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Abstract: A Cloud Computing Environment (CCE) leverages the advantages offered by virtualisation to enable virtual
machines (VMs) within the same physical machine (PM) to share physical resources. Cloud service providers
(CSPs) accommodate the fluctuating resource demands of cloud users dynamically, through elastic resource
provisioning. CSPs use VM allocation techniques such as VM placement and VM migration to optimise the
use of shared physical resources in the CCE. However, these techniques are exposed to potential security
threats that can lead to the problem of malicious co-residency between VMs. This threat happens when
a malicious VM is co-located with a critical (or target) VM on the same PM. Hence, the VM allocation
techniques need to be made secure. While earlier works propose specific solutions to address this malicious
co-residency problem, our work here proposes to investigate the allocation patterns that are more likely to lead
to a secure allocation. Furthermore, we introduce a security-aware VM allocation algorithm (SRS) that aims
to allocate the VMs securely, to reduce the potential for co-residency between malicious and target VMs. Our
study shows: (i) our SRS algorithm outperforms all state-of-the-art allocation algorithms and (ii) algorithms
that adopt stacking-based behaviours are more likely to return secure allocations than those with spreading or
random behaviours.

1 Introduction

Cloud computing environments (CCEs) are enabling
the deployment of a broad range of services such as
web applications, enterprise systems or large-scale
analytics applications, among others. They enable the
abstraction, pooling, and scalable sharing of comput-
ing resources (e.g., CPU, storage), accessible across a
network, by a pool of users. Virtualization is a tech-
nique that enables these CCEs to dynamically provide
an extensive distributed computing resource. Users
access these physical resources, hosted on physical
machines (PMs), through virtual machines (VMs). As
the resource requirements of an executing workload
fluctuate, physical resources can be dynamically allo-
cated to or reclaimed from the application. In other
words, the provisioning of resources is elastic, based
on user requirements (Hu et al., 2009).

Resource allocation is also more flexible and re-
quires less time and management than traditional
methods (Zhang et al., 2010). Such CCEs will enable
multiple users to share a common computing plat-
form where resources are dynamically available.This

invariably means that a PM can potentially share its
resources among a set of distinct users (or VMs)1,
in what is known as VM co-location. As a conse-
quence of VMs co-location, rather than VMs hav-
ing dedicated resources, the security threats for these
new computing environments have invariably shifted.
The types of threats that arise when a malicious VM
shares with a (target) VM range from data confi-
dentiality breach to denial-of-service attacks (Jansen,
2011). Thus, VMs co-location, though enabling ef-
ficient resource sharing, is creating unwanted side
channels, which can be sources of potential side-
channel attacks (SCAs), such as cache-based SCAs,
timing SCAs among many others. Informally, side
channels are (unwanted) communication channels be-
tween processes that may leak sensitive outputs from
a process (Zhou and Feng, 2005). SCAs will have
impact that can extend from application level to the
hardware level (Bazm et al., 2017) and will become
more prevalent due to the range of side channels that
exists.

1We will henceforth use the term users and VMs inter-
changeably.



When VMs are co-resident (or co-located) on the
same PM, one (malicious) VM can analyse character-
istics of another (target) VM, e.g., the timing prop-
erties, to infer various information such as crypto-
graphic keys. Thus, it is crucial that malicious VMs,
i.e., those wishing to steal information, and target
VMs, i.e., those with sensitive information, are not
co-resident on the same PM. There are two major
steps involved to overcome this problem: (i) identi-
fying the malicious and target VMs and (ii) keeping
the malicious and target VMs apart. In this paper, we
focus on the second problem. For completeness, we
briefly explore work that focused on the first problem.

The analysis of VM behaviour is crucial for CSPs
to be able to identify VMs with suspicious behaviour
and isolate them from other VMs. In (Han et al.,
2015a), the authors present a model for analysing the
behaviour of VMs by monitoring specific factors that
help categorise VMs into specific classes. These are:
(i) a user launching a small or large number of VMs
at a particular time, (ii) or at a periodical time, (iii)
keeping at least one VM active at all times or (iv) all
of a user’s VMs consuming minimal active time to
save cost. After monitoring these factors, a CSP can
classify VMs as either high, medium or low-risk. Fur-
thermore, we will assume that a CSP analyses the be-
haviours of VMs, to identify suspicious VMs and to
allocate VMs according to this analysis. The anal-
ysis could be performed initially by merely asking
VMs users to submit their list of security constraints
if they are aware of the security threats on the cloud
systems. Alternatively, analyses can be performed on
the VMs, based on the information gathered from the
VMs users about the type of applications or data pro-
cessed on their VMs. This step could help to identify
the level of data sensitivity initially. After the initial
analysis, the CSP can categorise the VMs and sub-
sequently start the allocation process. Another tech-
nique is to perform the analysis during VM execution,
to capture their activities and possible suspicious be-
haviour. The result of this analysis could lead to a pos-
sible re-allocation of the VMs. It is worth mention-
ing that suspicious VMs are not necessarily malicious
ones. However, their suspicious behaviours may lead
the CSP to categorise them as a high-risk. The CSP
should handle these VMs from a security perspective
and perform allocations according to the result of the
categorisation while meeting hosting requirements.

Focusing on the allocation problem, the architec-
ture we assume in this paper is presented in Figure 1:
Given (i) a set of VMs, partitioned into malicious
VMs, target VMs, and normal VMs, (ii) a set of PMs
with varying physical resources and (iii) a set of new
VMs coming into the system, we develop (i) an al-

Figure 1: Cloud architecture assumed in this paper.

location algorithm and (ii) a migration algorithm to
ensure secure VM allocation, i.e., malicious VMs are
not co-resident with target VMs. We assume that the
behaviours of VMs are monitored and analysed to
identify malicious VMs. In this paper, we assume the
learning component is predefined, and accordingly,
we classify several VMs as malicious, target and nor-
mal.

We run extensive simulations of our algorithms
under a variety of scenarios and parameters. We fur-
ther investigate the effect of three algorithms, namely
(i) Round Robin, (ii) Random and (iii) previously se-
lected servers first (PSSF) algorithms. Each of these
algorithms have unique allocation behaviours. We
consider three VM allocation behaviours: (i) stack-
ing, (ii) spreading and (iii) Random. The stacking
behaviour captures the fact that an algorithm will try
to use as few PMs as possible to reach a suitable al-
location, e.g., a Bin-Packing algorithm. The spread-
ing behaviour means that the allocation algorithm will
allocate VMs to the whole span of PMs, e.g., round
robin. The random allocation algorithm will allocate
the VMs randomly as long as the candidate PM is
suitable. The algorithms we develop in this paper is
stacking-based, similar to bin-packing. However, bin-
baking not classified as a secure-aware algorithm, for
example, the first-fit, is a heuristic of bin-packing, that
require modification to be a secure-aware allocation
algorithm (Natu and Duong, 2017). Thus, our pro-
posed algorithm is an enhancement of Bin-packing,
that aims to obtain a secure VM allocation. The ob-
jective of studying the proposed algorithms is to in-
vestigate the allocation behaviour that leads to a se-
cure allocation. It is worth mentioning that Random
and Round Robin allocation are not secure by design.
However, for this study, we have modified them to be
security-aware by integrating them with the leaning
component in Figure 1.

The main contributions for this paper are as fol-
lows:
1. We propose a secure stacking-based algorithm

(SRS) that securely allocates the VMs to reduce
the effect of malicious co-residency.



2. We study the effect of VM allocation behaviour
on obtaining a secure allocation. The behaviours
are stacking, spreading and random behaviour.

3. We investigate the factors affecting the outcome
towards obtaining a secure allocation. These are:
(i) the PMs heterogeneity level and (ii) the diver-
sity of available resources and (iii) the VMs ar-
rival time for each type of VMs considered in this
work.

4. We show that our algorithm SRS outperforms all
state-of-the-art allocation schemes, even after be-
ing transformed for security.

The paper is structured as follows: We present a
survey of the literature in Section 2 and related work
to our paper in Section 3. We present our system
model and a formalisation of the problem we focus
on in Section 4. We develop our algorithms in Sec-
tion 5, and we present their performance evaluation
in Section 6. We conclude the paper in Section 7.

2 LITERATURE REVIEW

Over the past years, defending SCA focused on secur-
ing the allocation and migration process of the VMs.
Other areas, concentrated on applying modifications
to the PMs level to obtain secure isolation.

VM Clustering: The first domain focuses on
grouping the VMs based on defined requirements
through the allocation. (Han et al., 2017) proposed
isolated zones to separate the VMs based on their
risk level by considering specific security dimensions
such as VMs, PMs or hypervisor risk. Then, allo-
cates the VMs according to the obtained risk evalua-
tion. Moreover, (Liang et al., 2017) proposed a 2-step
algorithm: group and host selection. Their goal is to
create randomness in the way of VM allocation to a
PM. Also, the work in (Natu and Duong, 2017) pro-
posed an algorithm that allocates the VMs based on a
user security profile defined by the user. In addition,
(Yuchi and Shetty, 2015) proposed an allocation algo-
rithm that depends on the risk score obtained from US
national vulnerability database (NVD). Furthermore,
(Bijon et al., 2015) proposed a framework for allocat-
ing the VMs under conflict-free groups by ensuring
that each group shares the same attribute value of se-
curity conflict. Another work introduced a framework
for VM allocation that aims to group VMs based on
constraint requirements (Al-Haj et al., 2013). Addi-
tionally, the work of (Li et al., 2012) introduced a
mechanism to identify the dependency between VMs
using the network connection information and to al-
locate the VMs accordingly.

Security Compliance: The second domain is
considering another form of grouping, which is to al-
locate the VMs based security compliance require-
ments to ensure each VM hosted on the same PM
share the same security compliance level. (Bahrami
et al., 2017) introduced a VM allocation algorithm
that adopted the Health Insurance Portability and
Accountability Act (HIPA). Furthermore, (Ahamed
et al., 2016) proposed a VMs migration algorithm that
ensures the VMs hosted on the same PM share the
same security level.

Time-Triggered Allocation: The third domain is
focusing on allocation the VMs for a defined time to
reduce the amount of sensitive data leakage through
the SCA. (Sun et al., 2016) proposed an informa-
tion leakage model that measures the duration of co-
located VMs without triggering a suspicious behav-
ior. If VMs co-located for specific time without trig-
gering intrusion detection, then these VMs considered
friendly. Moreover, (Moon et al., 2015) introduced a
placement algorithm to reduce the information leak-
age by placing VMs based on the amount of time
these VMs hosted previously together without trigger-
ing a malicious behavior.

Co-residency mitigation: The fourth domain fo-
cuses on reducing the chance of VMs co-residency
with malicious VMs. (Berrima et al., 2016) intro-
duced an algorithm that deliberately delay the start-
up time for VMs to reduce the chance of co-residency
with malicious VMs. Furthermore, (Zhang et al.,
2012) proposed a model that stimulates the users to
migrate their VMs to avoid malicious co-residency
threats. The idea is to migrate the VMs frequently to
reduce the chance of co-residency. (Qiu et al., 2017)
developed an algorithm that considers the amount of
VMs and PMs used during the allocation to avoid ma-
licious co-residency. Moreover, (Agarwal and Duong,
2019) introduced an algorithm that aims to reduce
the co-residency by allocating VMs with ones which
shared the same PMs previously. Additionally, (Ding
et al., 2018) proposed an optimization-driven solu-
tion, based on the firefly algorithm, that aims to find
the optimal allocation which reduces the chance of
malicious co-residency. Also, (Han et al., 2018) pre-
sented a secure VM allocation algorithm based on
multi-objective optimization. It is a heuristic of the
First-Fit algorithm, which provides an allocation that
satisfies the resource constraint. Furthermore, (Wong
and Shen, 2018) proposed an enhancement of the
Best-Fit algorithm by allocating the VMs based on
the level of familiarity between the VMs and hosted
PMs.

Secure Hardware: The fifth domain is focusing
on the secure allocation of VMs by securing the hard-



ware level of the PMs. (Sprabery et al., 2017) pro-
posed a solution that requires a change in the hard-
ware to eliminate the side channel threats. Their
framework aims to partition the shared cache into
two separate regions called shared cache and isolated
cache. The shared cache, will execute all shared re-
sources. However, the isolated cache, will only exe-
cute the resources from VMs that require a secure and
isolated processing unit. Additionally, (Will and Ko,
2017) Introduced a secure data processing component
using FPGA (field-programmable gate array). FPGAs
is reprogrammable to specific functionality, and they
been used as an accelerator for the hardware process-
ing, such as on Amazon cloud.

3 Background

The work in (Han et al., 2015b) introduced a VM al-
location policy called previously selected servers first
(PSSF). This policy is allocating the VMs belonging
to a user on the same PM, as long as the number of
VMs for the same user not exceeding a certain thresh-
old, they assume its three VMs per one PM for the
same user. If there is no previous VMs, it will use the
existing allocation policy to place the VM based on
available resources. They discovered that the PSSF
works better when combined with the least VM allo-
cation policy. However, their work did not consider
VMs migration and its effect on the allocation pro-
cess. Also, they consider the VMs arrival only in one
situation, where the target VMs are allocated first, and
then the malicious ones allocated afterwards. Other
scenarios could be investigated and studied on differ-
ent VMs arrivals time. Also, they did not consider
the possibility of the presence of normal VM users.
The normal VM users could potentially affect the al-
location as the consumption of the resources will be
higher, and the allocation of the VMs to the available
resources will be challenging. Also, their work did
not consider the PMs heterogeneity, meaning the ef-
fect of the allocation on PMs with diverse available
resources. Finally, their work tries to produce the allo-
cation based on the malicious VM perspective, not the
CSPs perspective. In our work, we will try to fill this
gap by considering the VM migration on the alloca-
tion process. We introduce three types of VMs users
Target, Normal and Malicious users to study their ef-
fect on the allocation outcome. Moreover, we con-
sider different VMs arrival times to show each VM
type arrivals’ effect on allocation security. Our work
also presents a solution from the CSPs perspective,
which is to obtain the most secure allocation under
different scenarios for all users.

4 System Model and Problem
Statement

We present the system model we assume in this paper
and subsequently present the problem we address.

4.1 System Model

The system consists of a set P of k + 1 physical
machines, labelled PM0,PM1, . . . which remains un-
changed in the lifetime of the allocation process. Each
PMi,1 ≤ i ≤ k has the same set of resources but in
varying quantities, e.g., one PM may have more stor-
age than another, i.e., we assume the system to be het-
erogeneous. We assume the existence of a “null” PM
(⊥) that keeps all the unallocated VMs in the system
and corresponds to PM0. We denote by R(PMi), the
amount of physical resources available on PMi. On
the other hand, there is a set V of virtual machines,
labelled V M1, . . .. Each V M j has the same set of re-
source type requirements but in varying amounts and
we assume that all the resource needs of a VM can be
met by any PM2. We denote by N(V M j), the amount
of resources needed by V M j.

The set V is partitioned into three sets: (i) set T of
target VMs, (ii) set M of malicious VMs and (iii) set
N of normal VMs, with the following constraints:

• V = T ∪M∪N

• T ∩M = /0∧T ∩N = /0∧M∩N = /0

A target VM is a VM that has proven to be legit-
imate, which means this VM has sensitive data that
could be compromised by other VMs. The target VM
is classified as a critical VM before and during the
VM allocation by the CSP, according to their VM be-
haviour analysis. Similarly, based on its behaviour,
a VM can be classed as a malicious VM that behaves
suspiciously, according to the CSP behaviour analy-
sis. If a VM is behaving suspiciously, then it is con-
sidered a malicious VM, until it is proven otherwise.
If the VM is considered malicious, then it is consid-
ered a risk to the target VMs. A normal VM is a VM
that is neither a target nor a malicious VM.

We model the VM allocation as a function A : V →
P, i.e., an allocation is an assignment of VMs to PMs.
An unallocated VM v is one such that A(v) = ⊥ (al-
located to PM0), otherwise it is allocated. A VM
can be allocated to a PM if the resources available
at the PM, meaning the PM can meet the resource
requirements of the VM, i.e., if V Mi is allocated to
PM j, j 6= 0, then PM j can satisfy the resource re-
quirements of V Mi, i.e., A(V Mi) = PM j, j 6= 0 ⇒

2We assume the system to be heterogeneous in terms of
resource availability.



R(PM j) ≥ N(V M j). The system tries to allocate any
unallocated VM V Mu ∈ PM0 to some PM j, j > 0.

An allocation space A is the set of all possible
allocations. We can then view the allocation sys-
tem as a transition system (A ,I ,M ), with I being
the set of all possible initial allocations and M be-
ing the set of transitions between allocations. The
transition from an allocation Ai to an allocation A j
is called a migration. The initial allocation, where
all VMs are on PM0, is always secure. We assume
migrations are atomic, i.e., all VM movements take
place at the same time. A system execution is an infi-
nite sequence of allocations A0 · A1 . . ., where A0 ∈ I
and (Ai,Ai+1) ∈M . If the sequence is finite, it can
be made infinite by infinitely repeating the final al-
location. The set of VMs that are migrated during a
migration (Ai,Ai+1) in an execution is given by

Move(Ai,Ai+1) = {v|Ai(v) 6= Ai+1(v)}
We say an allocation A is secure if ∀m ∈ M,∀t ∈

T : A(m) 6= A(t) 6= ⊥, i.e., an allocation is secure if
no malicious VM is co-located with a target VM. An
allocation that is not secure is termed as a co-resident
allocation. The set of PMs at which co-residency oc-
curs is denoted by

CoRe(A) = {p ∈ P\{PM0}|A(t) = A(m) = p, t ∈
T,m ∈M}

We say that a migration is secure if both the start
and the end allocations are secure. Whenever there
are unallocated VMs in the system, VM migrations
will occur and the number of migrations must be kept
to a minimum to reduce downtime of allocated VMs,
i.e., Move(Ai,Ai+1) needs to be minimized.

4.2 Problem Formalization

One variant of the problem we study can be expressed
as follows:
Definition 4.1 (VM Migration with no co-residency).
Given a set P of PMs, a set U of (unallocated) VMs, a
set L of allocated VMs, a secure allocation Ai, obtain
a secure allocation Ai+1 such that (i) all VMs v ∈U
are allocated and (ii) Move(Ai,Ai+1) is minimized.

However, as can be inferred, this cannot be guar-
anteed at all times, especially when resources are
scarce. So, we present a second weaker variant, which
we focus on in this paper.
Definition 4.2 (VM Migration with minimal co-resi-
dency). Given a set P of PMs, a set U of (unallocated)
VMs, a set M of allocated VMs, an allocation Ai, ob-
tain an allocation Ai+1 such that (i) all VMs v ∈ U
are allocated and (ii) Move(Ai,Ai+1) is minimised and
(iii) the number of PMs at which co-residency occurs
is minimized, i.e., minimise CoRe(Ai+1).

Denoting the minimum number of PMs by p, an
allocation A that satisfies Definition 4.2 is said to be
p-secure. An allocation A that is secure is thus 0-
secure3.

5 Algorithm for Secure Allocation

The main objective of this paper is to address the se-
cure VM placement, i.e., develop a secure allocation
algorithm while minimising the VM migrations and
the number of PMs where co-residency occurs (i.e.,
Definition 4.2). In addition, we will endeavour to
keep the number of PMs used as small as possible.
Using a stacking-based algorithm (e.g., bin-packing)
will allow the use of a small number of PMs. How-
ever, such algorithms are not known to be secure.

As such, we propose our security-aware heuris-
tic, a variant of bin-packing, called Secure Random
Stacking (SRS), which is shown in Algorithm 1. Al-
gorithm 1 (SRS) allocates VMs randomly in a stack-
ing fashion and migrates them from one PM to an-
other if the possibility of VM migration exists. Simi-
lar to a bin-packing algorithm, e.g., (Korf, 2002), the
SRS algorithm aims to allocate the VMs into the se-
lected PMs while using a smaller number of available
PMs and to maintain a secure allocation. The fol-
lowing sections will describe the SRS allocation al-
gorithm and associated functions in detail.

5.1 The Process of SRS Algorithm

The general idea of SRS is to return as many secure
allocations as possible within a given time limit, then
checks for the malicious co-residency for these allo-
cations (p-secure). If malicious co-residency reaches
the minimum level, then this allocation is considered
a final allocation. If the malicious co-residency does
not reach the minimum level, then another allocation
will be generated until a time limit is reached. In our
case, the time is set to 2000ms, the algorithm will ter-
minate after this time reached, and the allocation with
lowest malicious co-residency is selected as the final
allocation. The time threshold and the minimum level
of co-residency can be adjusted based on the perfor-
mance requirements for the allocation.

The SRS algorithm has two main inputs: (i) the
unallocated set of VMs, denoted as V and (ii) the set
of the available physical machines, denoted as P. The
output, denoted as the mSa, is the most secure allo-
cation found for the available set of resources. The

3Henceforth, whenever we say secure, we mean p-
secure.



Algorithm 1: Secure Random Stacking (SRS).
Input:
V: Set of unallocated VMs
P: Set of PMs in the cloud
Output: mSa: Most Secure Allocation

1 Function vmMigration(electedPMs,P):
2 vmsToMigrateList = {}
3 migrationAllocationList = {}
4 for pm in electedPMs do
5 vmsToMigrateList.add(getMaliciousVms() ∪

getNormalVms())
6 end
7 for vmi in vmsToMigrateList do
8 pmm ← getRandomPM(getHighestFRPMs(vmi,P))
9 if coResidencyCheck(vmi, pmm)6= True then

10 migrationAllocationList.add(Assign(vmi, pmm))
11 end
12 end
13 return migrationAllocationList

14 Function oneAllocation(V,P):
15 oneAllocationList = {}
16 ElectedPMs = {}
17 do
18 ElectedPMs.add(getHighestFRPMs(VMi,P))
19 PM j ← getRandomPM(ElectedPMs)
20 if (coResidencyCheck(VMi, PM j) 6= True) then

// Assign VM to the selected PM

21 oneAllocationList.add(Assign(VMi, PM j))

22 end
23 else
24 oneAllocationList.add(vmMigration(ElectedPMs,P))

if (coResidencyCheck(VMi, PM j) 6= True)
then

25 oneAllocationList.add(Assign(VMi, PM j))
26 end
27 end

// If assigning the VM to the elected PMs after
the migration failed

28 if Assign(VMi, PM j) = Null then
29 for PMk in P do
30 if (isPMsuitable(VMi, PMk)=True) then
31 oneAllocationList.add(Assign(VMi,

PMk))
32 end
33 end
34 end
35 while V 6=∅
36 return oneAllocationList

37 allAllocationList = {}
38 oneAllocation = Null
39 oneAllocation← oneAllocation(V,P)
40 i= getInfectedPMsNumber(oneAllocation)
41 if i 6= 0 then
42 do
43 allAllocationList.add(oneAllocation)
44 oneAllocation← oneAllocation(V,P)
45 i= getInfectedPMsNumber(oneAllocation)
46 allAllocationList.add(oneAllocation)

47 while i 6= 0 ∪ simulationTime ≤ 2000ms
48 mSa← getLowestInfectedAllocation(allAllocationList)

49 end
50 else
51 mSa← oneAllocation
52 end
53 return mSa

SRS algorithm start, at line 39, when the first alloca-
tion produced using the one allocation function. The
details of the one allocation and VM migration func-
tions will be described in detail in later sections. Af-
terwards, this first allocation is passed to a function,
at line 40, to calculate the number of PMs used in
this allocation to compute malicious co-residency. If
there is no co-residency (0-secure), the allocation will
be selected and considered the most secure allocation
for the given resources. Otherwise, the produced al-
location will be saved for later comparison with other
produced allocations. The algorithm, at this stage,
cannot determine if this allocation is the best or worst
secure allocation unless it compares the produced al-
location with other allocations. Therefore, after this
step, another allocation is produced and the previous
steps repeated, until one of two stopping conditions
applies: (i) the algorithm is able to produce an alloca-
tion with no co-residency or (ii) the algorithm reaches
a timeout limit. We use a 2000ms limit for our algo-
rithm because it produced the best performance trade-
off for the SRS algorithm. The time limit is adjustable
based on the requirements from the used algorithm,
and other constraints on the CSP. Otherwise, if the
time limit is reached and the minimum co-residency
is greater than zero, the algorithm will compare the
existing produced allocations and select the one with
lowest co-residency, at line 48.

5.2 The One Allocation Function

Figure 2: The Fullness Ratio (FR) function.

The one allocation function is responsible for
many roles which are: allocate all the unallocated
VMs into PMs while maintain the secure allocation
constraints, reducing the number of used PMs and re-
ducing the VM migrations. The key factor here is
the Fullness Ratio (FR) function, at line 18 denoted
as getHighestFRPMs. This function allows only the
PMs that have resources with a high FR compared to
the VM demanded resources to be selected as elected
PMs for the allocation. In other words, what are the
PMs that if selected, will be filled (FR %) in a way



this fullness will be high FR? For example, in figure
2, The PM1, PM2, PM4 and PM6 are the elected PMs
for two reasons. Firstly, they have high FR among the
available PMs. Secondly, they are the PMs that repre-
sent the two highest FR% among the other PMs FR%.
The PM8 still has high FR but not selected as the al-
gorithm will only choose the two highest FR%. The
reason for selecting the two highest FR% PMs is to
allow more elected PMs to be available. Increasing
this number, higher than two, could potentially lead
to changing the stacking behavior of the SRS algo-
rithm. The motivation for the FR step is to keep the
VMs stacked while selecting the PMs, which leads to
a perfect match between the VM and PM selection
in the matter of resources. Thus, reducing the num-
ber of used PMs during the allocation, which results
in allowing more space for incoming VMs to allocate
securely. The score of the FR depends on the current
situation of the available PM resources, and the VM
required resources and the time that VM arrives. Here
we calculate the FR based on the RAM resources for
the VM and the PMs. The next step of SRS is to se-
lect one of the elected PMs as a candidate for allocat-
ing the VMi, at line 19. It starts by selecting the PM j
randomly among the elected PMs and assigns it as a
candidate for the next step. The reason for the ran-
dom selection is to keep predicting the behaviour of
the allocation process hard for the malicious user to
obtain. Even if the malicious user manages to know
that the algorithm is following a stacking behaviour,
it will be costly to obtain a malicious co-residency
and to know the exact PMs with target users as it will
need to launch many VMs periodically to be able to
achieve SCA. Afterwards, at line 20, the algorithm
will check if the selected PM j will produce a mali-
cious co-residency. This step is essential to trigger
the VM migration function, which is explained in the
next section. The coResidencyCheck function moti-
vated by the learning model that learns the behaviour
of VMs and classifies them accordingly to their types.
If there is no malicious co-residency the assignment
of VMi to PM j is performed by the function Assign,
at line 21, and added to the one allocation list. The
Assign function will override any previous allocation
commitment for the same VM. Meaning if the func-
tion is accessed again by the same VM, and the same
PM selected, it will result in selecting this new as-
signment as final. The process of adding to the one
allocation list will ensure a unique VM allocation re-
sulted from the Assign function. However, in the next
step, if there is a malicious co-residency on the se-
lected PM, at line 24, the VM migration will trigger.
One of the objectives of SRS is to minimize the num-
ber of VM migrations. Because migrating the VM

from one PM to another results in some downtime,
even for the live migration. The process of VM mi-
gration requires moving the VM current state while
the VM is running. Furthermore, at a particular stage,
copying the VM state and restoring it in the destina-
tion PM requires a slight downtime. That result in
an unwanted interruption to most cloud users, which
SRS tries to avoid by only selecting to migrate the
VMs that are allocated on the elected PMs. After the
VM migration is performed, the VM allocation pro-
duced from the migration will be added to the one
allocation list to reflect the new changes, if any. Then
the algorithm will repeat the malicious co-residency
check after the migration. Finally, at line 28, if per-
forming the initial selection and VM migration leads
to a failed assignment, then the algorithm will assign
the VMi to any suitable PM. The one allocation func-
tion will continue until all the unallocated VMs find
an assignment.

5.3 The VM Migration Function

The goal of the one allocation function is to produce a
secure allocation. A secure migration must leave the
system in a secure allocation. The migration func-
tion attempts to maintain that secure status, whenever
possible. The migration function receives the elected
PMs to select their VMs for migration and the avail-
able PMs set, denoted as P. The reason for this step
is to select the minimum number of VMs for migra-
tion, thus reducing the VM movements. The VMs
selected for migration, at line 5, will include all the
malicious VMs and all normal VMs. This step will
allow more space for the target VMs, by migrating
the normal VMs to allow more space, and thus, re-
duces the chance of co-residency. Also, selecting the
malicious VMs, will increase the difficulty for the ma-
licious VM user to achieve SCA. Hence, reducing the
possibility of being allocated with a target VM. Fi-
nally, the selected VMs are allocated to specific PMs
according to the same steps of one allocation function.

6 RESULTS AND DISCUSSION

In this section, we evaluate the algorithms, using
the CloudSim simulator (Calheiros et al., 2011).
CloudSim is an open-source cloud simulation envi-
ronment based on cloud system workloads. Cloud
simulators are useful to provide a solution and pro-
jection of the real world scenarios.

This work examines the effect of the secure VM
allocation, VM migration, and PMs used during the
allocation. Also, we compare against well-known al-



location algorithms such as Round Robin (RR) (Bal-
harith and Alhaidari, 2019) and Random (Rand) al-
gorithms (Azar et al., 2014). Furthermore, we com-
pare against one of the recently developed algorithms,
called Previously Selected Servers First (PSSF). (Han
et al., 2015b). We consider these algorithms as they
capture different approaches and behaviours of VM
allocations. Our proposed SRS algorithm allocates
VMs in a stacking fashion, while the Random al-
gorithm allocates VMs randomly, and RR allocates
through spreading. The PSSF follow a unique be-
haviour that depends on spreading the VMs of the
same user if they exceed 3 VMs on the same PM. The
Random, RR and PSSF algorithms do not check the
type of the VMs during VM allocation, as part of the
coResidencyCheck function, as SRS does. There-
fore, and in order to trigger the VM migration, we
have added this function to all the considered algo-
rithms. However, the migration function performed
for each algorithm is based on its initial allocation.
This action will preserve the behaviour of each algo-
rithm from being changed after the migration.

6.1 Arrival of VMs

In this experiment, we consider three arrival times
(launch times), to show the effect of VM arrival time,
based on its type, on the malicious co-residency. The
three arrival times are M(t), T(t) and N(t). The M(t) is
the time that the malicious VM is arrived. The defini-
tion applies to T(t) and N(t) for target VM and normal
VM, respectively. In the experiment, we study all the
possibilities of arrival time for each type of VM. The
notation M(t) < T(t) < N(t) means that the malicious
VM arrives and is allocated in a time before the arrival
of target and normal VMs. We also consider when the
target and normal VMs arrive at the initial time.

6.2 Experimental Setup

The number of VMs ranges from 20-120, increasing
by 20 VMs in each experiment. The number of PMs
is 24 in each experiment. We consider three types of
PMs structure, or level of PMs heterogeneity, High,
Medium and Low heterogeneous PMs. Meaning the
resources of the PMs are structured based on the clas-
sification of PMs heterogeneity, as follows:

1. HighHetPMs: The first eight PMs can host
the VMs as following and in this order (2VM-
4VM-6VM-8VM-2VM-4VM-6VM-8VM). Then
this order repeated until it reaches 24 PMs to ac-
commodate up to 120 VMs.

2. MedHetPM: Here it will be as following (4VM-
4VM-4VM-4VM-4VM-6VM-6VM-8VM). Then

this order repeated as above.

3. LowHetPMs: Here it will be as following (4VM-
4VM-4VM-4VM-6VM-6VM-6VM-6VM). Then
this order repeated as above.

The resource requirements of the VMs are simi-
lar with 1 GB vRAM (Virtual RAM), 1 vCPU and
500 MB vStorage. On the other hand, the resources
available for each PM are heterogeneous, as described
above. There are four types of PMs used for this
setup: (i) 2 GB RAM and 2 CPU, (ii) 4 GB RAM
and 4 CPU, (iii) 6 GB RAM and 6 CPU, and (iv)
8 GB RAM and 8 CPU. The CPU is space-shared,
meaning that each CPU can only accommodate one
vCPU at each time. We investigate every combina-
tion of numbers of VMs with each type of PMs under
each VMs arrival times. We also consider the number
of each VMs type in each experiment, for example,
if we have a 20 VMs, how many of these VMs are
malicious VM, target VMs, or normal VMs. We dis-
tributed these possibilities in our simulation, and due
to the limited space for this paper, we are not able to
show the effect for each VM type number.

6.2.1 External Workload

We used a real workload while conducting the ex-
periments in order to mimic real cloud computing
scenarios as much as possible. The used workload
is published by the Karlsruhe Institue of Technology
ForHLR II System (Mehmet, S, 2018).

6.2.2 Figures Explanation

Figures 3−5 compare four algorithms, SRS, PSSF,
Random and RR under three different PMs hetero-
geneity. Each type of a PM structure, for example
HighHetPMs, is highlighted vertically with a shad-
ing color to demonstrate which part of the PM struc-
ture. And each comparison Figure, for example Fig-
ures 3a, 3b and 3c compares three different VMs ar-
rivals times. Therefore, for example, when the VMs
equal 20, it will be simulated for each possible arrival
time under each type of PMs heterogeneity and each
possible VM type number.

6.3 Result of malicious co-residency

We calculate the percentage of PMs with Malicious
allocations, denoted as (Mpms), as follow:

Mpms =
Ipms

Tpms
(1)

Where the (Ipms) specify the infected used PMs, and
the (Tpms) specify the total used PMs for an allocation.



6.3.1 VM Arrival: M(t) < T(t) < N(t)

In Figure 3a, the PSSF and RR are the worst for the
Mpms due to the spreading behaviour and because the
malicious VMs arrived first which helped to spread
the VMs. Nevertheless, PSSF only shows weakness
when the number of VMs increases and the available
recourse on the PMs start limiting. Moreover, the
RR suffers more from increasing Mpms when the PMs
are HighHetPMs, compared to other PMs structures.
This is because the PMs available for allocation filled
more quickly than others PM structure, which leaves
fewer options. SRS and Random are the best in this
situation. The SRS shows the least Mpms due to the
stacking behaviour.

6.3.2 VM Arrival: N(t) < M(t) < T(t)

In Figure 3b, this considers the most challenging case
for any allocation algorithm, as the target and mali-
cious VMs arrives at the end, when most of the re-
sources are already utilized. The options for a secure
allocation become challenging for this case. How-
ever, and except for PSSF, most of the algorithms per-
formed well even with limited resources. For PSSF,
due to its constraint of keeping only three users on
the same PM, lead to spread target and malicious,
which result in higher Mpms. This because the normal
VMs, for each experiment, arrives first, and spread
their VMs on the available PMs. Thus fewer avail-
able PMs, when the malicious and target VMs arrives.
Also, The SRS shows the least Mpms among others.

6.3.3 VM Arrival: T(t) < N(t) < M(t)

In Figure 3c, and according to their paper as well, this
is the best case for PSSF. When the target VMs arrives
before other types, the result of the Mpms improved
significantly. However, for RR, this is the worst case.
This because of the same reason mentioned in Figure
3a but with the opposite case. A notable case for the
Random, as it performed worse here than other situ-
ation due to the arrival of malicious VMs at the end.
The SRS shows the least Mpms among others.

6.4 Result of VM Migration

The percentage of VMs migrations, denoted as
(Migvms), is defined as follow:

Migvms =
Svms

Tvms
(2)

Where the (Svms) specify the VMs selected and mi-
grated from one PM to another, and the (Tvms) specify
the total VMs for an allocation.
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Figure 3: Comparison of percentage of the malicious co-
residency under three arrivals times for M(t),T(t) and N(t).

In the Figures 4a, 4b and 4c, the percentage of
VMs migrations (Migvms) is an indication of the pro-
cessing needed to obtain a secure allocation. We can
see clearly, in Figure 4c that the processing needed is
far less for all algorithms compare to the other VMs
arrivals. In general, the RR needed more VM migra-
tions to obtain the resulted level of Mpms compares to
other algorithms. The SRS only suffers from exten-
sive VM migration in the situation of Figure 4b, as
this is the most challenging situation, as we described
earlier. However, the Migvms is still considerably low



compared to RR and Random, and is similar to PSSF.
Another notable case, the Migvms is quite high for
SRS in HighHetPMs compares to other structure.
Because of the number of options for available PMs,
limiting quickly, and therefore, VMs migration trig-
gered more than other structures.
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Figure 4: Comparison of percentage of the VMs migrations
under three arrivals times for M(t),T(t) and N(t).

6.5 Result of PMs Usage

To calculate the effect of the number of used PMs for
each algorithm, we calculate the percentage of used
PMs compared to the total available PMs, denoted as
(Usagepms), as follow:

Usagepms =
Usedpms

Tpms
(3)

Where the (Usedpms) specify the used PMs for com-
pleting an allocation, and the (Tpms) specify the total
available PMs.

In the Figures 5a, 5b and 5c, there is an indica-
tion of the resource usage, in an efficient manner, to-
wards obtaining a secure allocation. In general, RR is
worse due to its spreading behaviour while Random is
only better when the available resources are not lim-
ited. SRS and PSSF have similar behaviours in al-
most all situations. A notable case, the Usagepms is al-
ways higher for SRS and PSSF in HighHetPMs com-
pared to other structures. As the number of options for
available PMs is reduced, Usagepms increases. Also,
as shown in Figure 5b, SRS makes efficient use of
resources, achieving high capacity when the number
of VMs is high, compared to other approaches which
approach such capacity at a much lower number of
VMs. The process of selecting the most secure alloca-
tion, in SRS, focuses on obtaining the most secure al-
locations, rather than obtaining the ones with the least
used PMs. Hence, the Usagepms in SRS is consider-
ably higher than PSSF when the available resources
are not limited.

7 Conclusion

This paper proposed a secure VM allocation (SRS)
to defend against SCA in CCEs. The presented algo-
rithm aims to find a secure allocation by preventing
or reducing co-residency of a target VM with a ma-
licious VM. Our results show that VM arrival times
have a significant impact on obtaining a secure al-
location. Also, the algorithms that follow a stack-
ing behaviour in VM allocations are more likely to
return secure allocations than spreading or random-
based algorithms. We show that SRS outperforms
other schemes in obtaining a secure VM allocation.
In future work, we will investigate further other fac-
tors that affect secure VM allocations. We also plan
on integrating service level agreements (SLAs) into
the allocation process.
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Figure 5: Comparison of percentage of the PMs usage under
three arrivals times for M(t),T(t) and N(t).
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