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ABSTRACT
We can design high-frequency soft-processors on FPGAs that
exploit deep pipelining of DSP primitives, supported by se-
lective data forwarding, to deliver up to 25% performance
improvements across a range of benchmarks. Pipelined, in-
order, scalar processors can be small and lightweight but
suffer from a large number of idle cycles due to dependency
chains in the instruction sequence. Data forwarding allows
us to more deeply pipeline the processor stages while avoid-
ing an associated increase in the NOP cycles between depen-
dent instructions. Full forwarding can be prohibitively com-
plex for a lean soft processor, so we explore two approaches:
an external forwarding path around the DSP block execu-
tion unit in FPGA logic and using the intrinsic loopback
path within the DSP block primitive. We show that in-
ternal loopback improves performance by 5% compared to
external forwarding, and up to 25% over no data forward-
ing. The result is a processor that runs at a frequency close
to the fabric limit of 500 MHz, but without the significant
dependency overheads typical of such processors.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture
Styles—Adaptable Architecture

Keywords
Field programmable gate arrays; soft processors; digital sig-
nal processing

1. INTRODUCTION
Processors find extensive use within FPGA systems, from

management of system execution and interfacing, to imple-
mentation of iterative algorithms outside of the performance-
critical datapath [13]. In recent work, soft processors have
been demonstrated as a viable abstraction of hardware re-
sources, allowing multi- processor systems to be built and
programmed easily. To maximise the performance of such
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Table 1: Assembly code comparison for a · x2 + b ·
x + c for a hypothetical 3-cycle processor. LOOPx
operands indicate a loopback that does not need to
be written back to the register file.

(a) Original Assembly (b) Assembly with Loopback

li $1, x
li $2, a
li $3, b
li $4, c
mul $5, $1, $2
nop
nop
mul $6, $5, $1
mul $5, $1, $3
nop
nop
add $7, $5, $6
nop
nop
add $8, $7, $4
nop
nop
sw $8, 0($y)

li $1, x
li $2, a
li $3, b
li $4, c
mul loop0 , $1, $2
mul $6, loop0 , $1
mul loop1 , $1, $3
add loop2 , loop1 , $6
add $8, loop2 , $4
nop
nop
sw $8, 0($y)

soft processors, it is important to consider the architecture
of the FPGA in the design, and to leverage unique architec-
tural capabilities wherever possible. Architecture-agnostic
designs, while widespread and somewhat portable, typically
suffer from sub-par performance. Consider the LEON3 [1]
soft processor: implemented on a Virtex 6 FPGA with a
fabric that can support operation at over 400 MHz, it barely
achieves a clock frequency of 100 MHz. Such designs, while
useful for auxiliary tasks, cannot be used for core computa-
tion. Even when processors do not constitute the core com-
putation, their sequential operation represents a hard limit
on overall system performance, as per Amdahl’s law [3].

Recent work on architecture-focused soft processor design
has resulted in a number of more promising alternatives.
These processors are designed considering the core capabili-
ties of FPGA architecture, often benefiting from the perfor-
mance and efficiency advantages of the hard macro blocks
present in modern devices. Using such primitives also results
in a power advantage over equivalent functions implemented
in LUTs. Octavo [14] is one such architecture that builds
around an Altera Block RAM to develop a soft processor
that can run at close to the maximum Block RAM frequency.
iDEA [8] is another example that makes use of the dynamic
programmability of FPGA DSP blocks to build a lean soft
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Figure 1: NOP counts as pipeline depth increases
with no data forwarding.

processor which achieves a frequency close to the fabric lim-
its of the DSP blocks found in Xilinx FPGAs. However,
many hard blocks require deep pipelining to achieve maxi-
mum performance, and this results in long pipelines when
they are used in a soft processor. Octavo and iDEA soft
processor pipelines are 10 cycles deep to maximize operating
frequency on the respective Altera and Xilinx devices. For a
single-issue processor, deep execution pipelines result in sig-
nificant penalties for dependent instructions, where NOPs
have to be inserted to resolve dependencies, and can also
increase jump penalties. In Figure 1, we show the rise in
NOP counts for a deeply pipelined DSP block based soft
processor, across a range of benchmark programs, as the
pipeline depth is increased. These numbers are obtained as
later described in Section 4.2, and demonstrate the signifi-
cant penalty incurred at high pipeline depths.

In this paper, we explore how data forwarding can be
added to the iDEA soft processor. Being based on the Xilinx
DSP48E1, iDEA can be deployed across all Xilinx Artix-7,
Kintex-7, Virtex-7, and Zynq device families. It is also eas-
ily portable to the DSP48E2 primitive found the next gen-
eration Xilinx UltraScale architecture. Since we do not have
access to internal pipeline stages within the multi-stage DSP
block, a standard approach to data forwarding, by adding
a feedback path around the execution unit, would still re-
quire some NOP padding. We instead take advantage of a
unique feature of the DSP48E1 primitive: the feedback path
designed for multiply-accumulate operations when the DSP
block is used to implement digital filters. This path allows
the DSP-block output to be accessed at the input to the ALU
stage one cycle later, potentially avoiding the need for this
result to be written-back to the register file. We demonstrate
that using this path for data forwarding results a significant
impact on overall processor performance, while having mini-
mal impact on area and frequency. We demonstrate a simple
example of this phenomenon in Table 1 where the original
code executes in 18 cycles while the optimized version with
loopback requires only 12 cycles. The toolflow we develop
automatically flags dependent operations for loopback in the
instruction encoding.
The key contributions of this paper are:

• Parametric design of the iDEA soft processor to allow
deep pipelining and loopback of operands.

• A detailed comparison between the proposed loopback
forwarding and an external forwarding path.

• Development of a compiler flow and assembly backend
that analyzes code for loopback potential and makes
appropriate modifications to generated assembly.

• Preliminary results of IR-level analysis of the CHStone
benchmark to identify opportunities for loopback in
larger benchmarks.

2. RELATED WORK
Processors on FPGAs: Soft processors continue to be

the method of choice for adding a level of software pro-
grammability to FPGA-based systems. They generally find
use in the auxiliary functions of the system, such as manag-
ing non-critical data movement, providing an interface for
configuration, or implementing the cognitive functions in an
adaptive system. They provide a familiar interface for ap-
plication programmers to work with the rest of the system,
while supporting varied features based on need. Commercial
soft processors include the Xilinx MicroBlaze [19], Altera
Nios II [2], ARM Cortex-M1 [4], and LatticeMico32 [15], in
addition to the open-source LEON3. All of these processors
have been designed to be flexible, extensible, and general,
but suffer from not being fundamentally built around the
FPGA architecture. The more generalised a core is, the less
closely it fits the low-level target architecture, and hence,
the less efficient its implementation in terms of area and
speed. This trade-off between portability and efficiency is
clear when one considers that the performance of vendor-
specific processors is much better than cross-platform de-
signs.

Although a hard processors such as the PowerPC CPUs
in Virtex-2 Pro and the ARM cores in the newer Zynq SoCs
can offer better performance than an equivalent soft proces-
sor, they are inappropriate for situations where lightweight
control and co-ordination [13] are required. Their fixed po-
sition in the FPGA fabric can also complicate design, and
they demand supporting infrastructure for logic interfacing.
When a hard processor is not used, or under-utilised, this
represents a significant waste of silicon resources. In fact,
the embedded PowerPCs from the Virtex-2 Pro series never
gained significant traction and were dropped for subsequent
high-density FPGA families.

Octavo: To maximise performance, it becomes necessary
to reason about FPGA architecture capabilities, and there
have been numerous efforts in this direction. Octavo [14] is a
multi-threaded 10-cycle processor that can run at 550 MHz
on a Stratix IV, representing the maximum frequency sup-
ported by Block RAMs in that device. A deep pipeline is
necessary to support this high operating frequency. How-
ever, such a pipeline would suffer from the need to pad de-
pendent instructions to overcome data hazards as a result
of the long pipeline latency. The authors sidestep this issue
by designing Octavo as a multi-issue processor, thus depen-
dent instructions are always sufficiently far apart for such
NOP padding not to be needed. However, this only works
for highly-parallel code; when the soft processor is used in
a sequential part of a computation, it will fail to deliver the
high performance required to avoid the limits stated by Am-
dahl’s law. Furthermore, no compiler tool flow has yet been
developed for Octavo.

iDEA: We developed an alternative approach to such
architecture-driven soft processor design in [8]. Here, we
took advantage of the dynamic control signals of the Xil-



inx DSP block to build a soft processor that achieves a fre-
quency of over 400 MHz on a Xilinx Virtex 6. In [6], we
performed extensive benchmarking and highlighted the per-
formance penalty of padding NOPs on total runtime, some-
what negating the benefits of high frequency.

Managing Dependencies in Processor Pipelines: A
theoretical method for analysing the effect of data dependen-
cies on the performance of in-order pipelines is presented in
[9]. An optimal pipeline depth is derived based on balanc-
ing pipeline depth and achieved frequency, with the help of
program trace statistics. A similar study for superscalar pro-
cessors is presented in [11]. Data dependency of sequential
instructions can be resolved statically in software or dynami-
cally in hardware. Tomasulo’s algorithm, allows instructions
to be executed out of order, where those not waiting for
any dependencies are executed earlier. For dynamic resolu-
tion in hardware, extra functional units are needed to han-
dle the queueing of instructions and operands in reservation
stations. Additionally, handling out-of-order execution in
hardware requires intricate hazard detection and execution
control. Synthesising a basic Tomasulo scheduler [5] on a
Xilinx Virtex-6 yields an area consumption of 20× the size
of a MicroBlaze, and a frequency of only 84 MHz. This rep-
resents a significant overhead for a small FPGA-based soft
processor, and the overhead increases for deeper pipelines.

Data forwarding is a well-established technique in proces-
sor design, where results from one stage of the pipeline can
be accessed at a later stage sooner than would normally be
possible. This can increase performance by reducing the
number of NOP instructions required between dependent
instructions. It has been explored in the context of general
soft processor design, VLIW embedded processors [17], as
well as instruction set extensions in soft processors [12]. In
each case, the principle is to allow the result of an ALU
computation to be accessed sooner than would be possible
in the case where write back must occur prior to execution
of a subsequent dependent instruction.

Our Approach: In [7], we quantified the pipeline depth/per-
formance trade-off in the design of iDEA and explored the
possible benefits of a restricted forwarding approach. In
this paper, we show that the feedback path typically used
for multiply-accumulate operations allows us to implement
a more efficient forwarding scheme that can significantly im-
prove execution time in programs with dependencies, going
beyond just multiply-add combinations. We compare this to
the previously proposed external forwarding approach and
the original design with no forwarding. Adding data for-
warding to iDEA decreases runtime by up to 25% across
range of small benchmarks, and we expect similar gains in
large benchmarks.

3. SOFT PROCESSOR ARCHITECTURE

3.1 Overview
iDEA is based on a classic 32-bit, 5-stage load-store RISC

architecture with instruction fetch, decode, execute, and
memory stages, followed by a write- back to the register
file. We tweak the pipeline by placing the memory stage in
parallel with the execute stage to lower latency, effectively
making this a 4-stage processor (see Figure 2). For this to
be feasible, we use a dedicated adder to compute addresses
rather than doing this through the ALU. We have used a
MIPS-like ISA to enable existing open-source compilers to
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Figure 2: iDEA high-level pipeline overview.
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Figure 3: Execution unit datapath showing internal
loopback and external forwarding paths.

target our processor. A more detailed description of the
iDEA instruction set and architecture are presented in [6].

Each processor stage can support a configurable number
of pipeline registers. The minimum pipeline depth for each
stage is one. Fewer register stages results in a processor that
achieves a lower clock frequency and fewer NOPs required
between dependent instructions (See Figure 1). However,
while deep pipelining of the core can result in a higher fre-
quency, it also increases the dependency window for data
hazards, hence requiring more NOPs for dependent instruc-
tions. We study this trade-off in Section 4.1.

The DSP block is utilized as the core execution unit in
iDEA. All arithmetic and logical instructions use subsets of
DSP block functionality. Program control instructions such
as branch also use the DSP block to perform subtraction
of two values in order to make a branch decision. The in-
struction and data memories are built using Block RAMs,
while the register file is built using a quad-port RAM32M
LUT-based memory primitive. The key novelty in this pa-
per is our exploitation of the loopback path for data forward-
ing. The DSP block contains an internal loopback path that
passes the DSP block output back into the final functional
unit in its pipeline, without exiting the execute stage. This
enables implementation of a fast multiply-accumulate oper-
ation in a digital filter. Through suitable selection of multi-
plexer controls we can use this loopback path to enable data
forwarding, as described in the following section.

3.2 DSP Block Loopback Support
The DSP block is composed of a multiplier and ALU along

with registers and multiplexers that control configuration
options. More recent DSP blocks also contain a pre-adder
allowing two inputs to be summed before entering the multi-



(a) No Forwarding

IF IF ID ID EX EX EX WB

IF IF ID ID EX EX EX WB
5 cyc

(b) External Forwarding

IF IF ID ID EX EX EX WB

IF IF ID ID EX EX EX WB
2 cyc

(c) Loopback Forwarding

IF IF ID ID EX EX EX WB

IF IF ID ID EX EX EX WB

Figure 4: Instruction dependency with (a) no for-
warding, (b) external forwarding, and (c) loopback
forwarding.

plier. The ALU supports addition/subtraction and logic op-
erations on wide data. The required datapath configuration
is set by a number of control inputs, and these are dynam-
ically programmable, which is the unique feature allowing
use of a DSP block as the execution unit in a processor [8].

When implementing digital filters using a DSP block, a
multiply-accumulate operation is required, so the result of
the final adder is fed back as one of its inputs in the next
stage using a loopback path, as shown in Figure 3. This
path is internal to the DSP block and cannot be accessed
from the fabric, however the decision on whether to use it
as an ALU operand is determined by the OPMODE control
signal. The OPMODE control signal chooses the input to
the ALU from several sources: inputs to the DSP block,
output of multiplier, or output of the DSP block. When a
loopback instruction is executed, the appropriate OPMODE
instructs the DSP block to take one of its operands from the
loopback path. We take advantage of this path to implement
data forwarding with minimal area overhead.

3.3 Data Forwarding
In Figure 4 (a), we show the typical operation of an in-

struction pipeline without data forwarding. In this case, a
dependent instruction must wait for the previous instruc-
tion to complete execution and the result to be written back
to the register file before commencing its decode stage. In
this example, 5 clock cycles are wasted to ensure the depen-
dent instruction does not execute before its operand is ready.
This penalty increases with the higher pipeline depths nec-
essary for maximum frequency operation on FPGAs.

The naive approach to implementing data forwarding for
such a processor would be to pass the execution unit output
back to its inputs. Since we cannot access the internal stages
of the DSP block from the fabric, we must pass the execu-
tion unit output all the way back to the DSP block inputs.
This external approach is completely implemented in gen-
eral purpose logic resources. In Figure 4 (b), this is shown
as the last execution stage forwarding its output to the first
execution stage of the next instruction, assuming the exe-
cute stage is 3 cycles long. This still requires insertion of
up to 2 NOPs between dependent instructions, depending
on how many pipeline stages are enabled for the DSP block
(execution unit). This feedback path also consumes fabric
resources, and may impact achievable frequency.

Using the loopback path that is internal to the DSP block
enables the result of a previous ALU operation to be ready
as an operand in the next cycle, eliminating the need to
pad subsequent dependent instruction with NOPs. The pro-
posed loopback method is not a complete forwarding imple-
mentation as it does not support all instruction dependencies
and only supports one-hop dependencies. Instead, it still
allows us to forward data when the immediate dependent
instruction is any ALU operation except a multiplication.
Figure 4 (c) shows the output of the execute stage being
passed to the final cycle of the subsequent instruction’s ex-
ecute stage. In such a case, since the loopback path is built
into the DSP block, it does not affect achievable frequency,
and eliminates the need for any NOPs between such depen-
dent instructions.

We can identify loopback opportunities in software and
a loopback indication can be added to the encoded assem-
bly instruction. We call these one-hop dependent instruc-
tions that use a combination of multiply or ALU operation
followed by an ALU operation a loopback pair. For ev-
ery arithmetic and logical instruction, we add an equivalent
loopback counterpart. The loopback instruction performs
the same operation as the original, except that it receives
its operand from the loopback path (i.e. previous output of
the DSP block) instead of the register file. The loopback
opcode is differentiated from the original opcode by one bit
difference for register arithmetic and two bit for immediate
instructions.

Moving loopback detection to the compilation flow keeps
our hardware simple and fast. In hardware loopback detec-
tion, circuitry is added at the end of execute, memory access,
and write back stages to compare the address of the desti-
nation register in these stages and the address of source reg-
isters at the execute stage. If the register addresses are the
same, then the result is forwarded to the execute stage. The
cost of adding loopback detection for every pipeline stage
after execute can be severe for deeply pipelined processors,
unnecessarily increasing area consumption and delay.

3.4 NOP-Insertion Software Pass
Dependency analysis to identify loopback opportunities is

done in the compiler’s assembly. For dependencies that can-
not be resolved with this forwarding path, sufficient NOPs
are inserted to overcome hazards. When a subsequent de-
pendent arithmetic operation follows its predecessor, it can
be tagged as a loopback instruction, and no NOPs are re-
quired for this dependency. For the external forwarding ap-
proach, the number of NOPs inserted between two depen-
dent instructions depends on the DSP block’s pipeline depth
(the depth of the execute stage). We call this the number of
ALU NOPs. A summary of this analysis scheme is shown in
Algorithm 1. We analyze the generated assembly for loop-
back opportunities with a simple linear-time heuristic. We
scan the assembly line-by-line and mark dependent instruc-
tions within the pipeline window. These instructions are
then converted by the assembler to include a loopback in-
dication flag in the instruction encoding. We also insert an
appropriate number of NOPs to take care of other depen-
dencies.

4. EXPERIMENTS
Hardware: We implement the modified iDEA proces-

sor on a Xilinx Virtex-6 XC6VLX240T-2 FPGA (ML605



Algorithm 1: Loopback analysis algorithm.

Data: Assembly
Result: LoopbackAssembly<vector>
w ← Number of pipeline stages − number of IF stages;
for i ← 0 to size(Assembly) do

window ← 0;
DestInstr ← Assembly[i];
for j ← 1 to w-1 do

SrcInstr ← Assembly[i− j];
if depends(SrcInstr,DestInstr) then

loopback ← true;
depth ← j;
break;

end
end
for j ← 0 to w-1 do

if loopback then
LoopbackAssembly.push back(Assembly[i] |
LOOPBACK MASK) ;

end
else

LoopbackAssembly.push back(Assembly[i]);
for k ← 0 to j-1 do

LoopbackAssembly.push back(NOP);
end

end
end

end

platform) using the Xilinx ISE 14.5 tools. We use area con-
straints to help ensure high clock frequency and area-efficient
implementation. We generate various processor combina-
tions to support pipeline depths from 4–15. We evaluate
performance using instruction counts for executing embed-
ded C benchmarks. Input test vectors are contained in the
source files and the computed output is checked against a
hard- coded golden reference, thereby simplifying verifica-
tion. For experimental purposes, the pipeline depth is made
variable through a parameterizable shift register at the out-
put of each processor stage. During automated implementa-
tion runs in ISE, a shift register parameter is incremented,
increasing the pipeline depth beyond the default of one. We
enable retiming and register balancing, which allows reg-
isters to be moved forwards or backwards to improve fre-
quency. We also enable the shift register extraction option.
In a design where the ratio of registers is high, and shift
registers are abundant, this option helps balance LUT and
register usage. ISE synthesis and implementation options
are consistent throughout all experimental runs.

Compiler: We generate assembly code for the processor
using the LLVM- MIPS backend. We use a post-assembly
pass to identify opportunities for data forwarding and mod-
ify the assembly accordingly, as discussed in Section 3.4.
We verify functional correctness of our modified assembly
code using a customized simulator for internal and exter-
nal loopback, and run RTL ModelSim simulations of actual
hardware to validate different benchmarks. We repeat our
validation experiments for all pipeline depth combinations.
We show a high-level view of our experimental flow in Fig-
ure 5.

In-System Verification: Finally, we test our processor
on the ML605 board for sample benchmarks to demonstrate
functional correctness in silicon. The communication be-
tween the host and FPGA is managed using the open source
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Figure 5: Experimental flow.
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Figure 6: Frequency of different pipeline combina-
tions with internal loopback.

FPGA interface framework in [18]. We verify correctness by
comparing the data memory contents at the end of func-
tional and RTL simulation, and in-FPGA execution.

4.1 Area and Frequency Analysis
Since the broad goal of iDEA is to maximize soft proces-

sor frequency while keeping the processor small, we perform
a design space exploration to help pick the optimal combi-
nation of pipeline depths for the different stages. We vary
the number of pipeline stages from 1–5 for each stage: fetch,
decode, and execute, and the resulting overall pipeline depth
is 4–15 (the writeback stage is fixed at 1 cycle).

Impact of Pipelining: Figure 6 shows the frequency
achieved for varying pipeline depths between 4–15 for a de-
sign with internal loopback enabled. Each depth configu-
ration represents several processor combinations as we can
distribute these registers in different parts of the 4-stage
pipeline. The line traces points that achieve the maximum
frequency for each pipeline depth. The optimal combina-
tion of stages, that results in the highest frequency for each
depth, is presented in Table 2.

While frequency increases considerably up to 10 stages,
beyond that, the increases are modest. This is expected



Table 2: Optimal combination of stages and associ-
ated NOPs at each pipeline depth (WB = 1 in all
cases)

Depth IF ID EX NOPs ALUNOPs

4 1 1 1 2 0

5 1 2 1 3 0

6 2 2 1 3 0

7 2 1 3 4 2

8 2 2 3 5 2

9 2 2 4 6 2

10 3 2 4 6 2

11 3 2 5 7 2

12 3 3 5 8 2

13 4 3 5 8 2

14 5 3 5 8 2

15 4 5 5 10 2
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Figure 7: Resource utilization of all pipeline combi-
nations with internal loopback.

as we approach the raw fabric limits around 500 MHz. For
each overall pipeline depth, we have selected the combina-
tion of pipeline stages that yields the highest frequency for
all experiments. With an increased pipeline depth, we must
now pad dependent instructions with more NOPs, so these
marginal frequency benefits can be meaningless in terms of
wall clock time for an executed program. In Fig. 4, we illus-
trated how a dependent instruction must wait for the pre-
vious result to be written back before its instruction decode
stage. This results in required insertion of 5 NOPs for that
8 stage pipeline configuration. For each configuration, we
determine the required number of NOPs to pad dependent
instructions, as detailed in Table 2.

Figure 7 shows the distribution of LUT and register con-
sumption for all implemented combinations. Register con-
sumption is generally higher than LUT consumption, and
this becomes more pronounced in the higher frequency de-
signs. Figure 8 shows a comparison of resource consump-
tion between the designs with no forwarding, internal loop-
back, and external forwarding. External forwarding gen-
erally consumes the highest resources for both LUTs and
registers. The shift register extraction option means some
register chains are implemented instead using LUT-based
SRL32 primitives, leading to an increase in LUTs as well as
registers as the pipelines are made deeper.
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Figure 9: Frequency with internal loopback and ex-
ternal forwarding.

Table 3: Static cycle counts with and without loop-
back for a 10 cycle pipeline with % savings.

Bench
mark

Total
Inst.

Loopback

Inst. %

crc 32 3 9

fib 40 4 10

fir 121 1 0.8

median 132 11 8

mmult 332 3 0.9

qsort 144 10 7

Impact of Loopback: Implementing internal loopback
forwarding proves to have a minimal impact on area, of un-
der 5%. External forwarding generally uses slightly more re-
sources, though the difference is not constant. External for-
warding does lag internal forwarding in terms of frequency
for all pipeline combinations, as shown in Figure 9, how-
ever, the difference diminishes as frequency saturates at the
higher pipeline depths. Though we must also consider the
NOP penalty of external forwarding over internal loopback.

4.2 Execution Analysis
Static Analysis: In Table 3, we show the percentage

of occurrences of consecutive loopback instructions in each
benchmark program. Programs that show high potential are
those that have multiple independent occurrences of loop-
back pairs, or long chains of consecutive loopback pairs. In-
dependent pairs of loopbacks are common in most programs,
however for crc and fib, we can find a chain of up to 3 and
4 consecutive loopback pairs respectively.

Dynamic Analysis: In Table 4, we show the actual ex-
ecution cycle counts without forwarding, with external for-
warding, and with internal loopback, as well as the percent-
age of executed instructions that use the loopback capability.
Although fib offers the highest percentage of loopback oc-
currences in static analysis, in actual execution, crc achieves
the highest savings due to the longer loopback chain, and the
fact that the loopback-friendly code is run more frequently.

Internal Loopback: In Figure 10, we show the Instruc-
tions per Cycle (IPC) savings for a loopback-enabled pro-
cessor over the non-forwarding processor, as we increase
pipeline depth. Most benchmarks have IPC improvements
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Figure 8: Resource utilization of highest frequency configuration for no forwarding, internal loopback, and
external forwarding.

Table 4: Dynamic cycle counts with and without
loopback for a 10 cycle pipeline with % savings.

Bench
mark

Loopback

Without External % Internal %

crc 28,426 22,426 21 20,026 29

fib 4,891 4,211 14 3,939 19

fir 2,983 2,733 8 2,633 11

median 1,5504 14,870 4 14,739 5

mmult 1,335 1,322 0.9 1,320 1

qsort 32,522 30,918 5 30,386 7
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Figure 10: IPC improvement when using internal
DSP loopback.

between between 5–30% except the mmult benchmark. For
most benchmarks, we note resilient improvements across
pipeline depths. From Table 4 we can clearly correlate the
IPC improvements with the predicted savings.
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Figure 11: IPC improvement when using external
loopback.

External Loopback: Figure 11 shows the same analysis
for external forwarding. It is clear that external forward-
ing is not as improved as internal loopback, since we do not
totally eliminate NOPs in chains of supported loopback in-
structions. For pipeline depths of 4–6, the IPC savings for
internal and external loopback are equal, since the execute
stage is 1 cycle (refer to Table 2), and hence neither forward-
ing method requires NOPs between dependent instructions.
For external forwarding, when the execute stage is K > 1
cycles, we need K − 1 NOPs between dependent instruc-
tions, which we call ALU NOPs. Table 2 shows the number
of NOPs for every pipeline combination and the correspond-
ing ALU NOPs for external forwarding. As a result of the
extra NOP instructions, the IPC savings decline marginally
in Figure 11 and stay relatively low.

Impact of Internal Loopback on Wall-Clock Time
Figure 12 shows normalised wall-clock times for the differ-
ent benchmarks. We expect wall-clock time to decrease as
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Figure 12: Frequency and geomean wall clock time with and without internal loopback enabled.
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Figure 13: Frequency and geomean wall clock time on designs incorporating internal loopback and external
forwarding.

we increase pipeline depth up to a certain limit. At suf-
ficiently high pipeline depths, we expect the overhead of
NOPs to cancel the diminishing improvements in operating
frequency. There is an anomalous peak at 9 stages due to a
more gradual frequency increase, visible in Figure 6, along
with a configuration with a steeper ALU NOP count increase
as shown in Table 2. The 10 cycle pipeline design gives the
lowest execution time for both internal loopback and non-
loopback. Such a long pipeline is only feasible when data
forwarding is implemented, and our proposed loopback ap-
proach is ideal in such a case, as we can see from the average
25% improvement in runtime across these benchmarks.

Comparing External Forwarding and Internal Loop-
back Figure 13 shows the maximum frequency and nor-
malised wall clock times for for internal loopback and ex-
ternal forwarding. As previously discussed, external for-
warding results in higher resource utilisation and reduced
frequency. At 4–6 cycle pipelines, the lower operating fre-
quency of the design for external forwarding results in a
much higher wall-clock time for the benchmarks. While the
disparity between external and internal execution time is
significant at shallower pipeline depths, the gap closes as
depth increases. This is due to the saturation of frequency
at pipeline depths greater than 10 cycles and an increase in
the insertion of ALU NOPs. The 10 cycle pipeline configu-

ration yields the lowest execution time for all three designs,
with internal loopback achieving the lowest execution time.

5. FURTHER INVESTIGATION
We developed our soft processor for small compact loop

bodies that execute control oriented code on the FPGA with
a large number of complex instruction dependencies. Fur-
thermore, in the long run, we expect to develop a parallel
array of these lightweight soft processors to operate in tan-
dem for compute-intensive parallel tasks. However, our pro-
cessor is also capable of supporting larger programs from the
CHstone benchmarks suite. Additionally, we have only con-
sidered loopback analysis at the post-assembly stage. This
assumes that chains of dependent operations are always kept
in close proximity by the compiler. In reality, this may
not be the case, and a compiler pass (before backend code-
generation) could increase the effectiveness of this approach
by ensuring that compatible dependent instructions are kept
in sequence.

CHStone compatibility: To explore the applicability of
this approach in more complex applications supported with
compiler-assisted analysis, we profiled LLVM [16] IR rep-
resentations of 8 benchmarks from the CHStone benchmark
suite [10]. Static analysis shows a significant number of com-
patible dependency chains. We also use the LLVM profiler



Table 5: LLVM IR Profiling Results for CHStone

Bench
mark

Static Dynamic

Instr. Occur. % Instr. Occur. %

adpcm 1367 184 13 71,105 8,300 11

aes 2259 51 2 30,596 3,716 12

blowfish 1184 314 26 711,718 180,396 25

gsm 1205 82 6 27,141 1,660 6

jpeg 2388 95 4 1,903,085 131,092 6

mips 378 15 3 31,919 123 0.3

mpeg 782 80 10 17,032 60 0.3

sha 405 64 15 990,907 238,424 24

and just-in-time (JIT) compiler to obtain dynamic counts of
possible loopback occurrences. The results in Table 5 show
a mean occurrence of over 10% within these benchmarks.
We cannot currently support CHStone completely due to
missing support for 32b instructions and other development
issues.

Program Size Sensitivity: We also synthesized RTL
for iDEA with increased instruction memory sizes to hold
larger programs. We observed, that iDEA maintains its op-
timal frequency for up to 8 BRAMs. Beyond this, frequency
degrades by 10–30% to support routing delays and place-
ment effects of these larger memories. However, we envi-
sion tiling multiple smaller soft processors with fewer than
8 BRAMs to retain frequency advantages for a larger multi-
processor system, and to reflect more closely the resource ra-
tio on modern FPGAs. Each processor in this system would
hold only a small portion of the complete system binary.

6. CONCLUSIONS AND FUTURE WORK
We have shown an efficient way of incorporating data

forwarding in DSP block based soft processors like iDEA.
By taking advantage of the internal loopback path typically
used for multiply accumulate operations, it is possible to al-
low dependent ALU instructions to immediately follow each
other, eliminating the need for padding NOPs. The result
is an increase in effective IPC, and 5– 30% (mean 25%) im-
provement in wall clock time for a series of benchmarks when
compared to no forwarding and a 5% improvement when
compared to external forwarding. We have also undertaken
an initial study to explore the potential for such forwarding
in more complex benchmarks by analysing LLVM interme-
diate representation, and found that such forwarding is sup-
ported in a significant proportion of dependent instructions.
We aim to finalise full support for the CHStone benchmark
suite as well as open-sourcing the updated version of iDEA
and the toolchain we have described.
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