
A Lean FPGA Soft Processor Built Using a DSP Block

Hui Yan Cheah 1, Suhaib A. Fahmy 1, Douglas L. Maskell 1, Chidamber Kulkarni 2

1 School of Computer Engineering, Nanyang Technological Univesity
Nanyang Avenue, Singapore

hycheah1@e.ntu.edu.sg, {sfahmy, asdouglas}@ntu.edu.sg
2 Xilinx Inc., San Jose, CA

chidamber.kulkarni@xilinx.com

ABSTRACT
As Field Programmable Gate Arrays (FPGAs) have ad-
vanced, the capabilities and variety of embedded resources
have increased. In the last decade, signal processing has be-
come one of the main driving applications for FPGA adop-
tion, so FPGA vendors tailored their architectures to such
applications. The resulting embedded digital signal process-
ing (DSP) blocks have now advanced to the point of support-
ing a wide range of operations. In this paper, we explore
how these DSP blocks can be applied to general computa-
tion. We show that the DSP48E1 blocks in Xilinx Virtex-6
devices support a wide range of standard processor instruc-
tions which can be designed into the core of a basic processor
with minimal additional logic usage.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture
Styles—Adaptable Architectures

Keywords
FPGA, DSP blocks, soft processor, hard macro

1. INTRODUCTION
FPGAs have evolved significantly over recent years. From
simple, regular arrangements of configurable logic blocks
and routing, modern devices now boast increased complex-
ity, in terms of both size, and the variety and capability of
primitives offered. Much of this improvement has inevitably
been driven by market segments where FPGAs are partic-
ularly popular, such as communications and signal process-
ing. This is due to the ease with which such algorithms can
be parallelised on FPGAs and the availability of high-level
programming techniques that simplify the design process.

Hence, it is not surprising to find that FPGAs have evolved
to better suit such applications. The Virtex II brought with
it embedded multipliers. A large number of signal process-
ing algorithms make use of multiplications. By embedding

FPGA’12, February 22–24, 2012, Monterey, California, USA.

hard multipliers into the silicon, it becomes possible to op-
timise them for performance while saving the remaining re-
sources for other uses. These later evolved into DSP Blocks:
multiply-accumulation units that support the full require-
ments of a DSP filter tap.

Recently, FPGAs have moved beyond implementation of ac-
celerators for complex algorithms, now housing full systems.
Processors are useful when dealing with non-streaming data,
in systems with multiple heterogeneous hardware tasks, and
for managing complex interfacing. Vendors did previously
introduce devices with embedded hard processors such as
the PowerPC 405 in the Virtex II Pro, and the PowerPC
440 in the Virtex 4 FX. While these high-end FPGA devices
did find an audience, they were out of the budget of many,
and so, “soft” processors, implemented using logic resources,
have continued to dominate.

In this paper, we connect these two threads. DSP Blocks
are indeed highly capable primitives, yet leveraging them
outside the DSP domain is extremely difficult, as they were
primarily designed to suit such applications. This paper
investigates the feasibility of building custom soft-core pro-
cessors that can allow DSP Blocks to be leveraged beyond
their typical target applications, and in a manner accessible
to those with minimal FPGA architecture knowledge. The
Xilinx DSP48E1 cores included in the most recent Xilinx
devices are highly customisable. We aim to build a lean
processor around the DSP48E1, with as little extra logic as
possible, that supports a full set of standard machine in-
structions.

The prospects are even more exciting when one considers
that modern FPGAs have very many of these blocks; a
large Virtex-6 device contains hundreds of such DSP Slices.
Hence, such processors could be used to build massively
parallel many-core systems. In this paper, we investigate
the design of a lean single processor based on the DSP48E1
primitive.

2. RELATED WORK
There is a wide body of work on soft processors for FPGAs.
Processors allow systems to be more flexible than would typ-
ically be possible in a datapath-only designs. Indeed, soft
processors can run complete applications and even operat-
ing systems, to better abstract management of embedded
systems. Xilinx offers Microblaze, a 32-bit RISC processor,
and PicoBlaze, a small 8-bit processor for simple applica-



tions. Despite the increased performance of hard processors
in the Virtex II Pro and Virtex-4 FX, many have found these
soft processors easier to work with, and so they remain very
popular.

In research, a number of studies have examined improve-
ments in FPGA soft processor architecture, including im-
proving area consumption, scalability, portability and en-
abling vector processing. fSE [4] is a soft-processor built
using embedded DSP blocks. A comparison between an fSE
implementation and a Xilinx Coregen implementation of a
16-point FFT shows that the performance of fSE can surpass
that of dedicated hardware. However, good performance
can be achieved only if the algorithm fits the macc operat-
ing model of the fSE processor. The number of supported
instructions is very small, and limited to DSP operations.

In [8, 7], the authors explore the potential of a vector soft-
core processor as an accelerator for a scalar main proces-
sor. Vector processing is demonstrated to offer increased
data-level parallelism. In [7], the authors utilised a frame-
work developed in [6] to generate the main scalar processor.
However, these processors were designed to be portable, and
hence leverage few of the advanced capabilities in modern
FPGA devices.

MORA [1] is a multi-core processor made up of an array of
small processors called reconfigurable cells (RC). The pro-
cessors are programmed using a specially developed MORA
assembly language. While programming in a low-level lan-
guage yields performance benefits, it increases design com-
plexity for the programmer. Again, MORA does not lever-
age the capabilities of the DSP Slices on modern FPGAs.

In [2, 3] the authors present a large array of parallel soft
processors that use embedded DSP blocks. The processors
address the limitations of current soft processors like Microb-
laze in handling high performance real-time wireless appli-
cations. Similar to [4], only a subset of the DSP48E1 arith-
metic operations are explored, with implementation limited
to just multiply-add and multiply-subtract.

3. A DSP48E1-BASED PROCESSOR
3.1 The DSP48E1 Primitive
The Xilinx DSP48E1 primitive is an embedded hard core
present in the Xilinx Virtex 6 and soon to be released
7 Series. It is designed for high-speed DSP computation
and is composed of a multiplier and arithmetic logic unit
(ALU), along with various registers and multiplexers. A
host of configuration inputs allow the functionality of the
primitive to be manipulated at both runtime and compile
time. Depending on the creativity of the designer, the
slice can be configured to support various operations like
multiply-add, multiply-accumulate, pattern matching and
barrel shift, among others [5].

As shown in Figure 1, the DSP48E1 slice primitive has 4
input ports for data, A, B, C and D, each corresponding to
input paths of the multiplier and adder/subtractor or logic
unit (ALU). While port D can be used to pre-add a value to
input A prior to multiplication, path D is not necessary for
basic arithmetic operations, as path A alone is sufficient. In
our case, port D is disabled.

The functionality of DSP48E1 is controlled by a combination
of dynamic control signals and static parameter attributes.
Dynamic control signals allow the slice to run in different
configuration modes in each clock cycle. For instance, a de-
signer can change the ALU operation by modifying the con-
trol bits of ALUMODE, the ALU input selection by modify-
ing the OPMODE bits, and pre-adder and input pipeline by
modifying INMODE. Through manipulation of control sig-
nals, the DSP Slice can be dynamically switched between
different configurations at runtime. On the other hand,
static parameter attributes are specified and programmed
at compile time and cannot be modified at runtime. Three
different datapath configurations are chosen to demonstrate
the flexibility and capability of the DSP48E1 in handling
various arithmetic functions. Each of the configurations
selected highlights a different functionality and operating
mode of the slice primitive.

Multiplication In multiplication, input data is passed
through ports A and B as the first and second operand re-
spectively. Three stage registers, A1, B1, M and P are en-
abled along the multiplication datapath to operate the slice
at full-speed.

Addition Addition, in contrast to multiplication, does not
require a multiplier, hence it is bypassed and inputs from the
A, B and C ports are fed straight into the ALU unit. Since
the multiplier is removed from the addition datapath, an
extra set of registers has to be enabled to keep the pipelines
operating at three stages. This is necessary when designing
a processor, so as to have a fixed latency through the DSP
Slice, resulting in better controlability; we fix the latency
through the primitive at three cycles. To compensate for
the stage where register M is bypassed, registers A2 and B2
are enabled.

Compare Similar to addition, the compare operation is con-
figured to follow a non-multiplier datapath with additional
pattern detect logic enabled. The pattern detect logic com-
pares the value in register P against a pattern input. If
there is a match, an output signal, patterndetect, is set to
high. The pattern field can be obtained from two sources,
a dynamic source from input C or a static parameter field.
As we want the pattern detect logic to detect different data
patterns, we configure the slice to obtain pattern data from
the C input.

3.2 Processor Architecture
Our processor is a scalar processor, loosely based on the
MIPS architecture in terms of dataflow and pipeline stages.
It executes 32-bit instructions on 16-bit data. Only a sin-
gle DSP48E1 slice is used, with much of its work being in
the ALU. Since the width of input ports A, B and D is less
than 32 bits, it made sense to define a data width of 16
bits. There are, in total, 6 stages in the processor execu-
tion pipeline with a latency of 1-clock cycle per stage. The
full 3-stage pipeline is enabled for the DSP48E1 primitive.
The remaining stages are instruction fetch, instruction de-
code, and write-back. Both instruction decode and operand
fetch occur in the same stage. After processing, results from
the ALU are written to the register file in the write-back
stage. Each DSP48E1 block is located beside a Block RAM
(BRAM) slice, separated by a thin column of logic resources



A1

B1

A2

B2

M P

D

A

B

C

= patterndetect

C

AD

D

P

30

25

18

48

48

18

48

48

25

Figure 1: Input paths to pre-adder, multiplier and ALU. Path D can be used as alternative to path A.

opcode Rd Rs Rt 000000000000

opcode Rd Rs1 #<imm16>

opcode Rd Rs #<shift> 000000000000

opcode 00000 Rs Rt #<offset>0 00

Register

Immediate

Shift

Branch

31 27 25 21 101120 01516

Figure 2: Processor instruction format.

in the FPGA fabric. This composition of memory-logic-DSP
provides an ideal structure for a fixed instruction size RISC
processor architecture. With a BRAM for the instruction
and data memory, and simple decoding logic for the RISC
instructions, this architecture takes full advantage of avail-
able FPGA resources while minimising the use of extra logic
at the same time. Furthermore, using the RISC architecture
simplifies compiler design and re-targetting as well as pro-
gram coding.

Instruction Memory Processor instructions are stored in
a BRAM memory primitive. Instead of storing instructions
externally, off-chip, we take advantage of the abundant on-
chip memory resources. A single port ROM block of size 512
x 32 is generated using Xilinx Core Generator. After syn-
thesis, the ROM block is mapped into a single RAMB18E1
primitive. To improve timing, the output of the BRAM is
registered.

Register File For the register file, the main issue that needs
to be addressed is the requirement for 2 simultaneous reads
and 1 write in a single cycle. BRAM primitives support at
most 2 operations per cycle and the third operation has to
be performed in the next clock cycle. Using BRAM would
be interesting, in that this would allow for a large register
file, but overcoming the access restrictions would require a
more exotic processor architecture; something we plan to
investigate in the future. The Xilinx RAM32M primitive
is a multi-port distributed RAM designed to implement a
register file; this is what we use. This type of RAM is im-
plemented using distributed memory and hence does not

consume BRAM resources. Although RAM32M allows 3
reads and 1 write in a single cycle, we only use 2 reads and
1 write at this stage.

Shift LUT In order to shift by n bits (equivalent to multi-
plying by 2n), a shift operation requires the second operand
(2n) to be computed before entering the DSP48E1. A shift
LUT is constructed to store these values using 2 RAM16X8S
primitives, but this affects the processor’s timing.

Branch Branching is not evaluated until the end of the
execution cycle. In a branch operation, the ALU compares
two operands and determines if the operands are equal or
otherwise. If the operands are equal, as in the case of BEQ,
a status signal branchsel is asserted and passed back to the
instruction fetch stage along with target address.

3.3 Implementation Results
In this subsection, we analyse the performance of our pro-
cessor system in terms of frequency, resource usage, latency,
and instruction count. The processor is implemented on a
Xilinx Virtex 6 XC6VLX240T using Xilinx ISE 13.2. All re-
sults are obtained through synthesis of Verilog source code,
with all processes run at default settings. The post place
and route frequency obtained for speed grades of -3, -2 and
-1 are 534 MHz, 470 MHz and 402 MHz respectively, limited
by the BRAM access path.

Referring to Table 2, the processor consumes a minimal
amount of logic. Since a hardcore primitive is used for the
ALU and other functions, only minimal additional circuitry
is implemented in the logic fabric. The instruction memory
also uses a Block RAM, again freeing logic for other uses.
Apart from obvious area savings, this strategy improves the
overall timing performance due to the presence of high-speed
hardcore primitives in the datapath.

3.4 Code Execution and Analysis
For the analysis of latency and instruction count, the loop
kernel of a 3 x 3 median filter is mapped to the proces-
sor. Table 3 shows the latency based on idealised condi-
tions with no branch penalty, and realistic conditions with



Table 1: Processor Instructions.

Instruction Operation Inmode Opmode Alumode Additional Circuitry

nop none 00000 0000000 0000 none
add rd = rs + rt 00000 0110011 0000 extra C reg
sub rd = rt - rs 00000 0110011 0011 extra C reg
mul rd = rs x rt 10001 0000101 0000 none
muladd rd = (rs x rt) + ru 10001 0110101 0000 extra C reg
mulsub rd = (rs x rt) - ru 10001 0110101 0001 extra C reg
mulacc rd = (rs x rt) + #<feedback> 10001 1000101 0000 none
and rd = rs and rt 00000 0110011 0000 extra C reg
xor rd = rs xor rt 00000 0110011 0100 extra C reg
xnr rd = rs xnr rt 00000 0110011 0101 extra C reg
or rd = rs or rt 00000 0110011 1100 extra C reg
nor rd = rs nor rt 00000 0110011 1110 extra C reg
not rd = rs not rt 00000 0110011 1101 extra C reg
nand rd = rs nand rt 00000 0110011 1100 extra C reg
lsl rd = rs << #<shift> 10001 0000101 0000 shift LUT
lsr rd = rs >> #<shift> 10001 0000101 0000 shift LUT
asr rd = rs << #<shift> 10001 0000101 0000 shift LUT
mov rd = rs 00000 0110011 0000 none
beq (rs == rt) pc = pc + offset 00000 0110011 1100 branch target address
bne (rs != rt) pc = pc + offset 00000 0110011 1100 branch target address

Table 2: Resource usage on XC6VLX240T.

Resource Used Available Utilization

Slice Registers 238 301,440 < 1%

Slice LUTs 190 150,720 < 1%

DSP 1 768 < 1%

BRAM 1 832 < 1%

penalty. In idealised conditions, we assume a zero branch
penalty. A single inner loop requires 7 instructions and the
total number of instructions for the 3 x 3 median filter is
224. Each instruction takes 6 clock cycles to complete and
one instruction is fetched every clock cycle. In actual imple-
mentation, the branch penalty is as much as 5 instruction
cycles. The branching decision is determined by the ALU,
and by the time program counter changes, 5 instructions
have been fetched.

Table 3: Median filter instruction count and latency.

Loop Ideal With penalty

Inst count Latency Inst count Latency

Single loop 7 12 12 16

Total 224 227 384 387

4. CONCLUSION
In this paper, we have presented a discussion of the DSP48E1
primitive shown and how it can be harnessed as the core
of a general-purpose soft processor. We have developed a
processor design that leverages the DSP48E1 to support as
many standard assembly instructions as possible, as well as
other instructions suited to the primitive’s DSP roots, in
each case, focussing on using as little extra logic as possible.
We have shown that it is possible to build a processor that
runs at over 400MHz, using approximately 200 slice LUTs
and registers.

5. REFERENCES
[1] S. Chalamalasetti, S. Purohit, M. Margala, and

W. Vanderbauwhede. MORA - an architecture and
programming model for a resource efficient coarse
grained reconfigurable processor. In NASA/ESA Conf.
on Adaptive Hardware and Systems (AHS), pages
389–396, 2009.

[2] X. Chu and J. McAllister. FPGA based soft-core SIMD
processing: A MIMO-OFDM fixed-complexity sphere
decoder case study. In Proc. Int. Conf. on Field
Programmable Technology (FPT), pages 479–484, 2010.

[3] X. Chu, J. McAllister, and R. Woods. A pipeline
interleaved heterogeneous SIMD soft processor array
architecture for MIMO-OFDM detection. In Proc. Int.
Symp. on Applied Reconfigurable Computing (ARC),
pages 133–144, 2011.

[4] M. Milford and J. McAllister. An ultra-fine processor
for FPGA DSP chip multiprocessors. In Asilomar Conf.
on Signals, Systems and Computers, pages 226 –230,
2009.

[5] Xilinx Inc. Virtex-6 FPGA DSP48E1 User Guide, 2011.

[6] P. Yiannacouras, J. Steffan, and J. Rose.
Application-specific customization of soft processor
microarchitecture. In Proc. ACM/SIGDA Int. Symp.
on Field Programmable Gate Arrays (FPGA), pages
201–210, Feb. 2006.

[7] P. Yiannacouras, J. Steffan, and J. Rose. VESPA:
Portable, scalable, and flexible FPGA-based vector
processors. In Proc. Int. Conf. on Compilers,
Architecture and Synthesis for Embedded Systems
(CASES), pages 61–70, Oct. 2008.

[8] J. Yu, G. Lemieux, and C. Eagleston. Vector processing
as a soft-core CPU accelerator. In Proc. ACM/SIGDA
Int. Symp. on Field Programmable Gate Arrays
(FPGA), pages 222–232, Feb. 2008.


