
Efficient Large Integer Squarers on FPGA

Simin Xu∗, Suhaib A. Fahmy‡, Ian V. McLoughlin†

∗Xilinx Asia Pacific, Singapore

siminx@xilinx.com
‡Nanyang Technological University, Singapore

sfahmy@ntu.edu.sg
†University of Science and Technology of China, Hefei, Anhui, China

ivm@ustc.edu.cn

Abstract—This paper presents an optimised high throughput
architecture for integer squaring on FPGAs. The approach
reduces the number of DSP blocks required compared to a
standard multiplier. Previous work has proposed the tiling
method for double precision squaring, using the least number
of DSP blocks so far. However that approach incurs a large
overhead in terms of look-up table (LUT) consumption and
has a complex and irregular structure that is not suitable for
higher word size. The architecture proposed in this paper can
reduce DSP block usage by an equivalent amount to the tiling
method while incurring a much lower LUT overhead: 21.8%
fewer LUTs for a 53-bit squarer. The architecture is mapped
to a Xilinx Virtex 6 FPGA and evaluated for a wide range of
operand word sizes, demonstrating its scalability and efficiency.

Keywords-Field programmable gate arrays, Fixed-point
arithmetic.

I. INTRODUCTION

Specialized hardware for squaring is desirable for many

high performance algorithms. A squarer can be significantly

faster, consume less power, and be smaller than a general

multiplier. Squaring is widely adopted in fixed point function

evaluation [1], various floating point arithmetic [2], [3] and

polynomial evaluation algorithms. Many techniques have

been proposed to improve squaring in ASICs [4], [5].

Dedicated DSP Blocks which are able to implement oper-

ations such as multiplication or multiply-accumulate in a fast

and efficient manner are provided in modern FPGA and they

are used to build squarers in the literature [6]–[8]. To use

them efficiently, designs must be customised to the datapath

of the DSP block [9]. Since they are large and limited

in number, reducing the number of DSP blocks required

for elementary operations like squaring can facilitate the

mapping of larger designs to an FPGA. However, simply

trading DSPs with LUTs can lead to significant area cost.

In this paper, we investigate reducing squarer DSP blocks

usage, by trading DSP blocks with limited amount of LUTs.

We compare the proposed approach to a range of existing

methods up to a wordlength of 64 bits.

II. BACKGROUND

The DSP48E1 block in the Virtex 6 and all 7-series

FPGAs from Xilinx, contains a 25×18 bit signed multiplier

with an optional pre-adder on input A and a programmable

ALU after the multiplication, which can be used as a 48

bit post-adder [10]. The post-adder has a dedicated route

through its PCOUT port to the PCIN port of the adjacent

DSP block, with an optional 17-bit right shift. The input of

the post-adder can come from input C, with an optional

associated CARRYIN, but it is mutually exclusive with

the PCIN signals. The DSP48E1 includes internal pipeline

registers, allowing it to run at a maximum frequency of

450 MHz (for -1 speed grade Virtex 6 devices) [10].

The cascaded chain through dedicated routes allows users

to build large wordlength multipliers. For a 35×35-bit

multiplication, both operands would be split into two and the

multiplication would be performed as four sub products in a

chain comprising four DPSs. However, the number of DSP

blocks required by the multiplier (for a given wordlength

w where k splits are needed) grows quadratically as the

wordlength increases, which could be derived from:

f(k) =

{
k2 if w − 17k > 1

k2 + 1 if w − 17k ≤ 1
(1)

A dedicated squarer can be built in a similar way. For a

35×35-bit squarer, the equivalent equation:

x2 = (a0 + a1 · 2
17)2 = a2

0
+ 2 · a1a0 · 2

17 + a2
1
· 234 (2)

shows that only 3 DSPs are needed, a saving of one DSP.

As the wordlength increases, more DSPs are saved compared

with multiplication. Equations (3) and (4) show that only 6

and 10 DSPs are needed, compared with 9 and 16 for a

multiplier, for three and four split operands respectively.

x · x = a2
0
+ 2a1a0 · 2

17 +
(
a2
1
+ 2a2a0

)
· 234

+ 2a2a1 · 2
51 + a2

2
· 268 (3)

x · x = a2
0
+ 2a1a0 · 2

17 + (a2
1
+ 2a2a0) · 2

34

+ (2a2a1 + 2a3a0) · 2
51 + (a2

2
+ 2a3a1) · 2

68

+ 2a3a2 · 2
85 + a2

3
· 2102 (4)

We can derive a similar equation to (1):

2013 21st Annual International IEEE Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4969-9/13 $26.00 © 2013 IEEE

DOI 10.1109/FCCM.2013.35

198

0
41 24 0

19

36

Figure 1. Tiling squarer method. Two LUT multipliers are shown in white
in the middle top and bottom left, and two in dark grey [6].

f(k) =

{
(k2 + k)/2 if w − 17k > 1

(k2 + k)/2 + 1 if w − 17k ≤ 1
(5)

A similar rationale was used in [6] (targeting the Xilinx

Virtex 4) for the FloPoCo project 1. We have mapped the

auto-generated FloPoCo squarer to the Virtex 6 FPGA,

however, we are able to produce expected performance with

ISE v13.4 as the design is not optimally pipelined for the

newer DSP architectures. Hence, we have also rewritten an

optimized design, based on the same decomposition, that we

refer to as the “cascaded method”.

To further reduce DSP usage, the tiling method [6]

was proposed, applied to 25×18 bit DSP blocks.The main

approach is to achieve efficiency gains through maximizing

the utilisation of the asymmetrically sized DSP inputs. This

method can reduce the number of DSPs from 6 (cascaded

method) to 5 for a 53-bit squarer, with the alignment of the

DSPs shown in Figure 1. The main drawback is high LUT

usage, as there are four small multiplications that must be

mapped in LUTs. Although full implementation details are

not provided, we have reproduced the design based on Figure

1, which applies to operand widths between 43 and 53 bits,

to compare with the other methods evaluated.

III. PROPOSED DESIGN

In this section we propose an optimised squaring al-

gorithm implementation on FPGA with lower DSP block

usage. The algorithm is flexible with respect to operand size,

though it targets higher wordlength, since (as will be shown

later) it improves on existing methods when operand size

exceeds 41 bit. The algorithm was inspired by the Karatsuba-

Ofman algorithm [11], which is used to reduce the DSP

cost for multiplication in [6] by trading multiplications with

additions. However, the same reduction in [6] does not

apply for squaring. According to equations in [12], there

are no more advantages in using the reformation if both

inputs are the same. We have thus modified the classic

Karatsuba-Ofman algorithm and functions performed by the

DSP blocks can be mapped to a small number of LUTs.

As wordlength increases, more DSPs can be exchanged

1FloPoCo version 2.4.0, http://flopoco.gforge.inria.fr/

with LUTs, and the LUT count grows only gradually. We

demonstrate the algorithm using two cases in the following.

We will take a 52×52 bit squarer to illustrate the al-

gorithm, where equation (3) was the equivalent squaring

equation using the cascaded method. We now define m and

n as, m = a2 − a1 and n = 2a0 − a1 and their product as,

m · n = 2a2a0 − 2a1a0 − a2a1 + a2
1

(6)

This can be rewritten to provide the term a2
1
+2a2a0 (which

was in the middle of (3)) and now (3) becomes,

x · x = a2
0
+ 2a1a0 · 2

17 + (mn+ 2a1a0 + a2a1) · 2
34

+ 2a2a1 · 2
51 + a2

2
· 268 (7)

In the formulation of (7), the DSPs are configured to

compute the sub products a2
0
, 2a1a0, a2a1, mn and a2

2

(named DSP p0 p1 p2 p3 and p4). Compared to the 6 DSP

blocks needed in the cascaded method, only 5 are required,

matching the DSP block savings of the tiling method.

The main benefit of this transformation is the reduced

cost for the replacement logic: by carefully mapping the

design, the LUT overhead is significantly smaller compared

to the tiling method.Only one 17-bit LUT adder is required

to obtain either m or n, since the other can be computed

using the pre-adder in the DSP block p3. Meanwhile, the

rest has to be mapped to two cascaded chains, which are:

chain0 = 2a1a0 + a2a1 · 2
17 +mn · 217 (8)

chain1 = 2a1a0 + 2a2a1 · 2
17 (9)

chain0 is the output directly from DSPs p3, p2 and p1 with

the cascaded addition chain and chain1 can be derived from

p2 and p1 in LUTs. The whole process requires one 34-bit

adder to obtain chain2 and one 51-bit adder to add the two

chains. The final addition of the MSB can be implemented

using the post adder in DSP p4, by using its input bus C
as well as the input CARRYIN. Figure 2 shows the overall

implementation schematic of this architecture with pipeline

registers. Due to the pipelined design, the architecture can

be clocked at the maximum frequency of the DSP.

Note that when the wordlength extends to between 54

and 58, small changes to m and n are required to make

their multiplication fit into one DSP block – these are not

shown in detail here due to limited space.

When operand widths are above 59 bits, the inputs have to

split into four parts. Take 64×64-bit as an example. Here, m
and n are defined in a similar manner to in the case of three

splits. Similarly, p and q can be defined as p = 2a3 − a2
and q = a1−a2. Hence, the squaring equation (4) becomes,

x · x = a2
0
+ 2a1a0 · 2

17 + (mn+ a1a0 + 2a2a1) · 2
34

+ (2a2a1 + 2a3a0) · 2
51 + (pq + a2a1 + 2a3a2) · 2

68

+ 2a3a2 · 2
85 + a2

3
· 2102 (10)

Equation (10) reveals that only 8 DSPs are needed. We

enumerate the DSPs from p0 to p7 for a2
0
, a1a0, a2a1, mn,

199

carry in

c

a0

a0

2a1

a0

2a2

a0

2a2

a1

a2

16:0

a0a1

33:17

67:34

max: 68

p0

p1

p2

p3

p4

Figure 2. Pipeline schematic of squarer for three splits input.

2a3a0, pq, 2a3a2 and a2
3

respectively. This saves 2 DSPs

over the cascaded method. By contrast, the tiling method

doesn’t propose a solution for operands this large.

Clearly, as operand size increases, the additional circuitry

needed is more complex. To utilise the post-adder more

efficiently, three chains of DSPs are defined, which are:

chain0 = a1a0 + a2a1 · 2
17 (11)

chain1 = chain0 +mn+ 2a3a0 · 2
17 + pq · 234 (12)

chain2 = a2a1 + 2a3a2 · 2
17 (13)

Equation (10) can be represented using these chains as,

x · x = a2
0
+ 2chain0 · 2

17 + chain1 · 2
34

+ chain2 · 2
51 + chain2 · 2

68 + a2
3
· 2102 (14)

We almost fully utilize the post-adder, either through a ded-

icated route or using the C input to map as much as possible

into the DSPs, while the remainder are added with 3:1

compressors and normal adders in LUTs. Implementation

details are not presented here for reasons of space.

The approach for even higher wordlengths is similar and

the DSP count (k > 2) can be as low as:

f(k) =

{
(k2 − k + 4)/2 if w − 17k ≥ 1

(k2 − k + 4)/2 + 1 if w − 17k < 1
(15)

Note that the DSP block usage increases slower than for the

standard cascaded method, resulting in higher gains with

extremely large operands. With carefully aligned adders and

formations of DSP chains, the extra LUT overhead can be

constrained to be relatively small compared to the number

of DSP blocks saved.

IV. RESULTS

The proposed algorithm has been synthesised, placed and

routed using Xilinx ISE version 13.4, targeting the Xilinx

Virtex 6 XC6VLX240T-1 FPGA. A design generator has

Table I
DSP BLOCK USAGE FOR ALL METHODS.

Size CoreGen FloPoCo Cascaded Tiling Proposed

42–52 9 6 6 5 5
53 10 6 7 5 5
54 10 6 7 N/A 6
55–58 10 7 7 N/A 6
59 10 10 10 N/A 8
60–64 16 10 10 N/A 8

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� �� ��

�
�
�
��
�
��
�
	�

�
�

�

	
�	��
� ������
� ��

�
� ������ ���	���

Figure 3. Equivalent LUT usage for all methods against wordlength.

been built to expand the algorithm across input operand

wordlengths from 42 to 64 bits, inclusive. Both three splits

(42 to 58 bits) and four splits (59 to 64 bits) are supported.

The cascaded squarer designs as well as the general pur-

pose multiplier designs provided by Xilinx CoreGen have

been implemented for comparison across the same range of

wordlengths. Similarly, squarers from FloPoCo have been

compiled as another reference point. The tiling method has

been built for wordlengths between 43 and 53 bits.

Table I shows the total number of DSPs used by each

method. The proposed algorithm shows a gain across

wordlengths and consumes up to 50% fewer DSP blocks

compared to a general purpose multiplier. The tiling method

has the same DSP count but only applies to sizes between 43

and 53 bits. Across most of the range, the proposed method

uses 14.3 to 20% fewer DSP blocks than the cascaded

method and FloPoCo squarers.

To quantify the total cost among different methods, we

compute an equivalent number of LUTs to represent one

DSP block. This is computed by taking the total number of

LUTs in the device and dividing by the total number of DSP

blocks. For the given FPGA, which has 150720 LUTs and

768 DSP blocks, this equals 196 (ranges from 160 to 240

for most general purpose Xilinx Virtex FPGAs).

Figure 3 shows the equivalent cost for all the implemented

designs. Compared to the cascaded method and the design

200

��

��

��

���

���

���

���

���

���

���

�� �� �� �� �� �� �� �� �� �� �� ��

�
�
��
�
	�

�
�

�
�
�
��
�
�
�
�

�
�
��
�

	
�	��
� ������ ���������� ���� �����

Figure 4. LUTs per DSP saved (from the cascaded method) ratio for tiling
and proposed method against wordlength.

Table II
MAXIMUM FREQUENCY (MHZ) FOR ALL METHODS.

Size CoreGen FloPoCo Cascaded Tiling Proposed

42–58 452.5 256.6 452.0 419.9 444.5
59–64 444.2 157.1 451.5 N/A 442.8

from FloPoCo, both the tiling method and the proposed

method show an advantage in terms of total equivalent

LUTs. For the 53-bit squarer, which is the optimal size for

the tiling method, both methods save two DSP blocks over

the cascaded method but the proposed method uses 21.8%

fewer LUTs to achieve this. Between 43 and 52 bits, where

both methods use 5 DSPs, the tiling method uses 127 to 216

LUTs to replace each DSP compared to 107 to 127 LUTs

for the proposed method. This translates to up to a 41.2%

improvement over the tiling method for the given operand

word sizes. It is not possible to show the equivalent number

of LUTs for the multiplier on the same axis, as for high

wordlength the cost is as high as 3528 LUTs.

The proposed method is flexible in terms of operand size

without significant efficiency penalties. Figure 4 shows the

LUTs required per saved DSP compared to the cascaded

method for the proposed method and the tiling method.

Two horizontal lines show the LUTs:DSP block ratio for

the target device and for the Xilinx XC6VSX315T DSP-rich

FPGA. The tiling method reaches an architectural limit for

replacing DSP with LUTs above a wordlength of 49 bits. In

contrast, even for the DSP rich FPGAs, it is still worthwhile

to use the proposed algorithm to reduce the DSP count.

Table II shows the maximum post place and route fre-

quency of the evaluated methods. The proposed method,

along with the cascaded method are able to sustain speed

as operand wordlength increases.

V. CONCLUSION

This paper has proposed a new method for building

efficient squarers on FPGAs , using up to 21.8% fewer LUTs

for a 53 bit squarer compared to the state-of-the-art tiling

method and with less equivalent cost compared to other

methods in the literature. The method is shown to be scalable

across a wide range of operand wordlengths, maintaining its

advantages over other methods, and supporting a sustained

operating frequency.

Although the new approach is optimized for Xilinx Virtex

6 and newer devices, it is not restricted to architectures

with asymmetric multipliers. It can be applied to older DSP

blocks on Xilinx or Altera devices with minimum changes

to the adder mapping. We aim to further research how this

method can be applied to higher powers that would be useful

for polynomial evaluation.

REFERENCES

[1] K. Chung and L.-S. Kim, “Area-efficient special function unit
for mobile vertex processors,” Electronics Letters, vol. 45,
no. 16, pp. 826 –827, 30 2009.

[2] D. D. Donofrio and X. Li, “Enhanced floating-point unit for
extended functions,” U.S Patent 7 676 535, 2007.

[3] B. Pasca, “Correctly rounded floating-point division for DSP-
enabled FPGAs,” in Field Programmable Logic and Applica-
tions, Aug. 2012, pp. 249 –254.

[4] A. Strollo and D. De Caro, “Booth folding encoding for high
performance squarer circuits,” IEEE Transactions on Circuits
and Systems II, vol. 50, no. 5, pp. 250 – 254, May 2003.

[5] K.-J. Cho and J.-G. Chung, “Parallel squarer design using
pre-calculated sums of partial products,” Electronics Letters,
vol. 43, no. 25, pp. 1414 –1416, 6 2007.

[6] F. de Dinechin and B. Pasca, “Large multipliers with fewer
DSP blocks,” in Field Programmable Logic and Applications,
Sep. 2009, pp. 250 –255.

[7] B. Lee and N. Burgess, “Improved small multiplier based
multiplication, squaring and division,” in Field-programmable
Custom Computing Machines, Apr. 2003, pp. 91–97.

[8] S. Gao, N. Chabini, D. Al-Khalili, and P. Langlois, “FPGA-
based efficient design approach for large-size two’s comple-
ment squarers,” in Application-specific Systems, Architectures
and Processors, Jul. 2007, pp. 18 –23.

[9] B. Ronak and S. Fahmy, “Evaluating the efficiency of dsp
block synthesis inference from flow graphs,” in Field Pro-
grammable Logic and Applications 2012, Aug., pp. 727–730.

[10] “Virtex-6 user manual,” Xilinx Inc.

[11] A. Karatsuba and Y. Ofman, “Multiplication of multi-digit
numbers on automata,” Soviet Physics Doklady 7, vol. 145,
pp. pp. 595–596, 1963.

[12] P. Montgomery, “Five, six, and seven-term Karatsuba-like
formulae,” IEEE Transactions on Computers, vol. 54, no. 3,
pp. 362 – 369, Mar. 2005.

201

