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ABSTRACT
We explore the design and development of structured-mesh based
solvers on current Intel FPGA hardware using the SYCL program-
ming model. Two classes of applications are targeted : (1) stencil
applications based on explicit numerical methods and (2) multi-
dimensional tridiagonal solvers based on implicit methods. Both
classes of solvers appear as core modules in a wide-range of real-
world applications ranging from CFD to financial computing. A
general, unified workflow is formulated for synthesizing them on
Intel FPGAs together with predictive analytic models to explore the
design space to obtain near-optimal performance. Performance of
synthesized designs, using the above techniques, for two non-trivial
applications on an Intel PAC D5005 FPGA card is benchmarked. Re-
sults are compared to performance of optimized parallel implemen-
tations of the same applications on a Nvidia V100 GPU. Observed
runtime results indicate the FPGA providing better or matching
performance to the V100 GPU. However, more importantly the
FPGA solutions provide 59%-76% less energy consumption for their
largest configurations, making them highly attractive for solving
workloads based on these applications in production settings. The
performance model predicts the runtime of designs with high accu-
racy with less than 5% error for all cases tested, demonstrating their
significant utility for design space explorations. With these tools
and techniques, we discuss determinants for a given structured-
mesh code to be amenable to FPGA implementation, providing
insights into the feasibility and profitability of a design, how they
can be codified using SYCL and the resulting performance.
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1 INTRODUCTION
Field Programmable Gate Arrays (FPGAs) have gained traction as
accelerator devices, particularly due to their low power consump-
tion and re-programmability. Their utility in accelerating scien-
tific computing workloads have recently been gaining interest in
the high performance computing (HPC) community with several
studies showing competitive or better performance compared to
traditional CPU/GPU architectures, for select classes of applica-
tions [9, 13, 19, 27].

Compared to CPUs or GPUs, FPGAs do not have a fixed general
purpose architecture to be programmable with software. Instead, a
tailored data-path for the computation is synthesized using a vari-
ety of basic circuit elements. However, to gain good performance,
significant effort is needed, for example by creating pipelined cus-
tom datapaths, replication of compute units and exploiting locality
such that data can be reused by fitting on to fast on-chip memory.
FPGA hardware designers/vendors such as Xilinx and Intel have
attempted to support the development effort with high-level syn-
thesis tools (HLS) that can translate high-level languages such as
C/C++ or OpenCL, producing designs targeting FPGAs. However,
these tools still require low-level modifications and specialized han-
dling of the codes to produce performant designs. A recent addition
to the high-level programming models for FPGAs is Intel’s OneAPI,
itself based on the SYCL programming model. Currently, it mainly
supports (at a production level) the programming of Intel FPGA
hardware and aims to provide a unifying model for programming
Intel’s many hardware offerings, from Xeon CPUs, Xe GPUs and
FPGAs. Given the novelty of SYCL and its use for programming
FPGAs, the underlying goal of this paper is to investigate how SYCL
can be used for obtaining the best performance from Intel’s FPGA
devices. We make the following specific contributions:

(1) Based on design strategies developed in previous work [19,
20], in this paper we develop a generalized workflow for for-
mulating optimized FPGA designs with SYCL, targeting Intel
FPGAs for two classes of structured-mesh based solvers: (1)
stencil applications based on explicit numerical methods and
(2) multi-dimensional tridiagonal solvers based on implicit
methods. Given FPGA resource constraints, we exploit fea-
tures of the application classes, that lend to gaining higher
optimizations. These include the iterative nature of the nu-
merical methods, particularly in implementing explicit/im-
plicit solvers and as observed in many production settings,
the need to solve large numbers of independent problems
on multiple meshes, leading to batched solves. Predictive an-
alytic models are developed alongside the above workflows
to support the design space explorations.
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(2) Two non-trivial applications, a 3D Reverse Time Migration
(RTM) Forward Pass solver based on explicit methods and a
2D Alternating Direction Implicit (ADI) problem solving the
heat diffusion equation using multi-dimensional tridiagonal
solvers, are designed and synthesized on an Intel PAC D5005
using the above techniques. Their runtime, bandwidth and
power/energy performance is benchmarked and compared to
highly optimized implementations of the same applications
on a GPU (a Nvidia V100 GPU), the currently best perform-
ing processor architecture for structured-mesh applications.
We demonstrate the use of SYCL in achieving the desired
circuit synthesis, with challenges and opportunities in the
programming model to elucidate a design on hardware.

Initial results on the Intel PAC D5005 demonstrate the FPGA provid-
ing performance better or on-par to that of the V100 GPU in terms
of runtime. More importantly, the FPGA solutions provide 59%-76%
less energy consumption for their largest configurations, making
them highly attractive for solving workloads based on these appli-
cations in production settings. The performance models provided
high accuracy with less than 5%model prediction errors for all cases,
demonstrating their significant utility for design space explorations.
The techniques developed previously in [19, 20] were explored in
the context of Xilinx FPGAs, the other currently dominant FPGA
device in the market. With the present work, we broaden these
generalized designs to include features of Intel FPGAs enabling to
provide a comprehensive workflow for design-space explorations.
We believe that taken together, this simplifies and standardizes the
development cycles for industrial workloads consisting of these
application classes, particularly from areas such as the financial
computing domain for FPGA hardware.

The rest of this paper is organized as follows: Section 2 begins
with background on structured mesh solvers, both explicit and
implicit, their underlying algorithms together with previous work
that explored FPGA implementations for this class of applications.
Section 3 and Section 4 presents the main contributions, detailing
the design extensions for each class of applications. Section 5 details
the experimental results, specifically performance results. Finally,
Section 6 presents conclusions from the work.

2 BACKGROUND
2.1 Explicit and Implicit Methods
Computations on a structured mesh can be most commonly charac-
terized as calculations performed on a “rectangular” multi-dimens-
ional set of mesh points. The regular nature of the domain, therefore
allows the neighborhood of a mesh point to be easily computed, the
most common form being the fixed data access pattern provided by
a stencil. This is in contrast to unstructured-mesh applications [8]
where explicit mesh connectivity information is required to im-
plement computations over mesh elements. The main motivating
numerical method for stencil computations is the solution to Par-
tial Differential Equations (PDEs), specifically based on the finite
difference method. These techniques are used extensively in com-
putational fluid dynamics (CFD), computational electromagnetics
(CEM) in the form of iterative solvers. For example the finite differ-
ence scheme for the solution of a generic PDE can be given by the

2D explicit equation (1):

𝑈 𝑡+1
𝑥,𝑦 = 𝑎𝑈 𝑡

𝑥−1,𝑦 + 𝑏𝑈
𝑡
𝑥+1,𝑦 + 𝑐𝑈

𝑡
𝑥,𝑦−1 + 𝑑𝑈

𝑡
𝑥,𝑦+1 + 𝑒𝑈

𝑡
𝑥,𝑦 (1)

Here, U is a 2D mesh and a, b, c, d, and e are coefficients. In this
example U is accessed at spatial mesh points (x-1,y), (x+1,y), (x,y-1),
(x,y+1), and (x,y)which forms a five point stencil. The above scheme
is noted as an explicit scheme where the computation iterates over
the full rectangular mesh, updating the solution at each mesh point,
for the current time step, t+1, using the solution from the previous
time step, t. The time step iteration usually continues until a steady
state solution is achieved. In contrast an implicit scheme would
update the solution at the current time step using values from the
same time step. Thus, in explicit methods, there is a data dependency
only for the computations among multiple time step iterations
where each mesh point calculation within a time iteration can
be computed in parallel. However, in implicit methods a further
dependency in the spatial domain is also introduced. This may lead
to a much faster convergence to the final solution, but enforces an
order in which a computation iterates over the mesh leading to
limited parallelism.

Considering implicit schemes, one used extensively in areas
such as financial computing is the solution to multi-dimensional
tridiagonal systems, which we focus on in this paper. Tridiagonal
solvers are frequently used in the Alternating Direction Implicit
(ADI) time discretization problems [14, 28] preferred in industry.
Tridiagonal systems arise from the need to solve a system of linear
equations as given in equation (2), where 𝑎0 = 𝑐𝑁−1 = 0. Its matrix
form 𝐴𝑥 = 𝑑 can be stated as in equation (3).
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(3)

The solution to such systems of equations are well known, including
the Thomas algorithm [36] which carries out a specialized form
of Gaussian elimination, the PCR algorithm [16] and the Spike
algorithm [29].

Many previous works for synthesizing stencil computations on
FPGAs have been presented. Early works such as [33–35] used low-
level Hardware Description Languages (HDL) for describing the
architectures. Modern HLS tools based work such as [10, 11, 13, 19,
21, 30, 37, 38, 40] have showcased key workflows and optimizations
in synthesizing stencil applications using high-level languages such
as C++ and OpenCL on a variety of FPGAs from Xilinx to Intel.
Similarly, implicit scheme based solvers such as tridiagonal systems
solvers have been implemented in works such as [20, 23–25, 39]
including for multi-dimensional multiple tridiagonal solvers in
addition to vendor supplied libraries such as [3]. In our present
work, the aim is to investigate how the SYCL programming model
can be used to synthesise high-performance implementations of
these solvers on Intel FPGAs and showcase the challenges and
opportunities to elucidate solutions using this new programming
model.
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1 using namespace sycl;
2 void stencil_WI( queue &q,
3 buffer<float,2> b_data_in,
4 buffer<float,2> b_data_out,
5 int size0, int size1,
6 int block0, int block1){
7 q.submit([&] (handler& h){
8 accessor in(b_data_in, h);
9 accessor out(b_data_out, h);
10

11 range<2> local_range(block0, block1);
12 range<2> global_range(size0, size1);
13

14 h.parallel_for<class stencil_WI>
15 (nd_range<2>(local_range, global_range),
16 [=] (nd_item<2> point){
17 int y = point.get_global_id(0);
18 int x = point.get_global_id(1);
19 if(x > 0 && y > 0 && x < size0-1 && y < size1-1){
20 float r = (in[y-1][x] + in[y+1][x])*0.125f +
21 in[y][x]*0.5f;
22 out[y][x] = r;
23 }
24 });});
25 }

Figure 1: NDRange based stencil computation
2.2 Intel FPGAs and SYCL
An FPGA device in general, consists of basic circuit elements such
as configurable logic known as adaptive logic modules (ALMs) that
include lookup tables (LUT) and registers, specialized blocks such
as random-access-memory blocks (640-bit MLABs and 20K bits
M20K) and Digital Signal Processing (DSP) blocks. These are in-
terconnected via a rich routing fabric providing large bandwidth
between elements. A computation/algorithm is implemented on
an FPGA by combining these circuit elements, designing a custom
data-path through them, essentially setting up a hardware pipeline.
In addition to on-chip memory, FPGAs come with large external
memory and in modern devices and a further block of memory con-
sisting of 3D stacked High Bandwidth Memory (HBM2). Managing
the movement of data between these different types of memory is
key to achieving high performance. Basic mathematical operations
are generally implemented using the DSP units and a single unit
can do one 27 × 27 multiplication or two 18 × 18 multiplication
per clock. Double precision (FP64) accumulation is also supported.
In addition, Intel FPGAs include DSP blocks which also support
low latency single precision (FP32) ADD,SUB,MUL and ACCU oper-
ations. As a given circuit design grows and begins to occupy a
larger portion of the FPGA, routing (i.e. connecting all the circuit
elements together) becomes more challenging, and can reduce the
achievable clock frequency and hence overall performance. In this
aspect, Intel’s Hyperflex technology [17] gives more flexibility in
routing which helps achieve better clock frequency.

The recently introduced Data Parallel C++ (DPC++) program-
ming model1 based on the SYCL programming model to program
FPGAs follows OpenCL. Here, the portions of the program to be
1We use the terms DPC++ and SYCL interchangeably in this work due to the use of
Intel target hardware.

1 using namespace sycl;
2 void stencil_ST(queue &q,
3 buffer<float,2> &b_data_in,
4 buffer<float,2> &b_data_out,
5 int size0, int size1){
6 q.submit([&] (handler& h){
7 accessor in(b_data_in, h);
8 accessor out(b_data_out, h);
9 h.single_task<class stencil_ST> ([=] (){
10 /* optimisations - see Section 2 ... */
11 float window1[1024];
12 float window2[1024];
13 [[intel::loop_coalesce(2)]]
14 /* +1 due to one row delay through window buffer */
15 for(int y = 0; y < size1+1; y++){
16 for(int x = 0; x < size0; x++){
17 float s_12;
18 if(y < size1) s_12 = in[y][x];
19 float s_11 = window1[x];
20 float s_10 = window2[x];
21 window1[x] = s_12;
22 window2[x] = s_11;
23 float r = (s_10 + s_12)*0.125f + s_11*0.5f;
24 if(x > 0 && y > 0 &&
25 x < size0-1 && y < size1){
26 out[y-1][x] = r;
27 }
28 }
29 }
30 });});
31 }

Figure 2: single_task based stencil computation
executed on an accelerator device is called a kernel. SYCL’s acceler-
ator model consists of a number of compute units, each made of
processing elements (e.g. SMs on a GPU). An instance of a kernel
executed on a processing element is called a work-item (equivalent
to threads in the CUDA programming model) and an instance of a
work-item is identified using an index id in a global index space.
Work-items are organized into groups called work-groups (thread-
blocks in CUDA) and each work-item inside the group will have a
local-id. Work-items in a work-group will be executed concurrently
on processing elements of the compute unit where the index space
is specified using SYCL’s N-dimensional range model. Kernels based
on this index space are called NDRange kernels (see Figure 1).

NDRange kernels therefore essentially follow a single instruction
multiple thread (SIMT) execution model where on a GPU, multiple
kernels are called, with the system scheduling them to be executed
on the available SMs. Such an execution can be done for FPGAs
as well, but performance becomes severely limited due to FPGA
global memory bandwidth (about 19 – 76GB/s with DDR4 or ≈
460GB/s with HBM2, compared to over 900GB/s on modern GPUs),
when having to write results of one kernel back to global mem-
ory before calling the next kernel and the new kernel having to
read all the necessary data back from global memory. However,
on-chip memory bandwidth on FPGAs reaches over tens of TB/s
and therefore feeding the results from one kernel to the next in a
pipeline, provides significant opportunities for performance gains.
This is achieved by a single task kernel, by attempting to create
longer and longer computational pipelines essentially following
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a multiple instructions single data (MISD) model. A sequence of
kernels within nested loops then leads to flattening the loop nests
and fusing the loops (see discussion in Section 3), of course within
the resource limits of the FPGA for implementing the computation.
With SYCL, such a single task kernel can be codified as in Figure-2.

In comparison to OpenCL, which is used by most of the previous
work on Intel FPGAs [18, 24, 25, 37, 38, 40, 41], SYCL provides a
higher level of abstraction, including removing much of the fixed
“boiler-plate” code segments required to setup the device. Addi-
tionally, kernel arguments need not be set explicitly and data is
automatically moved from host to device through sycl::buffers.
Device memory is released when these buffers run out of scope.
Essentially, the SYCL run-time makes sure that data is available
on device/host before the execution of the kernel/host part of the
program. The runtime additionally analyzes data dependencies
where a kernel consuming dependent data will not be scheduled
for execution the until completion of kernels that produce that data.
This introduces the limit of only one kernel being able to write to
a data structure at a time. An example of issues due to this limita-
tion includes the challenge of moving the time-marching loop in
an explicit stencil computation to the FPGA. This and other key
designs for synthesizing the two classes of applications on Intel
FPGAs using SYCL are discussed in the next two sections.

3 STENCIL SOLVERS
Previous work in [19] developed a generalized workflow for syn-
thesizing stencil applications on Xilinx FPGAs. In this section we
build on this design flow to extend it to Intel FPGAs with SYCL.
The full FPGA designs implemented with SYCL can be found in [4].

Nested Loop Unrolling: The workflow in [19], considered a
given stencil application as specified by equation (1), to be a se-
quence of repeating nested loops iterating over the mesh. The
repeating of nested loops, as discussed before, occurs due to the
implementation of a time-marching outer loop. On an FPGA, a
single nested loop’s body, consisting of the elemental computation
per iteration will need to be synthesized using the basic circuit ele-
ments we noted before. This will essentially create a circuit pipeline,
through which input data will flow through, with each clock cycle
of the device. The pipeline will need to be started up, requiring
some clock cycles equal to the depth of the pipeline (which depends
on the complexity of the elemental computation synthesized) and
outputting the result from the computation for each inner iteration.
For best performance, we would like to get an output per clock cycle.
However, encompassing this elemental computation in multiple
levels of the loop nest can be detrimental to performance due to the
need to flush the results from the inner loop, which can take a long
time, leading to a stall in the pipeline when moving to successive
outer iterations of the loop nest[11]. As we alluded to previously,
multi-dimensional nested loops should therefore be flattened to a
1D loop either manually or by using HLS directives. With SYCL
(specifically with the Intel® oneAPI DPC++/C++ compiler, Intel’s
implementation of a SYCL compiler), we can easily achieve this
by using the loop_coalesce attribute specified as a pragma to the
nested loop.

Vectorisation (Cell Parallelmethod): Replicating the circuitry
for the elemental computation can also be done, provided (1) there

1 /* Data type for wider data path */
2 struct dPath16 {[[intel::fpga_register]]float data[16];};
3

4 for(int i = 0; i < total_itr; i++){
5 struct dPath16 s_1_0, s_1_1, s_1_2, vec_wr;
6 /* other declarations, index calculation, window buffer*/
7 #pragma unroll VFACTOR
8 for(int v = 0; v < VFACTOR; v++){
9 int i_ind = i *VFACTOR + v;
10 float val = (s_1_0.data[v]+s_1_2.data[v])*0.125f+ \
11 s_1_1.data[v]*0.5f;
12 bool cond = (i_ind>0 && i_ind<size0-1 && j>1 && j<size1);
13 vec_wr.data[v]= cond ? val : s_1_1.data[v];
14 }
15 /* writing results to pipe */
16 }
17 }

Figure 3: vectored stencil computation
are no data dependencies between the nested loop iterations and
(2) there are enough resources available for synthesis on the FPGA
(e.g. DSP units, FP cores etc). For stencil applications there are no
such dependencies. This will lead to multiple pipelines (number
limited by resources) operating in parallel, similar in operation
to a vector operation on CPUs. This technique is also known as
the cell-parallel method [37, 38], where if you visualize the stencil
computation implemented with a nested loop as a loop over a regu-
lar multi-dimensional rectangle of mesh points/cells, this method
will compute multiple “cells” in parallel. For SYCL synthesis, this
requires reading a wider block of memory, we prefer to program
with a struct based data type as in Figure 3.

Window Buffers: Next, the design flow from [19] specifies the
need to stream data from/to external (DDR4) and near-chip (HBM2)
memories to/from on-chip MLABs/M20Ks to feed the computa-
tional pipeline efficiently. A perfect data reuse path can be created
by (1) using a First-In-First-Out (FIFO) buffer to fetch data from
DDR4/HBM memory without interruption (allowing burst trans-
fers) to on-chip memory, and then (2) by caching mesh points using
the multiple levels of memory, from registers to MLABs/M20Ks.
This is known as implementing a window buffer [15]. To implement
such a data-reuse path with SYCL, the external/near-chip memory
read, computation and write back to external/near-chip memory
each was codified as a separate SYCL kernel with sycl::pipes, a
DPC++ extension, used to move data between the kernels. These
kernels operate in parallel. A basic window buffer setup can be seen
in Figure 2 lines 11-12 and lines 17-20 where we are reading and
writing values such that a certain length of data is buffered in the
window.

Unrolling Iterative (time-marching) loop / Step Parallel
method: Next step in the design strategy is to unroll the iterative
(time-marching) loop which can include one or more stencil loops
over the rectangular mesh. This allows the results from a previous
iteration (time-step) to be input into the next iteration without
needing to write results back to external memory. This technique
has been called the step-parallel method where the unrolling yields
multiple compute modules, again replicating circuitry. This tech-
nique leads to increased throughput without the need for additional
external memory bandwidth, but the loop unrolling factor depends
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1 using namespace sycl;
2 template <int id> struct stencil_compute_id;
3 template<int idx, int DMAX, int VFACTOR>
4 void stencil_compute(queue &q, int size0, int size1){
5 q.submit([&] (handler& h){
6 h.single_task<class stencil_compute_id<idx>> ([=] (){
7 ... // declarations and setups
8 for(int i = 0; i < size0/VFACTOR*(size1+D/2); i++){
9 if(cond1) vec_r =pipeS::PipeAt<idx>::read();
10 ... // window buffers and stencil computation
11 if(cond2) pipeS::PipeAt<idx+1>::write(vec_w);
12 }
13 });});
14 }

Figure 4: stencil compute kernel skeleton

1 template <int N> struct itr_loop {
2 static void instantiate(queue &q, int nx, int ny){
3 itr_loop<N-1>::instantiate(q, nx, ny);
4 stencil_compute<N-1, 4096, 8>(q, nx, ny);
5 }
6 };
7 template<> struct itr_loop<1>{
8 static void instantiate(queue &q, int nx, int ny){
9 stencil_compute<0, 4096, 8>(q, nx, ny);
10 }
11 };

Figure 5: Pipelining stencil compute kernels

once more on available FPGA resources and also internal memory
capacity [19].

Unrolling the iterative loop will instantiate the same stencil
loop’s kernel many times. Thus we use a template based stencil
computation function to produce unique names (see Figure 4, line
2). While unique kernel names are optional in SYCL 2020, unique
kernel names are used here to create multiple instances of same
kernels on FPGA. As noted before, to move data from one kernel
to another, internally, SYCL uses pipes [7] which are similar to
streams (e.g. hls::stream) in Vivado C++ on Xilinx FPGAs. Thus,
a stencil kernel will get input from a pipe and it will push the output
to another pipe. As such, pipes should also be unique to indicate
the connection between the unique producer/consumer kernels.
An indexable pipe array can be created using a struct construct
to obtain unique pipes. We use the index from the instantiated
template of the stencil compute function for kernels name and
choose the pipes as illustrated in Figure 4.

Unrolling of the time-marching loop can be implemented in SYCL
using a template based recursive struct function andwith a template
specialization as in Figure 5. Here we note that stencil_compute
kernel pops the input data from and pushes the result to the rele-
vant pipes with the adjacent index on the pipe array. Using these
techniques we can create a kernel pipeline with any given iterative
loop unroll factor of 𝑁 .

Batching: The above compute kernel pipeline with read/write
kernels and unrolled iterative loop will give good performance for
larger mesh sizes which hides the kernel call time on the device.
However, for smaller meshes which usually have smaller execution
times the kernel calling overhead is a significant portion of the

1 [[intel::disable_loop_pipelining]]
2 for(int itr = 0; itr < n_iter; itr++) {
3 accessor ptrR = ((itr & 1) == 0) ? in : out;
4 accessor ptrW = ((itr & 1) == 1) ? in : out;
5 [[intel::ivdep]] [[intel::initiation_interval(1)]]
6 for(int i = 0; i < total_itr+delay; i++) {
7 struct dPath16 vecR = ptrR[i+delay];
8 if(i < total_itr) pipeM::PipeAt<idx1>::write(vecR);
9 struct dPath16 vecW;
10 if(i >= delay) vecW = pipeM::PipeAt<idx2>::read();
11 ptrW[i] = vecW;
12 }
13 }

Figure 6: Global memory read-write loop
total runtime. Additionally, on FPGAs a further overhead is caused
by the latency of the processing pipeline compared to the time to
process the mesh. A key development from [19] is to amortize these
overheads by executing a larger number (a batch) of smaller meshes.
Batching will then involve grouping together meshes with the same
dimensions, leading to increased overall throughput of problems
solved per time unit. As indicated in [19], in practice, the mesh can
be extended in the last dimension by stacking up the small meshes.
Now, compute latencies for pipeline startup also only occur once
at the start of the batched solve. No special techniques in SYCL
are required to program batching and we discuss and quantify the
performance implications of batching later in section 3.1

Reducing kernel call overhead:While batching provides a rea-
sonably good way to hide kernel call overheads, it really needs large
batch sizes to be effective. For example for the RTM application, we
benchmark later in the paper, a 3D mesh of size 32×32×32 requires
a batch size of 1000 (i.e. 1000 meshes) to hide kernel call latency.
A general solution for this problem is to move the time-marching
loop to the FPGA [19]. When the host executes the time-marching
loop, the read and write kernels are called by swapping the memory
locations and the runtime can schedule the read kernel and write
kernel at the same time as each access different data structures.
In this case, the host has to wait until the completion of the de-
pendant kernels, providing an implicit sync point. However, if the
time-marching loop is moved to the device (i.e. FPGA), then both
the read and write kernels will need to be called with both the read
and write memory locations together with a signal/flag (through a
pipe) to notify the read kernel that the write kernel has completed
writing to the specified memory locations. In this case, the SYCL
runtime will note this as a data dependency, leading to a deadlock.
The run-time will wait for the write module to complete first before
scheduling the read kernel, hanging the kernel pipeline. In contrast
on Xilinx FPGAs using C++ for Vivado [19], such a deadlock will
not occur as a more hand-tuned complete data-flow path can be
created from read, compute to write within the iterative loop in a
single kernel.

A solution can be attempted to avoid a deadlock, by fusing global
memory read and write accesses into one nested loop as in Fig-
ure 6, creating one single kernel. Attribute intel::ivdep is used
to instruct the compiler that there are no memory access depen-
dencies in the inner loop allowing the compiler to fully pipeline
the inner loop. Pipelining is disabled for the outer loop due to data
dependency between iterations as the inner loop’s read and write
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locations are swapped in each iteration. However, this implemen-
tation will also result in a deadlock or poor performance if pipe
read is not delayed correctly. To understand the issues we need
to look at how statements inside a kernel are scheduled and how
an iteration of a loop moves through the stages of the compute
pipeline for each clock cycle on the FPGA.

In Figure 6, Pipe read and write are blocking operations, where
the loop iteration will not continue until these operations complete.
Here vecR is loaded from memory and will be pushed to the pipe
and will go through the compute pipeline before returning as an
output result vecW through another pipe for read. There are number
of clock cycles between the first push of vecR and first pop of vecW.
Assume for example read (rd) and write (wr) are scheduled at the
10𝑡ℎ and 800𝑡ℎ clocks (exact clocks at which rd andwr are scheduled
could be obtained from the kernel schedule viewer section of the
report generated by Intel’s DPC++ compiler). Then for loop iteration
0, rd and wr operations are scheduled at 10𝑡ℎ and 800𝑡ℎ clocks and
for iteration 1 they are scheduled at 11𝑡ℎ and 801𝑡ℎ clocks and so
on. If first rd is not successful until the 50𝑡ℎ clock cycle, then first wr
can only occur at the 840𝑡ℎ clock. Such a blocking can be avoided
by introducing a delay as done in the conditional statement at line
10 in Figure 6.

To calculate the required delay, assume rd, wr operations are
scheduled at 𝑐𝑙𝑘𝑟𝑑 and 𝑐𝑙𝑘𝑤𝑟 and there are 𝑆 number of pipeline
stages between pipe idx1 and pipe idx2. In this case, data pushed
to pipe idx1 will come back to pipe idx2 only after 𝑆 clock cycles.
Hence, we have to delay the pipe read by delay 𝑑 >= 𝑐𝑙𝑘𝑟𝑑 −
𝑐𝑙𝑘𝑤𝑟 + 𝑆 number of loop iterations to avoid stalling of pipeline
(here we assume uniform data path width across kernels). If delay
𝑑 >= 𝑐𝑙𝑘𝑟𝑑 − 𝑐𝑙𝑘𝑤𝑟 and 𝑑 < 𝑐𝑙𝑘𝑟𝑑 − 𝑐𝑙𝑘𝑤𝑟 + 𝑆 then there will be
stalling, but loop will continue as data will be available after a fewer
clock cycles than expected, leading to reduced throughput. In case
of delay 𝑑 < 𝑐𝑙𝑘𝑟𝑑 − 𝑐𝑙𝑘𝑤𝑟 , then the implementation will deadlock
as data is expected from read pipe (idx2) before it is pushed to the
pipe idx1. A further consideration for a 2D stencil computation
as in Figure 2, is that at least a row of elements are required to
start the computation and return the first output. This adds an
additional delay which we note as a buffer delay 𝑑𝑏 , leading to a
total delay 𝑑 >= 𝑐𝑙𝑘𝑤𝑟 − 𝑐𝑙𝑘𝑟𝑑 + 𝑆 + 𝑑𝑏 to avoid stalling. Again
𝑑 < 𝑐𝑙𝑘𝑤𝑟 − 𝑐𝑙𝑘𝑟𝑑 + 𝑑𝑏 will result in a deadlock as pushed data will
never be available at the time a read is attempted and it stalls the
whole loop iteration leading to no new data also being pushed to
the write pipe.

3.1 Performance Model
The full design for 2D and 3D stencil applications can be modeled
analytically to predict the total runtime of the time-marching loop.
In [19], the model for implementations on Xilinx FPGAs was de-
veloped and the same terms can be used here for our SYCL design
on Intel FPGAs with the addition of the schedule delays discussed
in the previous section. Schedule delays are usually small when
the mesh size is reasonably large but it is significant compared to
the processing time for smaller meshes with small batch sizes. The

total delay for a 2D stencil application can be modeled as follows:

𝑑𝑒𝑙𝑎𝑦2𝐷 =
(
𝑆2𝐷 + 𝑑𝑏,2𝐷

)
(4)

𝑆2𝐷 =

𝑘𝑒𝑟𝑛𝑒𝑙𝑠∑︁
𝑖=0
(𝑐𝑙𝑘𝑤𝑟,𝑖 − 𝑐𝑙𝑘𝑟𝑑,𝑖 ) (5)

𝑑𝑏,2𝐷 =

⌈𝑚
𝑉

⌉
× 𝑝 × 𝐷

2
(6)

Here the mesh size in each dimension is given by𝑚,𝑛 and 𝑉 , 𝑝, 𝐷
are vectorization factor, iterative loop unroll factor and stencil order
respectively. 𝑐𝑙𝑘𝑤𝑟,𝑖 , 𝑐𝑙𝑘𝑟𝑑,𝑖 are the clock cycles where pipe write
and pipe read are scheduled in the 𝑖𝑡ℎ kernel. Here we note that,
pipe width is 𝑉 for all kernels. Similarly for a 3D application the
delay can be modeled as in equation (7) when the size of the 3rd
dimension is 𝑙 .

𝑑𝑒𝑙𝑎𝑦3𝐷 =
(
𝑆3𝐷 + 𝑑𝑏,3𝐷

)
(7)

𝑆3𝐷 =

𝑘𝑒𝑟𝑛𝑒𝑙𝑠∑︁
𝑖=0
(𝑐𝑙𝑘𝑤𝑟,𝑖 − 𝑐𝑙𝑘𝑟𝑑,𝑖 ) (8)

𝑑𝑏_3𝐷 =

⌈𝑚
𝑉

⌉
× 𝑛 × 𝑝 × 𝐷

2
(9)

Adding the above delays to the latency for processing 𝐵 number
of meshes (i.e. batch size) from [19] gives the total latency of a 2D
and 3D application as equations (10) and (11) respectively:

𝐶𝑙𝑘𝑠2𝐷 =
𝑛𝑖𝑡𝑒𝑟

𝑝
×
(⌈𝑚
𝑉

⌉
× 𝑛 × 𝐵 + 𝑑𝑒𝑙𝑎𝑦2𝐷

)
(10)

𝐶𝑙𝑘𝑠3𝐷 =
𝑛𝑖𝑡𝑒𝑟

𝑝
×
(⌈𝑚
𝑉

⌉
× 𝑛 × 𝑙 × 𝐵 + 𝑑𝑒𝑙𝑎𝑦3𝐷

)
(11)

We make use of the models developed here to predict the perfor-
mance of the applications benchmarked in Section 5.

4 MULTI-DIMENSIONAL TRIDIAGONAL
SOLVERS

FPGA synthesis of implicit solvers poses similar but somewhat
different challenges. Due to the order dependence when iterating
over mesh elements, techniques such as the cell parallel method
cannot be readily utilized. The best tridiagonal solver algorithm
for implementing data-flow optimizations needs to be examined
together with the utility of SYCL for their synthesis on Intel FPGAs.

We base our investigation and development on recent work [20],
again done with Xilinx FPGAs. The work in [20] explores the var-
ious algorithms for implementing multi-dimensional tridiagonal
solvers on FPGAs, focusing on gaining higher throughput from
multiple solvers setup on a multi-dimensional domain. This aligns
closely with how industrial workloads utilize tridiagonal solvers,
particularly from the financial computing domain, as opposed to
the best algorithms and optimizations for a single tridiagonal sys-
tem solve as found in many other previous work. The key designs
from [20] points to a synthesis based on the well known Thomas al-
gorithm [36](see Alg. 1) as the best performing implementation. We
follow the same design with SYCL. The Thomas algorithm carries
out a specialized form of Gaussian elimination (assuming non-zero
𝑏𝑖 ) providing the least computationally expensive solution, but suf-
fers from a loop carried dependency. It has a time complexity of
𝑂 (𝑁 ). Implementing Alg. 1 using floating-point primitive cores on
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Algorithm 1: thomas(𝑎, 𝑏, 𝑐, 𝑑)
1: 𝑑∗0 ← 𝑑0/𝑏0
2: 𝑐∗0 ← 𝑐0/𝑏0
3: for 𝑖 = 1, 2, ..., 𝑁 − 1 do
4: 𝑟 ← 1/(𝑏𝑖 − 𝑎𝑖𝑐∗𝑖−1)
5: 𝑑∗

𝑖
← 𝑟 (𝑑𝑖 − 𝑎𝑖𝑑∗𝑖−1)

6: 𝑐∗
𝑖
← 𝑟𝑐𝑖

7: end for
8: for 𝑖 = 𝑁 − 2, ..., 1, 0 do
9: 𝑑𝑖 ← 𝑑∗

𝑖
− 𝑐∗

𝑖
𝑑𝑖+1

10: end for
11: return 𝑑

an Intel FPGA such as the PAC D5005 would incur an arithmetic
pipeline latency of 37 clock cycles for the forward path and 6 clock
cycles for the backward path. The forward path cycles are domi-
nated by the slow floating-point division operations (26 clks latency
for division operation). This essentially gives a dependency distance
(𝑙𝑓 ) of about 37 clks (taking the maximum out of the forward loop
and backward loops latencies). Then, [20] demonstrates how 𝑔 = 𝑙𝑓
number of tridiagonal systems can be grouped and interleaved such
that iteration 1 of system 1 is input to the pipeline, followed by
iteration 1 of system 2 and so on, per clock cycle, up to iteration 1 of
system 𝑔. This allows to obtain higher throughput by continuously
utilizing the computational pipeline versus solving one system at a
time. Techniques such as double buffering (i.e. ping-pong buffers),
can be used to further optimize the implementation. With SYCL,
this can be codified with three kernels, one each for forward and
backward loops and one for the interleaving of the systems.

With a minimum group size of 𝑔𝑓 = 37, on the Intel PAC D5005,
to solve systems with size 𝑁 , with interleaving, the Thomas solver
would require four on-chip block RAMs (for 𝑎, 𝑏, 𝑐, 𝑑) with 2×𝑔𝑓 ×𝑁
number of words, totaling 8 × 𝑔𝑓 × 𝑁 words. The 2× is due to the
need of twice as much memory to setup ping-pong buffers. Storage
for 𝑐∗, 𝑑∗ for the forward pass kernel will require two RAMs with
2 × 𝑔𝑓 × 𝑁 , totaling 4 × 𝑔𝑓 × 𝑁 words. Additionally storage for 𝑢
in backward pass would require a RAM with 2 × 𝑔𝑏 × 𝑁 words. As
such a total of 456 × 𝑁 words is required for the Thomas solver
implementation on this specific FPGA. Additional RAMs with a
smaller number of words will be required for storing the previous
iteration values as detailed in [20].

In some applications, the coefficients 𝑎, 𝑏, 𝑐 can be generated
without reading from external memory, using an initialization rou-
tine. In these cases, coefficients 𝑎, 𝑏, 𝑐 need not be interleaved, but
instead could be calculated as part of the interleaving kernel. Fus-
ing this coefficient generation would reduce the total memory cost
to 234 × 𝑁 words. A further saving of on-chip memory can be
done for the Intel FPGAs by separating the calculation of 𝑟 to a
separate kernel which we denote as a r_generator kernel. This
can be done for Alg. 1 by creating a kernel with only lines 4 and 6.
Line 5 will be a separate kernel that will get the computed value
of 𝑟 through a pipe. Calculating 𝑟 only requires coefficients 𝑎, 𝑏, 𝑐
which again can be internally calculated within the r_generator
kernel. Now, r_generator kernel would require group size 𝑔𝑟 = 37,
Thomas_forward and interleave kernels would require group size

Table 1: Experimental systems specifications.

FPGA Intel PAC D5005 [6]

DSP blocks 5760
MLABs / M20K 7.6MB / 29.3 MB
DDR4 64GB, 76.8GB/s, in 4 banks (1 channel/bank)
Host Intel Xeon Platinum 8256 @3.8GHz

(16 CPUs, 4 cores each)
1559 GB RAM, Ubuntu 18.04.6 LTS

Design SW Intel oneAPI 2021.4.0, Intel Quartus software 19.2
board_variant pac_s10

GPU Nvidia Tesla V100 PCIe [1]

Global Mem. 16GB HBM2, 900GB/s
Host Intel Xeon Gold 6252 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS
Compilers, OS nvcc CUDA 10.0.130, Debian 9.11

of 𝑔𝑓 = 9. The group size of Thomas_backward remains same. This
optimisation reduces the total memory cost to 140 × 𝑁 words. It
is a 69% reduction from the non-fused version and 40% reduction
compared to a fused but no r_generator variant in [20].

The Thomas solver can be vectorized to solve multiple systems in
parallel. Again this can be done using a wider data path using arrays
inside 𝑠𝑡𝑟𝑢𝑐𝑡 as illustrated in Section 3’s struct dPath16. In our
implementation, template parameters are used to specify the vector-
ization factor, data type, group size and input and output pipe index
of the pipe array. We use a manually flattened loop with custom
ping-pong buffers to save device resources using custom integer
data types for loop controls and improve the latency by continuous
execution than a nested loop based ping-pong buffer implementa-
tion. However, manually flattened loops require a dependency dis-
tance that can be specified using the [[intel::ivdep(safelen)]]
attribute.

A vectorized Thomas solver poses a challenge in feeding data
depending on its layout. It is efficient to read using the 512-bit
AXI bus on the FPGA to obtain high memory throughput. But this
512 bit/16 float(FP32) values will correspond to accessing the same
tridiagonal system when solving reasonably large systems. If the
systems are organized one after another in memory, then feeding
groups of different systems to the vectorized solvers requires ad-
ditional units and transformation. Since reading sequential data
in an AXI burst mode is efficient, we read 8 systems (FP32) and 4
systems (FP64) and internally buffer them. Then we read an 8 × 8
block from 8 different systems and an 8 × 8 transpose to get the
values from different systems. These two kernels are implemented
using ping-pong buffers for parallel execution. The implementation
will require 2 × 8 × 8 × 32 = 4096 bits of registers. The design is
identical to the one developed in [20] and the same performance
models can be applied to predict the performance of applications
as demonstrated in the next section.

5 PERFORMANCE
We present experimental results of applying our design strategy
by implementing two non-trivial, representative applications using
SYCL on Intel FPGAs. The first application is a stencil application im-
plementing an explicit numerical solver and the second application
uses multi-dimensional tridiagonal solvers. The applications are
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synthesized on an Intel PAC D5005. We use the non-USM (Unified
Shared Memory) model of SYCL as it provides a simpler memory
access implementation compared to the alternative USMmodel [32].
Finally, we compare the performance of the applications on the
FPGA to equivalent implementations of the same applications, writ-
ten in CUDA[2], on an Nvidia V100 GPU. Specification of FPGA
and GPU Systems along with the specific software tools used in the
evaluation are detailed in Table 1.

5.1 Reverse Time Migration(RTM) Forward-Pass
The Reverse TimeMigration(RTM) forward-pass is a 3D application
that uses a high-order stencil on vector elements. It consists of
multiple stencil kernels inside an iterative time-marching loop. The
high-level algorithm of RTM is detained in Alg. 2. Here𝐾,𝑇 ,𝑌, 𝑆 are

Algorithm 2: RTM - Forward Pass

1: for 𝑖 = 0, 𝑖 < 𝑛𝑖𝑡𝑒𝑟 , 𝑖 + + do
2: 𝐾 = 𝑓𝑝𝑚𝑙 (𝑌25𝑝𝑡 , 𝜌, `) × 𝑑𝑡 ; 𝑇 = 𝑌 + 𝐾/2; 𝑆 = 𝐾/6
3: 𝐾 = 𝑓𝑝𝑚𝑙 (𝑇25𝑝𝑡 , 𝜌, `) × 𝑑𝑡 ; 𝑇 = 𝑌 + 𝐾/2; 𝑆 = 𝑆 + 𝐾/3
4: 𝐾 = 𝑓𝑝𝑚𝑙 (𝑇25𝑝𝑡 , 𝜌, `) × 𝑑𝑡 ; 𝑇 = 𝑌 + 𝐾 ; 𝑆 = 𝑆 + 𝐾/3
5: 𝐾 = 𝑓𝑝𝑚𝑙 (𝑇25𝑝𝑡 , 𝜌, `) × 𝑑𝑡 ; 𝑌 = 𝑌 + 𝑆 + 𝐾/6
6: end for

3Dmeshes with six floating-point elements at each mesh point.𝐾,𝑇
are the intermediate meshes while 𝑌 is the initial mesh at the start
of each iteration and 𝑆 is a mesh that is the scaled sum of 𝐾 . 𝜌, `
are 3D constant meshes with scalar elements. An 8𝑡ℎ order stencil
with 25-points is used in the 𝑓𝑝𝑚𝑙 function. For synthesis on the
FPGA, intermediate meshes such as 𝐾,𝑇 , 𝑆 can be replaced by SYCL
pipes due to their sequential element access pattern. Additionally, in
order to reduce the global memory access for 𝜌, `, 𝑌 , they are read
once, then internally buffered to all kernels. Such buffering reduces
the required off-chip memory bandwidth to be within the available
76.8 GB/s limit. An equivalent GPU implementation will require an
additional mesh due to dependency in reading and writing of mesh
𝑇 . With this, a GPU implementation will consist of four kernels in
a iterative loop implemented on the Host.

Managing the on-chip memory to enable the execution of larger
mesh sizes is a challenge for higher order stencil applications with
vector mesh elements. We attempted to maximize the vectorization
factor to reduce the iterative unroll factor to save on-chip memory
while maintaining the same compute throughput. The maximum
possible vectorization factor is 4, due to the off-chip memory band-
width limitation. We opted to set this to 3, as it then allowed us
to have an iterative loop unroll factor of 2 as well (a vectorization
factor of 4 and an unroll factor of 2 will result in a design that will
hit the upper limit of the available DSP units). Previous work in [19],
which implements the RTM application on Xilinx’s U280 FPGA,
didn’t attempt vectorization. This was due to the organization of
the U280 into SLR portions, and a single SLR region not having
sufficient DSP resources for such an implementation.

Application runtimes are detailed in Figure 7. Mesh sizes from
103 to 403 are executed with batch sizes (B) of 10 and 100. The model
is also used to predict the runtime (dotted line noted as FPGA-Pred)
for each case and the prediction error is below 5%. It shows that the
FPGA performance is on par or better compared to the V100 GPU
performance. We attribute this to the availability of a larger number
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Figure 7: RTM forward-pass, FP32, 𝑝 = 2, 𝑣 = 3, 200 iterations

Table 2: RTM - Avg. Bandwidth, 𝐵𝑊 (GB/s), Avg. Utilisation(%) and
Energy, 𝐸 (J), 200 iters.

Mesh BW-10B BW-100B E-100B
FPGA GPU FPGA GPU FPGA GPU

103 154 158 (18%) 192 506 (56%) 8.5 4.8
163 230 391 (43%) 258 681 (76%) 19.4 12.9
223 286 379 (42%) 313 598 (66%) 36.2 37.7
283 331 414 (46%) 342 588 (65%) 62.9 75.2
343 367 420 (47%) 390 486 (54%) 96.2 164.6
403 397 344 (38%) 418 379 (52%) 141.3 344.7

of DSP units with native support for floating-point operations.
Table 2 compares the effective bandwidth and energy consumption
on the FPGA with the GPU. Bandwidth Utilisation is provided for
GPU which mainly depends on global memory. FPGA’s bandwidth
utilisation is underpinned by the fast on-chip memory performance
(with tens of TB/s) which we do not show here. As such, the FPGA’s
effective bandwidth reaches up to 418GB/s even though global
memory bandwidth is limited to 76.8 GB/s. Utilizing fast on-chip
memory performance is a direct consequence of using window
buffers and communication between stencil compute kernels via
pipes. GPU reaches bandwidths of up to 681GB/s for the 163 utilizing
higher portions of its peak bandwidth. This indicates near-optimal
performance from the GPU implementation. We explored both
Array of Structure (AoS) and Structure of Arrays (SoA) data layout
for the vector elements on the GPU. SoA gives the best throughput
due to better data access patterns. We speculate that the reduced
performance for larger mesh sizes is due to poor cache utilization
when solving higher order stencils.

We used the fpgainfo utility to measure power consumption
on the PAC D5005. The utility gives voltages and current of the 12V
PCIe power supply as well as 12 V AUX power supply. GPU power
consumption is obtained through nvidia-smi. For RTM, the power
consumption of the Intel PAC D5005 is between 84-94W while the
V100 GPU’s power consumption is between 47-200W. Observed
power-draw indicate that the FPGA is just over 59% less energy
consuming than the GPU for the largest mesh with the larger batch
sizes.

5.2 ADI 2D Heat Diffusion Application
The Alternating Direction Implicit (ADI) time discretization re-
quires multiple tridiagonal systems solved in multiple dimensions.
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Our second application implements the 2D heat diffusion equation
using ADI. The High-Level algorithm is detailed in Alg. 3. The
application iterates for a given number of iterations and in each
iteration the RHS values for a tridiagonal matrix coefficients are pro-
duced using a 2D stencil loop. Then, tridiagonal systems are solved
along the x-dimension, Tridslv(x-dim) and along the y-dimension,
Tridslv(y-dim). Finally, solution 𝑑 is accumulated on to the with ini-
tial value of𝑢. An equivalent GPU implementation consists of three
kernels for each of the above. We use the batched tridsolver
library developed in [22] in this evaluation but note that using
Nvidia’s CuSparse library also resulted in similar performance.
Algorithm 3: 2D ADI Heat Diffusion Application

1: for 𝑖 = 0, 𝑖 < 𝑛𝑖𝑡𝑒𝑟 , 𝑖 + + do
2: Calculate RHS : 𝑑 = 𝑓7𝑝𝑡 (𝑢), 𝑎 = −12 𝛾, 𝑏 = 𝛾, 𝑐 = −12 𝛾
3: Tridslv(x-dim), update 𝑑
4: Tridslv(y-dim), update 𝑑
5: 𝑢 = 𝑢 + 𝑑
6: end for

Performance on FPGAs could be maximized by pipelining all
four steps in Alg. 3 due limitations in global memory bandwidth.
Intermediate results from Tridslv(x-dim) will need to be transposed
using on-chip memory to achieve this. Once all the kernels are
pipelined, the iterative loop can also be unrolled. The implementa-
tion in [20], on the Xilinx U280 for the same application, used an
unroll factor of 3 and then scaled the design to multiple compute
units (CUs) based on available HBM ports. Scaling to multiple CUs,
instead of using a higher unroll factor results in lower latency for
small batch sizes. Since HBM memory is not available on the Intel
D5005, we preferred to unroll the iterative loop instead of scaling
to CUs in the present work. The performance model for this imple-
mentation including the scheduling latency (due to the existence
of a stencil loop) can be noted as in equation (12):

𝐿𝑎𝑑𝑖,2𝐷 = (𝑛𝑖𝑡𝑒𝑟 /𝑓𝑈 ) × 𝐿𝑟ℎ𝑠+𝑥𝑦 (12)
𝐿𝑟ℎ𝑠+𝑥𝑦 =𝑓𝑈 × [(2𝑥/𝑣) + (2𝑣𝑥/𝑣 + 3𝑔𝑥) + (2𝑥𝑦/𝑣 + 3𝑔𝑦)] +

𝐵 × (𝑥𝑦/𝑣) +
𝑘𝑒𝑟𝑛𝑒𝑙𝑠∑︁
𝑖=0
(𝑐𝑙𝑘𝑤𝑟,𝑖 − 𝑐𝑙𝑘𝑟𝑑,𝑖 ) (13)

Here, 𝑥,𝑦 are mesh sizes, 𝐵 is the batch size, 𝑣 is the vectorization
factor, 𝑔 is the group size of systems, 𝑓𝑈 is the unroll factor of the
iterative loop. This is similar to the models created for the 2D ADI
application in [20].

Figure 8 gives runtime performance of 2D ADI Heat Diffusion
application in FP32 on the Intel PAC D5005 and compares it to
performance on the Nvidia V100 GPU. Even though the FPGA
implementation operates at 231MHz, it outperforms the GPU. We
attribute this to the unrolling of the iterative loop by a factor of 8
and the fusion of coefficient in the Thomas solver. This essentially
allows data to be kept on faster on-chip memory without writing to
global (external) memory for the whole computation. The same type
of fusion is not supported by the GPU implementation as the GPU
tridiagonal solver [2] call is a function call to an external library.
Additionally, it does not support fusion of coefficient generation
internally.

We can estimate the runtime of the GPU if coefficients were
generated internally, assuming that the GPU is not compute limited
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Figure 8: ADI 2D, FP32, 𝑓𝑈 = 8,𝑉 = 8, 16000 iter meshes

and the same sustained bandwidth is maintained for each of the
application cases. Estimated Run times for each kernel call can
be computed using equation (14). Here, 𝑡𝑜𝑝𝑡 , 𝑡 are run-times for
the GPU implementations with and without internally generated
coefficients respectively. When generating coefficients internally,
data movement does not include data structures coefficient meshes
𝑎, 𝑏, 𝑐 . Then the run-time estimate for the full ADI application is can
be obtained from equation (15), where runtimes are adjusted for the
𝑅𝐻𝑆 calculation, Tridslv(x-dim) and Tridslv(y-dim). Here, we note
that the accumulation step in Alg. 3 is fused into Tridslv(y-dim) of
the GPU implementation.

𝑡𝑜𝑝𝑡 = 𝑡 × 𝑑𝑎𝑡𝑎_𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑜𝑝𝑡/𝑑𝑎𝑡𝑎_𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (14)

𝑡_𝑎𝑑𝑖𝑜𝑝𝑡 =
1
4
× 𝑡𝑝𝑟𝑒𝑝𝑟𝑜𝑐 +

2
5
× 𝑡𝑥𝑠𝑜𝑙𝑣𝑒 +

4
7
× 𝑡𝑦𝑠𝑜𝑙𝑣𝑒 (15)

Even when the coefficients are internally generated on the GPU, the
FPGA appears to perform marginally better, as can be seen by the
dotted red lines in Figure 8. The model predicted runtimes for FPGA
is closely matching with the actual runtimes with a prediction error
of less than 2%.

Table 3 details the effective bandwidth of the FPGA and GPUs
with bandwidth utilisation for GPU and Energy consumption for
both devices. The GPU bandwidth is noted for x and y solves sepa-
rately given that these are separate calls to the tridiagonal solver
library. The FPGA bandwidth reaches up to 463GB/s. This, as noted
above, is due to on-chip memory based data movement without
reading/writing from lower bandwidth global memory. In GPU,
Tridslv(y-dim) reaches a good bandwidth of 555 GB/s but Tridslv(x-
dim) performs poorly, only reaching up to 205 GB/s. Such lower
bandwidths are also reported by [20, 22] due to the 8 × 8 transpose
operations using registers/shared memory on GPUs. FPGA power
consumption varies between 95 − 101W while the GPU power con-
sumption varies between 105 − 151W. for the largest mesh with
running the largest batch size, the FPGA saves over 76% energy
used compared to the GPU. The same application on the U280 [20]
used HBM based delay buffers[12] to save on-chip memory and
managed to run mesh sizes of up to 128 × 128. On the Intel PAC
D5005, larger delay buffers are also implemented using on-chip
memory and this limits the largest mesh size to 64 × 64.
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Table 3: ADI Heat Diffusion Application: Achieved Bandwidth, 𝐵𝑊
(GB/s) Utilisation(%) and Energy, 𝐸 (KJ)

2D FP32 (16000 iterations, 𝑓𝑈 = 8), F - FPGA, G - GPU

Mesh 𝐵𝑊 -800B 𝐵𝑊 -4000B 𝐸-4000B
F Gx Gy F Gx Gy F G

322 386 131 (15%) 288 (32%) 453 185 (21%) 524 (58%) 0.453 1.825
402 403 144 (16%) 330 (37%) 457 197 (22%) 478 (53%) 0.712 3.159
482 414 163 (18%) 389 (43%) 460 202 (22%) 517 (57%) 1.032 4.363
562 422 169 (19%) 412 (46%) 462 202 (22%) 498 (55%) 1.411 6.220
642 428 182 (20%) 477 (53%) 463 205 (23%) 555 (62%) 1.820 7.580

6 CONCLUSION
In this paper, we explored the design and development of structured-
mesh based solvers using SYCL for Intel FPGA hardware. Two
classes of applications were targeted (1) stencil applications based
on explicit iterative methods and (2) multi-dimensional tridiagonal
solvers based on implicit methods. A generalized workflow, ex-
tending previous work in [19] and [20], for synthesizing optimized
solvers of these applications was developed together with an ana-
lytic model to predict their performance in support of design space
explorations. The extensions targeted key optimizations required to
obtain the best performance using SYCL programming techniques.
The main methods for codification with SYCL include (1) reduc-
ing SYCL kernel calling overhead by moving the time-marching
outer loop onto the FPGA device and (2) reducing on-chip mem-
ory usage for the Thomas solver implementing multi-dimensional
tridiagonal solvers. The designs and workflow were applied to two
non-trivial applications synthesizing them on an Intel PAC D5005
FPGA. Performance results were compared to the same applications
implemented on an Nvidia V100 GPU as a baseline. Observed results
indicate the FPGA provided better or matching performance com-
pared to the V100 GPU in terms of runtime. We also see 59%-76%
less power consumption when executing these applications at their
largest mesh and batch sizes. The performance models provided
high accuracy with less than 5%model prediction errors for all cases.
Future work will extend these techniques to other Intel FPGAs with
HBM memory and also consider applications with larger meshes
that were currently limited by the PAC D5005’s hardware resources.
We will also compare the performance of our multi-dimensional
tridiagonal solver design to Intel’s tridiagonal solver library.

The significant effort in applying non-trivial transformation to
optimize the SYCL implementations demonstrates the program-
ming overheads still dominating the development of programs to
utilize FPGAs. This is still true even with the hardware vendors
providing mature HLS tools for development. While we have not
quantified the productivity overheads in this paper, it is clear that
such hand-tuned, hardware specific programming is not tractable
particularly for developing and maintaining codes for execution on
multiple hardware such as GPUs and FPGAs, even with language
extensions such as SYCL. Future work will aim to utilize domain
specific languages and automatic code-generation techniques, such
as OPS [31] and OP2 [26] to target FPGAs using the optimizations
and transformations developed in this paper.

The code developed as part of this work is available as open-
source software at [4] and [5].
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