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Abstract—Low-cost air quality monitoring devices can provide high-density spatiotemporal pollution data and thus offer
a better opportunity to apply machine learning. Low-cost sensor nodes usually utilize microcontrollers as the main
processors, and tinyML brings machine learning (ML) models to these resource-constrained devices. In this letter, we
reported the development of a low-cost air quality monitoring device with embedded tinyML models. We deployed two
tinyML models on a single microcontroller and performed two tasks: predicting air quality and power parameters (using
model predictor) and imputing missing features (using model imputer). The proposed model predictor can estimate
parameters with a coefficient of determination above 0.70, and the model imputer effectively estimates the testing data
when missing rates are below 80%. By performing the post-training quantization technique, we can further reduce the
model size but slightly degrade the accuracies.

Index Terms—TinyML, air quality prediction, missing data, microcontrollers, low-cost devices.

I. INTRODUCTION

Recent research has demonstrated the feasibility of low-cost
sensor nodes for air quality monitoring systems [1]–[3]. This
emerging sensor-based air quality monitoring field can provide high-
density spatiotemporal pollution data, supplementing the established
methodology with more precise and expensive devices [4]. The
immense volume of collected spatiotemporal data has provided a
better opportunity to apply machine learning (ML) techniques in air
quality areas, such as air contaminant prediction [5], [6], missing
data imputation [7], [8], and classification tasks [9].

TinyML is a cutting-edge field of artificial intelligence. It brings
machine learning (ML) models to resource-constrained devices, such
as microcontrollers [10]. A microcontroller is typically limited to
its memory and computational capabilities. Effective deployment
of tinyML models requires a thorough understanding of hardware,
software, algorithms, and applications. Regardless of their limited
performance, microcontrollers can gather physical environment data
through sensors and perform decisions based on ML algorithms [11].

The key motivation of this letter is to empower a low-cost air
quality device with intelligence. We deployed two different tinyML
models to a single microcontroller. One model is used to predict air
status and electrical power parameters, whereas another is employed
to impute missing air pollution data. To the best of our knowledge,
previous works on air quality prediction using tinyML have not
specifically explored prediction and imputation tasks on a single
microcontroller.
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II. METHOD

A. Dataset and Preprocessing

A dataset obtained from a direct measurement is used to train
and evaluate the tinyML models. The air quality monitoring device
was used to collect data over approximately three months, from
21 July 2022 to 20 October 2022. Eight features were collected
during measurements: CO2, air temperature, air humidity, solar panel
output current, solar panel output voltage, battery voltage, battery
temperature, and battery capacity. The device collected air quality and
power parameter data at intervals of 10 minutes, yielding 13,080 rows
of data at the end of the measurement period. We used hourly average
data for air quality and power parameter estimations. We averaged
every six measurements to obtain hourly data, resulting in a new
dataset containing 2,180 rows. For missing data imputation, however,
we worked on data obtained every 10 minutes of measurements.

We split data into train and test sets by putting 70% of the data
in the training set and 30% in the test set. For future parameter
estimations, we standardized the features to get a mean of zero and
a standard deviation of one, whereas we transformed the features by
scaling the features into the range of [0,1] for missing data imputation.

B. Device Design

Fig. 1 shows the hardware interfaces of the low-cost air quality
device. A Raspberry Pi (RPi) Pico W is used as the main
controller board in this work. This board utilizes RP2040 chip as
the microcontroller. This board features a dual-core Cortex-M0+
processor designed with 264kB of SRAM and 2MB of onboard flash
memory.

Two power sources for the air quality monitoring device are a
solar panel and a 18650 Li-Ion rechargeable battery. A nominal 12V
solar panel 20 Watt recharged a Li-Ion battery with nominal voltage
and capacity of 3.6V and 3500mAh, respectively. The solar panel
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Fig. 1. Module interfaces of the proposed device

is manufactured by Hisunage, China, whereas we used the Li-Ion
battery from Samsung SDI. For the solar power manager, we used
a product from Waveshare Electronics, China. This solar manager
is compatible with general 6V – 24V solar panels and can recharge
the 18650 Li-Ion battery. It also provides 5V/3A regulated output,
suitable for the RPi pico board supply.

Three sensor modules were utilized in this work: INA219,
LC709203F and SCD41. Additionally, a DS3231 real-time clock
(RTC) module was also added to enable accurate timekeeping. The
INA219 sensor provides abilities to read solar output current and
voltage, the LC709203F module determined the battery cell capacity
and cell voltage, and the SCD41 sensor module sensed carbon dioxide,
temperature, and relative humidity. The collected data were stored
on a microSD memory card.

C. TinyML Framework

Our work involved deploying two deep learning models on a
single microcontroller: model predictor and model imputer. The first
model is used to run the prediction task, whereas the second model
is utilized to impute the missing sensor data. When a sensor fails
to collect data in a real-life application, the microcontroller marks
this event as missing and perform data imputation before executing
a prediction task. During the data collection, we did not find any
missing values and trained the model predictor based on the full
dataset. In contrast, we deliberately removed measurement values for
the model imputer with different levels of missing values. Finally,
we compared the prediction results obtained from the full dataset
and the dataset with missing data.

We built the deep learning models using TensorFlow (TF) 2.4.0.
Developed by Google, TF is an open-source framework primarily
designed for deep learning applications [12]. We created, trained and
evaluated the models using TF CPU running on a desktop computer.
The trained TF models were then converted to TFLite format using
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Fig. 2. Model predictor architecture

TF Lite converter. Furthermore, the TFLite models were quantized
using post-training quantization techniques to reduce the deployed
model sizes while maintaining their accuracies. The TFLite models
were converted to a C byte array and stored in a read-only program
memory on the microcontroller. Finally, we run inference on the
device using the TFLite for microcontrollers (TFLM) libraries.

D. Model Predictor and Model Imputer

For prediction tasks, the model predictor accepts input sets
containing eight features: CO2, air temperature, air humidity, solar
panel output current, solar panel output voltage, battery voltage,
battery temperature, and battery capacity. The model is designed
to predict three air status features (CO2, air temperature, and air
humidity) and one electrical power feature (battery capacity). In this
work, we performed a short-term prediction (one hour of future data).
The model deployed for the prediction task is shown in Fig. 2

The model predictor accepts input sets consisting of 8 features and
6 hours of historical measurement. Flattening this input, we get 48 as
the input size. We reshaped the input sets into three-dimensional data
as we utilized two-dimensional convolution layers for the feature
extractor and used a fully connected layer with 15 units for the
prediction layer. We also utilized rectified linear unit (ReLU) layers
as the activation function. For the last layer, no activation is applied.

The model imputer employed in this work is based on autoencoder
architecture, and the concept is inspired by image denoising [13]. In
this work, the input sets with missing values are considered noisy
inputs. In our previous work [7], we implemented this concept by
involving spatiotemporal data from neighboring air quality monitoring
stations to predict missing values on the target station. In this
work, however, we created a simpler, lightweight model suitable
for a resource-constraint device. We used local data to train the
model without involving spatiotemporal data from other air quality
monitoring stations. The denoising autoencoder concept can be shown
in Fig. 3.

The encoder function 𝑓\ (·) and the decoder function 𝑔𝜙 (·) are
parameterized by \ = {W, b} and by 𝜙 = {W′, b′}, respectively. The
W, b and the W′, b′ represent the weight and bias of the encoder and
decoder, respectively. The encoder function is defined as h = 𝑓\ (x)
and the decoder function as r = 𝑔𝜙 (h), where x is the input, h is the
code representation learning, and r is the reconstructed input. The
perfect condition for model learning is achieved when 𝑔𝜙 ( 𝑓\ (x)) = x.
However, the model cannot learn perfectly but instead try to minimize
the error between the actual input and the reconstructed input. For
the denoising autoencoder, instead of x, we define x̃ as the noisy
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Fig. 3. A denoising convolutional autoencoder workflow
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Fig. 4. Model imputer architecture

input of x [14].Then, for each training set x(𝑖) , the parameters \ and
𝜙 are optimised to minimise the average reconstruction error [13]:

\∗, 𝜙∗ = arg min
\,𝜙

1
𝑛

𝑛∑︁
𝑖=1

𝐿(x(i) , 𝑔𝜙 ( 𝑓\ (x̃(𝑖) ))) (1)

where 𝐿 is the model loss function. The typical loss function is
squared error 𝐿 (x, r) = ∥x − r∥2. Thus, the loss function of the
denoising autoencoder is rewritten as:

𝐿 (\, 𝜙) = 1
𝑛

𝑛∑︁
𝑖=1

(x(i) − 𝑔𝜙 ( 𝑓\ (x̃(𝑖) )))2 (2)

In this work, the proposed denoising autoencoder consists of several
dense layers, as shown in Fig 4. All layers are fully connected, and
rectified linear unit (ReLu) layers are used as the activation functions.
Similar to the model predictor, the model imputer also accepts input
sets consisting of 8 features and 6 hours of measurement. Flattening
this input, we get 48 as the input size.

E. Perturbation Procedure

For missing data estimation training and testing, some measurement
values were intentionally removed from the input sets, and every
deleted value was filled with zero. Following the work conducted
by Hadeed et al. [5], four missing rates (i.e., 20%, 40%, 60%
and 80% of missing rates) were set in this work. As previously
mentioned, the device collected data every 10 minutes, and the
model predictor accepted hourly average data. Thus, we assumed
that missing data might occur at 10 minutes of measurement level.
One sensor can measure more than one parameter. For example,
LC709203F measures three parameters: battery capacity, battery
voltage and battery temperature. We assumed that these measured
parameters would not be obtained if this sensor failed to perform a
measurement. Thus, during model training and testing, all parameters
measured by the same sensor will have the same missing patterns.

III. RESULTS AND DISCUSSION

A. Device Implementation and Model Performance

The low-cost air quality monitoring device created in this work is
shown in Fig. 5. Fig. 5 presents the device with the utilized sensors
and other electronic modules. The device was installed in front of
the author’s house, situated in a suburban area of Coventry city, UK.

A total of 648 test sets were evaluated to predict the averaged
1-hour values of four features: CO2, air temperature, air humidity,
and battery capacity, as reported in Fig. 6. In this evaluation, we used
testing data without missing values. The proposed model predictor
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Fig. 5. The low-cost air quality monitoring device

can estimate each dataset feature with a coefficient of determination
above 0.70. The model predicts air humidity most accurately, with
an 𝑅2 score of almost 0.9. However, the model seems insensitive to
predicting a sharp decline in battery capacity.

While the model predictor accepts hourly mean data, the model
imputer works at 10 minutes of measurement level. The air quality
monitoring device collects data every 10 minutes, and the model
imputer works at this level to fill in any existing missing values. As
a result, we can obtain clean sets without missing values. To get
hourly data, we averaged every six measurements.

We evaluated the effectiveness of our proposed imputation method
on an hourly basis. As shown in Fig. 7, the 𝑅2 score indicates how close
the recovered hourly data is to the hourly clean data. The model
imputer was trained using training data containing 60% missing
values, whereas the missing rate of testing data varied from 20% to
80%. We performed ten experiments with different random seeds to
cover various missing patterns. As presented in Fig. 7, the model
effectively estimates the testing data with missing rates below 80%.
Air temperature, humidity, solar panel voltage and battery temperature
achieve the best accuracy with an 𝑅2 score above 0.9, especially at
a missing rate of 40%.

B. Post-training Quantization

Converting a trained TF model to the TF Lite format reduces
the model size. In this work, we achieved size reductions of 85.4
kilobytes and 102.6 kilobytes for the model predictor and the model
imputer, respectively. As we dealt with a tiny, resource-constrained
device, we leveraged the post-training options provided by the
TensorFlow framework. Due to deep learning architecture, framework
version, microcontroller type, and other technical aspects, we only
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TABLE 1. Comparison of different tinyML model sizes

TinyML Model Model Predictor (bytes) Model Imputer (bytes)
TF 107,708 126,536
TF Lite 22,280 23,948
TF Lite Quantized 11,648 10,384

TABLE 2. RMSE values of different TF model formats

Model Predictor Model Imputer
Feature TF TFL TFL Q. TF TFL TFL Q.
CO2(ppm) 23.081 23.081 23.392 26.591 26.591 33.743
Tair(◦C) 2.131 2.131 2.458 1.176 1.176 1.338
%H 4.267 4.267 4.927 3.447 3.447 4.524
Isolar(mA) - - - 29.349 29.349 30.167
Vsolar(V) - - - 3.203 3.203 3.361
Vbatt(V) - - - 0.099 0.099 0.101
Tbatt(◦C) - - - 1.02 1.02 1.237
%Batt 7.355 7.355 7.909 12.393 12.393 12.803

successfully performed the integer with float fallback quantization.
This quantization technique tries to fully integer quantize the model.
However, float operators are still used when the model does not
support an integer implementation. By performing this technique,
we can further achieve the model size reduction of 10.6 kilobytes
and 13.6 kilobytes for the model predictor and the model imputer,
respectively. Table 1 reports these model size comparisons.

Table 2 shows 𝑅𝑀𝑆𝐸 values evaluated from different TF model
formats. Converting TF models to TF Lite models (TFL) maintains
model accuracies. However, degradations occur after performing
quantization (TFL Q.). CO2 imputation suffers the most, degrading
from 26.591 ppm to 33.743 ppm. The 𝑅𝑀𝑆𝐸 degradations of other
features are considered to be less significant.

IV. CONCLUSION

This work involved the development of a low-cost air quality
monitoring device with tiny machine learning (tinyML) models
to enhance its capabilities. We deployed multiple tinyML models
based on 2-D CNN layers and a denoising autoencoder architecture
to a single microcontroller and performed parameter prediction
and missing feature imputation. The proposed model predictor can
estimate the testing data with a coefficient of determination above
0.70, and the model imputer performs better when missing rates
are below 80%. With little degradation in model accuracies, the
percentage decreases of the quantized versions compared to their
original lite model sizes are 47.7% and 56.6% for model predictor
and model imputer, respectively.
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