
Introducing the NAIL Accelerator Interface Layer
for Low Latency FPGA Offload

Edward Grindley∗, Thurstan Gray∗, James Wilkinson∗, Chris Vaux∗, Adam Ardron∗, Jack Deeley∗

Alexander Elliott∗, Nidhin Thandassery Sumithran†, and Suhaib A. Fahmy†
∗The Alan Turing Institute, London, United Kingdom

Email: nailacceleration@gmail.com
†School of Engineering, University of Warwick, Coventry, United Kingdom

Email: s.fahmy@warwick.ac.uk

Abstract—We present the NAIL Accelerator Interface Layer
(NAIL), a framework for offloading to Field Programmable
Gate Arrays. NAIL has been optimised for latency-sensitive
applications, supporting isolated multi-user acceleration. It allows
accelerators to be employed through a flexible host communica-
tion layer, using asynchronous operation while processing data
anywhere in host memory. Multiple independent processors are
supported with large numbers of concurrent tasks. NAIL has
been deployed at significant scale, and is now released as open-
source.

I. INTRODUCTION

Most work on interfacing FPGAs with general purpose pro-
cessing presents a host-centric view of the FPGA, with limited
virtualisation [1], [2]. Integration of FPGAs in cloud platforms
has enabled wider adoption of their benefits, but host-centric
virtualisation limits them to serving as hidden accelerators for
vendor services, or virtual resources for hardware designers.

NAIL provides an abstraction supporting ad-hoc use of
FPGA accelerators over PCIe or datacentre networks, fo-
cusing on low-latency and high throughput while processing
small datagrams with small functions. Servers hosting one
or more FPGAs offer different accelerator cores, each of
which is usable by any host thread. Multiple threads can
access multiple cores simultaneously, with data streams being
seamless and isolated to the user. FPGA developers can design
new cores without worrying about offload infrastructure, and
users unfamiliar with FPGAs can apply such acceleration
in their applications by exploiting a library of cores in an
abstracted manner. NAIL is released as open source to enable
the community to leverage these abstractions in their own
designs and extend the framework [3].

II. FIRMWARE DESIGN APPROACH

A. Core Within Processor

NAIL’s design considers individual accelerator ”cores”, each
providing operational behaviour, enclosed within a ”processor”
responsible for managing control flow and interaction with
shared resources. Currently, the NAIL design supports up to
four cores per FPGA, due to the size of available Base Address
Registers (BARs) on the PCIe interface (larger numbers have
been proven experimentally). The four cores operate indepen-
dently and simultaneously.

OOO DPI
 ALMs, M20k

Memcpy
 ALMs, M20k

Passthrough
 ALMs, M20k

0

50000

100000

150000

200000

250000

AL
M

s

I/O IP
Framework
Processor
Core

0

200

400

600

800

1000

1200

1400

M
20

k

Fig. 1. NAIL resource consumption on Intel Arria10 GX 1150 FPGA.

Three example cores are evaluated in Fig. 1, that shows the
overall usage of ALMs and M20Ks on the Intel Arria 10 GX
1150 FPGA for each of these cores:

• Simple passthrough core, resulting in a design that is
dominated by PCIe and framework overheads with neg-
ligible core resources.

• Memcpy core which requires additional framework re-
sources for connections to two banks of external DRAM.

• Out-of-order Deep Packet Inspection core that uses sig-
nificant FPGA resources internally and requires large
framework resources for out of order results handling.

I/O consumes 5–11% of resources available on the FPGA,
with the NAIL base and processor framework accounting for
a further 3–4%. Ultimately, this leaves significant resources
available for core implementations (shown in green).

B. Generic Features

1) Common Interfaces: Dataflow in NAIL is based on
a few consistent interfaces, including flat-vector, packetised,
and memory-mapped communication typically with valid/ack-
based flow-control. Crucially, this standardisation enables
reuse of common sub-components, such as buffers, multiplex-
ers and memories, for easier development, as well as simpler
integration of larger components by eliminating conversion
and adaptation functionality in RTL. Reuse also covers key
testing and simulation functionality.

2) Equivalence to Software Functions: NAIL accelerator
functions operate with a simple view of being issued a com-
mand and providing a result for it, in a 1-to-1 relationship. This
mirrors the traditional software approach of calling a function



and receiving a returned value, providing easier integration
with drivers and higher-level software.

3) Random Access Data: To enable the desirable capability
of accessing data held in host memory, NAIL, as part of its
command structure, enables the host to pass a reference to
DMA-coherent memory, which can then be accessed by the
FPGA. To eliminate the risk of data corruption, this particular
data access is read-only. Other write-to-host interactions (such
as returning results) do not have this restriction, as their
interactions are constrained by the framework rather than the
core.

4) DRAM Support: Where a core needs to utilise memory
beyond the capacity of internal BRAMs or distributed RAM,
NAIL gives cores access (read/write) to local board DRAM.
This is done via the ”utility interface”, whereby each core
is provided with zero or more ports connected to external
resources on the device, depending on what is available.

C. Parallelisation

1) Concurrent Operation: Multithreaded utilisation of of-
floaded accelerators is not exclusive to NAIL, however NAIL
compounds this with concurrent operation on a per-thread
basis. A user of each implemented core can launch multiple
jobs at once (the exact number constrained by the individual
core design) before checking for completions as desired.

2) Out-of-Order Operation: When strict ordering is re-
quired by the design of a system, resources can often be
left idle due to the risk of long-running tasks being ”over-
taken” by faster operations. In the NAIL framework, out-of-
order operation is supported, whereby parallel computations
can be executed regardless of relative duration, to maximise
throughput with results being restored in order after-the-fact
to avoid corruption.

III. SOFTWARE DESIGN

A. Driver

NAIL’s driver is traditionally written in C. Some specific
responsibilities of the driver include:

• Allocate and release DMA-coherent user-space memory
for firmware to interact with, including command and
results buffers and required data memory.

• Notify the NAIL framework of new command packets.
• Gather results from NAIL to be made accessible to

higher-level software.
• Manage virtual-memory addresses in the FPGA’s address

table.

B. Hardware Abstraction Layer (HAL)

The HAL’s basic function (typically written in C++) is
to provide software developers with the ability to utilise
NAIL accelerators with understanding generally limited to the
provided functionality rather than the method for manipulating
hardware. Amongst other things, the HAL provides man-
agement of driver-based resources, formatting of command
packets and polling of results. Specific cores may extend the
HAL to adjust basic parameters, extra memory management,

0 500 1000 1500 2000 2500 3000 3500 4000
Job Data Size (bytes)

0

1000

2000

3000

4000

5000

6000

7000

8000

Th
ro

ug
hp

ut
 M

B/
s

PCIe theoretical bandwidth

1 thread
2 threads
3 threads
4 threads
5 threads
6 threads
PCIe effective limit
NAIL effective limit

Fig. 2. Measured data throughput with respect to PCIe and framework limits.

or custom results parsing. Examples of such code are included
in the framework release.

IV. NAIL PERFORMANCE

Fig. 2, shows the measured data throughput against mod-
elled effective PCIe limit [4]. Additionally a simple model of
NAIL’s effective limit, taking into account the TLP overheads
associated with both command and (non-line) data requests is
shown. For larger data sizes per job, the framework reaches the
practical limits of PCIe in use. Smaller job rate is limited by
an Arria 10 PCIe endpoint limitation to available PCIe transfer
credits, restricting concurrent TLP operations. For small (¡500
byte) data items the framework achieves over 8 million jobs
per second despite this limitation.

V. CONCLUSIONS AND ROADMAP

NAIL is a latency focused FPGA offload framework that
has been tested rigorously in production and is released as
open source [3]. It provides an abstraction for managing FPGA
accelerator cores that is suitable for non experts and offers
low-latency offloading. NAIL is subject to several planned
advancements:

• Porting to newer FPGAs and those from other vendors.
• PCIe interactions tested against novel PCIe connections;

using devices such as DPUs for local interactions as well
as RDMA technologies like RoCE.

• Partial Reconfiguration to replace individual cores.
• Data caching to allow multiple cores to work on the same

data without repeated PCIe data transactions.

REFERENCES

[1] A. Vaishnav, K. D. Pham, and D. Koch, “A survey on FPGA virtualiza-
tion,” in FPL, 2018, pp. 131–137.

[2] K. Vipin and S. A. Fahmy, “DyRACT: A partial reconfiguration enabled
accelerator and test platform,” in FPL, 2014.

[3] [Online]. Available: https://github.com/alan-turing-institute/nail-fpga
[4] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo,

and A. W. Moore, “Understanding PCIe performance for end host
networking,” in SIGCOMM, 2018, pp. 327–341.

https://github.com/alan-turing-institute/nail-fpga

	Introduction
	Firmware Design Approach
	Core Within Processor
	Generic Features
	Common Interfaces
	Equivalence to Software Functions
	Random Access Data
	DRAM Support

	Parallelisation
	Concurrent Operation
	Out-of-Order Operation


	Software Design
	Driver
	Hardware Abstraction Layer (HAL)

	NAIL Performance
	Conclusions and Roadmap
	References

