Throughput Oriented FPGA Overlays
Using DSP Blocks

Abhishek Kumar Jain, Douglas L. Maskell
School of Computer Engineering
Nanyang Technological University, Singapore
Email: {abhishek013,asdouglas} @ntu.edu.sg

Abstract—Design productivity is a major concern preventing
the mainstream adoption of FPGAs. Overlay architectures have
emerged as one possible solution to this challenge, offering fast
compilation and software-like programmability. However, over-
lays typically suffer from area and performance overheads due
to limited consideration for the underlying FPGA architecture.
These overlays have often been of limited size, supporting only
relatively small compute kernels. This paper examines the possi-
bility of developing larger, more efficient, overlays using multiple
DSP blocks and then maximising utilisation by mapping multiple
instances of kernels simultaneously onto the overlay to exploit
kernel level parallelism. We show a significant improvement in
achievable overlay size and overlay utilisation, with a reduction of
almost 70% in the overlay tile requirement compared to existing
overlay architectures, an operating frequency in excess of 300
MHz, and kernel throughputs of almost 60 GOPS.

I. INTRODUCTION AND RELATED WORK

FPGAs have been shown to be suitable for computational
acceleration in a wide range of applications. However, they are
typically restricted to niche applications with the difficulty of
hardware design, long compilation times, and design produc-
tivity being major issues preventing the mainstream adoption
of FPGA based accelerators in general purpose computing.
High-level synthesis (HLS) is a promising techniques for
addressing the design productivity problem. However, achiev-
ing the desired performance often still requires detailed low-
level design engineering effort that is difficult for non-experts.
Even as HLS tools improve in design efficiency, prohibitive
compilation times (specifically the place and route times in
the backend flow) still limit productivity and mainstream
adoption [1]. Hence, there is a growing need to make FPGAs
more accessible to application developers who are accustomed
to software API abstractions and fast development cycles.
Researchers have approached this problem from many angles,
including through the use of precompiled hard macros [2],
partial reconfiguration, and overlay architectures.

Overlay architectures are an attractive solution for hardware
acceleration of compute kernels on FPGAs because of their
improved design productivity, by virtue of fast compilation,
software-like programmability and run-time management, and
high-level design abstraction [3], [4], [5], [6], [7], [8]. Other
advantages include application portability across devices, bet-
ter design reuse, and rapid reconfiguration that is orders of
magnitude faster than partial reconfiguration on fine-grained
FPGAs. However, when implemented on top of a fine grained
FPGA, there is often a significant cost in terms of area and
performance due to limited consideration for the underlying
FPGA architecture. These overheads currently limit the use
of overlays to relatively small compute kernels, preventing
their realistic use in practical FPGA-based systems. Current
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research is attempting to reduce area overheads while improv-
ing performance, as we summarize next.

QUKU is a reconfigurable coarse grained overlay architec-
ture [6] with a fixed configuration array of processing elements
(PEs) interconnected via an application specific customized
interconnect. QUKU achieved a frequency of 175MHz on a
Xilinx Virtex-4 LX25, with a 1000x reduction in configuration
data sizes and configuration times compared to standard FPGA
implementations.

The VDR overlay [7] is an array of heterogeneous PEs in-
terconnected by programmable switches. A newer architecture
optimized for high frequency and throughput [8] consisted of a
2416 array with a nearest-neighbour-connected mesh of 214
routing cells and 170 heterogeneous functional units (FUs).
The overlay consumes 75% of a Stratix IV 210K ALMs, with
the routing network using 90% of resources. A frequency
of 355MHz and a peak throughput of 60 Giga-operations/s
(GOPS) was reported.

The Intermediate Fabric (IF) [3], [9] overlay was pro-
posed to support near-instantaneous placement and routing.
It consists of 192 heterogeneous functional units with a 16-
bit datapath. The IF in [9] exhibited a 700x improvement
in compilation time compared to vendor tools at the cost of
approximately 40% extra resources, but with a frequency of
125 MHz suffered from relatively low throughput. IF was also
mapped to a Xilinx XC5VLX330 FPGA, along with a low
overhead version of the interconnect [10]. The original 14x 14
IF used 44% of the LUTs with a frequency of 131 MHz while
the optimized IF used 24% of the LUTs with a frequency of
148 MHz.

The DySER [5] coarse grained overlay architecture is a
heterogeneous array of 64 functional units interconnected with
a circuit-switched mesh network. It was implemented on a
Xilinx XC5VLX110T FPGA along with an OpenSPARC T1
processor [5]. However it was only possible to fit a 2x2 32-
bit, a 4x4 8-bit, or an 8§x8 2-bit DySER overlay on the
device. An adapted version of a 6x6 16-bit DySER overlay
was implemented on a Xilinx Zynq-7020 [11] by optimising
the functional units around the Xilinx DSP blocks.

An overlay architecture with FUs based on Xilinx DSP
blocks was proposed in [12]. The overlay combines multiple
kernel operations in a single tile mapped to DSP blocks
resulting in a significant reduction in the number of FUs
required, and hence the routing overhead. A frequency of
370 MHz with throughputs better than a direct implementation
using Xilinx Vivado HLS were reported.

In reviewing the literature, we find that many overlays are
developed with little consideration for the underlying FPGA
architecture. Previous work has demonstrated that the DSP-
rich FPGA fabrics in modern devices can support general
purpose processing at near to DSP block theoretical lim-



its [13], [14]. This has resulted in the development of overlays
with improved frequency and throughput [8], [12], however,
these overlays still suffer from significant resource overheads,
specifically in the routing network. While techniques such
as runtime LUT content manipulation [15] and interconnect
multiplexing [16] can reduce routing network overheads, they
become unsuitable as the overlay frequency approaches the
theoretical limit of the FPGA fabric.

Another problem is that different applications require dif-
ferent sized overlays, with an overlay large enough to satisfy
the requirements of larger kernels being heavily underutilized
when a small kernel is executing. To avoid underutilization,
other researchers have proposed using multiple instances of
small overlays for smaller kernels and a large overlay for larger
kernels, reconfiguring the FPGA fabric at runtime based on
kernel requirements [17]. However, this approach negates a
key advantage of overlay architectures, specifically rapid con-
figuration to support fast switching of kernels. Reconfiguring
the FPGA fabric takes orders of magnitude more time than a
kernel context switch.

In this paper, we take the approach of building a single large
overlay and mapping multiple instances of kernels, possibly
replicated, to the overlay to achieve effective utilization of
resources. We also improve the compute-to-interconnect re-
source usage ratio by using multiple DSP blocks inside the
FU. Efficient resource utilisation, both in terms of the optimum
number of DSP blocks that can be used in an FU and the map-
ping of multiple applications to the new architecture, requires
investigation. As such, we firstly analyse the characteristics of
a number of compute kernels from the literature to ascertain
the suitability of mapping multiple versions to the new DSP-
rich overlay. We then use a vendor-independent mapping to our
overlay architecture and show how it significantly improves the
scalability and performance of coarse-grained overlays while
achieving better utilization of available resources.

II. ANALYSIS OF COMPUTE KERNELS

Most benchmarks used to analyse the performance of over-
lays are relatively small, limited by small overlay sizes. As
FPGAs have increased in size, these benchmarks are no longer
sufficient to fully test newer more efficient overlays. We have
compiled a benchmark set (shown in Table I) containing a
number of compute kernels from the literature [12], [18], [19],
[20].

Table I shows the characteristics of the kernels after ex-
tracting the data flow graphs (DFGs), including the number of
I/O nodes, graph edges, operation nodes, average parallelism,
graph depth, and graph width. The graph depth is the critical
path length of the graph, while the graph width is the max-
imum number of nodes that can execute concurrently, both
of which impact the ability to efficiently map a kernel to the
overlay. The average parallelism is the ratio of the total number
of operations and the graph depth.

Mapping these kernels to DSP blocks allows us to reduce
the number of functional units required by combining simple
arithmetic operations into the more complex compound in-
structions supported by the DSP block. We perform this trans-
formation on all of the kernels and re-analyse the benchmark
characteristics for DSP-aware DFGs (in brackets in Table I). It
is clear from the op nodes column that an overlay with at least
25 DSP blocks is needed to accommodate all benchmarks,
down from 44 for single operation nodes ignoring DSP block
capabilities.

While DSP aware mapping does reduce the number of FUs
required, I/O requirements remain unchanged. Additionally,
using a large overlay and mapping multiple instances of the

smaller kernels to it impacts the availability of both compute
and I/O resources. As the size of an island-style overlay
increases, the number of I/O interfaces grows linearly while
the number of compute tiles grow quadratically. Thus, an
N x N overlay supports N2 FUs, but as the I/O is determined
by the overlay perimeter it is proportional to N (e.g. 4N,
8N, 12N depending on the number of I/O nodes per tile).
The scalability curves for three different architectures with
different numbers of I/O nodes per tile, assuming single DSP
block based FU, are shown in Fig. 1. Here, an 8 x 8 4N
overlay is limited to 64 DSP nodes and 32 I/O nodes, while
an 8x8 8N overlay has 64 DSP nodes and 64 1/0 nodes. Fig. 1
also shows plots of I/O vs DSP nodes required for multiple
replicated instances of the compute kernels from Table I. It
can be seen that the replicated kernels towards the top left are
I/0 bound and require more I/O nodes, as provided by the
8N and 12N architectures. However the kernels with points
below the architecture curves are compute bound and can make
use of the available FUs. For example, the replicated compute
kernels towards the bottom right of Fig. 1 have a limited I/O
requirement and can consume the majority of DSP blocks in
a 4N architecture.

TABLE I: The Characteristics of the Benchmarks

Benchmark 1I/0 DFG Characteristics (DSP-aware Characteristics)

No. Name nodes graph op graph average graph
edges nodes depth parallelism width
1. chebyshev  1/1 12(10) 7(5) 7(5) 1.00(1.00) 1(1)
2 sgfilter 2/1 27(19) 18(10) 9(5) 2.00(2.00) 4(3)
3 mibench 3/1 22(14) 13(6) 6(4) 2.16(1.50) 3(3)
4. gspline 11 50(46) 26(22) 8(7) 3.25(3.14) 7(7)
5. polyl 2/1 15(12) 9(6) 4(3) 2.25(2.00) 4(4)
6 poly2 2/1 14(10) 9(6) 5(3) 1.80(2.00) 3(3)
7 poly3 6/1 17(13) 11(7) 5(3) 2.20(2.30) 4(4)
8 poly4 5/1 13(9) 6(3) 42) 1.50(1.50) 2(2)
9. poly5 3/1 43(28) 27(14) 9(6) 3.00(2.30) 6(6)
10. poly6 3/1 72(51) 44(25) 11(9) 4.00(2.77) 11(10)
11. poly7 3/1 62(44) 3921 13(8) 3.00(2.62) 10(7)
12. poly8 3/11 51(35) 32(17) 11(5) 2.90(3.40) 8(8)
13. fft 6/4 24(22) 10(8) 3(3) 3.33(2.66) 4(4)
14.  kmeans 16/1 39(36) 23(20) 9(7) 2.55(2.85) 8(8)
15. mm 16/1 31(24) 15(8) 8(8) 1.88(1.00) 8(1)
16. mri 1172 24(20) 11(7) 6(5) 1.83(1.40) 4(2)
17. spmv 16/2 30(24) 14(8) 44) 3.50(2.00) 8(2)
18. stencil 15/2 30(24) 14(8) 5(3) 2.80(2.66) 6(4)
19. conv 24/8 40(32) 16(8) 2(1) 8.00(8.00) 8(8)
20. radar 1072 18(16) 8(6) 3(3) 2.66(2.00) 4(2)
21. arf 26/2 58(50) 28(20) 8(8) 3.50(2.50) 8(4)
22. fir2 171 47(32) 23(8) 9(8) 2.55(1.00) 8(1)
23. hornerbezier 12/4 32(22) 14(8) 4(3) 3.50(2.66) 5(4)
24. motionvector 25/4 52(40) 24(12) 4(3) 6.00(4.00) 12(4)
25. atax 12/3 123(99)  60(36) 6(6) 12.00(7.20) 27(9)
26. bicg 15/6 66(54) 30(18) 3(3) 10.00(6.00) 18(6)
27. trmm 18/9 108(90)  54(36) 44) 13.50(9.00) 27(9)
28. syrk 18/9 126(99)  72(45) 5(4) 14.40(11.25)  36(18)

To determine the impact of adding additional compute nodes
into the FU we re-examine the scalability curves for the 4N
architecture with an FU consisting of one, two and four DSP
blocks, referred to as 4N-1D, 4N-2D and 4N-4D, respectively.
The resulting scalability curves, along with the I/O and DSP
node requirements for replicated instances of the compute
kernels are shown in Fig. 2. It can be seen that the 4N-
4D architecture is only suitable for a very small number of
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kernels (those below the 4N-4D curve), with a significant
underutilization of DSP blocks for the other kernels, and is
not considered further. Similarly, the scalability curves for the
8N architecture with an FU consisting of one, two, and four
DSP blocks was also considered, referred to as 8N-1D, 8N-2D
and 8N-4D in Fig. 3, respectively.

The benefit of using a 4N-2D over a 4N-1D architecture, or
an 8N-4D over a 4N-1D architecture, is the reduced cost of
the routing network per DSP processing element. The FPGA
resource cost of the 4N-2D architecture is 100 Slices per DSP
Block, compared to 160 Slices per DSP block for the 4N-1D
architecture. Thus, a 128 DSP block 4N-2D overlay would
consume 12.8K Slices while a 128 DSP block 4N-1D overlay
would consume 20.5K Slices. Due to the low cost of the 4/V-

2D architecture, an overlay with 128 DSP blocks can easily
fit onto a Xilinx Zynq device having 13K Slices. In the next
section, we describe the detailed architecture of the dual-DSP
block based overlay and its associated mapping tool flow.

III. OVERLAY ARCHITECTURE AND MAPPING TOOL

We now examine the use of a cluster of DSP48E1 primitives
as a programmable FU in an efficient overlay architecture
targeting data-parallel compute kernels. We use a conven-
tional tile-based island-style overlay architecture, similar to
those in [5] and [9], where a tile consists of an FU and
programmable routing resource, consisting of one switch box
(SB), two connection boxes (CB)) and horizontal and vertical
routing tracks, all 16-bits wide to support a 16-bit datapath.
The number of tracks in a channel is referred to as the channel
width (CW), and as this increases, application routing becomes
easier but with a higher area overhead. Multiplexer-based
connection boxes and switch boxes connect tracks to the FU
and other tracks in intersecting channels, respectively.

A. Functional Unit

The functional unit provides the compute resource for the
overlay, and its design is critical to high performance. Using
fully pipelined DSP blocks as the functional units allows us
to achieve very high throughput. To improve the compute to
routing ratio and hence reduce the number of slices per DSP
block in the implementation of the overlay, we improve the
FU in [12] by using two DSP48E1 blocks.
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Fig. 4: Architecture of Functional Unit.

The FU, shown in Fig. 4, has a 4-input, 4-output structure,
allowing it to connect to any of the four adjacent channels.
To ensure signal timing across the array is correctly matched,
pipeline latencies at the different FUs must be balanced by
introducing a delay into each path. This is achieved by adding
variable-length shift registers, implemented using LUT-based
SRL32 primitives at each FU input. The maximum depth of
the variable shift registers can be set to 16, 32, or 64 cycles,
depending on the flexibility required. As long as the inputs
at any node are not misaligned by more than the depth of
the variable shift registers, the VPR [21] place and route
algorithms can be used for placement and routing on the
overlay. Multiplexer-based reordering logic is used to connect
the delayed inputs of the FU to the DSP blocks. This is
required as any of the four inputs of the FU can connect to
any of the four inputs of a DSP48E1 primitive which unlike
LUTs are not logically equivalent.

The two DSP blocks are connected in series, with four
additional registers added to each input of the second DSP



block for pipeline balancing. Lastly, the output from either
DSP block can be selected as the FU output. To maintain high
F a0, all three pipeline stages in the DSP48EI1 primitives are
enabled. Additional registers are added at the output of each
reordering multiplexer, at the input selector of the second DSP
block and at the FU output. These registers, along with the
registered outputs of the SRLs result in a total FU latency of
8 clock cycles when using only one DSP block and 13 clock
cycles when using both DSP blocks.

B. Mapping tool

The main advantage of using an overlay is that application
kernels can be mapped directly to it with software-like speed
and programmability and do not rely on vendor tools to
generate a device specific bitstream. We use an automated
mapping flow to provide a rapid, vendor independent, mapping
to our proposed overlay. The mapping process comprises
DFG extraction from HLL descriptions of compute kernels,
mapping and clustering the DFG nodes onto the dual-DSP
FU, architecture-aware kernel replication, VPR compatible FU
netlist generation, placement and routing of the FU netlist
onto the overlay, latency balancing and finally, configuration
generation. Like the typical software compilation process, this
mapping process is done offline, and does not impact perfor-
mance. The three steps distinct from [12], DFG to dual-DSP
FU based clustering, architecture aware kernel replication and
latency balancing, and configuration generation, are described
below, with more detail in [12].

1) DFG to Dual-DSP FU based Clustering: Firstly, the
DFG description is parsed and translated into a DSP-aware
DFG. In order to reduce the number of compute nodes,
we merge multiple nodes based on the capabilities of the
DSP48E1 primitive. Next, in order to support the dual-DSP
FU, we apply an additional clustering step. We cluster two
consecutive nodes in the DSP-aware DFG if the fan-in of
the resulting node, excluding constants which are instantiated
inside the FU, is < 4. Dual-DSP based clustering results in a
significant reduction in the number of FUs required compared
to an FU with just a single DSP block, also meaning less
global routing resources are needed.

2) Architecture Aware Kernel Replication: If architecture
aware kernel replication is enabled, the mapping tool instan-
tiates multiple parallel instances of the compute kernels. This
can be either as separate (e.g. different) kernel instances or as
identical (e.g. replicated) instances. This optional step attempts
to make better use of a large overlay based on the availability
of I/O and compute resources.

3) Latency Balancing and Configuration Generation: The
mapped kernel will only function correctly if all FU inputs
arrive at the same execution cycle. This latency balancing
is achieved by adding additional cycles to the SRL chains
incorporated into the FUs to ensure alignment. To determine
the latency imbalance at each node, we developed a tool
to parse the VPR PAR output files and generate a routing
resource graph. The routing resource graph is used to generate
the overlay configuration (including the depth of each SRL)
for the compute kernel. The tool also generates various kernel
statistics including input to output latency, latency imbalance
at each node, and maximum latency imbalance in the graph.
The overlay configuration data is then used to set the pro-
grammable settings of the FU and the routing network.

IV. EXPERIMENTAL EVALUATION

We synthesize and map the CW2-4N-2D overlay architec-
ture (an overlay with CW=2, 1 I/O per row/column and an FU
with 2 DSP blocks) using Vivado 2014.2 onto a Xilinx Zynq

XC7Z020 and evaluate its performance and that of our custom
mapping tool using a benchmark set of compute kernels.

A. Mapping to FPGA Fabric and Resource Usage

An N x N overlay would require N2 FUs, (N + 1)? SBs
and 2% N % (N + 1) CBs. Table II shows the FPGA resources
required for the FU, FU configuration registers (FUCR), SB,
SB configuration registers (SBCR), CB and CB configuration
registers (CBCR) for both the CW2-4N-2D and the CW4-8N-
2D (in brackets) overlays. Note that there is no difference
between the FU and FUCR for both overlays, the difference
being restricted to just the routing tile. Next, we describe
the individual overlay component mapping onto the physical
FPGA fabric and their micro-architectural resource usage.

1) Resource Usage for the Functional Unit: As mentioned
in Section III, the FU consists of programmable PEs, latency
balancing logic and reordering logic. We use four 16-bit wide
variable length shift registers, implemented as SLICEM shift
register LUTs (SRLs) as the latency balancing logic, one on
each of the four PE inputs. As we require a maximum delay of
64 clock cycles for our benchmark set we use two cascaded
SRLs to form a chain and use 16 chains at each input of
the PE to achieve a 16-bit variable delay of between 1 and
64 cycles. Thus each input consumes 32 LUTs and 16 FFs,
resulting in 128 LUTs and 64 FFs for the complete latency
balancing logic. The reordering logic requires 4 multiplexers
with registered outputs, at the input of each PE, consuming
128 LUTSs and 128 FFs in total. Additionally, we require three
16-bit registers at the DSP input ports (as shown in Fig. 4)
for each PE, consuming 96 FFs. Delay lines at the four inputs
of the second PE require 64 LUTs (SRLs) and 64 FFs and
the second PE input selection logic requires 32 LUTs and 64
FFs. Finally at the output of the FU, we require a multiplexer
with a registered output, consuming 8 LUTs and 16 FFs. Thus
the total FU resource usage is 360 LUTs, 432 FFs and 2
DSP blocks. The FU configuration register includes 16 bits for
each DSP block configuration, 16 bits for the two immediate
operands, 8 bits for each reordering logic, 4 bits for the second
PE input selection logic, 1 bit for the FU output selection logic
and 24 bits for depth selection of the latency balancing logic.
Hence, the FUCR consumes 109 FFs. The FU and FUCR
resource utilization are given in Table II.

TABLE II: FPGA resource usage for overlay components

Resource ~ FU FUCR SB SBCR CB CBCR
LUTs 360 0 64 (128) 0 48 (96) 0
FFs 432 109 0 8 (16) 64 (128) 6 (12)
DSPs 2 0 0 0 0 0

2) Resource Usage for Routing Resources: For CW=2, a
SB requires four 16-bit 4 x 1 muxes, each consisting of 16
LUTs. The SB configuration register needs 8 bits, 2 for each
of the 4 muxes. Hence the SBCR consumes 8 FFs. The total
SB and SBCR resource usage, for CW=2, is shown in Table II.
A CB consists of two 2 x 1 and two 4 X 1 muxes (each 16-bits
wide). As each mux is registered, the total resource usage is
48 LUTs and 64 FFs. The CB configuration register requires
6 bits for the selection inputs of the 4 muxes and hence the
SBCR consumes 6 FFs. Total CB and CBCR resource usage,
for CW=2, is shown in Table II.

3) Total Resource Usage and Performance Analysis: The
CW2-4N-2D overlay tile contains 1 FU, 1 SB, 2CBs and their
configuration registers, while a border tile contains 1 SB, 1 CB
and the configuration registers. Thus, an overlay tile consumes



520 LUTs, 625 FFs and 2 DSP blocks while a border tile
consumes 112 LUTs and 76 FFs. The post-place and route
resource consumption on Zyngq, as a percentage of total FPGA
resources, is shown in Fig. 5(a).

The overlay operating frequency approaches the DSP theo-
retical limit of 400 MHz on Zynq for small overlays, but as
the overlay grows in size the frequency decreases slightly, as
shown in Fig. 5(b). Since the DSP48E1 can support three op-
erations, an N x N overlay can support a maximum of 6 x N2
operations, and hence the peak throughput is 6 * N2 x F},,
operations per second, as shown in Fig. 5(b) for different
overlay sizes.

The CW2-4N-2D overlay requires 109 configuration bits
for the dual-DSP FU and 20 configuration bits for program-
ming the routing network tile. Thus, an 8x8 overlay has
a configuration size of 9100 bits (1137 Bytes), and can be
configured entirely in 45.5us, compared to 31.6ms for the
entire Zynq programmable fabric using the PCAP port, a
1000x improvement in reconfiguration time.

We also mapped the overlay to a mid-sized Virtex-7
(XC7VX690T-2) device where we were able to implement a
20 x 20 CW=2 overlay, resulting in a frequency of 380 MHz
and a peak throughput of 912 GOPS. A quantitative compar-
ison of the proposed overlay architecture with some existing
overlays from the research literature is given in Table III.

For the different FPGA devices and overlay sizes we com-
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TABLE II: Quantitative Comparison of Overlays

Resource IF [10] IF (opt) [10] [11] [12] Proposed Proposed

Device XC5VLX330 XC5VLX330 XC7Z020 XC7Z020 XC7Z020 XC7VX690T
Slices|LUTs  51.8K|207K 51.8K|207K 13.3K|53K 13.3K|53K 13.3K|53K 108.3K|433.2K

pare the resource usage in terms of the LUTs used and the
percentage of total LUTs, frequency, maximum number of si-
multaneous arithmetic operations (Max OPs), peak throughput
of the arithmetic operations in GOPS and the programmability
cost in terms of LUTs/OP. These results show that we are
competitive on almost all metrics. Programmability cost can
be reduced further using alternative interconnect architectures
such as hierarchical and nearest-neighbor interconnect.

B. Mapping of Kernels onto the Overlay

Our mapping tool takes a C description of the compute
kernel and maps it onto the overlay using the steps described
in Section III-B. The number of overlay tiles needed for each
of the benchmarks, for DFGs, DSP-aware DFGs and clustered
DFGs, is shown in Fig. 6. (The numbers on z-axis relate to
the benchmark number from Table 1.) We observe a reduction
in the number of tiles required for DSP-aware DFGs and
clustered DFGs of up to 50% and 69%, respectively. The
advantage of DSP-aware clustered DFGs becomes apparent
by examining specific benchmarks, such as poly7 (benchmark
11), where only a single DFG instance can fit onto an 8x8
overlay (as a minimum it requires a 7 X 7 overlay). However,
with DSP-aware clustered DFGs, 4 separate instances of the
poly7 benchmark are able to fit onto an 8 x 8 overlay, utilising
56 of the 64 tiles.

Next we replicate multiple instances of the benchmarks
from Table I and map them to our proposed CW2-4N-2D
overlay. The x-axis of Fig. 7 indicates the benchmark number,
followed by the number of replicated instances in brackets
and shows that many applications are able to map multiple
instances to the overlay. There are 4 benchmarks (benchmarks
25-28) which are unable to map to the CW2-4N-2D overlay
due to I/O and internal routing requirements, instead requiring
a CW4-8N-2D overlay. However, due to space constraints,
we will not discuss that architecture here though we have
successfully created it and mapped to it. Additionally, there
are a number of benchmarks (benchmark 14-15, 17-19, 21-
22, and 24) that are unable to map more than 1 instance due
to the I/O limitations of the CW2-4N-2D overlay, as indicated
in Fig. 2.

The actual throughput, in GOPS, for the replicated bench-
mark instances is shown by the left bar in Fig. 7, calculated as
the product of the DFG compute nodes and the implementation
operating frequency. For example, an overlay throughput of
57.6 GOPS is achieved by instantiating 6 instances of the poly8
(12) benchmark. This is 50% of the absolute peak perfor-
mance, of 115 GOPS, which could be hypothetically achieved
by a synthetic kernel having 384 operations (128 Add/sub, 128
MUL, 128 ALU ops) which would fully utilise the DSP block
resources of the 64 FUs in our 8 x 8 overlay. It is clear that
the benchmarks with modest I/O requirements benefit from
replication, while those with larger I/O requirements would
benefit from the CW4-8N-2D overlay.
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Fig. 6: The number of tiles required for the kernels in table I
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Fig. 7: The performance comparisons of the CW2-4N-2D overlay and Vivado HLS implementations

To further demonstrate the performance of our proposed
overlay, we generate RTL implementations of the same ker-
nel instances replicated an identical number of times using
Vivado HLS 2014.2. In this way, we are able to perform
a quantitative comparison of performance between the two
implementations. Fig. 7 shows the performance comparison
of the overlay implementations (left bar) and Vivado HLS
implementations (right bar) in terms of throughput. Our over-
lay is able to achieve an average throughput improvement
of 40% due to the highly pipelined architecture, something
which Vivado HLS is currently unable to exploit. The Vivado
HLS implementations of the replicated benchmarks require
significantly less hardware resource (on average, our overlay
requires 30x and 70x more slices, for benchmarks 1-12 and
13-24, respectively). However, this hardware penalty is the
result of a general overlay architecture that can be effortlessly
integrated into a virtualised hardware/software environment on
the Zynq FPGA like the one in [4] that would incorporate both
static and PR accelerators as well as overlays for generality
and performance. The key advantage of an overlay is the
fast compilation, software-like programmability and run-time
management, with a relatively small configuration data size
and fast non-preemptive hardware context switching, all of
which are missing in a static Vivado HLS accelerator design.
As indicated in Section IV-A, our proposed overlay is able to
perform a hardware context switch in just 45.5 us (1000x
faster than reconfiguring the Zynq FPGA) using just 1137
Bytes of configuration data.

V. CONCLUSION

We have presented an FPGA overlay architecture that uses
multiple instances of the Xilinx DSP48E1 primitive as a pro-
grammable FU, resulting in an efficient overlay architecture for
pipelined execution of compute kernels, with better resource
utilization and significantly improved performance metrics.
We demonstrate the efficiency of our overlay architecture
by mapping a benchmark set of compute kernels using our
automated mapping tool flow. We show that we are able
to map multiple instances of the benchmark kernels to the
overlay automatically, resulting in more efficient utilization of
overlay resources, without resorting to reconfiguring the FPGA
fabric at runtime. Our experimental evaluation shows that the
overlay delivers a throughput of up to 57.6 GOPS (50% of
the peak theoretical throughput of the overlay) and provides an
average throughput improvement of 40% over Vivado HLS for
the same implementations of our benchmark set. The overlay
allows for fast non-preemptive hardware context switching
1000x faster than reconfiguring the FPGA, using just 1137
Bytes of configuration data. In future, we plan to explore
alternative architectures for the routing network in order to
further reduce the programmability cost.
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