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Abstract—Concerns about indoor air pollution are increasing
as individuals spend much of their time indoors, with carbon
dioxide being a notable concern. The increasing interest in
developing low-cost gas sensors for indoor air quality monitoring
has led to a surge in air quality data generated by these sensing
devices. This growing volume of data creates opportunities for
implementing machine learning methods in air quality research.
However, a challenge of these indoor sensing devices is their
resource-constrained memory and computing capabilities, mak-
ing deploying machine learning algorithms challenging. This
paper explores integration of low-cost Supervisory Control and
Data Acquisition (SCADA) with tiny machine learning (TinyML)
for effective monitoring of current and prediction of future
CO2 concentrations. The trained predictors produce RMSE
ranging from approximately 0.5–7 ppm when predicting future
CO2 concentrations 1, 15, and 30 minutes ahead. Moreover,
the models consistently yield confident R2 scores, ranging from
approximately 0.8 to 0.99.

Index Terms—SCADA/HMI, tinyML, machine learning, mi-
crocontroller, air pollution

I. INTRODUCTION

The global significance of air pollution has escalated due to
its adverse effects on human health and its impact on socio-
economic activities [1]. Factors such as population growth,
industrial expansion, and economic development contribute to
air pollution [2]. The effects of air pollution on the human
body can vary, influenced by several factors, including the type
of pollutant, duration of exposure, and quantity of exposure.

As individuals spend most of their time indoors [3]–[5],
there is a rising concern about indoor air pollution and its
potential health effects, especially for those working in such
spaces [6]. Approximately 80–90% of individuals allocate
their time indoors, such as in homes, schools, and offices [5].
Among the various indoor air contaminants reported, carbon
dioxide (CO2) contributes to this issue [7], and experts recom-
mend paying attention to air pollutants to ensure the comfort
and health of occupants in those spaces [8].

There is growing interest in developing low-cost gas sensors
for various applications, including indoor air quality monitor-
ing [9]. With the increasing volume of air quality data gener-

ated by these sensing devices, implementing machine learning
methods holds promising potential for performing tasks such
as classification, anomaly detection, and prediction of indoor
air contaminants. However, since most indoor sensing devices
have resource-constrained memory and computing capabilities,
deploying machine learning algorithms becomes challenging
for these particular devices. Hence, a novel paradigm called
Tiny Machine Learning (TinyML) is introduced as a viable
option for running machine learning algorithms on endpoint
devices. Machine learning developments are moving towards
edge computing [10], and a recent survey provides insight into
how developers drive innovation in TinyML [11].

Indoor air quality parameters can be monitored using var-
ious technologies, including implementing an industrial stan-
dard system called Supervisory Control and Data Acquisition
(SCADA). SCADA systems are commonly used to monitor
and control critical infrastructure components in industrial
sectors [12], and typically include an interface that facilitates
interaction with human operators, referred to as the human-
machine interface (HMI) [13]. For small-scale applications,
opting for a low-cost SCADA system can be advantageous
in terms of cost efficiency. For example, Aghenta and Iqbal
(2019) employed a cost-effective SCADA system, utilizing
an ESP32 Thing microcontroller board as a remote terminal
unit (RTU) and a Thinger.IO local server IoT platform as a
master terminal unit (MTU). This setup allowed for remote
monitoring of photovoltaic voltage, current, power, and stor-
age battery voltage [14]. Osman et al. introduced a Remote
SCADA System (RSS) designed to control high-power ma-
chines and gather data from installed sensors [15]. The RSS
boasts improved system latency and security and is suitable
for various application platforms. In their application scenario,
ESP8266 microcontroller boards with WiFi communication
were employed to read and write signals to the GPIOs of the
boards.

In this study, we enhance low-cost SCADA functionality
with TinyML, extending beyond monitoring to the prediction
of indoor air quality. In the experimental setup, we utilize low-



TABLE I
DESCRIPTIVE STATISTICS OF THE DATASET FEATURES GATHERED FROM

ROOM05

T (◦C) H (%) P (hPa) CO2 (ppm)

count 16731 16731 16731 16731

mean 20.94 20.74 1004.63 413.43
std 0.33 4.95 15.01 16.65
min 20.47 8.44 977.40 391.00
25% 20.71 17.56 993.55 405.00
50% 20.84 23.06 1001.55 410.00
75% 21.19 24.09 1013.10 417.00
max 22.62 26.00 1036.65 556.00

cost microcontrollers as remote terminal units and a laptop
as a master terminal unit. The connection between the RTUs
and the MTU is established through the OPC protocol using
the Ethernet. Given the resource constraints of the microcon-
trollers, we opt for linear regression as the machine learning
algorithm to forecast future CO2 concentration.

II. PROPOSED APPROACH

A. Data Source

For our study, we utilize the publicly available dataset pro-
vided by Räsänen et al. [16], which serves as supplementary
material for the work published by Kallio et al. [17]. We
adhere to the preprocessing procedure outlined by Kallio et al.,
yielding a refined dataset with measurements taken at 1-minute
intervals. The features recorded during these measurements
include CO2 concentration, temperature (T), humidity (H), air
pressure (P), and motion detection (PIR), all obtained from 13
different rooms.

The rooms consist of 11 office cubicles and two meeting
rooms. For the scope of this study, three specific rooms
(labelled as room05, room09, and room10) were chosen from
the original dataset, as they exhibited the highest volume of
data collection. Subsequently, all device timestamps were stan-
dardized from 2019-12-20 09:09:00 to 2019-12-31 23:59:00,
resulting in 16,731 data points for each selected room. More-
over, this work excludes the motion sensor measurement,
resulting in CO2, temperature, humidity, and air pressure as
the input features for the tinyML models.

Table. I presents the descriptive statistics of the dataset
features obtained from room05, excluding the PIR feature.
The mean CO2 concentration measured during the specified
period is approximately 413 ppm, with recorded minimum
and maximum concentrations of 391 ppm and 556 ppm,
respectively. Relatively minor fluctuations are observed in
temperature, ranging from 20.47◦C to 22.62◦C. The computed
standard deviation for humidity is 4.95%, indicating the extent
to which the measured values deviate from the mean values.
The CO2 concentrations in other rooms exhibit a notable
similarity, with average values of approximately 417 ppm and
413 ppm for room09 and room10, respectively. Temperature
and humidity in these rooms demonstrate relatively consistent
means compared to those in room05.
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Fig. 1. Concentration of CO2 in three different rooms.
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Fig. 2. Scenario of the SCADA/HMI system.

Fig. 1 illustrates the CO2 concentrations measured in the
three rooms. This study employs the proposed machine learn-
ing models to predict the last 20% of the CO2 values. The
training data constitutes the initial 80% of CO2 concentration,
along with air temperature, humidity, and air pressure.

B. Sensing Devices and SCADA System

This study employs three Arduino Uno microcontroller
boards as RTUs, representing a distinct sensing device in each
room. The Arduino Uno is an entry-level 8-bit microcontroller
with a modest 2 kB of SRAM and 32 kB of flash memory.
We utilized the Arduino OPC Server library provided by Mar-
tinez [18] to implement the SCADA communication protocol
between the hardware and software sections. The microcon-
trollers established communication with the SCADA software
through the OPC protocol, recognized as the interoperability
standard for secure and reliable data exchange in industrial
automation. The SCADA software chosen for this research is
VTScadaLIGHT, developed by Trihedral [19].

The experimental setup for this study is illustrated in Fig. 2.
As depicted, the key components consist of a computer,
an Ethernet switch/hub, and microcontrollers with Ethernet
shields. The computer and microcontrollers are linked to a
Local Area Network via an Ethernet switch. The microcon-
trollers execute the sensing tasks, the OPC library, and the tiny
machine learning algorithm, while the computer executes the
SCADA software and a lightweight OPC server for Arduino.
In this study, the laptop computer is equipped with an Intel®

CoreTM i7-8565U Processor and has 16 GB of RAM. The



operating system employed is Microsoft Windows 10 Home
Edition.

C. Proposed TinyML Model

Various machine learning methods are applicable to re-
gression problems, including linear regression, decision trees,
random forests, support vector regression, neural networks,
and more. The neural network is a widely employed method
in TinyML. Nonetheless, there are alternative machine learn-
ing techniques viable for implementation in microcontrollers.
Several of these techniques are more compact and faster to
execute than neural networks while maintaining high accuracy
across various tasks. Nevertheless, due to the constraints of
the Arduino Uno (with only 2 kB of SRAM and 32 kB of
flash memory), we consider linear regression to be the most
efficient method for implementing tiny machine learning on
resource-constrained microcontrollers.

The Ordinary Least Squares (OLS) Linear Regression (LR)
implemented in this study adheres to the following general
form:

y = β0 + β1x1 + β2x2 + β3x3 + . . .+ βnxn (1)

where y is the prediction output, β0 is intercept, β1 . . . βn are
the linear regression coefficients, and x1 . . . xn is the model
inputs.

In this study, we deployed multiple predictors integrated into
a single microcontroller. The original data comprises measure-
ments at 1-minute intervals, and we provided predictions for
three periods: 1-minute, 15-minute, and 30-minute ahead. The
current CO2 and prediction concentrations are displayed on
the SCADA interface.

III. RESULTS AND DISCUSSION

A. Experimental Setup

The experimental arrangement shown in Fig. 3 includes
a laptop computer, microcontrollers equipped with ethernet
shields, an ethernet switch/hub, and a power source. The
laptop (MTU) serves as the host for the SCDA/HMI software
and OPC server for Arduino. In contrast, the microcontrollers
(RTUs) function as hosts for reading of sensor data, execution
of the linear regression algorithm, and facilitation of OPC
communication between the MTU and RTUs.

In this experiment, we mimick real sensor readings using
the aforementioned sensor dataset on each microcontroller,
stored in an external SD memory card. Throughout the exper-
iments, data from each microcontroller are read every minute.
Subsequently, once the input data are retrieved from the SD
card, they are forwarded to three distinct linear regressors. The
current values of CO2, temperature, humidity, and predicted
CO2 are then transmitted to the SCADA/HMI. The specific
identity of each value intended for transmission to the SCADA
software is represented by tags.

Laptop
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Power Source
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+

Fig. 3. Experimental setup of MTU and RTUs

B. SCADA/HMI Realization

Fig. 4 presents the design of the SCADA interface employed
in this study. The interface presents the measurement of current
and predicted data for the three rooms. In the upper section of
each room, the interface displays the current CO2 concentra-
tion, temperature, and humidity values. The air pressure value
is omitted from the interface display to minimize the utilization
of tags. The lower section of each room displays the forecasted
CO2 concentrations for various time intervals: 1 minute ahead,
15 minutes ahead, and 30 minutes ahead.

C. TinyML Evaluation

Three predictors are integrated into each microcontroller.
The linear model intercept and coefficients are detailed in
Table II, and these values adhere to the equation presented
in Equation 1. Given the presence of four input features,
there are four linear model coefficients and one intercept. To
illustrate, in room05, when predicting CO2 one minute ahead,
the following equation is applied:

y = 2.4274− 0.0058x1 − 0.0052x2 − 0.0006x3 + 0.9961x4 (2)

Another example, when predicting CO2 30 minutes ahead in
room10, we use the following equation:

y = −76.3592−6.1471x1+0.3897x2+0.2189x3+0.9431x4 (3)

Where y is the predictor output, x1 is the current temperature
value, x2 is the current humidity value, x3 is the current air
pressure value, and x4 is the current CO2 concentration.

The performance of each predictor is assessed using root
mean squared error (RMSE). The RMSE is defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (4)



Fig. 4. SCADA interface for indoor air quality monitoring

TABLE II
SELECTED LINEAR REGRESSION COEFFICIENTS OF THE TINYML MODELS

β0 β1 β2 β3 β4

room05
1-min 2.4274 −0.0058 −0.0052 −0.0006 0.9961
15-min 82.0247 1.2690 −0.2529 −0.0678 0.9150
30-min 160.4359 2.7769 −0.5089 −0.1398 0.8372
room09
1-min 1.1177 0.0317 −0.0034 −0.0009 0.9981
15-min 30.0546 0.7259 −0.0933 −0.0264 0.9608
30-min 87.6559 1.9713 −0.2693 −0.0783 0.8957
room10
1-min −1.9831 −0.1457 0.0098 0.0055 0.9983
15-min −38.0419 −2.7976 0.1847 0.1002 0.9801
30-min −76.3592 −6.1471 0.3897 0.2189 0.9431

where n is the total number of data samples, yi is the actual
CO2, and ŷi is the predicted CO2.

Using a laptop computer, we performed repeated 5-fold
cross-validation to train and test the linear regressors to obtain
less biased results. Each fold was reiterated 10 times with
varying random seeds, and subsequently, the boxplot of the
root mean squared error (RMSE) was generated, as shown in
Fig. 5.

As depicted in Fig. 5, an extended prediction for CO2
concentration leads to increased prediction errors. For instance,
in room05, the average RMSE values are 0.82 ppm, 5.12 ppm,
and 7.25 ppm for predicting 1 minute, 15 minutes, and 30
minutes, respectively.

The average R2 value for each cross-validation iteration can
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Fig. 5. Model performance evaluated using RMSE
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Fig. 6. Model performance evaluated using average R2

be also determined by applying the following equation:

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)
2 (5)

where n is the total number of data samples, yi is the actual
CO2, ŷi is the predicted CO2 concentration, and ȳ is the overall
mean of the actual CO2 concentration.

Illustrated in Fig. 6, longer-term predictions yield decreased
R2 values. Nevertheless, the models can predict future CO2



concentrations with robust R2 scores, ranging from approxi-
mately 0.8 to 0.99.

IV. CONCLUSION

This paper demonstrated integration of tiny machine learn-
ing for microcontrollers with low-cost SCADA/HMI to mon-
itor and predict indoor CO2 concentrations. Due to resource
constraints in the microcontrollers used, a simple linear re-
gression model was chosen as the machine learning algorithm.
The results indicate that the SCADA/HMI software effectively
displays both current and future CO2 concentrations. Evaluated
using the RMSE metric, the linear regression models produce
error values ranging from approximately 0.5 ppm to 7 ppm
when predicting future CO2 concentrations (1 minute, 15
minutes, and 30 minutes ahead). The models consistently yield
confident R2 scores, ranging from approximately 0.8 to 0.99.
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