a reconfiguration request is decoded by matching the header as well

as a preconfigured number of bytes within the data segment at a specified

offset, the inline logic further extracts the bitstream name from the subsequent

bytes and raises an interrupt to the PS. The PS reads the bitstream name from

the bridge register and spawns a reconfiguration task that uses the custom

drivers of the PR controller to decode the bitstream name, locate the bitstream

in the memory subsystem (DRAM, Non-volatile SD card) and initialises a

DMA transfer into the PR controller in the PL logic. The driver organises

the bitstream information into a linked-list, allowing frequently used mode

names to be cached into the DRAM for faster reconfiguration speeds. The

driver releases software control back to PS as soon as the DMA transfer is set

up, enabling the reconfiguration task to be completed while PS executes the

regular management/processing tasks of the application.

While reconfiguration from a local database would be appropriate for

commonly deployed accelerator kernels, specialised kernels may be instantiated

into a reconfigurable region, where the module has to be fetched over an

external link (i.e. PCIe or Ethernet). Our framework supports this through

a remote-reconfiguration request, which accepts an incoming bitstream over

the network to be loaded on to an accelerator slot. A remote-reconfiguration

request is decoded by matching the frame header and the remote reconfiguration

keyword within the payload section; on the first instance of this command, the

bridge records the information about the request, like the number of packets

over which the bitstream is to be received and the bitstream size from payload.

The bridge also configures the receiver side arbiter to forward the packet to the

PR controller, while also setting up the ICAP manager to receive packets from

the arbiter instead of the AXI DMA. At each subsequent remote packet, the

bridge monitors and updates the frame and byte count to ensure that it stays

consistent with the information setup by the initial remote-reconfiguration

command. The payload section is directed to the ICAP manager as before,

until the last byte of the bitstream is received. The bridge then interrupts

the PS to signal that a new bitstream has been successfully loaded from the

network into the slot or to indicate that an error has occurred (missed frame
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or bit-error); the PS would initiate an acknowledge or no-acknowledge to the

remote-reconfiguration request to complete the cycle.

In case of other incoming data packets, the layer 2/3 header information

is used to determine the destination of the packet within the system. With

a positive match, the bridge issues a control packet to the RX arbiter to

configure the destination to the matching accelerator slot. The bridge may also

be configured to direct the packet to multiple accelerator slots (by appropriate

configuration of the register stack) and the arbiter sets up multiple write paths

in response. The interface uses AXI-streaming protocol and a logical AND of

control signals in case of multiple paths to ensure that both slots are ready to

accept data simultaneously. The arbiter follows a strict FIFO system to ensure

that incoming packets are correctly ordered. To ensure that an accelerator

cannot stall the pipeline, a time-out mechanism is put in place which causes a

packet destined for a slot to be dropped if the destination is unable to accept

it. An interrupt is raised in this case and the software stack should issue

a retransmission request to the source, using the packet header/data frame

information that can be read from the register stack.

In the case of no-match, the arbiter issues back-to-back reads to the FIFO

with no write destination setup on the multiplexer to clear the packet FIFO.

Alternatively, such packets could be set to redirected to the PS by setting the

no-match bit in the control register of the register stack, allowing the software

to make informed decisions.

On the transmit side, the TX arbiter manages output data generated by

the accelerators, allowing this to be packed into an Ethernet frame and sent

out onto the network. The TX buffer uses the slot information to reconstruct

the frame header (based on configurations within the register stack) and if

space is available, reads the data from the requesting slot to complete the

frame. A completed frame is moved into the TX FIFOs, following which a

DMA request is issued to the PS Ethernet DMA to read the packet from the

proxied locations within the PL.

4.5 Case Study

To evaluate our network enabled partial reconfiguration architecture we assess

the case for accelerating cryptographic computations on a Xilinx Pynq-Z1

device, mimicking a network attached accelerator. We implement the ap-

plication by utilising multiple cryptographic IP blocks on the Zynq XC7020

on the Pynq-Z1 device. The IP blocks are built as partial bitstreams PR

regions (slots) on the design, large enough to host the core. We explore both

cases of locally cached bitstreams that can be triggered from the local storage

(SD Card, DRAM) as well as receiving the bitstream over the network. We
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Figure 4.1: Network Enabled PR Architecture.

also evaluate an approach against the vendor provided PCAP framework by

receiving the packet within the PS (for software decoding and software driven

partial reconfiguration) and PL (for hardware decoding and software driven

partial reconfiguration).

The case study implements a lightweight PRESENT cipher [98] and the

more mainstream AES-256 cryptographic core. The two paradigms allow

exploring a security infrastructure for a lightweight sensor network system as

well as more mainstream compute accelerators. This allows us to demonstrate

how edge nodes could use the PL offload to secure packets/information up to

and/or down from a centralised server and adapt the cryptographic scheme at

runtime. This scenario can be visualised as the case of a lightweight sensor

array that does not incorporate the compute capability or power budget to

implement such security primitives locally and thus offload computations to

the edge device in both directions [99]. On the other hand, the same edge node

could serve as an inline network switch that offers in-network cryptographic

processing for the switch interface, aiding in reducing the routing delay within

the switch itself. The edge device handles the incoming stream of data in both

directions, and switches the encryption scheme based on the device/network

that it is currently servicing.
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Table 4.1: Resource Utilization on Zynq-7020

IP LUTs FFs DSPs BRAMs

AES-256 3204 2990 0 0

PRESENT 150 149 0 0

4.5.1 Advanced Encryption Standard

Advanced Encryption Standard is an established standard for symmetric key

block ciphers and is used in many secure systems. AES allows both encryption

and decryption of 128-bit blocks of data using a symmetric key of varying

length depending on the chosen standard, e.g. AES-256 uses a 256-bit key. In

order to encrypt, plaintext data is processed through a series of layers including

key expansion, key rounding, substitution, shifting, etc. and then repeated

a number of times on the output block of data. The size of the key used

determines the number of repetitions required for encryption/decryption; AES-

256 uses 13 repetitions. In order to decrypt the data, the receiving party must

also possess the same secret key used in encryption as this is used in the reverse

of the encryption process to decode the plaintext data. The AES-256 core

was implemented based upon an open source BSD-2-Clause-licensed Verilog

core [100].

4.5.2 PRESENT

The PRESENT cryptographic protocol is designed for compact data payloads

such as those that might come from an IoT device or sensor network. PRESENT

was included in this case study as it is designed specifically for constrained

devices and provides a lightweight alternative to AES whilst competitive

requirements for security [98]. Typically lightweight devices such as IoT systems

can be categorized as low throughput, sending packets of data in short bursts

to minimise the time required for the device to be active/consuming power

whilst transmitting data. This is relevant to a range of systems and protocols

including low power microcontrollers utilising lightweight RF protocols such as

RFID, ZigBee, LoRaWAN among others [101]. Due to its small block size and

key lengths 64 bit and 80/128 bit respectively, PRESENT is better suited as a

lightweight block cipher for the described scenarios than other schemes such

as AES. Within the application context, PRESENT is employed as the edge

interface to the sensor network, allowing data to be securely exchanged between

sensor elements from the array and in-network data aggregator/processing

subsystems down the network for sensor fusion or analysis. The Pynq-Z1 was

chosen as a representative node which offers limited resources and lower energy

consumption, emulating a real-world IoT system that can adapt its compute
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capability to serve the task by loading the requested compute kernel (bitstream)

into the accelerator slot using partial reconfiguration. Table 4.1 highlights

resource utilization in the individual cryptographic cores.

4.6 Experiments

To evaluate PR over the network, we simulate delivering Ethernet frames

that request a specific cryptographic scheme for a subsequent stream of data

by loading them into the available slot. Network-enabled reconfiguration is

critically important in this case as it allows to deterministically set up the

accelerator slots in PL, bypassing the PS, which depending on the software

application, might delay the processing of the data packets, i.e. OS scheduler.

For real time security applications, the time to trigger reconfiguration of the

encryption/decryption cores is essential for preservation of event timings and

optimal network response. A single accelerator slot is considered in the design

to simplify the measurement process, leading to a partial bitstream size of

799,584 bytes for both the cryptographic cores.

An Ethernet frame was crafted composing of payload segments to denote

if a packet is a reconfiguration command, an initial remote-reconfiguration

command, subsequent remote-reconfiguration commands with segments of PR

bitstream or a regular payload containing sensor data that needs to be encrypted.

We compare the results between a PS driven reconfiguration command using

Xilinx’s PCAP PR flow, a PS driven reconfiguration command flow using a high-

speed PR controller in PL and with the custom network PR reconfiguration

manager which implements reconfiguration command extraction within the PL.

We use the same Ethernet frames across all the possible combinations. In the

case of a reconfiguration command frame, the frame has a specific layer-2 format

and a data segment that specifies that the frame is a reconfiguration command

and the name of the cached bitstream to be loaded. In case of a remote-

reconfiguration request, the data header specifies the remote-request command,

size of the bitstream and a counter specifying the sequence number (set to 1

for initial and increments for every subsequent frame). For all experiments,

the bitstreams were cached into the DRAM memory of the PS, removing

any dependency caused by loading the bitstream from the slower non-volatile

storage sources. Results for the experiments can be seen in Table 4.2.

4.6.1 Frame Decoding in PS (PCAP)

This case presents the typical development scenario when utilising the vendor

tool flow and resources to integrate dynamic reconfiguration into the Zynq

system. The Ethernet frame containing the reconfiguration command was
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Figure 4.2: Zynq Processing Ethernet Packets in PL.

Table 4.2: Network PR Experiment Results

Experiment RX (ns) Decode (ns) Reconfig (ns) Reconfig Throughput (MByte/s) Total Throughput (MByte/s)

Xilinx PCAP (PS Decode) 53238 297 6303840 123 122

Custom PR (PS Decode) 53246 294 1955382 398 368

Custom PR (PL Decode) 37605 N/A 1953795 399 391

generated within the software application and the Ethernet PHY set to loopback

mode to receive the frame back into the device. PCAP uses Xilinx’s dev cfg

drivers to handle bitstream movement from the PS; as mentioned, the partial

bitstreams were buffered into the DRAM. The PS Ethernet RX buffers were

configured to use DMA to transfer the received frames into specific locations in

the DRAM and interrupt the PS when a frame had been successfully received

(i.e., available for PS to read at the DRAM location). The interrupt handler

decodes the frame and triggers a software task, if the frame is decoded as a

reconfiguration request. The software task then decodes the requested mode

name, looks up its location in the DRAM and initialises the reconfiguration via

PCAP. We observed that the total time taken for the task to complete from

the receive frame interrupt was 6.357 ms with 53.54 µs for the time to trigger

reconfiguration and 6.304 ms for the actual reconfiguration. This is inline

with the performance expected from PCAP, staying within the documented

throughput of 145 MB/s [102].

4.6.2 Frame Decoding in PS (Integrated Controller in PL)

High-speed reconfiguration controllers may be implemented within the PL

to improve the overall reconfiguration performance of the vendor tools. To

evaluate this case, we integrate a custom reconfiguration framework which

uses a hardware reconfiguration manager and software library to manage bit-

stream organisation. In this experiment, the software tasks are still required

to decode the frame however once the mode name is known, control is passed

to the reconfiguration framework. The UML diagram in figure 4.3 captures

the sequence of events from the arrival of the reconfiguration packet at the

Ethernet interface (PS-EMAC) to the completion of reconfiguration through

the hardware manager. The PS is then free from managing the bitstream
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Figure 4.3: Sequence of events when Ethernet frames are handled by PS and
reconfiguration is managed by an integrated PR controller in PL.

transfer and can return to processing tasks; the software core of the reconfig-

uration framework marks the completion of the task by raising an interrupt,

allowing the PS to synchronise the system. We observed that the total time

consumed for reconfiguration from the reception of frame within PS to com-

pletion of the reconfiguration task reduces to 2.01 ms. This is largely down to

the improved reconfiguration speed offered by the hardware reconfiguration

manager, completing the reconfiguration in 1.955 ms with an overall throughput

of 368 MB/s, in line with the measurements made for custom controllers such

as ZyCAP [11]. More importantly, the software framework releases the PS

once the reconfiguration is set up; however, the time to trigger reconfiguration

is limited at 53.54 µs, as shown before.
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4.6.3 Frame Decoding in PL (Custom PR Controller)

To reduce the overheads associated with software frame decoding, we utilise the

custom network enabled PR architecture described in this Chapter to offload

the packet decoding to the PL. As with the previous experiments, described

earlier in this Chapter, the reconfiguration frame was generated within the PS

and looped back at the PHY; however, this time using DMA proxying, the frame

gets redirected into the PL, decoded inline by the logic and triggers PR, in the

case of a reconfiguration command. This allows for complete bypassing of the

PS for the trigger packet handling or deconstruction, removing the need for a

software task to decode the frame. The UML diagram in figure 4.5 captures the

sequence of events from the arrival of the reconfiguration packet at the Ethernet

interface (PS-EMAC). Decoding the packet within the hardware allows the

PR controller driver to receive a PL interrupt, read the requested mode and

initiate a PR request via DMA; once again freeing the PS as in the case of

the previous experiment. This reduces the time to trigger reconfiguration to

37.61 µs, performing the complete reconfiguration process in 1.992 ms. Note

that the frame decoding within the PL does not incur additional latency as

the frame’s content is analysed inline within the data path as the frame arrives

into the PL.

The benefit of offloading packet decoding to the Ethernet bridge in PL

can be observed when the PS executes the decoding task while also handling

non-pre-emptive critical tasks. To show the impact, we emulate the case where

PS is loaded with a compute event of higher priority that gets executed in a

periodic fashion (like a system management task in a server), while the packet

decoding task is enabled by an interrupt from the PS-EMAC. The task reads

a sequence of registers and has a variable execution time depending on the

contents of the register, while the packet decoding task decodes the content of

the frame (checks for reconfiguration command), performs a look-up for the

requested mode and initiates a PR operation. We observe the variation in

processing latency across 10000 tasks trigger in this setup, performing this test

25 times. The test was then repeated (varying the number of tasks) with packet
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decoding offloaded to PL, where the PS task is reduced to the mode look-up

and initiation of PR. Figure 4.4 plots the observed deviation in handling the

reconfiguration command when the reconfiguration command is decoded in

PS against the hardware decoding. The results show that the network PR

flow offers much better predictability compared to the standard approach of

decoding and managing reconfiguration within the PS, even when high-speed

reconfiguration management IPs are used. The variation between the upper

and lower quartiles of the network PR is only 1µs compared to the 178µs seen

in the standard vendor flow.
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Figure 4.5: Sequence of events when the packet decoding is handled within
the network interface in PL, while the reconfiguration is initiated from the PS
using a custom reconfiguration manager.

4.6.4 Bitstream Over Network

A major benefit of bypassing the PS for frame decoding lies in the ability to

receive new bitstreams over the network and to load them into hardware without

the need for buffering/management at the software level; this is demonstrated in
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research by Byma et. al. [96], where they provide a framework for virtualizing

FPGA resources. This extends the use case for network attached accelerators,

where sparingly used specialised kernels could be held in a central location and

can be activated on request for accelerating specific tasks. Although locally

cached bitstreams allow for faster turnaround times, storing all possible modes

locally results in huge memory utilisation and overhead. Also, involving the

PS to receive and manage bitstream over network creates unnecessary latency

as well as data movement between the PS-EMAC, DRAM and from DRAM to

accelerator slot (PR).

To demonstrate this case, we deconstruct the PR bitstream into remote

reconfiguration request frames that trigger the network integrated PR con-

troller to use the incoming bitstream information instead of a locally cached

version. To model this use case, these frames are generated by a Python script

within a host PC and sent to the target device via direct MAC addressing.

On receiving the remote reconfiguration request, the bridge verifies the signa-

ture and triggers the integrated reconfiguration module to use the bitstream

information. Subsequent reconfiguration data frames are also directed into

the reconfiguration module (omitting the data headers) until the last frame

is successfully received, completing the loading of remote accelerator into the

PRR region on the device. In the test setup, we observed that the crypto-cores

could be loaded from the host PC in 53.59 ms, measured from the arrival

of the PR request frame within the PL to the completion of PR operation.

Additionally, the received bitstream could also be buffered into the PS DRAM

(caching), allowing the accelerator to be subsequently loaded from the local

storage. We do not compare this to the time taken using a PS controlled flow

as the performance benefits of PL decoding are surpassed by the time taken to

transfer the bitstream across the network.

4.7 Summary

Heterogeneous architectures such as the Xilinx Zynq platform are a key aspect

for the design of distributed in network accelerators. We present a strategy for

targeting, initiating and loading partial reconfiguration over a network interface,

bypassing the processing system. This strategy enables high performance, low

latency partial reconfiguration for streaming applications that utilise custom

hardware accelerators such as in network cryptography. We demonstrate

that this methodology significantly improves upon time to reconfigure when

compared to traditional PR strategies that require processing of Ethernet frames

within the PS. Our case study demonstrates that the PS bypass approach

achieves a 29.76% decrease reconfiguration trigger latency, with the addition

that it frees the PS for other computation and reduces the variation in time to
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handle incoming Ethernet frames.

We are looking to further reduce round trip time-to-reconfigure by perform-

ing the mode decoding and address lookup using a mapping in the register

stack (performed in the PL). This would allow the software overhead to be

further reduced as the frame decoding within the PL does not incur addi-

tional latency due to the contents being analysed inline within the data path

upon streaming a frame into the PL. Additionally, we intend to develop the

architecture presented in this Chapter to support Linux; this will allow for

more complex accelerator designs, including higher levels of abstraction and

integration with existing acceleration frameworks. We are looking to further

build on the concept of intelligent accelerators by enabling them to actively

manage caching of acceleration PR bitstreams. This would allow the accelerator

to effectively prioritise recently used bitstreams and move bitstreams in/out

of cache with situational awareness; close integration with an accompanying

software framework would allow this to be intelligently managed on a PS

process.

The work introduced in this Chapter lead to the discovery of the complexity

and difficulty of designing PR based applications for the FPGA SoCs. The fol-

lowing chapters 5 and 6 investigate how build tooling and runtime management

can be utilised to reduce this complexity.
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Chapter 5

Design and Build Framework

for Partial Reconfiguration on

FPGAs

5.1 Introduction

FPGAs are capable of providing high performance custom computing for re-

source heavy data center applications as well as high efficiency and low power

embedded edge scenarios. While FPGAs excel at accelerating specific com-

putations, system tasks such as hosting an operating system and managing

high level networking, are better suited to general purpose processors such as

CPUs. The combination of FPGA hardware for high performance accelerators

and general purpose processing systems or CPUs has led to popular heterogen-

eous SoC platforms from leading manufacturers, such as the Zynq and Zynq

UltraScale+ from Xilinx and the Stratix, Arria, and Cyclone families from

Intel.

While such devices have the benefits of both generalised and accelerated

computing, managing the abstraction of custom accelerators in the program-

mable logic or FPGA fabric from the application processor can be challenging

as it demands expertise in integrating low level hardware design with the higher

levels of abstraction used for OS networking, and this is further complicated

for domain specific design frameworks such as for machine learning. This

challenge is further extended when the designer wishes to exploit specialised

FPGA features such as Partial Reconfiguration, which allows the FPGA to

modify/update specific regions while still processing data. Managing the state

of the FPGA hardware logic from software running on a CPU is challenging,

making designing and deploying such systems extremely complex.

In order for PR to finally become feasible in mainstream applications,

a number of challenges must be addressed: (1) designing and building PR
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Figure 5.1: Example Linux PR workflow. Designers are required to propagate
their changes up from the accelerator, through to the shell, the Linux kernel,
as well as track PL changes from their high level applications.

systems should be possible by non-experts; (2) abstractions between hardware

and software must be managed such that both PR and accelerator performance

is not impacted; (3) interacting with hardware accelerators should not require

driver level access — applications should run from OS userspace; and (4)

fragmentation of vendor hardware should be managed by tooling; the tools

should be modular to support new architectures.

Existing vendor as well as current academic tools typically either demand

bespoke expertise, tightly weaved into the development flow from start to

finish or isolate each step, requiring build tasks to be managed by separate

domain experts [10]. Fig. 5.1 shows the four major stages of building for an

FPGA operating system and how under a traditional vendor flow, changes at

any stage (prior to the high level application) require the designer to adjust

other aspects of the build. An OS runtime’s control over hardware typically

has no context of the build process, being only aware of what is in the FPGA

through logic implemented by the end application designer, often using custom

drivers, bespoke memory mappings and data transfer mechanisms. This applies

significant overhead to either the knowledge requirement of the end application

designer or the cumulative team that is building the various stages. Some

frameworks such as Xilinx’s PYNQ [103] platform do provide some hardware

abstraction under a Python SDK and allow for independent RTL compilation,

to reduce the need to recompile the Linux kernel, however this is typically

at a performance loss, using slow and unmanaged methods for configuring

hardware.

It is still difficult for edge application developers to build high performance

accelerators using off-the-shelf hardware IP cores without highly specialised

knowledge. Our motivation for developing this tool is to enable an independent

designer to build PR accelerated Linux applications for modern edge applic-

ations. Designers should be able to use existing HDL projects or IP cores,

leaving the tools to determine compatibility and build hardware infrastructure

to support them.

In order to fulfil the demands of a workflow targetted for an independent
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designer building PR accelerated edge applications on Linux, the build and

runtime tools should be able to automatically: (1) Determine compatibility

of PR modules and the static regions. (2) Generate PR configurations based

upon a user supplied config file. (3) Export PR configurations (memory

maps, bitstreams, register values) to a Linux image. (4) Implement runtime

abstractions that allow software centric control of hardware state. (5) Support

non-PS centric data generation/acquisition.

Meeting these criteria is an important step to democratising the use of PR in

embedded applications, significantly reducing the complexity of heterogeneous

systems design and deployment. introduced an early set of abstractions to

support this automation workflow; we build upon these tools to release this

end-to-end (E2E) tool allowing for complete abstracted PR application design

and development. This Chapter and the following introduce the build and

runtime components of a customer workflow designed to automate developing

PR applications.

The work presented in this Chapter has also been discussed in:

• Alex R. Bucknall, Shanker Shreejith, and Suhaib A. Fahmy. Build

automation and runtime abstraction for partial reconfiguration on Xilinx

Zynq UltraScale+. In Int. Conf. on Field-Programmable Technology

(ICFPT), pages 215–220, 2020. doi: 10.1109/ICFPT51103.2020.00037

[14]

• Alex R. Bucknall and Suhaib A. Fahmy. ZyCAP2: End-to-end build tool

and runtime manager for partial reconfiguration of FPGA SoCs at the

edge. In submitted to: TRETS, 2021 [18]

5.2 Contributions

The key contributions of this Chapter are:

• An extensible end-to-end FPGA PR and Linux build tool written in

Python, for partially reconfigurable designs that automates the generation

of infrastructure to support user logic and manages device tree overlays,

drivers, and memory mapped IO

• A standalone Python library for interface extraction and wrapping PR

module interfaces to enable easily building soft SoC infrastructure

• An extension to FuseSoC EDA library to enable building PR based

workflows and simplify loading acceleration function from a common

libraries
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• A comprehensive hardware-software build abstraction to allow for sim-

plification of hardware management from a user’s software application

based around the AXI standards

• Support for edge-oriented acceleration where non-PS sourced data paths

are allowed for chaining reconfiguration regions as well as from external

PL peripherals

5.3 Related Work

To effectively explain the current state of research for PR design flows, both

vendor tooling and academic works are evaluated. Some of these topics have

been explored as an overview in earlier chapters (see chapters 2 & 3), here they

are critical analysed for their constraints and limitations.

5.3.1 Vendor Tools

Major FPGA vendors, including Xilinx and Intel offer their own implementa-

tions of PR, with varying degrees of support on recent FPGA SoC platforms.

The build tools specifically target Xilinx’s Zynq and Zynq Ultrascale+ devices

as support for PR is more widely documented and there is a larger user com-

munity than for other vendors. There is potential to support other vendors

such as Intel, within the tools presented in this Chapter, in future work.

5.3.1.1 Xilinx Vivado Design Suite

Xilinx Vivado is the suite of hardware tools for FPGAs, encompassed by the

Vitis platform, to help users design, build and deploy custom bitstreams onto

Xilinx FPGAs. This tool includes the workflows for synthesis, implementation,

and place and route. While this software does provide workflows for some

automation of the PR design flow using the DFX wizard tool, this is limited

such that the designer must ensure that their PR modules correctly match

the base design including interfaces, the allocated pBlocks or Reconfigurable

Partitions (RP), as well as assembling and extracting any memory mapped

addresses from such modules if required to be exposed at runtime to the Linux

kernel. For these tools, Vivado from version 2019.2 onwards is specifically

examined, along with the introduction of the DFX tools.

5.3.1.2 Dynamic Function Exchange

DFX is a Xilinx device feature that allows a user to dynamically modify blocks

of logic by downloading partial bitstreams while the remaining logic continues

to operate without interruption, referred to elsewhere as DPR. DFX provides
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a simplified wizard for reducing repetition when creating PR modules but this

only extends as far as allowing the user to automate the swapping in/out of PR

modules into the build flow. The DFX suite does offer IP cores for managing

reconfiguration including tools for managing the flow of data into and between

static and PR regions but these do not support loading from an AXI-Stream

transaction, such as with DMA from the PS.

5.3.1.3 Xilinx Vitis

The Xilinx Vitis unified platform comprises a collection of hardware and

software layers for building embedded applications. In relation to the tools,

we refer to Vitis SDK as Xilinx’s previously named XSDK software suite for

building bare metal and Linux applications. Vitis is typically designed to build

C/C++ Linux applications for the Zynq and ZynqMP platforms where the

user’s code may be required to interface with kernel drivers or modules. It

is intended to be used with the PetaLinux build workflow, for access to the

kernel headers and dynamic libraries required for linking.

5.3.1.4 PetaLinux

PetaLinux is Xilinx’s build tool for embedded Linux deployments and is based

on the open source Yocto build tooling, using the same recipes and build

structures to generate custom Linux images. Xilinx supports the ability to

pass hardware configurations between Vivado and PetaLinux using their XSA

compressed object, which specifies information about hardware, such as Memory

Mapped Input/Output (MMIO) addresses, support for their own IP cores,

and drivers such as the DMA controller. Fig. 5.2 shows the pipeline from

Vivado, Vitis, and PetaLinux for generating the boot.bin Linux image that

contains bitstreams, first stage bootloaders, as well as other power management

firmware. While this pipeline supports static designs, due to the changing

interfaces and modules, it is unsuitable for PR workflows as definitions such

as MMIO register controls are not tightly defined, as the generated XSA file

includes the build information for only the base design, not the subsequent PR

modules.

Fig. 5.4 shows how the Xilinx tools are used together to design and develop

embedded Linux applications. While there are automated aspects of this design

flow, such as the exporting of AXI addresses (MMIO) to be used for generating

a static Linux device tree, this only supports a traditional static design flow,

with no support for PR hardware.
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Figure 5.2: The Xilinx Linux build flow.

5.3.2 Current Research

Significant work has been conducted across various aspects of the PR workflow,

in particular on the FPGA floor planning process, where floor planning is the

spatial placement of logical designs on the FPGA, and/or on the scheduling

of PR loading from the processing system. Tools like GoAhead [49] leverage

vendor tooling for the building of reusable Reconfigurable Modules (RM),

intending to make designs more portable and potentially compatible across

different FPGA devices and PR applications. GoAhead can generate interfaces

for PR modules to enable simple integration with the static region and abstract

low level designing. [51] focuses on the DPR workflow for building RMs and

automating RP generation; it is built on top of Vivado TCL scripts and offers a

simplified workflow for building PR applications. Their tool, however, impacts

the size of the partial bitstreams and thus further increases the time taken

to load over the PCAP interface. More recently [104] provides an automatic

floor planning methodology that enables the generation of IP, independent

of architecture and able to target larger SoCs such as the Zynq Ultrascale+

devices. The work in [105] introduces a hardware architecture that packages

FPGA resources as blackboxes, configurable at runtime where a software stack

allows for task scheduling in the FPGA using PR to load accelerators. Their

design focuses predominately on task scheduling and utilises a slot based

architecture with fixed interfaces. The results demonstrate high efficiency when

accelerator execution time exceeds the cost of reconfiguration delay.

Open source tools are essential to this field of research as there is not a

single approach that can solve all of the issues of PR application development.

Tools such as FPGA Operating System [10] are designed to isolate each element

of the workflow such that designers with expertise can independently develop

these components, while others [61] offer highly integrated workflows that
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Table 5.1: Build Tool Comparison.
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tightly integrate the movement of data between PS and PL using custom APIs.

5.3.2.1 FPGA Operating System

FOS [10] is a recent build framework and runtime that modularises the design

flow of PR applications for the Zynq and ZynqMP. It provides optimisations in

the domain of abstracting the FPGA-Linux barrier to focus on resolving chal-

lenges to do with segmenting the design flow for interoperability across a team,

enabling stages to be offloaded to bespoke designers with domain expertise. In

their flow, the designer(s) must be aware of non-trivial considerations for PR

hardware such as creating PL device constraints, generating a custom Linux

device tree, as well as how to interface high level software applications with

hardware accelerators, either through kernel drivers or userspace abstractions

on kernel drivers. FOS supports compiling PR modules independent of the

shell interfaces, performed by bitstream manipulation to dynamically assign

physical fabric mapping to the PR modules allowing them to abstract resource

allocation [3], as opposed to the traditional flow which requires locking a static

design to implement a PR module. However, similar to other frameworks that

utilise custom PR shells, there is limited support for interfacing peripherals

such as Ethernet controllers, MIPI cameras, etc., directly with the accelerators,

first requiring conversion into a standard shell interface (AXI4 or AXI4-Lite)

which is not factored into the design flow. FOS targets applications where a

development flow might be implemented across multiple designers working in

isolation; the tools aim to enable a workflow for a single software designer to

build accelerated applications. The FOS runtime supports a multi-tenancy

scheduler tha manages provisioning for multiple clients. For the runtime, inten-

ded for a single user edge application, we choose not to build in unnecessary

complexity to the framework, arguing that multi-tenancy is bettered intended

for centralised offloaded compute applications.

Other tools [105] have also focused on scheduling of PR systems, aiming

to provide a framework for efficient task switching and provisioning of the PL
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under heterogeneous systems. While there is a significant body of work in

this domain, the tools predominately focus on the abstraction as well as the

build process for the designer. Instead an open runtime API and abstraction

are provided to enable task scheduling to be built around the hardware and

software infrastructure.

The work in [106] suggests extensions to FOS that provide plugin support

for the ICAP. However, the driver and HDL code for has not been published to

the open source code repository for FOS. It is difficult to quantify the features

of their driver, such as if it supports asynchronous triggering of PR, without

additional insight into how the driver functions. It does however appear to

suggest that it offers reconfiguration directly from the network, described

as remote configuration, which offers similar advantages as described in [92].

Table 5.1 show a comparison of current competing tools that target relevant

devices and current vendor place and route tooling.

5.3.2.2 ReConOS

ReConOS [61] allows generation of PR bitstreams but these must be compiled

along with the kernel as custom drivers and bespoke hardware components. This

means that future PR modules require the kernel to be recompiled with the new

bitstreams and associated drivers. Additionally, no device tree configurations

for underlying modules are generated so PR modules that require specific

configurations, such as differing memory maps, require recompilation of the

kernel.

The group behind ReconOS recently expanded this vision for a hardware

abstracted Robot Operating System (ROS2) platform built on top of ReconOS

framework, ReconROS [107]. ReconROS features multithreaded programming

interfaces for both hardware and software control with APIs for consistent

programming models across hardware and software boundaries. They utilise

the shell interfaces present in ReconOS with additional APIs that wrap the

ROS2 subscriber/publisher methodologies to interface between hardware and

software. A ReconROS application is designed in a similar manner to the

ReconOS workflow, extending the original tooling to generate a hardware and

software output but with ROS2 middleware accompanying. Their platform

targets the Zynq-7000 platform and not the Zynq Ultrascale.

While existing PR frameworks provide access to PR with the compromise

of overhead, portability, and performance, we offer a combination of lightweight

build abstractions that extend vendor tooling with limited modifications to ker-

nel drivers, focusing on abstracting control from the userspace while providing

the highest possible performance for both PR and PL accelerators. Frameworks

such as FOS divide the build process between multiple domain experts and
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provide support for multi-user distributed accelerators. The abstractions focus

on enabling a single user to develop and deploy high performance adaptive

system applications within Linux. The complexity of standard vendor tooling

presents a significant barrier to entry for new users and we attempt to address

this with the tooling abstractions. These extend to the runtime API which

means a developer without PR application experience can write the software

to manage the reconfiguration seamlessly at runtime.

5.3.2.3 ARTICo3

[9] is another automated toolchain designed for PR application deployment.

They describe their tool as being able to dynamically adapt between trade offs

with computing performance, energy consumption, and fault tolerance, meeting

the demands of a cyber physical system. ARTICo3 extends the ReConOS

system bus; the designer is expected to conform workflow APIs for controlling

PR kernels, which provide abstracted access to hardware, with the caveat that

HDL or C/C++ kernels must conform to a shell defined interface. This means

that accelerators (referred to as kernels in [9]) must be designed to fit the

shell interfaces and thus their runtime API. This does provide an advantage

to discretely allocate resources per PR shell such as local memory banks

for each shell, where accelerators act as virtual slave peripherals in the AXI

infrastructure. HLS libraries are offered to simplify kernel design, all custom

accelerators should be designed with the expectation that the local memory

blocks for each accelerator is used to move data between the accelerator and

the rest of the infrastructure. This simplifies PR with a standard interface

between the static and reconfigurable regions but adds design time complexity.

The ARTICo3 runtime executes from the Linux userspace, written in C.

Their API uses a custom kernel platform module to manage virtual-physical

memory management as well as DMA control. While the kernel platform

module is relatively lightweight, it means that any changes in the Linux kernel

must be fixed in the framework, as opposed to using vendor drivers such as

Xilinx’s DMA driver.

5.3.2.4 Summary

Across the most recent and notable toolchains that target simplification of

the PR build process, we identify a number of key issues concerning the build

tools and runtime managers. Hardware kernels, the layers of software required

to communicate with accelerator logic, are common across the different tools

and push designers to learn custom workflows for designing/wrapping their

acceleration functions. The drawbacks of tool specific hardware kernels include:
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• Requirement to learn and implement accelerator logic adhering to the

specifics of the target toolchain.

• Adapting application software to interface with tooling specific APIs.

• Increased software overhead as a result of layered abstractions to access

hardware.

Additionally, there is no support for non-PS centric data transfer; acceler-

ators are treated as isolated co-compute for the PS and externally connected

devices such as high speed cameras and sensors must be connected first to

the PS before data can be accelerated in the PL. The runtime managers in-

cluded with these tools use Xilinx’s FPGA Manager driver for reconfiguration,

restricting the potential PR throughput and latency to that available with the

PCAP interface.

5.4 Concepts

We define a number of important concepts in the context of our custom tools

and specify their relevance to this work; in order to explain abstractions and

concepts, we provide some definitions. We describe states as hardware changes

that may be configured by setting AXI registers or by communicating with the

hardware from another bus protocol (e.g. DMA stream path). We define modes

as the functional hardware accelerators which can be loaded and unloaded from

the FPGA using partial configuration. This includes the partial bitstreams

that define the hardware accelerators. We refer to a configuration as a

functional arrangement of modes that may perform an abstracted acceleration

function such as multiple modes in the datapath, sampling and filtering the

incoming data. A configuration may consist of a number of modes, abstracting

the operating state of the hardware with both partial regions and the MMIO

within the PR modules. In context of the build tool, a specification file is

a file type that defines the parameters of the building workflow. This can

be considered as a initial setup file, not to be confused with the definition of

configurations; file is referred to as the spec.json.

5.4.1 Heterogeneous Systems on Chip

Traditional edge computing has utilised generalised computing, typically ap-

plication processors (or CPUs), such as ARM A-Series processors. Applica-

tion processors excel at tasks such as scheduling software running on top of

an operating system, managing networking interfaces as well as generalised

data manipulation and support for high level user applications and libraries.

Contrastingly, FPGAs are programmable hardware devices best suited for
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accelerating parallel tasks through custom datapath design. They are ideally

suited to high data rate applications such as image processing or machine

learning, where generalised compute might only be able to provide limited per-

formance. However FPGAs typically operate at significantly lower clock rates

than application processors and need to implement soft-CPU cores to execute

software, limiting their performance for general computing. Heterogeneous

SoCs couple application processors and FPGAs to leverage high performance

and efficiency in both generalised and accelerated computing respectively, using

high performance interfaces on the same chip. The application processor is

connected to a wide range of external interfaces and comprises the Processor

Subsystem (PS). The FPGA logic is generic as in other FPGAs and comprises

the Programmable Logic (PL) region. Managing the abstraction interface

between a CPU and an FPGA has been a long standing topic of research dis-

cussion, leading to many approaches to manage and ease the workflow between

systems, in particular from the perspective of how the OS views the hardware in

the FPGA. At the time of this work, Xilinx offers two main device families for

Heterogeneous SoCs, the Zynq and Zynq Ultrascale+; the framework presented

in this Chapter supports both devices.

5.4.2 Operating Systems

To control and manage a tightly coupled FPGA, an operating system may

consist of a number of management layers, that include both the hardware

and software infrastructure. We split the hardware management into three

layers: controlling the status of the FPGA logic (PR or full reconfiguration),

controlling the shell interfaces for moving data between the PS and the PL, and

finally controlling the PL accelerator, such as managing modes, starting/stop-

ping/interrupts, etc. While other embedded operating systems exist, in the

context of this work we specifically refer to embedded Linux as it is widely

supported on ARM processors and is the target operating system of major

vendors’ build tooling, such as Xilinx’s PetaLinux.

5.4.3 Partial Reconfiguration

Partial Reconfiguration is the modification of one or more sections of an

FPGA’s logical resources during which the remaining sections or static regions

are unaltered. [108] provides a wide overview of technical aspects of PR as well

as academic work in the area that examines and addresses improvements and

benchmarks concerning the technology. Dynamic PR describes the FPGA’s

ability continue to perform operations while undergoing the reconfiguration.

Conversely, we label complete reconfiguration of the FPGA under a reset

condition as static or full reconfiguration. PR is achieved by writing partial
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bitstreams, generated specifically from the FPGA build workflow, to a config-

uration port on the FPGA and in the case of a heterogeneous SoC, is typically

initiated by the application processor. PR has a number of benefits including

time-multiplexing of hardware, making more efficient use of the logical resources

available in the FPGA, effectively allowing for larger hardware applications to

be deployed. Additionally, the time taken to update these partial regions is

considerably shorter than static reconfiguration as reconfiguration is propor-

tional to the size of the bitstream that is written to the FPGA’s configuration

port.

5.4.4 PR Design Workflow

The workflow for designing PR applications is complex, requiring expertise

across multiple domains, including RTL design, operating system configura-

tion, kernel driver, and high level software design. A typical workflow will

include: designing the low level shells for PR modules, development of the PL

accelerators, designing a custom Linux image with drivers and kernel support,

as well as the high level application that will consume and control the the PL.

Complexity in the design of accelerator hardware can be expressed as a

design challenge, beyond the scope of this research where numerous academic

tools as well as vendor supplied frameworks, such as Xilinx’s Vitis HLS, provide

a software centric approach to designing hardware accelerators using simplified

constructs in common software languages like C++. This Chapter presents

abstractions for the reduction of complexity in the build times and run times

specifically for PR applications. Reducing the development complexity of the

hardware accelerators themselves, remain a design challenge as the paradigms

for designing hardware are not a direct translation to high performance software

design. We are able to leverage the fact that many of these higher level

accelerator design flows have consistent interface generation, e.g. AXI.

5.5 Build Toolflow

The workflow differs from current tools with its aims and implementation

details, generating PR infrastructure specific for serving edge applications.

The ZyCAP2 tools provide a complete E2E FPGA to Linux workflow to

tightly integrating PR systems design as a simple software centric design

solution. Tools such as FOS [10] offer a design flow intended for multiple

designers requiring specific domain knowledge, albeit compartmentalised for

offloading, meaning that for an optimal design workflow, a diverse team of

domain experts is required. The framework described in this Chapter offer a

number of motivations:
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• Trading fine-grain control at each stage of the design process for deeper

abstractions, requiring less expertise from a single designer

• Offering better support for varying accelerator interfaces, by generating

support infrastructure at build time rather forcing standardised shell

interfaces

• Providing an alternative to a PS driven dataflow; with the expectation

for high data rate sensors and peripherals to be attached to the PL

• Reduce the low level complexity of end-to-end PR software application

development by use of mainline userspace-kernel software drivers

• Improving on loading throughput and latency for PR bitstreams for Linux

applications

While academic works have examined the runtime of PR management,

many of these tools still require the designer to use the standard vendor build

workflows. This approach is appropriate for static designs as hardware details

such as hardware memory address locations are fixed and can be passed between

Vivado and the Vitis SDK tools using XSA export files, however this is not

compatible with a workflow that generates multiple PR bitstreams. We provide

an integrated hardware build toolflow that generates structural outputs that are

used to implement the driver, software, and abstraction components required

by the Linux build process and PR runtime.

The workflow is designed to allow a single user to implement accelerator

cores directly with their high level software applications. The tools manage

the shell generation through to Linux kernel changes to support the various

generated PR modules, abstracted through configurations and modes. The

build flow, both FPGA and Linux components, are written as an extensible

Python command line interface (CLI) tool, allowing them to be used either

as a CLI or Python library for custom build projects, such as automating for

multiple device types.

5.6 Edalize & FuseSoC

The build tool utilises the Edalize Python library for interacting and controlling

EDA tools programmatically [109]. Edalize is an open source community

project, specifically selected for its extensible code base and its support for

various vendor architectures. Edalize takes a configuration specified in a

Python script such as parametrization for compile- and run-time (e.g. plusargs,

defines, generics, parameters), library sources and any other tool-specific (in

this case out-of-context workflow for synthesising PR modules) and creates
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the necessary project structure (files and directories) along with build and

execution strategies for the project. In the case of our tools, Edalize is used

to inject, populate and template the TCL scripts with user proved variables

and settings to specify the custom PR workflow generated by our tools. The

tools generate a base project using Edalize (in this instance a Vivado project)

and inject the custom configurations for the PR build tooling, based upon the

data provided by the designer in the spec.json and from the interfaces that

were extracted by the interfacer tool. The tools extend Edalize to support a

sequence of out-of-context design runs that are created for the PR modules to

synthesise design checkpoints that are required for the PR workflow.

Built above the Edalize library is FuseSoC, a library and package manager

for HDL code. FuseSoC is designed to simplify the reuse of IP cores and allow

for creating, building and simulating FPGA applications, written in Python.

FuseSoC can also be used to create compile-time or run-time configurations for

individual IP cores, test against simulation engines, easily port designs to new

targets as well as set up continuous integration. Figure 5.3 shows how FuseSoC

and Edalize work together to abstract the building process for example EDA

tools shown. HDL cores or hierarchical descriptions of hardware in languages

such as Verilog, VHDL, nmigen [110] and others are organised into libraries

that can group and store their behaviour.

Figure 5.3: FuseSoC to Edalize workflow with example EDA tooling
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FuseSoC translates the description of the core into a tool-agnostic metadata

that is converted into project files and sent to the respective tool by Edalize.

Listing A.1 shows an example core for a blinky project running on the Ultra96v2

device. Lines 2 to 15 define the groups of files and their paths that constitute

a fileset and are used to compose different targets for simulation, testbenches

or building of the cores. Lines 16 to 43 define the targets, in this instance the

listing shows a simulation and build target. The core shown is standalone,

there are no additional requirements beyond the files specified under the filesets

in order to initiate building or simulation. Despite currently supporting a

variety of tools including Xilinx’s Vivado, Intel’s Quartus as well as open source

tools such as Symbiflow [111], there is no mechanism to instruct FuseSoC to

generate output files required by a PR workflow, such as design checkpoints or

the ability to route and lock the static region for interchanging PRMs during

implementation.

As an extension project to this thesis, part of the Edalize was extended as

an open source collaboration with GCHQ for their clustered FPGA acceleration

computing group. The objective of this project was to investigate and extend

FuseSoC and Edalize to support a PR workflow using Xilinx FPGAs, as a

mechanism for building and deploying new acceleration functions/hardware.

This work was inspired by an FPGA cluster managed by GCHQ that used

a runtime to manage flashing bitstreams into the Intel FPGAs using static

reconfiguration via a JTAG provisioning mechanism. Due to the size and

complexity of the bitstreams being loaded, this was measured to take upwards

of 30 minutes to perform provisioning, severely limiting the adaptability and

the utility of their cluster. Their existing build workflow already used FuseSoC

for design of their static acceleration functions as well for testing, simulation

and verification and thus wanted to extend this workflow to be able to support

PR. Their comprehensive FuseSoC library of IP cores was used to manage

updating and testing of their VHDL-based hardware as well as continuous

integration on this platform.

Initially we added additional functionality to Edalize to generate design

checkpoint files (DCP) as outputs to the synthesis runs. Previously the Edalize

workflow provided no mechanisms for interrupting a complete end-to-end

static workflow, i.e. synthesis, place & route and bitstream generation. We

modified the Python library to allow for passing optional parameters for the PR

generation to be loaded into the configuration object that instructed Edalize’s

behaviour via a custom Vivado template-engine TCL script. This enabled the

generation of the DCP outputs, required for building the PRMs. Following on

from the PRM flow, the static region along with PRRs needed to be generated

as this was also a non-supported workflow. The static region implementation

run was also saved as a DCP and exported as later required. A build parameter
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was added for the static region target that would allow for the pBlocks used in

floorplanning to be passed to Vivado alongside the fileset. FuseSoC was then

extended to allow for further additional parameters to specify if a core’s fileset

was for a PRM or a PR static run and which Vivado TCL templates to use.

DCP files could be used as input source files, as PRMs or static checkpoints

and to specify which arrangement of PRMs should loaded into the PRRs of

the static checkpoints.

At the time of writing this thesis, these custom extensions made to FuseSoC

have not been upstreamed into the ZyCAP2 project, in order to replace the

current file management workflow with the FuseSoC PR version, due to time

constraints. As such, we leave the integration of FuseSoC into the ZyCAP2

build tools as future work. Converting the ZyCAP2 project to use FuseSoC, in

addition to the already existing Edalize backend, will enable more reusable IP

within designs, better modularity, clearer separation of source and generated

products as well as encourage greater adoption via the use of already popular

tooling.

The upstream FuseSoC and Edalize source code is openly available under

a GPLv3 and BSD-2 license, allowing for modification and implementation

within the ZyCAP2 tools. The maintainers of the project are receptive to

features and extensions and have supported bugfixes along the way to enable

the features described across this section. As the project is versioned controlled

using git as well as hosted on GitHub, it provided a mechanism to converse

and work with the project’s maintainers to adjust and tweaks our proposed

changes to both FuseSoC and Edalize, ensuring they aligned with the project’s

goals. The intention is for this work to be contributed back to the upstream

source code repository for the community to utilise.

5.7 Hardware Abstraction

Under the build framework, states, modes, and configurations are defined

to abstract hardware control from the designer’s software application [17].

Individual hardware components can exist in a set of possible states, each of

which might adjust some internal hardware registers (a parametric change),

or force a hardware reconfiguration with a new circuit (a structural change).

Combined together, multiple components form a valid mode of the system

that can be set by the cognitive decision logic. In this way, it is shielded

from managing the low-level states of individual components. Fundamental

hardware structure may change through modification of access to specific

sensors or actuators (such as a radio switching from sensing to communication

modes). These are referred to as distinct hardware configurations, that may

require a different set of data interfaces between software and hardware. At
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runtime operation, the decision logic communicates configuration changes to the

hardware through a runtime or configuration manager (CM) which abstracts

the underlying changes to hardware required for the desired configuration and

mode. The CM is responsible for abstracting the software to hardware interface

with an application programming interface (API).
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Figure 5.4: Stages of the PR build flow [14]

5.8 Infrastructure Generation

To resolve the complexities of integrating custom accelerators, the tools attempt

to automatically build internal FPGA logic to accommodate interfaces and

peripherals of the user’s design. Fig. 5.5 shows the generalised architecture for
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how shell logic and infrastructure is generated for corresponding PR designs.

Currently the tool is capable of parsing Verilog top level modules for their

required interfaces as the port and interface extraction leverages Pyverilog [112],

an open source Verilog design processing toolkit written in Python. This

however does not limit the provided IP from only being supplied as Verilog

sources, the tool can also accept VHDL libraries and TCL scripts that are

required to build the target modules. The only restriction is that the top level

ports must be provided in Verilog so the tools can extract interfaces. High

Level Synthesis generated IP cores can also be used as input sources for PR

modules, supporting building directly from the imported core or pre-generating

the IP cores to be consumed within the user’s logic. We utilise Xilinx’s AXI

interconnect and AXI-Stream arbiter IP cores for routing data paths between

the DMA controller and MMIO reads/writes from the PS. Any signalling within

the PL is managed by the ZyCAP2 runtime, which will set the AXI-Stream

arbiter master and slave addresses according to the applied configurations.

To extend this further in the future, port extraction could be improved by

providing full support for VHDL and SystemVerilog.

Proposed API

User Software Application

ZyCAP API

ZyCAP Runtime Manager

AXI DMA Driver DMA Arbitrator udmabuf Driver UIO Driver

PR Shell PR Shell PR Shell PR Shell

AXIS AXI

PR Cell 0 PR Cell 1 PR Cell ... PR Cell N

DMA Controller

&
Demux

AXI 
Interconnect

AXIS Mux AXI 
Interconnect

PL Bus Arbitration

PS

PL
AXI

1:N N:1
ICAP

SPI
MIPI
Etc.

External 
Peripherals

HPHP/HPC

Figure 5.5: PL architecture generated using the ZyCAP2 build tooling.

5.8.1 Compile-time Generated Interfacing

To allow for a variety of PRRs, the build tool generates infrastructure at

compile-time to support the accelerator interfaces. Parsed interfaces available

on the module using a custom Python library interfacer, which is able to

extract supported protocols, used by the build tool to match and generate

infrastructure for including AXI interconnects and AXI-Stream arbitrators
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(multiplexer/demultiplexers). Currently this supports AXI Full/Lite, AXI-

Stream, General Purpose IO, Interrupts, Clocks, and Resets; it is designed

to be extensible by the designer allowing them to specify their own protocols,

such as using I2C and MIPI interfaces. The Interfacer library is able to extract

interface widths and pass this information upwards to the toolchain which then

determine the infrastructure to generate, such as setting default widths for

interconnects as well as bus width converters, if required. The library does not

currently handle differing/crossing clock domains between PRRs as this requires

specific attention when floor planning. However the designer may specify their

own pblock placements for accelerators and can manually accommodate for

crossing clock domains with custom logic and pblock locations.

1 "VERSION": "0.0.2",

2 "PROTOCOLS": {
3 "AXI": {
4 "STREAM_MASTER": {
5 "DIRECTION": "output",

6 "PARAMETERS": {
7 "PRAGMA": "(* X_INTERFACE_PARAMETER = \"{0}

\" *)",

8 "PARAM": {
9 "HAS_TLAST": "bool",

10 ...

11 }
12 }
13 "INTERFACES": {
14 "TDATA": {
15 "REQUIRED": true,

16 "DIRECTION": "output"

17 },
18 ...

19 }
20 }

Listing 5.1: AXI-Stream Master Interface

Listing 5.1 shows the interfacer protocol definition for the AXI-Stream

master interface, used to parse AXI-Stream interfaces and extend the generated

AXIS arbitrator from fig. 5.5.

5.8.2 Automatic PR Region Generation

At present the generation of PR Regions takes place as part of the Edalize

backend that the build tools are constructed upon but do not use the previously

mentioned FuseSoC library management, this is left as future work.

The build tools will search the users’s specification file for PRRs, assign

the specified pBlocks and build the PR logic accordingly. Listing 5.2 shows a

specification file, with a 2 region PRR, where a chroma filter is generated for
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both regions but the image resize and gaussian filter may only be generated in

region a and region b. A user may choose to do this if they know a module is

resource intensive as there is only a finite selection of logic available in the PL.

The tools will assign the RP and then create synthesis and implementation

runs for each region in an out of context workflow, allowing for the modules

to be used in PR bitstream generation. Currently the tools will warn the

user resource requirements exceed the PRR specified (specification shown in

listing 5.2). These warnings are generated when the logic demanded by the

accelerators cannot be provided by the region specified by the PRR.

Fig. 5.6 shows an example of the post-build generated wrappers for the user’s

HDL modules. In this instance, the tools generated 2 wrappers (supporting

2 configurations), an AXI Lite for control and an AXI-Stream interface for

data streaming. The generated wrapper will at least contain a union of

the interfaces of the underlying modules, where any interfaces unused by a

module are automatically tied off. This can support varying sized interfaces,

for example one module with a 32bit AXI-Stream and another with a 64bit

interface, with the caveat that performance may be degraded if data-width

conversion modules/IPs are used.

We choose not to address the issue of floorplanning within the tool and

instead provide standard slot-based PRR for the supported devices, with

layouts for 1 to 4 accelerator partitions. These slot definitions are stored with

the board files and the tools provide a flexible mechanism (via Python API) to

automate this resource allocation, if required. We provide the ability to specify

the pBlocks via the specification files such that external floorplanning tools

may be used in conjunction with the build tool. Significant research [113] [114]

[115] has already been conducted in this space and thus we consider custom

floorplanning to be out of the scope of this work. In future work, we intend to

automatically allocate the pBlock regions intelligently, without manual input

from the designer, based on methods such as those described in [116], [117].
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1 {
2 "pr_regions": {
3 "region_a": {
4 "pblock": [

5 "SLICE_X36Y121:SLICE_X47Y155 DSP48E2_X3Y50:DSP4

8E2_X4Y61 ..."

6 ],

7 "default_config": "config_a",

8 "configs": [

9 "chroma",

10 "resize"

11 ]

12 },
13 "region_b": {
14 ...

15 }
16 }
17 }

Listing 5.2: Multi-region specification with pblock definition

Figure 5.6: Synthesis schematic after build tool generates wrappers for each
PRR

5.8.3 PR Module Chaining

The tools provide a chained region generation feature for edge applications,

where multiple accelerators may be connected directly together to better serve

streaming data such as image processing or in-network packet processing.

Currently this feature supports AXI streaming interfaces where the user can

specify that the master and slave AXIS interfaces are connected to another

accelerator rather than directly back to the PS (via DMA). The compile-time

generated infrastructure allows PRRs to be connected to each other, in the
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described data chaining pipeline. Traditional shell based accelerators must

move data first to the PS before it can be redirected to another accelerator,

which disadvantages PL acceleration when the PL is the data ingress for sensors

and peripherals. The tool allows a user to declare in the specification file, if

regions should be connected to each other or to even external IO on the FPGA

for outboard sensors or peripherals. This type of design is amenable to edge

acceleration where accelerators are likely to ingest data from sources either

connected directly to the PL before the data arrives at the PS or where data

might require manipulation in a sequence of accelerators.

5.8.4 Customised Base Design

Under the default settings, the base design will encapsulate the user’s accelerator

with a compile-time generated shell, built from the interface information

extracted by the interfacer library. This can be overridden with custom base

designs to allow interfacing with external interfaces for example, high speed

camera interfaces such as MIPI CSI, assuming the underlying hardware supports

this. The default layout utilises a single DMA controller with generated

arbitrators for both the ICAP control interface and any accelerator modules

that use AXI Streaming interfaces. The AXI Streaming interface is particularly

important as it enables a continuous block of memory to be transferred between

the PS and PL, such as with edge applications such as image processing

or network traffic analysis. The default workflow scales according to the

number of user PRRs and exposed AXI interfaces identified within those PRRs.

Additionally this may also be overwritten to isolate the reconfiguration DMA

(for ICAP) and a unique DMA for the accelerators (using a dedicated HP(C)

port), where the DMA may also be configured as video DMA or standard

DMA. We target a base clock of 200 MHz for designs but can split the clock

into a 200 MHz clock for the ICAP and a lower speed clock for the accelerator,

if the accelerator does not support such frequency. The memory addressing

for the control of the DMA arbitration to ICAP and accelerators is abstracted

within configuration files and set by the Linux runtime manager.

5.8.5 Internal Configuration Access Port

For high performance reconfiguration, we choose to utilise a hard ICAP prim-

itive within the PL for streaming partial bitstreams. The ICAP is a hard

macro available in modern Xilinx FPGAs, with minor differences between the

ICAPE2 macro on the Zynq and the ICAPE3 on the ZynqMP. The ICAPE3

officially supports transferring bitstreams at a clock frequency of 200 MHz and

provides more output signalling than ICAPE2, such as with error statuses and

the ability to trigger status interrupts.
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Figure 5.7: ICAPE2 and ICAPE3 macros.

The tools automatically determine the target device and deploy infrastruc-

ture accordingly. If targetting a Zynq device, the ICAPE2 will be used at

100 MHz and if a ZynqMP is selected then the infrastructure builds for a

200 MHz clock and the ICAPE3 signalling. The tooling can also be told to

share a DMA controller between the ICAP and the user’s accelerators, in this

case the tool will prioritise the accelerator clock frequency and clock the ICAP

according to the slowest common clock. We use a Python toolbox for building

digital hardware, nmigen [110] to generate the interfaces for the ICAPE2 and

ICAPE3 at compile-time. This allows us to parametrically build the interfaces

and signalling for the PR controller, routing ICAP status signals back to the

PS over a common AXI-Lite interface.

5.9 Linux

We support building from the hardware flow output (Vivado) directly into a

pre-prepared Linux image (via PetaLinux), implementing and generating the

requirements for each configuration and its supported modes from hardware.

This information is passed from the FPGA build stages in the form of configur-

ation JSON objects consisting of the memory address mappings, PR bitstreams

and default values for MMIO registers. This is used for configuring the Linux

image to allow for ICAP access, generating device tree overlays, preparing

userspace drivers, preloading bitstreams and configuration files. The final

compiled Linux image contains a pre-built runtime for the Zynq or ZynqMP,

which is discussed in Chapter 6. The Linux image produced as a result of

this toolflow uses our custom kernel (assembled with PetaLinux) and can used

any provided Root Filesystem; by default the standard PetaLinux RootFS is

packaged but versions of ARM Ubuntu and Debian have been tested.

5.9.1 PMU Firmware

In order to control the ICAP from the ZynqMP’s PS, the control registers in

the Configuration Security Unit (CSU) must be whitelisted for access; to do

this, it must be enabled from the PMU firmware upon booting. The PMU is a

hardened Microblaze [118] processor embedded within the ZynqMP’s processing

system, responsible for power, error management as well as managing access to
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the CSU control registers. Under the vendor provided firmware, these control

registers are blacklisted and the Linux kernel may not access the registers that

allow for toggling between PCAP and ICAP control [15]. Due to this restriction

a modified version of the PMU firmware must be built, that enables secure

access to specific register addresses, in particular the 0xFFCA3008 register which

toggles bitstream loading between PCAP and ICAP (it defaults to PCAP).

The design tools automatically handle the versioning of this firmware, pulling

it from its source, injecting the required flags and building it within the context

of the ARM ATF to grant the appropriate permissions.

5.9.2 Device Tree

The Linux kernel builds a mapping of the hardware made available to itself

using a Device Tree (DT). Typically on embedded ARM based architectures,

this DT is constructed at build time to allow the kernel to load drivers in

relation to the hardware described as connected, for example hardware that

is memory mapped or made available over a specific interface such as I2C.

Considering that the PL may be treated as generically definable logic, a designer

may choose to implement a number of custom processor peripherals such as

memory mapped or streamed interfaces (via memory mappable DMA, that

may require internal switching), thus it is important to track hardware changes

with a dynamic device tree. As the tools do not enforce strictly defined shell

interfaces, as such the ability to update the device tree is important for allowing

the kernel to track the location of memory maps within the FPGA.

configuration.json

PR bitstream loaded DT fragment@0 applied

configuration applied

kernel update driver 
status = “okay”

mode applied (MMIO 
registers R/W, etc.)

Figure 5.8: Applying DT fragment via configuration

5.9.3 Device Tree Overlay

The 3.18 release of the Linux kernel introduced the device tree overlay (DTO),

an implementation of the in-kernel device tree which can be used to modify the

kernel’s live tree and affect the running kernel, such as applying driver changes,

registering and deregistering nodes, in turn loading/unloading modules. This
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axi_accel0: axi_accel@0 {

compatible = "linux,axi_accel";

status = "disabled";

};

fragment@0 {

target = <&axi_accel0>;

__overlay__ {

status = "okay";

};

};

Figure 5.9: Example of Vitis HLS Pragma for AXI Stream Slave/Masters.

can be performed through the use of device tree fragments or sections of the

device tree that should be swapped in for new functionality. Xilinx’s FPGA

Manager offers the ability to update the DTO while programming bitstreams

but does not possess the ability to import these overlays from the Vivado

hardware build process or produce the overlays from a DFX workflow. The

build framework uses the data from the Vivado build process to generate

custom DTOs, describing required modes and configurations which are then

stored alongside the bitstreams for PR. Currently this is performed for AXI

and AXI-Stream based accelerators, using the MMIO addresses and the DMA

arbitrator location, generated at build time, respectively. It is possible to

generate custom DTOs as generic drivers are used for PS-PL data transfer;

IP core specific drivers can be used but must be manually specified. DTO

loading is crucial when applying configurations that require changes to nodes

of the live device tree, for example alerting a driver the status of a hardware

module as shown in listing 5.9 and fig. 5.8. Listing. 5.9 shows an example

AXI accelerator device tree node that would be overlaid with the fragment@0

fragment to enable the node and associated drivers.

5.9.4 Kernel Drivers

To accommodate varying PL peripherals, we opt for generic PL drivers to handle

data transfer between the PS and PL rather than rolling custom framework

specific drivers. The configuration of the drivers, required in the device tree

overlay, are generated for a specified configuration during the Vivado build

process. Device tree nodes are generated for all of the available MMIO (AXI)

addresses as well as the position of any AXI-Stream interfaces, connected to

the input and output of the PL DMA controller. The drivers utilised in this

framework are discussed in more detail in Chapter 6, within the context of the

runtime manager.
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5.10 Evaluation

We evaluate the E2E build and runtime tooling in terms of both runtime

performance and build complexity. It is important that the provided abstraction

has minimal impact on both user accelerator and software performance. The

evaluation is performed on a ZynqMP development kit, the Ultra96v2 (Xilinx

Zynq UltraScale+ MPSoC ZU3EG [119], shown in Figure 5.10), and build

time evaluations are conducted using Vivado 2019.2 on a 6 core 12 thread Intel

i7-10750H running at 2.60 GHz with 32 GB of RAM.

Figure 5.10: Avnet Ultra96v2 Development Kit

5.10.1 FPGA Resource Consumption

Logical resource consumption is an important metric for custom infrastructure

as the more resources consumed by the framework, the less that is available

for user accelerators. The framework scales the shell according to the number

of modules and required interfaces provided by the user. For example, if there

are no AXI-Stream interfaces in any of the user’s accelerators, the tools will

not generate an AXI-Stream switch.

5.10.1.1 Compile-time Generated Infrastructure

The overhead of the compile-time infrastructure is demonstrated with a vary-

ing selection of custom accelerators (see case study in Chapter 6) with the

respective interfaces that they expose and measure the resources consumed

by the infrastructure generated required to support the described interfaces.

Table 5.2 shows the resources across a selection of arrangements; the consumed

resources never exceed 9% of the LUT utilization of the PL. This leaves over

90% of the PL resources for the user’s accelerators or additional shell logic, if

required to interface with external hardware. Considering that this is a small

UltraScale+ device, larger devices will suffer even less of a fractional overhead.
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Table 5.2: PR Manager static PL resources.

PR Region Interfaces FFs LUTs BRAMs
Total LUT Utilisation

of PL (%)

1 AXI4-Lite (32-bit) + 0 AXI4-Stream (32-bit) 7688 5132 5 7.27

2 AXI4-Lite (32-bit) + 0 AXI4-Stream (32-bit) 7738 5142 5 7.28

1 AXI4-Lite (32-bit) + 1 AXI4-Stream (32-bit) 8817 5619 5 7.96

2 AXI4-Lite (32-bit) + 2 AXI4-Stream (32-bit) 9063 6051 5 8.58

The generated infrastructure has some limitations enforced by the IP cores

that are used to generate bus routing. Both the AXI-Stream Switch (v3.0) [120]

and the AXI Interconnect (v2.2) [121] can support up to 16 Master and/or

Slave interfaces. The tooling has a soft limit to prevent the user creating

more interfaces than a single switch or interconnect can support, although

in practice it could be possible to support more interfaces. We measure the

resource consumption by subtracting the resources consumed in the PR regions

from the overall resources required for the complete design.

5.10.2 Build Time Complexity

While it is difficult to quantify the impacts of abstracting the build workflow,

given the variation of efficiency due to designer’s knowledge, development

machine performance among other variables (i.e. available processing threads

and memory), a timed build run for the tools is provided, that shows the

generation of 4 specified partial modules combinations. The tools automatically

assemble the project for a given spec.json and thus we quantify the time taken

for each of these steps to be performed by the build tool. Aspects of the

build process are handled by Xilinx’s own tools, Vivado and PetaLinux and

are applicable to any PR build flow however we can measure the time taken

for assembling the build projects, extracting ports and interfaces as well as

crafting the Linux build inputs such as device tree overlays.

We measure the time taken to run the Vivado automated build tooling for

the case study design, where this is representative of the first two columns

of fig. 5.4. To quantify the complexity, time taken for port and interface

extraction is captured as well as the time for a complete Vivado build. For a

3 configuration design with 1 AXI-Lite (slave) and 1 AXI-Stream (master &

slave), port extraction takes 37.94 seconds and the total build time is 2427

seconds for each partial bitstream and the full bitstreams to be generated. To

compare this against a complex design, assembled and constructed manually,

this equivalently could take hours or even days, given build failures, user

error, etc. Comparatively the overhead for the extensions to the workflow are

negligible compared against the vendor locked aspects such as synthesis and

implementation.
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5.11 Summary

In this Chapter, a toolflow for automating the build process of PR designs,

from HDL through to a final ready-to-go Linux image populated with hardware

configurations is presented. The tools take the logic from user applications,

extract interfaces and generate infrastructure at compile-time to support data

transfer between the PS and PL. These tools hide the complexity of the PR

build process and the hand over to PetaLinux for Linux kernel compiling and

filesystem construction. A demonstration is later provided showing how the

framework can be used, with a vision processing case study that uses the

discussed build framework to generate a design for HLS-based accelerators

chained together for tuning image quality in Chapter 6.

We recognise that there are limitations to scope of this framework in its

current state, as such it is useful to address what is presently unsupported:

• Further simplification of writing RTL (Xilinx’s Vitis HLS and others

already exist)

• Explicit floorplanning optimisations (tools allow for use with other

tools/default pblock placements per device)

• Runtime PR resource scheduling (existing academic tools already perform

this function)

We offer these features for future research as well as an intention to integrate

with the work conducted with the FuseSoC [122] IP library tool, to allow for

users to easily fetch packages from libraries and include/build them in their

PR designs. This would allow for users to easily include modules for their PR

designs and reduce the RTL design complexity. We intend to further extend

HLS support to expose the HLS generated module’s internal registers and allow

generated MMIO register maps to be exposed via the runtime API. As well as

extending the feature extraction from HLS modules, we would like to extend

the FuseSoC workflow mentioned in Section 5.6 to allow for directly configuring,

generating and building synthesised PR design checkpoints from Vivado HLS

and export associated register metadata to the Linux builder for the generation

of configuration and mode files. Furthermore it would provide additional

abstraction to integrate this workflow with Xilinx’s PYNQ tools, implementing

low level optimisations under lightweight Python wrappers. The framework

is available at http://github.com/warclab/zycap2 and the Python library

at http://github.com/warclab/interfacer as open source repositories for

wider adoption and contribution by the community.

The following Chapter 6 follows on from the build process, with a runtime

management tool and API for initialising the PR process as well as controlling
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the data exchange between the PS and the PL.
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Chapter 6

Partial Reconfiguration

Runtime & Configuration

Management

6.1 Introduction

The design time build workflow discussed in Chapter 5 is essential for increasing

the abstraction presented to a PR systems designer. This workflow introduces

a number of generalised runtime decisions required to manage adaptive systems,

of which are more suitable to software running on a general purpose processor.

As as output from the build process, a Linux image along with artefacts such

as the configuration, mode and device tree overlay files are exported, ready

to be applied as needed at runtime. At runtime the operating system must

know how to apply these configurations from software based upon event-drive

scenarios, such as loading an image processing accelerators when motion is

detected. Existing tools provide mechanisms to perform reconfiguration as well

as read and write to hardware but these are low level interfaces that require

explicit knowledge over the address spaces where accelerators cores exist, which

partial bitstreams are associate with which configuration as well as how data

should be moved between the PS and the PL (e.g. via DMA transactions).

An adaptive systems designer is required to possess the bespoke knowledge of

loading PR bitstreams as well as explicit control over the hardware mechanisms

from within their application’s code (typically running between both the Linux

kernel and the userspace). In addition to this existing vendor tools that

provide abstraction over PR suffer from poor performance, where limitations

can negatively impact the responsiveness of the system. The introduction of

the ZynqMP architecture also brought complexity for managing PR; access to

registers that control the ICAP are restricted from the standard Linux secure

privileges. A number of features are needed by a modern runtime manager to
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hide the complexity of these processes from the user. This Chapter introduces

the work undertaken to design and develop a high performance, non-blocking

PR runtime and configuration manager for the Xilinx Zynq and ZynqMP

architectures.

The work presented in this Chapter has also been discussed in:

• Alex R. Bucknall, Shanker Shreejith, and Suhaib A. Fahmy. Build

automation and runtime abstraction for partial reconfiguration on Xilinx

Zynq UltraScale+. In Int. Conf. on Field-Programmable Technology

(ICFPT), pages 215–220, 2020. doi: 10.1109/ICFPT51103.2020.00037

[14]

• Alex R. Bucknall and Suhaib A. Fahmy. ZyCAP2: End-to-end build tool

and runtime manager for partial reconfiguration of FPGA SoCs at the

edge. In submitted to: TRETS, 2021 [18]

6.2 Contributions

The key contributions of this Chapter are:

• Improved high performance asynchronous PR controller for loading the

ZynqMP ICAP interface at near theoretical throughput (approximately

757 MiB/s)

• A runtime PR configuration API for PS-PL management that enables

simple software abstraction of memory mapped IO, DMA streaming as

well as loading/unloading partial and complete bitstreams as part of the

described mode and configuration abstractions

• A case study using Vitis HLS generated OpenCV edge accelerators in a PR

application that demonstrates the software abstraction and benchmarks

the performance impact and resource consumption

6.3 Related Work

Most PR managers for FPGA SoC support the Xilinx Zynq, however the

differing architecture of the ZynqMP requires the PS for loading bitstreams

and thus a software layer is required to perform initial reconfiguration, either

from within an OS or on bare metal. Most modern tools are built on top of

Xilinx’s FPGA Manager tool, including those noted in Table 6.1, for loading PR

bitstreams and use the PCAP interface. Some of the mentioned works extend

the functionality of FPGA Manager but are generally limited at runtime by the

drawbacks of FPGA Manager, including those discussed in subsection 6.3.1. We
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argue that FPGA Manager is unsuitable for high performance PR applications

such as image processing or inline data streaming as the reconfiguration

latency and throughput is comparatively low compared to other methods,

later highlighted in subsection 6.7.1. Reconfiguration time may be in the region

of tens of milliseconds, for typically sized bitstreams, of which crucial data

may be lost/missed in this period, given a high performance application.

The work in [123] examines high throughput reconfiguration channels us-

ing the PR performance of the ICAP (Internal Configuration Access Port),

while others have overclocked the primitive to see throughput of close to

800MB/s [124]. These works have targeted standalone FPGAs or older ar-

chitectures and do not provide programming capacity for a tightly coupled

processing system such as on the Zynq or ZynqMP devices. ZyCAP [11]

introduced the concept of a high-throughput hardware controller along with a

high-level software controller running on the Xilinx Zynq-7000 processor. It

achieved a reconfiguration throughput of 382MB/s from the PS to PL over

ICAP but was limited by a lack of support for a full OS such as Linux as

well as limited support for high-levels of hardware abstraction. Our work in

[17] showed how the ICAP could be programmed over DMA on the Zynq

Ultrascale+ devices and the authors of [106] increased the clock frequency of

the ICAP to 200 MHz, further increasing performance to close to the theoretical

800 MB/s.

6.3.1 FPGA Manager

Most Xilinx Zynq and all current Zynq Ultrascale+ PR runtimes use Xilinx’s

supplied FPGA Manager driver which abstracts the Processor Configuration

Access Port (PCAP) interface for loading PR modules. FPGA Manager is a

general reconfiguration driver available in the Linux kernel for controlling/pro-

visioning tightly coupled FPGAs from Linux. FPGA Manager uses the PCAP

on the SoC to load the PL with either static or partial bitstreams. In order to
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load the PCAP, FPGA Manager must perform a sequence of register reads and

writes to the Configuration Security Unit (CSU) registers which are managed

by the ARM Trusted Firmware (ATF) and then the Platform Management

Unit (PMU).

Figure 6.1: Loading of the PCAP from FPGA Manager (ZynqMP)[15].

Once the PCAP is set up and prepared for loading, a DMA transfer can be

performed to the CSU, containing the target bitstream for flashing, as shown

in Fig. 6.1.

6.4 Runtime Abstraction

Managing the FPGA abstraction from the PS at runtime requires a software

layer to determine which hardware interfaces are exposed to the user and how

to apply the target configurations. The runtime is designed to run in the

Linux userspace, providing an API to user applications and abstract how PL

hardware is controlled and how data is moved between the PL and the PS.

This is one area where many existing PR frameworks have not dedicated much

effort, assuming that the designer should define the specific loaded bitstreams

at runtime rather than abstracting this based on the modes defined during the

build phase. The abstraction aims to enable the high level adaptation logic to

be written independent of the low level reconfiguration details, without needing

knowledge of where bitstreams are stored, how to load device tree overlays or

read/write from specific memory addresses in the PL, etc.

105



PS

PL

Kernel

PR Service

Xilinx AXI DMA 
Wrapper Udmabuf Driver

Linux Kernel

User Application

PR Shell

User PR Modules

UIO Driver
Userspace

Figure 6.2: ZyCAP Linux Stack [14].

6.4.1 Hardware Resources

Hardware is abstracted into JSON configuration files that describe the target

state of the FPGA, expressed by the modes and configurations, and how the

userspace can interface with the current logic in the PL. The location of the PR

bitstreams and arrangement of RMs and RPs is handled by the configuration

manager.

6.4.2 Device Tree Overlay

The Linux kernel uses the device tree to instruct the operating system to what

physical hardware interfaces are available to the kernel. In recent versions of

the Linux kernel, support for device tree overlays has allowed changes to be

made to the device tree during runtime and can be applied with the kernel’s

configfs interface. For the PL, this can be used to dynamically load and unload

hardware accordingly what is loaded in the accelerator slots at any point in

time. During the building process, Vivado generates a compressed export

directory, an XSA (HDF in older versions), that contains a map of IP cores

that have accompanying Linux drivers. The PetaLinux build process uses this

to construct a device tree, providing driver and memory mapped support for

supported IP cores. While this works for static PL bitstreams, it generates a

full device tree for the static hardware, without support for dynamic logic in

PR regions. The PetaLinux generated device tree is used to construct design

specific DT fragments, injecting extracted memory address maps and clocks

logic from the build time generated infrastructure to create fragments for each
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configuration.

6.4.3 Linux Userspace Drivers

The runtime service executes exclusively from userspace to utilise the multitude

of software libraries available, unlike the restrictive nature of kernel drivers. We

make use of existing mainline drivers such as UIO and a lightweight userspace

wrapper for Xilinx DMA Driver, to reduce dependency on kernel compatibility.

This has the advantage of being independent of kernel, reducing security risks

of providing direct hardware control to the user, reducing the likelihood of

dangerous bugs impacting the kernel and allowing for the reliability of existing

upstream vendor drivers as opposed to custom drivers.

6.4.3.1 Generic Userspace IO

The Linux kernel ships with a module known as the Userspace IO (UIO),

which can be used to communicate directly with memory mapped devices,

from the Linux userspace. Using memory addresses generated from the PR

build process (extracted to PR configurations), the ZyCAP runtime gives the

software developer abstracted access to these UIO registers, without requiring

them to directly initialise and setup these modules, themselves. For HLS

generated modules, this can be extended to provide internally addressable

registers as this is stored within the modules upon exporting for use as IP core.

6.4.3.2 u-dma-buf

The u-dma-buf module is designed to allocate contiguous physical memory

blocks in the kernel space for use as DMA buffers and provide access from

the userspace [125]. These blocks may be used as DMA buffers when a user

application interfaces with UIO mapped IP, such as a DMA Controller in the

PL for streaming data. We use u-dma-buf to cache PR bitstreams, preparing

reconfiguration bitstreams in contiguous memory buffers for rapid loading into

the PL.

6.4.4 Xilinx AXI DMA

We use an open source userspace-accessible module for wrapping Xilinx’s DMA

controller kernel driver, enabling access to both the DMA and Video DMA IP

cores [126]. It allows for zero-copy, high-bandwidth DMA transfers between

the PS and PL allowing data to be moved rapidly between either system. This

wrapper driver support transmit, receive as well as two-way DMA transactions

between the PS and PL. Users can use this module as well as u-dma-buf to

create contiguous physical memory blocks mapped to the userspace to transfer
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their application data into and out of the PL. We use this driver for both

provisioning the ICAP as well as moving data into user accelerators. This is

used in part with the UIO driver to control the AXI-Stream bus switches which

may be shared between ICAP and n number of user accelerators interfaces. The

driver supports both synchronous and asynchronous transfer modes, allowing

for callbacks to be registered against the completion of asynchronous transfer.

Asynchronous transfers are used by the runtime enable high performance and

non-blocking reconfiguration of the PL. The original wrapper driver does not

support Linux kernel releases greater than 4, so we use a modified version [127]

of the driver that is compatible with both the Zynq and ZynqMP and has been

tested in PetaLinux 2019 (Linux Kernel 4.19.0). The modifications includes

kernel API changes to match the changes found in the 4.19.0 kernel as well as

changes to Xilinx DMA driver. Xilinx has since published documentation on

how to wrap their mainline driver for userspace control, we intend to implement

this to stay in better sync with Xilinx’s own changes. The modified driver has

been tested against the 5.x kernel and supports PetaLinux 2020.

6.5 ICAP DMA Provisioning

To provide high performance PR of the PL, we leverage DMA provisioning of

the ICAP. Previous academic work demonstrated a management platform for

improving the performance of partial reconfiguration via a high throughput

direct memory access to the ICAPE hardware macro [11]. The tool builds

upon this by providing the missing Linux controller for this interface, using an

open source DMA driver as well as physical to virtual memory mapping driver

to enable the tool to be controlled entirely from the userspace. Full and PR

bitstreams can be stored at image build time as well as added to the system at

runtime. Additionally the mechanism for provisioning provides a non-blocking

software routine that can raise an interrupt on completion, freeing the PS

while PR is ongoing and the PL is ready to receive data. This can be done by

either modifying existing or creating custom configuration files as the ZyCAP

system abstracts the hardware control. Given the performance advancements

of the Zynq Ultrascale+, we are able to clock the hardware controller for

ICAPE3 at 200 MHz, which results in a throughput of 757.2 MiB/s as the

DMA transaction approaches transfer saturation of the AXI4 bus (800 MiB/s).

6.6 Configuration Manager

The runtime or configuration manager (CM), enables the designer to abstract

control of the hardware modes and configurations; a key feature of the frame-

work. Fig. 6.3 provides an example sequence diagram of the API calls made
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by a user’s application to the runtime. Rather than requiring the user to

know which bitstreams contain which selection of modes and configurations as

well as the location of the target bitstream files, the runtime can apply these

changes by passing it just the name of the configuration. Referring to fig.6.3,

the CM provides an abstracted means of preparing contiguous memory buffers

via u-dma-buf (A), managing PL MMIO addresses (C ), transferring streamed

data into the PL by selecting the desired AXI Switch channels (D) as well as

handling provisioning of PR and static bitstreams into the FPGA (B).

In A, the CM checks to see that the required kernel drives exist and

initialises contiguous memory buffers to cache target bitstreams with the u-

dma-buf driver. This is performed to enable rapid loading of these buffers into

the DMA controller in the PL and thus triggering of reconfiguration of the

FPGA. The number of bitstreams to be cached can be configured at build

time or at runtime, to manage memory usage. B highlights the CM passing

a bitstream buffer pointer to the DMA driver which triggers a DMA transfer

into the PL. The CM ensures that the AXI-Stream Switch is set to the ICAPE

macro and starts the DMA transaction. The loaded bitstream may also be read

out from the ICAPE using this same method. C demonstrates how the CM

abstracts the addressing of memory mapped PL peripherals (AXI & AXI Lite).

The user is not required to track these PL memory addresses, they simply need

to load the required mode and the CM ensures that the correct registers are

populated. When building modes from HLS generated IP cores, the build tool

is able to generate hooks for the internal registers and provide granular access;

without this, the designer must manually specify the address spaces. In D,

the CM checks which AXI-Stream path is required for the user’s transfer and

changes the transfer path such that it points at the target accelerator. The AXI

DMA driver allow for single direction transfers as well as bidirectional transfers

both of which can be set to trigger on an interrupt from the PL, providing

non-blocking transfers to the PL. At release we provide programmatic access

to the CM using the C++ API but intend to expose it generically as Linux

service.

6.6.1 Runtime API

We provide a lightweight C++ API for controlling and provisioning modes

and configurations between the PS and PL. This API provides abstractions

to the configurations and modes as well as manages the data flow between

an application and the PL. We use z for the ZyCAP2 Manager and s for the

configuration.

• Zycap z(hardware,configs) – ZyCAP constructor takes overrides for default

bitstream and configuration directories.
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Figure 6.3: Sequence diagram for the ZyCAP Runtime (Loading and Data
transfer). (A) Setup of the ZyCAP and driver. (B) Application of PR bitstream.
(C) Application of PR modes. (D) Data transfer between accelerator and
software application.
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• z.init(config) – load a default configuration into the PL. This uses the

FPGA manager driver as the initialising bitstreams must be loaded over

PCAP before the ICAP can be used.

• z.status() – returns a struct containing the status of the PL including

the currently loaded string:config, string:mode, and bool:pl_busy.

• z.configs() – returns the available configurations in the default location.

• z.config(config) – load a configuration into the PL.

• z.alloc(size, name) – allocates contiguous memory for accelerator use.

• z.exit() – cleanly tears down the ZyCAP runtime.

• s.modes() – returns the available modes within the configuration.

• s.mode(mode) – load a mode into a configuration.

• s.write(reg) – read from a register specified in the mode.

• s.read(reg) – write to a register specified in the mode.

• s.transfer(buffer, type, direction) – read/write a buffer in PS to a config-

uration in the PL either via DMA stream or a memory transfer. enum:type

may either be dma or axi. enum:direction may also be a two_way_transfer,

which sends data from the PS to the PL and waits for the PL to write

back into the PS.

The runtime API is designed to predominately use the pre-generated JSON

configuration objects built by the tools in the build workflow. This allows the

user to manually tweak the configurations to suit their applications as well

as easily group behaviours such as associated bitstreams, MMIO maps and

values.

6.7 Evaluation

We evaluate the E2E build and runtime tooling in terms of both runtime

performance and build complexity. It is important that the provided abstraction

has minimal impact on both user accelerator and software performance. The

evaluation is performed on the Ultra96v2 development kit and an Intel i7-

10750H for build tooling as described in Section 5.10.
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Figure 6.4: DMA Driver Benchmark across 1000 transfers (PL clocked at
200 MHz)

6.7.1 Accelerator Performance

To evaluate the impact of the tool’s custom generated infrastructure, we

quantify the AXI and AXI-Stream transfer performance. While this evaluation

is indicative of the performance of the userspace DMA driver, we show how

there is no hardware performance penalty when using the framework and

tools. The tools do not add any additional infrastructure overhead to the

Xilinx interconnect (AXI and AXI-Stream) IP cores and as such performance

is only limited by the these cores. We provide a benchmark of the userspace

DMA driver transfers compared against Xilinx’s own driver running under

their PYNQ platform. This demonstration is performed across varying sized

payloads, where the PL is clocked at 200 MHz using a 32-bit AXI-Stream

bus, with maximum burst size set to 256 bits, where the theoretical maximum

throughput is expected to be 800 MB/s (approx 763 MiB/s). The drop in

throughput for smaller bitstreams (less than 1 MiB) is amortised in larger

bitstream as the DMA stream saturates.

Across all the demonstrated transfers, the driver used within ZyCAP2

consistently performs at higher throughput than the equivalent transfer in

PYNQ, as shown in fig. 6.4, approaching the theoretical maximum throughput

while providing a level of abstraction for controlling accelerators without

compromising on performance. We assume that this discrepancy is due to the

Python function calls adding a non-negligible overhead to the performance of

the DMA driver.

6.7.1.1 Runtime Latency

We evaluate the trigger latency for each stage of the reconfiguration runtime

called from within Linux. Trigger latency is defined as the time taken for an

API call to the CM and may be cumulative if called multiple times for a complex
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Table 6.2: Runtime Latency Breakdown Average Across 25 Runs.

Software Layer Latency (ms)

Set up CSU  5.58

Initialise drivers  4.87

Allocate buffers G# 3.18

Parse JSON G# 2.26

Load config (bitstream only) G# 0.21

Load config (bitstream + MMIO) G# 1.23

 : Performed once G# : May be performed multiple (per config).

configuration, such as with a mode that contains multiple MMIO reads/writes.

Table 6.2 provides a breakdown for the software overhead (measured as latency)

required by the runtime in order to load and trigger configurations and modes.

This specifically highlight loading bitstreams (as well as a combined MMIO

write) as this suffers the greatest impact on overhead from the API. It is

important to evaluate this as these software calls might be expected to be

performed during an asynchronous transfer of PR bitstream to the PL and

thus should be minimal such as not to impact the total time to perform a

provision of a configuration. Notable the parsing of configuration JSON files

adds non-significant latency to the actual configuration of the bitstreams, given

that they can be performed asynchronously and at higher throughput that other

tools. We argue that given the significant increase in time to load bitstreams

versus FPGA Manager, that this abstraction is justified to reduce complexity

for tracing bitstreams and managing configurations. Certain aspects of the

tool may be performed at the boot time of the device, such as initialising

generic userspace drivers, however these are included in the table as it could be

assumed that they are not loaded until the runtime starts. Buffer generation

is measured with a 5 MiB contiguous block of memory allocated for the user’s

accelerator in the PL. This buffer generation is used for both accelerator and

PR loading. It’s important to note that time to parse JSON objects scales

depending on the complexity of the configurations and modes.

6.7.2 Partial Reconfiguration Performance

We demonstrate the PR controller on the FPGA by clocking it at 200 MHz and

provide a benchmark comparing the runtime loading bitstreams into the PL

against Xilinx’s FPGA manager runtime. Theoretically while the ICAP may

be clocked at higher frequencies [66], beyond the recommended specification,

we demonstrate it in the context of this case study, where all the IP cores are

also clocked at 200 MHz and share the same DMA controller as the ZyCAP

PR controller.
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6.7.2.1 Comparison to FPGA Manager

We evaluate the performance against Xilinx’s provided FPGA manager tool as

shown in 6.5. As previously discussed in [14], the FPGA manager tool is verbose

so both a default (verbose) and silent version are compared against the runtime.

In [14] we showed the performance of the ICAPE3 running at 100 MHz; we are

now able to show the ICAPE3 macro at an increased clock of 200 MHz [128],

where performance is significantly improved against the traditional PCAP

reconfiguration flow. The runtime is benchmarked at 100 MHz and 200 MHz

against Xilinx’s FPGA manager in default and silent modes, using 3 varying

sized bitstreams (5.430 MiB, 2.565 MiB and 1.330 MiB). The bitstreams were

generated by varying the size of the assigned RP. Timings for the asynchronous

calls to the DMA engine from the ZyCAP runtime are provided, which while

not a true measure of the performance, give insight into the earliest availability

of the processor after reconfiguration is triggered. This is a fixed triggering

overhead of approximately 33 us for a bitstream of any size, where an interrupt

handler will fire when the DMA transaction completes. During this this time

the processor is free to begin applying the device tree fragments, establishing

any accelerator specific buffers, etc. The results demonstrate that the runtime

has a significant advantage over the FPGA Manager, increasingly so as the

sizes of the bitstreams increase and the time to trigger the DMA transaction

is amortised in the time for transfer. Increasing the frequency of the ICAP

from a base clock of 100 MHz to 200 MHz resulted in an increased throughput

of 94.8% (from 388.7 MiB/s to 757.3 MiB/s) demonstrated when compared

against the PL clocked at 100 MHz (measured using the 5.430 MiB bitstream).
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6.8 Case Study

We demonstrate the build tool and runtime using an HLS Vitis Vision ac-

celerated image processing application case study that uses a USB webcam

(Logitech C920) attached to the Ultra96v2’s processing system. We show how

the simple runtime C++ API can be used to control the FPGA, through

loading configurations and updating modes, demonstrating how PR and MMIO

are managed.

The example design uses 3 PRRs with 3 independent configurations; an

initial histogram computation followed by two image manipulations accelerators,

which can be either pass-through, a gaussian filter, chroma key filter, gamma

correction and/or histogram equalisation. These are connected to the PS

using a combination of AXI Lite and AXI-Stream interfaces. The acceleration

modules are generated from Xilinx’s Vitis Vision HLS libraries [129] which offer

OpenCV function acceleration for FPGAs. Using static reconfiguration and

the FPGA Manager (limited to 256 MB/s), bitstream loading would occupy

significant percentage of time sampling from the camera interface, resulting in

dropped frames. The case study provides a demonstration of how accelerator

chaining is relevant to image/video processing applications.

PR Region [0]
(Histogram 

Computation)

PR Region [1]
(Gaussian Filter)

PR Region [2]
(Gamma Correction)

DMA

AXI Interconnect

ICAP

AXI Stream 
Arbitrator

PS

ZyCAP API

Vitis Vision
Application

PS PL

Figure 6.6: Overview of HLS Vitis Vision chained accelerator demo

Interfaces extracted during the build flow are used to instruct the tools

which interfaces on the accelerators should be connected. Fig. 6.6 highlights

chaining accelerators using the tools. Using a traditional shell based PRR,

data must first be sent to the PS to be redirected back into another shell

containing the next function, unless complex bus logic for interconnection has

been implemented. This case study also highlights the significance of high

performance PR, allowing us to rapidly modify regions 0, 1 and 2 without loss
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of frames.

A histogram computation is performed in the first accelerator core, and

sent to the software application (via MMIO AXI) to then sequence the chained

configurations such that the image passing through each accelerator is processed

to improve the quality of the output image. Reconfiguring rapidly during the

image stream to provide real time improvements without dropping frames.

The thresholds for the histogram computation can be adjusted in the software

application to be more or less aggressive with attempts to improve image

quality. While the demonstration shows the use of just a few acceleration cores,

additional regions could be used to chain further image manipulation such as

resizing or scaling.

6.8.1 PR Region Data Chaining

To configure chaining, the designer can set the following parameters as shown

in listing 6.1.

Listing 6.1 shows how the PR chain is configured with a JSON array. The

order in which the regions are referenced, refers to how they will be connected,

where region_a is the first region of the chain (connected to the output of the

PS DMA controller) and region_c is the last region (connected to the input

of the PS DMA controller). Fig. 6.7 shows the process of the PS application

using the PL accelerated histogram to make config/mode decisions based upon

the current image in the accelerator chain. The PS application is shown to

apply a gaussian filter to region 1 of the PL and then a stream pass through

for region 2, upon deciding the histogram data is acceptable.

Frame nFrame n-1

PR Region 0

Load Gaussian 
Config

ICAP Load Gaussian 
Bitstream [Region 1]

PR Region 0

PR Regions [1:2]

Load Passthrough 
Config

ICAP Load 
Passthrough 

Bitstream [Region 2]

PR Regions [1:2]

PS (next frame)

AXI

AXI Stream

PL PS PL PS

PS (next frame)

Histogram Histogram

Figure 6.7: PS uses histogram to determine accelerators to apply. Blue
graph indicates original histogram, Orange indicates the new histogram after
configuration.
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1 {
2 "pr_regions": {
3 "region_a": { ... },
4 "region_b": { ... },
5 "region_c": { ... }
6 },
7 "pr_chains": [

8 "region_a",

9 "region_b",

10 "region_c"

11 ]

12 }

Listing 6.1: Enable PRR chaining

Given this can be used with both configurations and modes, the software

can intelligently determine to load new bitstreams or make adjustments to the

currently loaded accelerators (such as applying a mode).

6.8.2 Design Process

In order to manually develop the application described in the case study, the

designer would have to undertake a series of manual steps, highlighted in. The

designing the accelerators themselves (using RTL, HLS or otherwise) is beyond

the scope of this framework as plenty of academic and commercial work already

provide tools to do this. High level synthesis tools are used to reduce the

complexity of RTL design but without aid from automation, the complexity of

the vendor tooling provides a high barrier to entry for novice designers. Figure

5.4 describes the workflow that is automated by the tools, where the nodes in

the flow diagram, represent each of the steps that would need to be manually

performed by a designer. This diagram assumes there are no mistakes or errors

on the designer’s behalf.

Figure 5.4 is a high level overview of the complexity; in reality there are

significantly more steps involved in the development process such as tweaking

board settings, correcting for mistakes and manually verifying compatibility

across modules and regions. Some of the underlying steps such as parsing

the interfaces from modules can be quantified, however the time taken to

extract interfaces and generate custom build infrastructure is amortised by the

time taken for the tools to perform synthesis and place and route. For the

case study, the tools added 37.94 seconds of overhead to extract interfaces

compared to the 2427 minute implementation run within Vivado. It is difficult

to more generally quantify the impact of the tools on reducing design time

complexity, however given that the user is only required to define a specification

file, to generate a ready-to-go Linux image, this can be considered a significant

advantage.
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6.8.3 Comparison to Existing Tools

The case study demonstration shows the webcam running at a resolution of

1080 x 1920 pixels at 30 frames per second. For a pBlock sized to support

the largest of configurations, the chroma key function, the runtime is able

to perform partial reconfiguration in 1.808 ms for a 1.330 MiB bitstream.

For a camera producing a new frame every 33.3 ms, reconfiguration must be

performed at least within this time frame and should factor additional software

overhead to ensure frames are not dropped. Comparing this to FPGA manager,

the same bitstream was loaded in 17.8 ms. While this is acceptable, given the

low framerate of the USB camera only one or two frames might be dropped,

higher performance systems such as those used in critical safety systems for

autonomous vehicles [130] or with complex PL logic demanding larger pBlocks

(thus larger bitstreams), begin to become constrained by time to reconfigure

under FPGA Manager. This scenario could be envisioned with the use of a high

data-rate MIPI-based camera connected directly to the PL. At present this

is not achievable with the target Ultra96v2 board as there were no available

MIPI camera modules but could be demonstrated on another device in future

work.

6.8.4 Runtime Application

The code in listing 6.2 demonstrates the abstraction used to load a configuration

and then apply a subsequent mode. The JSON config files are generated from

the build process and can be later modified by the user to add additional

modes, as shown by the full_hd mode in listing 6.3. In the case study, the mode

full_hd is used to set MMIO registers in the accelerator module corresponding

to the resolution of the frames being transferred between the PS and PL.
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#include <zycap.h>

void main()

{

string hardware = "/lib/firmware/";

string configs = "/lib/configs/";

Zycap z(hardware , configs);

/* `load ` writes to the AXI -Stream Switch to set the

multiplexed outputs as well as writes the default MMIO

register values */

cout << z.configs () << endl;

Config s = z.config("gaussian");

/* `mode ` writes to MMIO registers with any custom

settings specified by the designer in the generated JSON

objects. */

cout << s.modes () << endl;

s.mode("full_hd");

}

Listing 6.2: C++ API

"slug": "gaussian",

"type": "partial",

"regions": [

{
"name": "gaussian_a",

"bitstream": "gaussian_a.bin",

"overlay": "gaussian.dtbo",

"interfaces": {
"axi_stream": "0x1",

"axi_mmio": "0xa0050000"

},
"modes": {

"default": {
"0x40": "0x438",

"0x44": "0x780"

},
"full_hd": {

"0x40": "0x1E0",

"0x44": "0x280"

}
}

}
]

Listing 6.3: JSON Config & Mode

The full_hd mode used in this snippet was added post-build by the designer,
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the default configuration JSON object was produced by the tools and extendable

by the user before the Linux image is compiled. Typically configuration files

injected into the Linux filesystem along with PR bitstreams at compilation

time but can also be added at runtime, where the runtime manager can be

instructed to locate and detect new configuration files. This is configuration is

made available to the runtime C++ API, requiring minimal understanding of

the mechanisms required for provisioning configurations and modes.

6.9 Summary

This Chapter, presented a custom high performance runtime configuration

manager that utilised the hardened ICAP macro on Zynq and Zynq Ultrascale+

architectures for near theoretical throughput provisioning of PR bitstreams

into the PL (388 MiB/s and 757 MiB/s for the Zynq and ZynqMP respectively).

The runtime managed both PR and hardware control under abstractions for

configurations and modes. The runtime’s performance was compared against

Xilinx’s own FPGA Manager driver as used by other academic PR runtimes.

It was shown how benefits included performance gains as well as application

advantages including the ability to trigger a non-blocking DMA PR event that

frees the processor to perform device tree overlay provisioning and memory

buffer initialisation/de-initialisation while awaiting a PR completion interrupt.

It was demonstrated how the runtime could be used to accelerate a vision

processing application that used the build tools (in Chapter 5) to generate a

design for HLS-based accelerators chained together for tuning image quality.

This case study highlighted unique architectural features including the ability

to chain PRMs together (discussed in Chapter 5) for increased operation

during streaming events. The following Chapter 7 builds upon the runtime

by extending the abstraction to autonomous and cyber physical systems,

introducing a runtime for popular autonomous system platforms.

The PR runtime is available at http://github.com/warclab/zycap2 as

open source repository to encourage wider adoption and contribution by the

community.
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Chapter 7

Autonomous Adaptive

Systems Framework using

Partial Reconfiguration

7.1 Introduction

Autonomous adaptive systems modify their behaviour under unknown scenarios

by monitoring and processing external stimuli and applying decision logic to

determine their response. Systems such as unmanned aerial vehicles [131],

communication systems [132] and self-driving vehicles [133, 134] must rapidly

adapt to external events using information gathered from high data rate sensors.

Such sensors typically require post-processing for the large volumes of streamed

data generated as the external stimuli is monitored, such as with LiDAR [135].

This can be problematic when implemented on traditional general purpose

processor based systems that share computing resources between processing

sensor data and cognitive decision functions. Many data-intensive sensors

demand complex signal processing that is amenable to hardware acceleration

through parallelisation, and in some cases such computation may be offloaded

to custom application specific integrated circuits for this purpose. However, as

hardware becomes more complex due to higher data rates and a wider variety

of sensors, and as machine learning applications emerge [136], fixed ASIC

accelerators become problematic due to their lack of flexibility. FPGAs offer

application specific hardware acceleration while maintaining computational

flexibility through reconfiguration.

While accelerating low level processing of sensor data is beneficial, the

cognitive decision logic in adaptive systems typically involves complex high

level algorithms that interact with scheduled event based operations. This

type of computation is more appropriately suited for software implementation

on general purpose processors, typically implemented on top of an operating
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system to offer wider flexibility and programmability. Hence, it is challenging to

manage the low level software to hardware interface in hybrid adaptive systems

with an abstraction that can cross the boundary between cognitive algorithms

and data processing accelerators. Applications such as flight controllers for

autonomous drones require time sensitive communication between a low latency

processing system to control actuators but may rely on an operating system such

as Linux for course navigation, networking, and decision making [137]. While

extensive contributions have been made in autonomous software frameworks

for CPSs [138], limited research has considered their coupling with hardware

acceleration. In this Chapter, FPGA SoCs, such as the Xilinx Zynq and Zynq

Ultrascale+ SoCs, are considered as platforms for implementing such hybrid

autonomous systems along with high level software abstractions to manage

hardware.

The work presented in this Chapter has also been discussed in:

• Alex R. Bucknall and Suhaib A. Fahmy. Runtime abstraction for autonom-

ous adaptive systems on reconfigurable hardware. In Design, Automation

Test in Europe Conf. Exhibition (DATE), pages 1616–1621, 2021. doi:

10.23919/DATE51398.2021.9474199 [17]

7.2 Contributions

The key contributions of this Chapter are:

• An abstracted CPS configuration manager, built around an adaptive

systems model to automate reconfigurable hardware management and

allow control from a PubSub architecture.

• An extension to partial reconfiguration design tools to generate PR

bitstreams, software drivers and abstract symbols based on CPS specific-

ations.

• A ZeroMQ middleware (written in C++) wrapper for the configuration

manager for the Robot Operating System (ROS)

• A case study using ROS that demonstrates using a PubSub architecture

to control FPGA configurations within image processing applications.
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7.3 Related Work

CPSs have gained much interest in literature over the years, with various defin-

itions of hierarchy and structure; this Section defines relevant concepts and

terminology. [139] provides a recent survey of FPGA-base computing within

robotic, citing a number of publications across sensing, mapping and machine

learning. Within Networking & Mapping, [140] shows a colour tracking demon-

stration on a Xilinx FPGA and [141] provides a case study of an application

that generates a map and executes an extended A* algorithm to plan the path.

The device can then localizes itself in the environment containing multiple

obstacles and a target destination.

7.3.1 Adaptive System Concepts

A fundamental model of autonomous adaptive systems defines the software

operation in a closed loop of 3 tasks; Observation, Decision, and Action [142].

Observation is defined as the (post) processing of sensor data, such as feature

extraction from an image processing event and can be considered as the

extraction of key data points produced from sensors. The decision task uses

these data points to generate a next action, which is typically determined by a

high level decision algorithm. This task is the main cognitive element of the

loop, where data evaluated in the observation task is used, along with historical

data, to form learned behaviours and generate informed decisions. Finally,

the action task propagates the system changes, determined in the decision

task, such as adjusting internal memory registers, changing sensor settings or

triggering actuators. This could also be instructing a hardware configuration

manager of a desired configuration or triggering an actuator/sensor change,

as shown in Fig. 7.1. The model in [143] extends this concept further into

the Observe-Normalise-Compare-Learn/Reason-Decide-Act loop, where the

additional tasks take a more deliberate approach to constructive feedback,

aiming to build a sustained model for the adaptation processes. The process

of adapting hardware should be managed independently from the hardware

acceleration itself, to limit performance impact on high speed, real-time sensor-

actuator processing [144].

In [138], the authors survey a number of CPS frameworks proposed in

the literature. Many of these refer to collections of heterogeneous objects

distributed across a network [145], which provides a useful model for conceptu-

alising how such nodes interact. Frameworks such as ROS [146] build upon

these concepts to provide a structured communication layer that supports

heterogeneous clusters. Inspiration from the ROS operating model was taken

for the configuration manager.
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Figure 7.1: Visualisation of hardware abstraction and definition.

7.3.2 Robot Operating System

ROS, designed by Willow Garage and maintained by the Open Source Robotics

Foundation, is a communication framework designed to streamline networking

across robotics platforms using standardized schemas and messaging interfaces.

This later became ROS2 [147], which introduced the Data Distribution Service

(DDS) and added features such as quality of service, security improvements,

flexibility, and robustness.

ROS2 is designed to offer a standard software platform to enable developers

to rapidly prototype and then deploy their robot applications against a common

set of libraries and communication protocols. ROS2 provides a number of

advantages including flexibility to be used alongside other application due

to inclusivity to run as an application on top of an operating system rather

than as the entire operating system, unlike some RTOS platforms. It is open

source and highly documented along with a large user base of existing tools

and libraries making it easy to design and implement on top of. ROS2 has

been used in scientific robotics projects including NASA’s Viper Rover [148]

as well as in consumer products such as iRobot’s autonomous vacuum cleaners

[149].

ROS2 is based around a publisher/subscriber (PubSub) protocol where a

number of entities exist:

• Nodes: A node is a ROS entity that participates in the network either

by creating or consuming data. Nodes can also provide or use services

and actions and may be configured via a set of parameters.

• Messages: ROS data types used when subscribing or publishing data to

a topic.
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• Topics : Topics are used a common channels that Nodes can use to publish

or subscribe to messages.

• Discovery : Discovery is a mechanism that automates process through

which Nodes can discover each other and determine how to communicate.

More recently works such as [150] have provided augmentation to ROS2

that enables control over FPGAs that are encapsulated by Nodes. They present

a custom architecture that allows for high level algorithms to be implemented

as hardware modules within the PL. Their modulate design is intended to ease

adaptability of such changes within the system; they use a generic interfaces

for all modules for fully customizable messages. This allows for data exchange

internally as well as with external parts of a distributed system.

Within the context of a CPS, decision and action could be viewed as

software driven events given the complexity with considering the evaluation

of the observation state. The observation may rely on stimulus from external

sources or data produced by sensors and/or peripherals, attached directly to

the PS or the PL and further accelerated in the PL.

7.3.3 Configuration Terminology

Terminology is defined in the context of a tightly coupled software/hardware

CPS. Individual hardware components can exist in a set of possible states, each

of which might adjust some internal hardware registers (a parametric change),

or force a hardware reconfiguration with a new circuit (a structural change).

Combined together, multiple components form a valid mode of the system

that can be set by the cognitive decision logic. In this way, it is shielded from

managing the low-level states of individual components. In some cases, the

fundamental hardware structure may change through modification of access

to specific sensors or actuators (such as a radio switching from sensing to

communication modes). These are referred to as distinct hardware configura-

tions, potentially requiring a different set of data interfaces between software

and hardware. During runtime operation, the decision logic communicates

configuration changes to the hardware through a configuration manager (CM)

which abstracts the underlying changes to hardware required for the desired

configuration and mode. The CM is responsible for abstracting the software to

hardware interface with an application programming interface (API).

7.3.4 FPGA Acceleration of Adaptive Systems

Formal adaptive system frameworks are defined in the literature [151] but

commonly consider software-only CPSs that lack directly coupled hardware ac-

celeration. Typically, CPSs that utilise hardware offload are tightly integrated
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between low-level software and hardware control so the design complexity and

requirement for extensive FPGA knowledge limits wide spread adoption [144].

This presents significant design challenges for autonomous systems that wish

to exploit the capabilities of reconfigurable hardware within a software pro-

grammable framework, such as partial reconfiguration in FPGAs. PR is

accomplished by defining a static region of functionality, fixed at runtime, and

one or more partially reconfigurable regions (PRRs) that can host different

hardware modules, interchangeable at runtime. The static region typically

contains fixed components such as reconfiguration controllers as well as infra-

structure like the processing subsystems and DMA controllers. The PRRs can

be loaded at runtime with modules that have been compiled into PR bitstreams

to define an instance of hardware logic for that specific PRR. Current research

in this area has focused on improving vendor tooling [10] and increasing per-

formance [108], rather than control abstractions. Work such as [96] attempts

to virtualise access to PR through the use of shells in the static region that

standardise hardware interfaces, providing a more generic means of utilising

hardware. Virtualisation helps to reduce the complexity of hardware but it

also forces PR designs to conform to fixed configurations, which define software

to hardware interfaces and are decided on by the shell provider. This suits

general accelerator platforms but not sensor-rich autonomous systems with

complex peripheral interfaces.

The current vendor PR design flow is plagued with the need for prerequisite

FPGA knowledge and understanding of the convoluted build process. The

Xilinx toolchain is considered for reference, however the experience is similar

across other toolchains such as Intel Quartus. To begin a PR design, the

designer must decide on the number and location PRRs within the PL. This

should be done considering a number of factors; a single PRR could be used

for simplicity or multiple PRRs to allow for each module to be exchanged

independently and thus reducing the number of required reconfiguration events.

Using multiple PRRs forces each region to be sized according the requirements

of individual hardware modules, while a single PRR can be sized to the largest

union of supported modules. Reconfiguration latency is dependent on PR

bitstream size, which itself is dependent on PRR area. Grouping multiple

modules into a PRR means it must be reconfigured multiple times per module.

Vendor tools restrict PR module generation to a specific static region, as

netlists and physical interfaces must align, meaning PRRs should be generated

with the original static regions, including new bitstreams generated after the

initial build of a platform, limiting flexibility.

This development process requires complex sequential steps in order to

generate hardware, before even exporting into the Xilinx’s Linux build process,

PetaLinux. The hardware definition files (HDF) generated from the Vivado
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Figure 7.2: An outline of the Xilinx PR build flow, from generating hardware
within Vivado, to exporting hardware data into PetaLinux.

toolflow, outlined in Fig. 7.2, are required for PetaLinux to compile a Linux

image. PetaLinux is used to build the device tree (DT) and kernel drivers

required to communicate with the PL from Linux. The setup process for

a standard flow involves importing the HDF and bitstreams then manually

configuring kernel parameters, enabling device drivers and potentially injecting

custom drivers and/or applications into the build. While PetaLinux offers a

build system for some automation, this does not generate from PR logic and is

unable to determine drivers for PR.

Xilinx attempts to abstract the PS to PL interfaces with their Linux

distribution, PYNQ [103]. PYNQ is a Python abstraction for controlling the

PL from the PS and supports PR as well as isolating the kernel recompilation

requirements for loading new bitstreams. While PYNQ does abstract hardware

interaction, it relies on the standard vendor build flow and binds the user to

a Python framework, adding further layers of software to their application,

making it unsuitable for low-latency systems. Additionally, there is no concept

of configurations or modes and the user is left to manage this manually.

Abstraction frameworks such as [58] use loadable kernel modules wrapped

within a high level threaded API to load/unload hardware accelerators at

runtime. While this abstraction is suitable for wrapping low level interfacing, it

still requires the user to have extensive knowledge of the hardware and how to

control/manage it. Furthermore, this framework does not implement any build

time abstractions for hardware; it is bespoke and is implemented directly on

an FPGA using a soft-processor as opposed to a hard processor, as used on the

Xilinx Zynq. ReconOS [61] is a build and runtime framework that takes custom
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hardware and software libraries and generates a reconfigurable OS centred

around a POSIX API for thread-based acceleration control. Their framework

demonstrates a tight interface between hardware and software but provides

limited abstraction for state or configuration control of the system. Given that

PR modules must be compiled with their libraries and drivers, this creates a

distinct architecture and set of interfaces that users must adhere to. CoPR [50]

provides a number of the missing elements to reduce the complexity, such as

generating PRRs based upon input configurations specified by the designer.

However it does not support configurations under a full operating system and

lacks support for Linux and the Zynq Ultrascale+ architecture. More recently,

FOS [10] decouples the build stages so that they can be generated independently.

This reduces design complexity, however, it does not automatically generate

runtime configurations from the underlying hardware or abstract control for

data streaming into/out of hardware.

7.4 Architecture

An abstracted configuration management runtime was designed, that offers

a software abstraction for managing programmable logic configurations, by

masking the complexities of structural reconfiguration (such as PR), parametric

changes and hardware addressing. This configuration management runtime is

deployable against a Linux operating system on Xilinx Zynq and ZynqMP device

types. This runtime provides a generic API, over a network capable protocol,

for software frameworks to interact with hardware acceleration available to the

processing system.

Incrementing on the structure of the build JSON, user is presented with a

template for each viable configuration, this can then be used to design the user

loadable configuration, specifying underlying PR modes, memory maps and

registers that can be called from the runtime. This allows the user to deploy

configured instances of hardware without concern for the method of deploying

to the hardware. The user is insulated from needing to trigger and track PR

bitstreams, load the corresponding drivers, manage the addresses of memory

maps as well as write to specific memory maps for actions such as configuring

PL IP cores. A collection of existing build tools [14] were used, which extend

the vendor PR build flow with the inclusion of user defined build schemas,

representing the user’s desired PR modes and configurations.

7.4.1 Adaptive Hardware Design Tooling

The build schema is a config file that defines which hardware description

language (HDL) source files, such as Verilog or Xilinx IP cores, should be
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used to generate PR modules as well as any custom logic that defines the

static region. This file constrains the combinations of valid modules to modes

that can be loaded, for the implemented combinations. Based upon this build

schema, the tool is able to extract known interfaces (typically AXI(s) as well

as additional user defined protocols) from the PRRs to generate infrastructure

for communication between partial and static regions. It then produces the

bitstreams for the PRRs, which are synthesised and implemented using the

vendor tools. These bitstreams are then exported to a Linux build flow, where

the design framework uses associated HDFs and meta-data, to create the kernel

configs, PR specific DT overlays and inject any custom drivers required to

support PR hardware into the kernel. The outputs produced by the build tools

were used to generate higher level abstraction schemas that are used to load

the state of hardware and software according to the configurations applied.

7.4.2 Runtime Configuration Schemas

In order for the CM to infer the structure of hardware in the PR at a given

configuration, it uses a runtime schema generated upon completion of the

Vivado and PetaLinux builds. A template config schema was generated for

each possible configuration of PRRs (constrained prior to building), prompt

the user for changes and make this read/writeable to the Linux userspace. It

includes the modules provisioned in the PRRs, register addresses (and default

values) to be set under Linux’s memory mapped I/O (MMIO) interface and any

device tree overlays (DTO), which also contain drivers for described hardware.

Full configuration change of hardware may also be specified through the schema,

allowing for new static regions and thus more PR modes, although compatible

DTOs will need to be generated and managed out-of-tree.

Listing 7.1 shows an example output file from the build tool with two

template modes for the camera, default and edge detection. The YAML format

was selected as a user is expected to modify these files to define their desired

modes, thus requiring the files to be human readable as well as consumable

by the CM. For example, upon loading the edge mode, the CM understands

that this means loading the partial bitstream edge.bit, adjusting the memory

map to cover the edge register and leaving the DT overlay unchanged from the

default mode.
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1 config:

2 - name: camera

3 - modules: [default,edge,colorise]

4 - type: partial

5 - modes:

6 edge_detection:

7 - modules: [edge]

8 - mmio:

9 - base_address: 0x2000

10 - registers:

11 - focus:

12 - offset: 0x1010

13 - default: 0x01

14 - overlay:

15 - camera

16 default:

17 - modules: [default]

18 - overlay:

19 - camera

Listing 7.1: Configuration Specified in YAML, produced by the build tool.

Additional schemas can be added to the tool post-build, given they are

compatible with PRR interfaces and generated from the matching static region.

7.4.3 Configuration Manager

The CM is designed to be available within the Linux userspace, regardless

of the programming interface/framework attempting to consume/control it.

The ZeroMQ [152] protocol was chosen, a lightweight asynchronous messaging

library, used for both internal and external networking. Alternative commu-

nication libraries such as OpenDDS [153] could be substituted for ZeroMQ,

which was selected for its lighter-weight implementation, support for multiple

transport methods and programming languages as well as lower latency.

Shared memory via Linux’s inter-process communication (IPC) transport

was used for its low latency, however the CM can also use external IP transport

methods, such as TCP. IPC and TCP layers are later compared in Subsection

7.5.2. ZeroMQ is a PubSub protocol in which processes that publish/subscribe

to data are known as nodes and share data over subscribable topics. The

protocol is important as it decouples data producing nodes from nodes that

process data, enabling multiple nodes within the system to subscribe to CM

changes and thus monitor the state of the hardware. This allows other processes

running inside of the PS, such as system health checks or networking interfaces

to also be aware of hardware changes. ZeroMQ is message protocol agnostic,

allowing us to use protobufs [154] as the messaging protocol and as raw binary

for directly streaming data into and out of hardware. Protobufs are a serializing
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method for structured statically typed data, used to define the API interface.

A userspace-to-kernel drivers is used to provide application access to hard-

ware memory buffers. The runtime is hosted in the userspace to allow for

greater flexibility of libraries and reduce security risks of asking user code to

interface directly with hardware. To communicate using MMIO the Userspace

IO (UIO) kernel module is used, which allows for the mapping of configuration

memory addresses and interrupts within the PL up to the PS. For streaming

data between hardware, a zero-copy kernel driver and userspace wrapper for

the Xilinx AXI DMA interface [126] (AXIDMA) is used. This driver supports

both DMA and VDMA as well as allocation of contiguous buffers through the

Linux kernel’s contiguous memory allocator (CMA), which allows for streaming

data between userspace and hardware. While the build tool does allow for

custom drivers to be used, the CM API wraps UIO and AXIDMA modules for

controlling hardware as they sufficiently provide read/write to AXI and AXI

Stream interfaces from the ZeroMQ interface.

To manage structural reconfiguration a custom PR manager from [14] was

used, that allows for provisioning via the high speed internal configuration

access port (ICAP) reconfiguration interface using DMA, on both Zynq and

Zynq Ultrascale+ devices. This manager supports asynchronous provisioning,

meaning the PS is not blocked from processing during PR.

7.4.4 Configuration API

An API is exposed on a selection of topics, available over ZeroMQ. As ZeroMQ

is language agnostic, this could be written in a number of languages such as

Python or C++. A sample list of topics used in the framework is shown below,

along with a Python example of how it can be used in Listing 7.2.

• cm_status – publishes the state of the PL as a struct containing values

such as string:config_name, bool:fpga_busy and enum:pr_mode.

• cm_(read/write)_config – publish/subscribe to the config that is currently

loaded. This topic can also receive a config file and provision it to

hardware.

• cm_(read/write)_reg – allows reading/writing to MMIO as defined by

names in the config file for PR.

• cm_data_config – allows configuration of the AXI, AXI Lite, and AXI

stream channels of the PS-PL interface.

• cm_(read/write)_data – allows reading/writing to DMA buffer for read-

ing/writing to hardware over DMA.
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Listing 7.2 provides a reduced and simplified version of the fundamental

model of autonomous adaptive system loop [143]. The listing assumes that

the internal networking between the CM and the described Python model

has already been established. Line 1. describes the action function which

takes the decision result and triggers a ZeroMQ publish event based upon

the contents of the payload, which would be received by the CM and load

an edge detection module into the FPGA. Within this function, the CM can

trigger reconfiguration (partial reconfiguration), write to an internal register

(parametric reconfiguration) or do nothing. Line 13. is a generalised loop

for calling the observation and decision functions, where the logic of these

functions can be assumed as taking place elsewhere within the application.

1 def act(dec_result):

2 if dec_result == "default":

3 # Do nothing

4 pass

5 elif dec_result == "edge_detect":

6 # Swap to edge detection mode

7 zeromq_publish("cm_config", "edge")

8 elif dec_result == "default_zoom":

9 # Request a register write to zoom camera

10 zeromq_publish("cm_write_reg", "{'focus ':0x2}")
11 # Continuously read from cm_data_read topic

12 obs_buffer = zeromq_subscribe("cm_data_read")

13 while True:

14 # Request from observation thread

15 dec_buffer = obs(obs_buffer)

16 # Request from decision thread

17 dec_result = dec(dec_buffer)

18 # Request to action thread

19 act(dec_result)

Listing 7.2: Pseudo example of congitive engine controlling the CM.

7.5 Demonstration

A demonstration of the CM was provided by implementing it alongside the

ROS2 framework to highlight the minimal effect on latency and performance

introduced with the abstraction. This demonstrates streaming image/video

data to/from hardware to a lightweight software cognitive engine running upon

a CPS. A series of experiments were performed to quantify the overhead of

moving data between an ROS2 node and a hardware accelerator as well as

examining the ZeroMQ protocol.
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7.5.1 ROS2 Architecture

In ROS2, networking is built on top the pubsub model akin to ZeroMQ, as

used in the CM, shown in Fig. 7.3.
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Figure 7.3: Simplified example of a potential unmanned aerial vehicle ROS2
application, where camera data could be used for object avoidance
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Figure 7.4: Architecture of the ROS2 wrapper using the CM and ZeroMQ.

A ROS2 message is composed of predefined data structures and is used to

standardise the production/consumption of data. For example, a publishing

node in an autonomous vehicle, such as a controller for LiDAR, could publish

an image payload to a camera_data topic. This would then alert n subscribers

listening to the topic that a payload was available for consumption. In a CPS

example, subscriber nodes could be additional image processing tasks, data

observation events, network events to push the images back to a data centre.

Messages can contain a wide variety of data structures, which are built by

composing multiple primitive data types. In the example from Figure 7.3, the

image data from a camera is published to the Image Topic, and received by
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three subscribers, which perform image recognition for separate features and

publish the outputs to the Road Features Topic. The output is then used by

a control system node to send appropriate signals to the car’s motor system.

This model provides modularity by treating each node as a separate entity and

is suitable for distributed systems.

7.5.2 Experiment

The ZeroMQ-ROS2 wrapper was used, which maps the CM’s ZeroMQ endpoints

to a ROS2 node, seen in Fig 7.4. This turns the ROS2 node into a wrapper for

the CM’s ZeroMQ publishing/subscribing topics. The userspace abstractions

provided by the CM were used to expose the PL to the ROS2 node.
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This focuses on two main overheads; at the ZeroMQ interface and moving

data between the PS and the PL. A PS-PL-PS DMA transaction to quantify the

transfer performance between the CM and PL is benchmarked as well as effects

of ZeroMQ on latency and throughput for general communication. Data is

transferred round trip from the PS to a PL DMA controller clocked at 100 MHz,

running in Ubuntu 18.04, on an Ultra96v2 ZynqMP development board. This

is isolated from the ZeroMQ interface and the time taken to perform the DMA

transactions over 1000 intervals was measured using 3 different size example

images (7.91, 3.96 and 1.98 MiB). The same image was used with differing

levels of compression to generate the desired payload size. Considering the 3.96

MiB image, max. approximate throughput of 380.04 MiB/s (per direction) is

measured, which was a total of 10.43s for 1000 transfers and 10.43ms per image;

95% of the theoretical max. throughput of this PS-PL interface [155]. This is

compared to the PYNQ framework, where the same image was transferred in

an average of 10.61ms, highlighting how the abstraction performed better by

an acceptable margin against the overhead seen in a comparable abstraction

framework. CM PR time can be drawn from benchmarks in [14], where the

maximum configuration throughput is 398.6 MB/s with an average trigger

latency of 7µs.

The ZeroMQ layer was tested under the same experiment using IPC, to

simulate data moving between the CM memory buffers and the ROS node.

The latency and throughput were measured across 1000 trips with the 3.96

MiB image. An average of 5.36 ms latency and approximate throughput

of 1939.5 MiB/s were observed, indicating it does not provide a bottleneck.

Differing payloads using ZeroMQ IPC and TCP modes were also compared, to

represent local API calls, as seen in Fig. 7.6. These results were evaluated

against a comprehensive benchmark of ROS2 overheads, performed on a desktop

class machine [156]. They demonstrate the transmission of a 2 MB ROS2

payload, using the OpenSplice DDS, which shows approximately 2 ms of latency;

within 1.2 ms of the results for an equivalent payload. It can be concluded

that compared to the latency experienced under ROS2 networking, the CM

overheads for both data transmission and reconfiguration are insignificant,

considering the added abstraction benefits. Given the factors that can influence

latency such as Linux scheduler, networking, payload size, etc., it is likely that

further reductions could be seen, such as with the use of component latency

reduction techniques presented in [157].

7.6 Summary

In this Chapter, an abstracted configuration manager for managing hardware

acceleration within an autonomous adaptive system implemented on an FPGA
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SoC were been demonstrated. It was shown that high level software automa-

tion frameworks can offload complex hardware processing of sensor data and

actuator logic, without requiring custom low level integrations with the kernel.

The CM can be used with frameworks such as ROS2, where the hardware can

be abstracted into a networked node and communicated to using a publisher-

/subscriber protocol. Within the case study this was demonstrated using the

ZeroMQ protocol but could easily be interchanged with other PubSub protocols

such as OpenDDS or MQTT. Work was performed to expand existing build

flows to take user configurations, extend them with implementation details

from the build process and pass them to the CM, for seamless integration under

Linux. As proposed future work, there is an intention to release this work as

an extension to the ZyCAP2 open source framework for autonomous adaptive

systems and evaluate networking the CM across a distributed cluster.
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Chapter 8

Conclusion and Future Work

This thesis introduced a build framework and runtime tools to enable higher

level abstractions for designing and implementing FPGA-based partially re-

configurable applications on adaptive systems. It has demonstrated how and

why FPGAs are suitable for adaptive system applications acceleration, where

both high performance and flexibility are required to meet the demands of

real world tasks. The work demonstrated across this thesis has provided an

alternative mechanism for rapid reconfiguration over the Zynq’s networking

interface, a fully automated framework for building Linux-based FPGA ap-

plications on modern Xilinx architectures (Zynq & ZynqMP) as well a high

performance runtime manager to abstract the cross-domain management of

hardware and software. The collection of tools reduce the barriers to entry

for software-hardware acceleration while maintaining the high performance

requirements demanded from the real time applications this abstraction was

designed for.

This Chapter concludes the thesis, highlights its contributions, and provides

suggestions for areas of further research.

8.1 Summary of Contributions

Across the thesis, we introduced runtime tools for abstracting the application of

hardware configurations, provided an over-the-network mechanism for the Zynq-

7000 that enabled a low latency trigger for initiating PR as well as developed

PubSub configuration manager for popular autonomous systems platforms.

Our work also targeted the development and build processes relating to PR

applications, where we provided a number of tools to handle the challenges

associated with the complex hardware to software abstraction under a Linux

operating system. We offered benchmarks, case studies and comparisons of our

tools, contrasted against other available academic and vendor alternatives. We

showed how we were able to provide abstractions while maintaining the high
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level of performance associated with FPGA SoCs.

8.1.1 Network-Enabled FPGA Reconfiguration

Chapter 4 introduced a smart networking approach designed to trigger PR via

a network interface on the Xilinx Zynq SoC. This mechanism enables bypassing

the traditional processing system based ethernet driver and Linux scheduler

to load ethernet frames directly into the programmable logic. This reduces

the non-deterministic latency experienced using the networking stack from

the processing system, particularly with the system under load. We utilised a

method of DMA proxying ethernet packets into the PL by remapping the PS

ethernet RX frame buffer of the into a ping-pong FIFO within the PL. Packet

headers are extracted using an arbiter architecture that redirects the packets

to their final destination; either used to initiate PR from a ZyCAP controller

or back to the PS for use within general purpose processing. A case study

demonstrated loading cryptographic cores for network enabled acceleration.

We benchmark the case study and highlight the latency reduction experienced

in our alternative mechanism. We provided further demonstrations for loading

the bitstream directly from the network interface by transferring the complete

bitstream via ethernet as well as the frame header.

8.1.2 Python Library for SoC Interfaces Extraction and Gen-

eration

In Chapter 5, we introduced a tool for connecting user hardware sources files,

including HDL, IP cores and HLS, within our PR build tool for compile-time

generation of hardware infrastructure. This functionality was expanded into a

standalone Python library that enabled the extraction of interfaces and ports

from modules that could be grouped as buses, such as AXI (Lite) & Stream

Master and Slave ports. This has wider uses as standard buses such as AXI

are commonly used with SoC designs to move data between the PS and PL.

Automatically extracting interfaces provides build tools with the information

required to abstract the infrastructure need to communicate with the user’s

hardware. In addition to extracting interfaces the tool also generates Verilog

wrappers for the underlying hardware, pass-through hardware that are used by

our tools to set the static region and create blackboxes for the contained logic,

needed for PR. This tool was extracted to function as a standalone library to

encourage use with other open source projects such as the FPGA SoC building

tool Litex [158]. This library allows designers to not be concerned about the

interfaces of a module and simply import it into the PR workflow.
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8.1.3 Automated End-to-End PR Development Flow

The performance and flexibility of FPGA SoC platforms has limited wider

adoption, in particular advanced features such as PR due to the complexity and

existing limitations of vendor PR tool’s and their ability to serve non-experts.

In Chapter 5, we discussed and explained our end-to-end toolchain designed

for automating the process of developing Linux-based PR applications for

independent designers, without the need for pre-requisite knowledge, typically

required to across the domain complexities. This tool takes the user’s hardware

sources (HDL, HLS, etc.) along with a specification file provided by the designer

then generates PRMs, allocate PRRs and configure the required Vivado runs

for generating the appropriate partial and static bitstreams. Further advanced

design functionality such as the chaining of AXI Stream interfaces between

PRMs is discussed and presented. Build metadata (PR configurations, memory

maps, etc.) is then extracted from the FPGA workflow and handled over to a

Linux workflow (based upon PetaLinux) where various components required to

build the Linux image are stored. Firmware for uboot, including custom PMU

firmware, are assembled as required. Generic userspace drivers are included

into the design flow and a custom device tree and device tree fragments are

created from the Vivado hardware export. The PR runtime manager is included

into the Linux builder along with the configuration files and locations needed

to manage PR. These are then built as part of the PetaLinux build process

and a compressed OS image, including PR bitstreams, PR configurations files,

ready-to-go Linux image and runtime management software, and bundled for

deployment.

8.1.4 High Performance Runtime PR Manager

Chapter 6 discussed the high performance runtime manager designed to provide

near theoretical throughput reconfiguration for the Zynq and Zynq Ultrascale+

device types within Linux. This runtime manager provides a non-blocking

DMA interface for loading PR bitstreams into PL as well as moving data

to/from hardware acceleration functions. Additionally, this runtime also

handles applying configurations and modes as discussed in Chapter 5, where

the triggering of the state abstractions may require software operations such

as MMIO reads/writes and dynamic loading/unloading of device tree overlays.

The runtime is demonstrated with a case study for an image processing pipeline,

where frames are streamed in from the PS over DMA (AXI Stream) and a

histogram array is sent back over AXI Lite. The processing system then

uses this data to determine which accelerator it should load into the next

PRR slot of PL in order to best improve the image quality. PR chaining and

the rapid reconfiguration of the PL are demonstrated within this application.
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Experiments are provided to show how performance compares against the

standard vendor tool, FPGA Manager for loading a selection of bitstreams

that reflect the case study application.

8.1.5 Abstracted Configuration Manager for CPSs

In Chapter 7, we discussed an abstract model for adaptive cyber physical

systems, where we extend existing research models to support hardware accel-

eration. An configuration manager is introduced that utilises a publisher/sub-

scriber (constructed on top of the ZeroMQ protocol) architecture to abstractly

map hardware across a system. The configuration manager is demonstrated

with a case study for the Robot Operating System 2, where an image processing

application is evaluated for latency, overhead and throughput for both the

transferring of an image as well as the time to initiate/trigger a PR event. This

demonstrated how the high level of abstraction provided by the configuration

manager can be integrated with popular frameworks like ROS2.

8.2 Future Work

The research discussed in this thesis covers automated design flow and an

abstracted runtime for PR. Our research has helped to advance the state of

abstraction and automation for these systems but we are aware that there are

still additional challenges that should be addressed. We have identify a number

of areas of interest, where the time limitations of this thesis have pushed these

topics to be explored and discussed as future work.

8.2.1 Containerization of vendor tooling within ZyCAP2

Due to the release strategy of Xilinx’s Vitis, Vivado and PetaLinux tooling, it

can be difficult to develop custom build tools that are able to continue to extend

functionality as breaking changes are often introduce with new versions Xilinx’s

tools. During the undertaking of this thesis, multiple updates of Xilinx’s tools

caused problems at various stages of the ZyCAP2 building process. Currently,

we deal with some of these dependency issues by abstracting the building of

Linux images into a PetaLinux Docker container as these tools are open source

and can easily be installed within a virtual environment. In order to better

isolate dependencies and links within a user’s workspace, containers ensure that

when the vendor tools are accessed/requested that there are no unexpected

setup issues, that may be dependent on the environment of the designer. While

this doesn’t resolve TCL-based breaking changes introduced by Xilinx, it would

give a better mechanism for isolating the version specific problems and allow

us to better easily manage our own tools against Xilinx’s for compatibility.
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8.2.2 Integration of FuseSoC into ZyCAP2 tools

At present the work to extend the FuseSoC library manage to support PR

is standalone from the ZyCAP2 toolchain. We would like to integrate this

directly with ZyCAP2 to enable building designs directly from FuseSoC cores.

While this does not reduce the complexity required to write or design hardware

accelerators, it would allow for increased reusability across device types, users

environments and within libraries. A built-in library management platform

would enable designers to find, acquire and deploy readily available IP cores,

similar to selecting a software library.

8.2.3 FuseSoC Vitis HLS Support

Increasing the abstraction and lowering the complexity for developing hardware

accelerators is an important aspect to improving the viability of FPGAs as

adaptive edge platforms. Our current workflow enables building HLS-based

designs from Xilinx’s Vitis HLS suite but expects these to be managed, tested

and exported manually by the designer. A number of acceleration functions

written in HLS already exist as the Vitis Suites for Vision, Graphing, Deep

Learning as well as others and already provide examples for creating further

more complex functions using these libraries. Given that FuseSoC provides a

command line interface for easily creating, testing and building HDL projects

and as such would be well suited to manage HLS libraries. Our work to enable

PR-based FuseSoC HLS cores would allow this to feed directly into our existing

build tools and even further reduce the complexity for non-experts to accelerate

their software applications with hardware.

8.2.4 Xilinx DFX Abstract Shell Workflow

Adding support for Xilinx’s DFX Abstract Shell [8] workflow would enable an

increased modularisation for implementation process of PRMs within Vivado.

At present, design iteration with our tools is slowed down due to the requirement

to place and route for each of the configurations of PRMs within the locked

static regions. This is the same design time requirement as Xilinx’s standard

DFX workflow where multiple passes with the implementation tools are needed

and makes the generation of new PRMs tedious and memory intensive as the

static region must be kept in memory. The DFX Abstract Shell process allows

the implementation requirement of the static region to be separated from the

PRM using a trimmed down version of the static design based upon a given

RP. If added to our workflow, this would mean that storing the complete

static logic would not be required to build new partial bitstreams. Support

for the Abstract Shell workflow would also drastically reduce implementation
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time across our tools and make it easier implement PRMs after initial build

compilation.

8.3 Summary

This thesis has contributed towards reducing the barrier to entry for designing

and developing partially reconfigurable applications on edge FPGA SoCs.

We have identified and demonstrated resolutions for a selection of issues

that introduce complexity, performance and abstraction limitations as well as

automation of existing tools We have placed particular focus on ensuring that

the abstractions we introduce do not impact performance, where our runtime

minimizes latency while approaching the maximum theoretical reconfiguration

throughput for Xilinx Zynq and ZynqMP devices. We have released a number

of open source tools to enable the FPGA community to better leverage the

contributions described in this thesis as well as offered contributions towards

already popular open source projects to encourage adoption.

142



Appendix A

143



Code Snippets

1 name: fusesoc:examples:blinky:1.0.0

2 filesets:

3 rtl:

4 files:

5 - rtl/blinky.v

6 - rtl/macros.v:

7 is_include_file: true

8 file_type: VerilogSource

9 tb:

10 files:

11 - tb/blinky_tb.v

12 file_type: VerilogSource

13 zynqmp:

14 files:

15 - data/zynqmp.xdc: {file_type: xdc}
16 targets:

17 default: &default

18 filesets:

19 - rtl

20 toplevel: blinky

21 parameters:

22 - clk_freq_hz

23 sim:

24 <<: *default

25 default_tool: icarus

26 filesets_append:

27 - tb

28 toplevel: blinky_tb

29 tools:

30 - icarus

31 - modelsim

32 parameters:

33 - pulses=10

34 build:

35 <<: *default

36 default_tool: vivado

37 filesets_append:

38 - zynqmp

39 tools:

40 vivado:

41 part: xczu3eg -sbva484-1-i

42 parameters:

43 - clk_freq_hz=100000000

Listing A.1: An example YAML file for a blinky FuseSoC core on the Ultra96v2
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