
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Mapping for Maximum Performance
on FPGA DSP Blocks

Bajaj Ronak, Student Member, IEEE, and Suhaib A. Fahmy, Senior Member, IEEE

Abstract—The digital signal processing (DSP) blocks on modern
field programmable gate arrays (FPGAs) are highly capable
and support a variety of different datapath configurations.
Unfortunately, inference in synthesis tools can fail to result in
circuits that reach maximum DSP block throughput. We have
developed a tool that maps graphs of add/sub/mult nodes to
DSP blocks on Xilinx FPGAs, ensuring maximum throughput.
This is done by delaying scheduling until after the graph has
been partitioned onto DSP blocks and scheduled based on
their pipeline structure, resulting in a throughput optimized
implementation. Our tool prepares equivalent implementations in
a variety of other methods, including high-level synthesis (HLS)
for comparison. We show that the proposed approach offers
an improvement in frequency of 100% over standard pipelined
code, and 23% over Vivado HLS synthesis implementation, while
retaining code portability, at the cost of a modest increase in logic
resource usage.

Keywords—Datapath synthesis, digital signal processing (DSP),
eld programmable gate arrays (FPGAs), fixed-point arithmetic.

I. INTRODUCTION

As FIELD PROGRAMMABLE GATE ARRAYS (FPGAs)
have moved from being used in glue logic and interfacing to
implementing complete systems, manufacturers have sought to
improve their performance and efficiency. While the general
look-up table (LUT)-based architecture offers generality, there
are numerous functions that find widespread use across many
different applications, and which, when implemented in LUTs
consume significant area and power; arithmetic operators are
an example. Hence, hard blocks have been added to FPGA
architectures to make common functions more efficient than
equivalent implementations in LUTs. FPGAs have found ap-
plication in different areas like digital signal processing (DSP),
image processing, software defined radio, automotive systems,
high performance computing, security, and more, through the
capabilities offered by embedded blocks like Block RAMs
and DSP blocks. A general overview of the architecture of
a modern Xilinx FPGA is shown in Fig. 1.

Xilinx first introduced hard multipliers in the Virtex-II
family of FPGAs to speed up arithmetic computations. These
evolved into the highly capable and flexible DSP48E1 blocks
in recent Virtex-6 and 7-series devices. The DSP48E1 primi-
tive supports many functions including add-multiply, multiply,
multiply-accumulate, multiply add, and three-input add, which
are selected through configuration inputs. Pipeline registers are
also embedded within these blocks to enhance throughput. A
simple representation of the DSP48E1 primitive is shown in
Fig. 2. Inputs A, B, C, and D are of different wordlengths:
30, 18, 48, and 25 bits, respectively. The primitive’s three

IOB (Input/
Output Block)

CLB (Configureable
Logic Block)

Embedded
Memory

DSP Block

Fig. 1: Modern Xilinx FPGA architecture, showing different
basic components.

sub-blocks are the preadder, multiplier, and arithmetic logic
unit (ALU). The preadder is a 25-bit add/subtract unit which
operates on input D and the lower 25 bits of input A. The
multiplier block is 25×18 bits, multiplying the lower 25 bits of
input A with input B. The ALU block is an add/subtract/logic
unit which can operate on the multiplier output, input C,
concatenated A and B inputs, or the previous output of the
DSP block [1]. These sub-blocks can be combined in various
ways to allow the DSP block to be used for different functions.

Pipelined register transfer level (RTL) code can be mapped
to DSP blocks when its structure is similar to one of the
possible configurations. However, complex functions requiring
multiple DSP blocks do not achieve performance close to the
capabilities of the DSP blocks because the vendor tools fail
to effectively map them to the DSP blocks. Our experiments
show that mapping is primarily focused around using the
multipliers in the DSP block, and often other operators are
simply implemented in LUTs.

We present an automated tool that can map complex mathe-
matical functions to DSP blocks, achieving throughput close to
the theoretical limit. Our focus is on exploiting the full capa-
bilities of the DSP block while maintaining throughput through
matched pipelining throughout the computational graph. A
function graph is first segmented into sub-graphs that match
the various possible configurations of the DSP block primitive,
then balancing pipeline registers are inserted to correctly align
the datapaths. We show that generic RTL mapped in this
manner achieves identical performance to code that instantiates

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

+/-

+ -
D

/

/

/

/

18

30

25

48

/
48

B

A

D

C

P

Multiplier
25x18

Pre-adder
25-bit

X

/
48 A:B

ALU
48-bit

Fig. 2: Structure of the Xilinx DSP48E1 primitive.

the DSP48E1 primitives directly. We have also integrated the
open-source tool Gappa [2] to allow us to investigate resulting
truncation errors and optimise allocation of signals to the
different DSP block inputs. The proposed mapping approach
can be incorporated into a high-level synthesis flow to allow
arithmetic-intensive inner loops to be mapped for maximum
throughput.

We present an automated tool that can map complex mathe-
matical functions to DSP blocks, achieving throughput close to
the theoretical limit. Our focus is on exploiting the full capa-
bilities of the DSP block while maintaining throughput through
matched pipelining throughout the computational graph. A
function graph is first segmented into sub-graphs that match
the various possible configurations of the DSP block primitive,
then balancing pipeline registers are inserted to correctly align
the datapaths. We show that generic RTL mapped in this
manner achieves identical performance to code that instantiates
the DSP48E1 primitives directly. We have also integrated the
open-source tool Gappa [2] to allow us to investigate resulting
truncation errors and optimize allocation of signals to the
different DSP block inputs. The proposed mapping approach
can be incorporated into a high-level synthesis (HLS) flow
to allow arithmetic-intensive inner loops to be mapped for
maximum throughput.

The main contributions of this paper are:
1) A tool to segment complex mathematical expressions

across DSP blocks, considering their internal capabil-
ities and pipeline registers, with both a greedy and
improved heuristic method demonstrated.

2) Automation of mapping to a number of different tech-
niques, including pipelined RTL and Vivado HLS, to
demonstrate the effectiveness of our approach.

3) Integration of Gappa error analysis for improved map-
ping to minimize error.

4) Full automation of the design flow for both the pro-
posed and comparison methods, allowing a thorough
investigation of performance metrics.

5) Comparison of the proposed approach against others
for 18 benchmarks, as well as a case study application,
demonstrating significant improvements in throughput.

II. RELATED WORK

As DSP blocks can offer increased performance when
mapping computationally intensive datapaths, many algorithms

have been implemented with careful mapping to these blocks.
Examples include color space conversion [3], floating point
operators [4], [5], filters [6], and cryptography [7], where the
DSP blocks offer an overall increase in system performance
over LUT-only implementations. This requires the datapaths to
be manually tailored around the low-level structure of the DSP
block, maximizing use of supported features. More general
application to polynomial evaluation has also been proposed,
again with detailed low-level optimization around DSP block
structure [8]. The flexible DSP blocks in Xilinx FPGAs have
also been exploited as the main functional unit in a soft
processor [9].

While synthesis tools can infer DSP blocks from general
pipelined RTL code, system design is increasingly being done
at higher levels of abstraction. Widely used HLS tools today
include Impulse-C [10], Bluespec [11], LegUp [12], and Xilinx
Vivado HLS [13]. These tools synthesize to general RTL code
which is then mapped through vendor tools to a specific target
device. The main challenge here is that some optimizations
made in the conversion to RTL may prevent efficient mapping
to hard macros, especially when the functionality to be mapped
is beyond the “standard” behavior of a single block. In a
typical HLS flow, the datapath is extracted from the high-
level description and scheduled before RTL is generated. This
scheduling is architecture agnostic and primitives are inferred
instead during the synthesis and mapping phases. Hence, if the
schedule does not “fit” the structure of the DSP block, it may
not be inferred to the fullest extent.

FloPoCo [14] is an open-source tool written in C++, that
generates custom arithmetic cores using optimized floating-
point operators, generating synthesisable VHSIC hardware de-
scription language. It comprises a collection of parameterized
basic operators and can be used to generate custom architec-
tures satisfying user-defined constraints, including precision
and target frequency. It also includes a polynomial function
evaluator, which can implement arbitrary single- variable poly-
nomial circuits. However, it generally uses DSP blocks as
fast multipliers, and does not consider the other sub-blocks
(preadder and ALU), except insofar as the synthesis tools infer
them.

General mapping to hard blocks has been considered in
various implementation flows. Verilog-to-Routing (VTR) [15]
is an end-to-end tool which takes a description of a circuit in
Verilog HDL and a file describing the architecture of the target
FPGA and elaborates, synthesizes, packs, places, and routes
the circuit, also performing timing analysis on the design
after implementation. Its front-end synthesis is done using
ODIN-II [16] which is optimized for some embedded blocks
like multipliers and memories. For more complex embedded
blocks, the user must explicitly instantiate them, and they are
considered “black boxes” by the tool.

Vendor flows infer hard blocks primarily at the map-
ping phase. This means RTL code (which has already been
pipelined) that does not directly fit the structure of the DSP
block and its internal sub-blocks and register stages can result
in poor mapping, as we demonstrate in this paper. This is
especially true of flexible primitives like the DSP48E1 in
modern Xilinx devices that support a variety of configurations.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

At present, there are no tools that automatically map to flexible,
multifunction hard macro blocks efficiently because this is
left to the mapping stage. We present a DSP block mapping
flow that results in hardware implementations that operate at
close to maximum frequency, while consuming comparable
resources to HLS tools. This flow could be integrated into an
HLS tool to allow its benefits to be gained in larger, more
complex applications.

Gappa [2] is a tool intended for verification and formal proof
generation on numerical expressions, supporting both fixed-
point and floating-point arithmetic. It can generate tight bounds
on computational errors at intermediate and output nodes, and
can be used for output range determination for given input
ranges. Tisserand [17], [18] used Gappa to determine tight
bounds for datapath optimization and precision analysis for
polynomial evaluation. Gappa and Gappa++ [19] were also
used for dataflow computations functions precision analysis for
SPICE simulations in [20]. We integrate Gappa in our flow to
help improve the accuracy of the resulting implementations.

III. APPROACHES FOR MAPPING TO DSP BLOCKS

We consider graphs of add-multiply nodes typical of a
wide range of algorithms. Recall that we are focused here
on what would be the inner loop mapping for a typical HLS
design. Ideally, these graphs can make use of the various sub-
blocks present in the DSP48E1 primitive (Fig. 2) if mapped
correctly, meaning extra LUT-based circuitry is reduced, and
the resulting implementation should reach close to the DSP
block maximum frequency of around 500 MHz (on the Virtex
6 family). The configuration inputs to DSP48E1 primitive
determine how data passes through the block, and which sub-
blocks are enabled. These configuration inputs can be set at
run time, or fixed at design time. Considering all combinations
of arithmetic operations, the DSP48E1 supports 29 different
datapath configurations, which we store in a template database.
Three of these are shown in Fig. 3. In addition to these
29 DSP block templates, we include a template for LUT-
based parameterized adder/subtractor. The template database
can also be expanded to include custom-designed optimized
operators like dividers or wide multipliers. Note that such
custom templates would be treated as black boxes, since they
would already be optimized, hence not offering the flexibility
we are exploiting in the DSP blocks. For this paper, we have
limited our scope to add-multiply graphs to explore the limits
of DSP block mapping.

Mapping an add-multiply graph to a circuit can be done
in various ways. A simple and naive approach that fully
relies on vendor tools, is to write combinational Verilog
statements representing the required data flow, adding registers
at the output, allowing the tools to redistribute these during
retiming, with the mapping phase then inferring DSP blocks.
Synthesis tools can generally map individual Verilog arithmetic
operators efficiently. A more informed approach is to write
a pipelined RTL implementation after scheduling the flow
graph with pipeline registers added between arithmetic stages.
Alternatively, the dataflow graph can be described in a high-
level language and HLS tools used to map to a hardware
implementation.

−

D A

×

B

out

(a)

×

A B

+

C

out

(b)

+

A D

×

B

+

C

out

(c)

Fig. 3: DSP48E1 configuration dataflow graphs for expressions
(a) (D−A)×B, (b) C +(A×B), and (c) C +((D+A)×B),
where horizontal lines are registers.

Although none of these techniques take into account the
internal structure of the DSP blocks, we expect the vendor
mapping tool to efficiently utilize the different configurations
of the DSP blocks in implementation. In the combinational
implementation with retiming, we expect the synthesis tools
to retime the design by absorbing the output registers into
the datapath, allowing portions of graph to be mapped to the
sub-blocks and pipeline stages of the DSP blocks. However,
our experiments show that vendor tools do not retime deeply
into the graph, resulting in DSP blocks being used only for
multiplication.

In a scheduled pipelined RTL implementation, the operation
schedule has been fixed and the tools have little flexibility
to retime the design, but will nonetheless map to DSP block
configurations when a set of operations and intermediate
registers match. HLS tools generate a generic intermediate
RTL representation, similar to manually scheduled pipelined
RTL, though we might expect them to do this in a more
intelligent manner when dealing with DSP blocks. Our ex-
periments have shown that none of the above methods result
in implementations that maximize DSP block usage or achieve
high performance, as we discuss in Section VII.

Our proposed tool generates RTL code that maximizes
performance through efficient mapping to FPGA DSP blocks.
First, the arithmetic graph is segmented into sub-graphs that
each match one of the DSP block configurations in the tem-
plate database discussed earlier. The sub-graphs can then be
converted to either direct instantiations of DSP48E1 primitives
with the correct configuration inputs, or RTL representations
of the same templates. While direct instantiation ensures the
DSP blocks are adequately used, it makes the output code less
portable and readable, and this might not be preferable where
the graph is part of larger system. The tool creates alternative
implementations from any given input graph and generates area
and frequency results for comparison. We now discuss how
these different techniques are implemented.

A. Combinational Logic with Re-timing: Comb
All nodes of the dataflow graph are implemented as com-

binational Verilog assign statements. Sufficient pipeline stages
are added at the output node(s) to allow retiming. We enable

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

the register balancing Synthesis Process property in Xilinx
ISE. Ideally, this should allow the tool to retime the design
by pulling register stages back through the datapath to allow
more efficient DSP block mapping.

B. Scheduled Pipelined RTL: Pipe
As soon as possible (ASAP) and as late as possible (ALAP)

schedule variations are generated, with pipeline stages inserted
between dependent nodes, mirroring what a typical RTL de-
signer might do. Additional registers are added to ensure all
branches are correctly aligned.

C. High-Level Synthesis: HLS
We use Vivado HLS from Xilinx because it is likely to be

the most architecture aware of any of the HLS tools available.
Similar to Comb, each node is implemented as an expression,
and directives are used to guide the RTL implementation to
fully pipeline the design. Since C++ code can have only
one return value, dataflow graphs with multiple outputs are
implemented by concatenating all the outputs, which can later
be sliced to obtain individual outputs.

D. Direct DSP Block Instantiation: Inst
The dataflow graph is segmented into sub-graphs that can

be mapped to one of the DSP48E1 templates identified earlier.
Two graph segmentation approaches are explored. The first
is a greedy approach, in which the graph is traversed from
input to output with appropriate sub-graphs identified during
traversal. The second approach applies a heuristic to try and fit
as many nodes as possible into each sub-graph. Both of these
methods are discussed in Section IV. For Inst, the determined
sub-graphs are then swapped for direct instantiations of the
DSP48E1 primitive, with all control inputs set to the required
values.

E. DSP Block Architecture Aware RTL: DSPRTL
Rather than instantiating the DSP48E1 primitives directly,

we replace each sub-graph with its equivalent RTL code
directly reflecting the templates structure. This variation will
make it clear if it is the instantiation of the primitives, or
the structure of the graph that has a fundamental effect on
performance.

F. Ensuring a Fair Comparison
Along with generating all five different implementations

from the same graph description, a number of factors must
be considered to ensure a fair comparison. The first is the
overall latency of an implementation, as it impacts resource
requirements. Inst uses fully pipelined DSP blocks, which
results in a deep pipeline, and thus many balancing registers.
For Comb, we add as many pipeline stages after the combi-
national logic for retiming as there are pipeline stages in Inst.
This gives the tools sufficient flexibility to retime the circuit
up to an equivalent depth in theory. Similarly, for HLS, we
enforce a constraint on latency, equal to the latency of Inst,

X

+/-

+/-

D A

B

C

P

+/-

+
-D

////

1
83
0

2
5

4
8

/ 4
8

BADC

P

M
u

ltip
lie

r
2

5x1
8

P
re

-ad
d

e
r

2
5-b

it

X

/
4

8
A

:B

A
LU

4

8-b
it

Fig. 4: Dataflow through the DSP48E1 primitive.

using a directive in the Tcl script. However, for Pipe, we let
the schedule determine the number of pipeline stages as this
reflects what an expert designer might do, and adding more
stages might increase area for the purposes of comparison.

Another important factor is operand wordlengths. The input
and output ports of the DSP block have different wordlengths.
When the output of a DSP block is passed to anothers input,
it must be either truncated, or the latter operations should be
made wider. We choose to truncate and try to minimize the
error using Gappa (discussed in more detail in Section V).
This is equivalent to a multistage fixed point implementation
though we can optimize for known and fixed inputs. Primary
inputs that are narrower than the input ports of the DSP
block are sign extended. To ensure that comparisons between
all implementation techniques are fair, we manually handle
intermediate wordlengths in Comb, Pipe, and HLS to match
those determined for Inst for all operations. This is necessary
because other techniques may implement wider operations in
intermediate stages, thus skewing resource usage and accuracy
making implementations incomparable. Note that in the case
where the designer does require wider intermediate opera-
tions, the tool can be modified to instantiate optimized multi-
DSP-block operators thereby still guaranteeing performance.
Finally, since Comb requires the register balancing synthesis
feature to be enabled, we do so for all methods.

IV. SEGMENTING DSP BLOCKS

In order to map as many nodes of the input dataflow graph
to DSP blocks, it must first be segmented into sub-graphs,
each of which matches a DSP block template as defined in
Section III. The flow graph for a DSP48E1 primitive comprises
three nodes, as shown in Fig. 4.

We explore two approaches to this segmentation problem.
The first is a greedy algorithm, and the second applies a more
global heuristic optimisation.

A. Greedy Segmentation
This algorithm (detailed in Algorithm 1) starts with a ran-

domly selected primary input node. If that node has multiple
outputs, it cannot be combined with a child node into a

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

DSP block template since the DSP48E1 primitive is designed
in such a way that intermediate outputs cannot be accessed
externally without bypassing later sub-blocks. If the node has
a single child, they are combined into a sub-graph, and the
same process is repeated to add a third node to the sub-graph
if possible. Sub-graph merging is also terminated if a node is
a primary output of the top level graph.

Each time a sub-graph of one, two, or three nodes is
extracted, it is matched against the template database and if a
match is found, those nodes are marked as checked and not
considered in subsequent iterations. If only a partial match
is found, only those matched nodes are marked as checked.
The process is repeated until all nodes are checked. Sub-
graphs combining two add/sub nodes with no multiply nodes
are reseparated with the root node implemented in LUTs, and
the child node left for remerging with other nodes in further
iterations. The output of this process is a graph consisting of
DSP block templates (each with an associated latency) and
some adder nodes to be implemented in logic.

The time complexity of the greedy segmentation algorithm
is directly proportional to n, where n is the number of nodes
in graph.

B. Improved Segmentation
The greedy algorithm discussed above can result in sub-

optimal segmentation as it only considers local information
starting from the inputs. We try an improved algorithm (de-
tailed in Algorithm 2) that instead first finds possible sub-
graphs which can be mapped to a DSP block template utilising
all three sub-blocks, then subsequently finds the sub-graphs
with two nodes, and then remaining single nodes.

The segmentation process is broken into four iterations. In
the first iteration, only valid sub-graphs of three nodes are
matched to the template database, as discussed in Section IV-A,
and if a full match is found, these nodes are marked as
checked. If only a partial match is found, all nodes are
reseparated. In the second and third iterations, the same process
is applied to all remaining unchecked nodes for sub-graphs
of two nodes. There are two types of two-node templates:
those that include the preadder and multiply sub-blocks, and
those with the multiply and ALU sub-blocks. Since the ALU
wordlength is wider than the preadder, we consider sub-graphs
of the latter type in this second iteration. This also has the
benefit of allowing a 1-cycle reduced latency through the DSP
block, resulting a shorter overall pipeline depth, and hence
reduced resource usage. In the third iteration two-node sub-
graphs using the preadder are matched. Matched sub-graph
nodes are then marked as checked. In the fourth iteration
remaining uncovered nodes are considered individually and
mapped to DSP blocks for multiply operations, or LUTs for
additions/subtractions.

The time complexity of the improved segmentation algo-
rithm is up to four times higher than for the greedy algorithm,
since four passes must be completed on the graph.

V. ERROR MINIMISATION

As discussed in Section I, the DSP block input and output
ports have a range of widths. This results in a number of

Algorithm 1: Greedy Segmentation
def greedySeg(dfg, outNodes):

Data: Dataflow Graph (dfg); List of output nodes (outNodes)
Result: Dataflow graph of identified templates (templatesDfg)

begin
#dataflow graph of templates identified
templatesDfg = []

#for each node n in dfg
for n in dfg:

#empty graph of 3 nodes
subGraph = [0, 0, 0]
if n not checked:

subGraph[0]=n
if terminateSubGraph(n, outNodes):

template = getTemplate(subGraph)
else:

nNext = n[out]
if nNext not checked:

subGraph[1]=nNext
if terminateSubGraph(nNext, outNodes):

template = getTemplate(subGraph)
else:

nNextNext = nNext[out]
if nNextNext not checked:

subGraph[2]=nNextNext
template = getTemplate(subGraph)

else:
template = getTemplate(subGraph)

if template:
templatesDfg.add(template)
#mark nodes of subGraph assigned to template checked
subGraph.checked()

else:
continue

return templatesDfg

def terminateSubGraph(n, outNodes):
#if the node has been assigned to a template
if n is checked:

return True
#if output going to multiple nodes
if len(n[out]) > 1:

return True
#if output is primary output
if n[out] in outNodes:

return True
return False

possible ways to assign inputs to each DSP block, and the
need for truncation when wider outputs are fed to narrower
inputs in subsequent stages. Since the inputs are in fixed-
point representation, we truncate intermediate signals when
necessary while ensuring that the integer part is preserved;
only the least significant fractional bits are trimmed. This is
equivalent to a multistage fixed-point implementation, though
we can optimize for known and fixed inputs.

There are two straightforward ways to reduce error when
mapping to DSP blocks. The first is to ensure that we consider
the width of operands when assigning them to inputs. Wider
inputs should be bound to the wider inputs of the DSP block,
especially when dealing with the 25×18-bit multiplier. Second,
when mapping a two-node sub-graph to a DSP block template,
those that use the ALU sub-block are preferred to those using
the preadder since that offers a wider 48-bit adder/subtractor,
compared to the 25 bits of the preadder.

Although, these improvements reduce the error to some
extent, we must still consider situations where the output of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

Algorithm 2: Improved Segmentation
def improvedSeg(dfg, outNodes):

Data: Dataflow Graph (dfg); List of output nodes (outNodes)
Result: Dataflow graph of identified templates (templatesDfg)

begin
#dataflow graph of templates identified
templatesDfg = []

#add-mul-add, mul-add, add-mul, mul/add
numNodesList = [3, 2, 2, 1]

for numNodes in numNodesList:
for n in dfg:

subGraph = getNextNodes(n, numNodes, dfg, outNodes)
if subGraph:

template = getTemplate(segList)
if template.valid():

templatesDfg.add(template)
subGraph.checked()

else:
continue

return templatesList

def getNextNodes(startNode, numNodes, dfg, outNodes):
begin

for n in dfg:
#empty graph of 3 nodes
subGraph = [0, 0, 0]
if n[name] == startNode[name]:

if n not checked:
subGraph[0]=n
if numNodes == 1:

return subGraph

if terminateSubGraph(n,outNodes):
return 0

else:
nNext = n[out]
if nNext not checked:

subGraph[1]=nNext
if numNodes == 2:

return subGraph

if terminateSubGraph(nNext,outNodess):
return 0

else:
nNextNext = nNext[out]
if nNextNext not checked:

subGraph[2]=nNextNext
if numNodes == 3:

return subGraph

return 0
else:

return 0

else:
return 0

return 0

one DSP block is used as the input to another. Consider the
output of a DSP block performing a 25×18 bit multiplication
connected to the 25-bit preadder of a subsequent DSP block,
a naive truncation of 18 bits could introduce significant error.
However, analyzing the range of the multiplier operands we
may find that the result precision does not in fact exceed 25
bits, and hence truncation can be done without introducing
error.

Gappa [2] allows us to determine realistic, tight bounds
for output ranges at individual nodes based on a provided
input range, to avoid over-optimistic implementation while
minimizing error in our mapping. Error minimization using

xMul4 = fixed<-15,ne>(4) * fixed<-15,ne>(x);
node1 = fixed<-15,ne>(xMul4) * fixed<-15,ne>(x);
node2 = fixed<-15,ne>(node1) - fixed<-15,ne>(0.625);
node3 = fixed<-15,ne>(node2) * fixed<-15,ne>(node1);
node4 = fixed<-15,ne>(node3) + fixed<-15,ne>(0.625);
node5 = fixed<-15,ne>(node4) * fixed<-15,ne>(x);

{
(x in [0,1]) ->
(
xMul4 in ? /\
node1 in ? /\
node2 in ? /\
node3 in ? /\
node4 in ? /\
node5 in ?

)
}

Fig. 5: Example Gappa script for expression x(4x2(4x2 −
0.625) + 0.625).

Gappa is done in two steps.
Step 1: From the dataflow graph of the input expression,

ideal wordlengths for all intermediate outputs are determined
using Gappa, based on the provided input range and precision.
A Gappa script is generated and executed; an example is shown
in Fig. 5.

This script has been generated for input x between 0 and 1,
with a precision of 15 bits. Numbers are rounded to nearest
with tie breaking to even mantissas. Execution of this script
gives the range of all six intermediate outputs, from which the
wordlengths of intermediate outputs are calculated ignoring the
wordlength constraints of the DSP blocks, resulting in ideal
wordlengths for an error-free implementation.

Step 2: The segmented graph’s intermediate outputs are
bound to template ports based on signal width. Using this
initial binding and the ideal wordlengths calculated in the pre-
vious step, an iterative process follows to identify intermediate
outputs not satisfying the ideal wordlength and try to minimize
error.

The segmented graph is reformed in terms of the templates
used (i.e., sub-graphs are represented as nodes), and all nodes
are initially marked as unchecked. In each iteration, the tem-
plate graph is traversed from the inputs. For each template,
all nodes are checked for error and if they satisfy the ideal
wordlength, the template is marked as checked for all further
iterations. If any node does not meet the required wordlength,
it is marked as an error node. If the error node is an add/sub
node, it is moved out of the DSP template, and is mapped to
an LUT-based adder/subtractor template of width matching the
ideal wordlength and then marked as checked. The remaining
unchecked nodes are then segmented again (resegmentation)
for further iterations. As we are using single DSP block
templates, if the error node is a multiply node, inputs to the
node are truncated to t the wordlength of DSP block port it is
bound to.

After each iteration, the wordlengths of the checked nodes
can be wider (if the DSP port width is sufficient) or nar-
rower (if multiply node inputs are truncated) than the ideal
wordlengths. For further error analysis for unchecked nodes,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

inputs = <list of inputs separated by comma (,)>
input_ranges = <list of input ranges in {min,max} format,
separated by (;)>
precision = <precision>
<instruction1>
<instruction2>
...
<instruction(M-1)>
<instructionM>

test_inputs [optional]
<input1> = <list of test inputs separated by comma>
<input2> = <list of test inputs separated by comma>
...
<inputN> = <list of test inputs separated by comma>

N: No of inputs; M: No of instructions

Fig. 7: Input expression file format.

Gappa scripts are generated, using the updated wordlengths of
the checked nodes. This iterative process is terminated once
all nodes have been checked for error. Using Gappa in this
manner allows us to ensure that truncations take into account
range properties to minimize error significantly.

VI. AUTOMATED MAPPING TOOL

Bringing together the techniques discussed thus far, we have
developed a fully automated mapping tool. It takes an add-
multiply dataflow graph as input, and prepares synthesisable
RTL implementations for all the mapping methods described
in Section III, using either of the segmentation algorithms
discussed in Section IV, with integration of Gappa for error
minimization, as discussed in Section V. A flow diagram of
the tool is shown in the Fig. 6.

A. Input File Parsing

The front-end accepts a text file listing the inputs of an
expression with their ranges and precision. The expression is
written as a series of two-operand operations. Fixed power-of-
2 multiplications can be combined with other operators and
are implemented using shifts, saving multipliers, e.g., 16x5−
20x3 + 5x ⇒ x(4x × x(4x × x − 5) + 5). For the purposes
of functional verification, the input file can also contain a set
of test vectors. If these are provided, the tool also generates
testbenches for all generated implementations. The format of
the input file is shown in Fig. 7.

B. DFG Extraction and Ideal Wordlength Calculation

A dataflow graph is generated from the input file with each
instruction represented as a node in the graph. The tool then
generates a Gappa script to determine the range and ideal
wordlengths of all intermediate and primary outputs based on
the input precision and ranges provided in the input file. Each
node is then tagged with its input and output ranges.

C. Graph Partitioning

The graph generated in the previous stage is then partitioned
into sub-graphs using either of the methods discussed in
Section IV. Each of these sub-graphs is either mapped to one
of the DSP templates in the template database or an LUT-based
adder. The sub-graphs input and output edges are then mapped
to appropriate ports of DSP48E1 primitives. This transforms
the input dataflow graph into a template graph, in which each
node is a DSP block template.

D. Error Minimization

After calculating ideal wordlengths for the dataflow graph
and initial partitioning, Gappa is used to iteratively minimise
errors due to truncation and port assignment, as discussed in
Section V.

E. Pre-processing

The tool now has a graph of multiplier and adder nodes
with higher level information about mapping to DSP block
templates with some nodes optionally mapped to logic. Some
preprocessing is then necessary to allow generation of the
various implementations.

1) Comb: As discussed in Section III, pipeline registers
are added at the output node(s) of the graph to facilitate
retiming during synthesis.

2) Pipe: The graph is scheduled (both ASAP and ALAP
schedules are generated). Pipeline registers are added
between dependent nodes.

3) Pipeline Balancing: It ensures dataflows through the
graph are correctly aligned. Nodes of the flow graph are
assigned a level according to the schedule. The level
of each node input is compared with the level of its
source registers, and if the difference is greater than
1, balancing registers are added to correctly align the
datapaths.

4) HLS: The input expression is converted to C++ with
each node of the flow graph implemented as an in-
struction. If unit tests are given in the input file, a C++
testbench is also generated. Vivado HLS directives are
used to set the pipeline latency, which is set equal to
the latency of Inst. Other files required for the Vivado
HLS project are also generated.

5) Inst, DSPRTL: After generating the template graph in
Graph Partitioning, the pipeline stages of the graph are
balanced to correctly align data flow, as for Pipe.

F. RTL Generation

The Verilog code implementing the datapaths for all tech-
niques and their testbenches are generated. For all techniques,
the wordlengths of the inputs and outputs of each node are
explicitly set to the same as those of Inst for fair comparison.

For Comb, RTL implementing each node as combinational
logic is generated, with pipeline registers equal to the pipeline
depth for Inst at the output for retiming.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

Dataflow Graph
Generation

Input File

Dataflow Graph
Scheduling

Template Graph
Scheduling

Pipeline
Balancing

HLS Project
Generation

Pipeline
Balancing

RTL Generation RTL Generation RTL GenerationRTL Generation

Xilinx ISE Project Generation

Comb HLS Inst DSPRTL

Vendor tool flow
Reports

Generation

Vendor
Tool Flow

Register
Insertion

Pipe

Pre-processing

Input File Parsing

Graph Partition

Intermediate
Error Calculation

Repartition
Graph?

Yes

No

Template
Database

Gappa Script
Generation

Gappa Wordlength
Calculation

Graph
Repartition

Gappa Script
Generation & Execution

Graph Partitioning

DFG Generation & Ideal
Wordlength Calculation

Error Minimization

RTL Generation

RTL Projects Execution

Fig. 6: Tool flow for exploring DSP block mapping.

For Pipe, all node operations and registers scheduled in a
particular schedule time are implemented as a pipeline stage,
in one Verilog always block.

For HLS, we run the Vivado HLS project generated in the
previous stage, which translates the high-level C++ implemen-
tation of the input expression into synthesisable RTL. It also
generates an equivalent RTL testbench from the C++ testbench.

For Inst, Verilog RTL for instantiations of the DSP block
templates along with the balancing registers are generated.
DSPRTL is an RTL equivalent of Inst, reflecting the internal
structure of the Inst implementation but using behavioural
Verilog blocks that for each DSP block template. Intermediate
signals are first shifted then truncated depending on the desti-
nation wordlength. If error minimisation is enabled, then the
shift amount is dependent on this analysis, else, a basic range
analysis is applied.

G. Vendor Tool Flow

The RTL files for all above methods are then synthesized
through the implementation vendor tools. Since this can be
time consuming, we have automated the process through a
series of scripts. First, ISE Projects are generated for all tech-
niques with specific device and timing constraints. Synthesis
is then run, and the reports stored. Implementation stages
are then run iteratively to determine the minimum achievable
clock period. A default timing constraint is used first and if
the design fails, the constraint is relaxed until the post place
and route implementation satisfies it. Resource requirements
are also extracted from the post place and route reports for
analysis.

VII. EXPERIMENTS

To explore the effectiveness of our DSP block mapping
technique against the other standard methods described, we

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

TABLE I: Number of I/O ports and operations.

Benchmark Inputs Outputs Add/Subs Muls

ARF 26 2 12 16
Chebyshev 1 1 2 3
EWF 21 5 26 8
FIR2 17 1 15 8
Horner Bezier 12 4 6 8
Mibench2 3 1 8 6
Motion Vector 25 4 12 12
Poly1 2 1 5 4
Poly2 2 1 3 5
Poly3 6 1 4 6
Poly4 5 1 3 3
Poly5 3 1 13 11
Poly6 3 1 19 23
Poly7 3 1 18 17
Poly8 3 1 16 15
Quad Spline 7 1 4 13
SG Filter 2 1 6 6
Smooth Triangle 29 14 20 17

implemented a number of benchmark multiply-add ow graphs.
These include the Chebyshev polynomial, Mibench2 lter,
quadratic spline, and SavitzkyGolay lter from [21]; the ARF,
EWF, FIR2, Horner Bzier, motion vector, and smooth triangle
extracted from MediaBench [22]; and eight polynomials of
varied complexity from the Polynomial Test Suite [23]. We
prepared input files for all 18 of these expressions for pro-
cessing through our tool. Table I shows the number of inputs
and outputs, and number of each type of operation (add/sub,
multiplier) for all benchmarks.

To better understand the limits of DSP block performance,
we explored the maximum frequency achievable for different
template configurations, as shown in Table II. We can see that
a three-cycle pipeline offers maximum performance when the
pre-adder is not used, and a four-cycle pipeline is required
to achieve the same frequency if the pre-adder is used. We
map only to template configurations that achieve this maximum
frequency of 473 MHz to maximise overall circuit throughput.

TABLE II: Maximum frequency of a DSP48E1 for different
blocks used, with different number of pipeline stages.

Sub-blocks used Stages Freq (MHz)

2 236
Multiplier 3 473

4 473

2 196
Pre-adder, multiplier 3 292

4 473

2 263
Multiplier, ALU 3 473

4 473

2 196
Pre-adder, multiplier, ALU 3 292

4 473

TABLE III: Runtime of the segmentation algorithms (ms).

Benchmark Greedy Segmentation Improved Segmentation
w/o Gappa w/ Gappa w/o Gappa w/ Gappa

ARF 12.8 21.5 13.0 21.5
Chebyshev 36.2 48.6 37.9 49.1
EWF 67.4 81.3 70.7 82.5
FIR2 22.2 32.4 21.7 31.5
Horner Bezier 20.8 29.6 21.7 30.0
Mibenc2 18.3 26.6 17.8 25.9
Motion Vector 26.3 36.3 27.8 37.2
Poly1 18.4 25.8 18.8 25.8
Poly2 75.7 94.4 79.1 95.3
Poly3 308.3 339.4 363.2 377.5
Poly4 231.7 274.2 244.9 276.9
Poly5 108.3 144.2 124.6 156.3
Poly6 251.9 326.8 266.7 328.3
Poly7 358.1 505.7 378.3 509.7
Poly8 126.0 213.9 124.9 217.9
Quad Spline 34.4 68.1 32.8 68.8
SG Filter 45.5 92.7 43.8 94.1
Smooth Triangle 600.1 884.1 606.0 854.4

Geometric Mean 67.3 96.3 69.6 97.6

A. Tool Runtime
The proposed tool is run on an Intel Xeon E5-2695 running

at 2.4 GHz with 16GB of RAM. The times taken to generate
synthesisable RTL from the high-level description for both
segmentation methods, with and without error minimisation,
averaged over 100 executions, are shown in Table III. These
runtimes include the time taken by Gappa to determine in-
termediate signal wordlengths for inputs in range [0, 1] with
15-bit precision. The runtimes are entirely tolerable as part of
a larger design flow. Smooth Triangle, which results in the
highest number of templates after segmentation, takes under
a second. On average, a benchmark can generate RTL in less
than 70 ms without using Gappa and under 100 ms with error
minimisation.

I/O wordlength does not affect the runtime if error min-
imisation is not applied, as intermediate outputs are simply
truncated. Error minimisation means the segmentation process
is repeated to minimise error and runtime does increase with
I/O wordlength, although not significantly. The maximum
runtime for a benchmark with an input range [0, 15] and 31-bit
precision is approximately 1.2 seconds.

We also measured the runtime for processing a synthet-
ically generated dataflow graph with 36 inputs, 9 outputs,
and 225 nodes, which was approximately 3.85 or 4 seconds
(greedy/improved respectively) to RTL generation. This circuit
would consume a significant proportion of the DSP blocks on
a moderate sized FPGA.

B. Resource Usage and Frequency
All implementations target the Virtex 6 XC6VLX240T-1

FPGA as found on the ML605 development board, and use
Xilinx ISE 14.6 and Xilinx Vivado HLS 2013.4. Resource us-
age and maximum achievable frequency for all 18 benchmarks,
for all 5 techniques, using the improved segmentation method
with error minimisation are shown in Fig. 8. The improved
segmentation method results in more templates with higher

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

sub-block usage but overall DSP block usage is the same
for both methods since the number of multipliers generally
determines this.

To compare area resource usage between different tech-
niques, we compare the area usage in equivalent LUTs,
LUT eqv = nLUT + nDSP × (196), where 196 is the ratio
of LUTs to DSP blocks on the target device used, a proxy for
overall area consumption.

It is clear that the performance of Comb is the worst among
all techniques. The vendor tools are not able to absorb registers
into a very deep combinational datapath. The maximum fre-
quency for Inst is generally much improved (3.4–15.6×) over
Comb, at a cost of increased LUT eqv usage, up to 1.3×. Al-
though the throughput of Pipe and HLS improve significantly,
they do not approach the maximum frequency supported by
the DSP blocks (450–500 MHz) for most benchmarks. For
Pipe, we implemented both ASAP and ALAP schedules, and
chose the one with higher throughput. The performance of
HLS is generally better than Pipe. For the ARF and Smooth
Triangle benchmarks, which have regular repetitive structures,
HLS is able to achieve a frequency close to that achieved
by Inst. However, for FIR2 and Motion Vector, which also
have a regular structure, HLS falls short. The Chebyshev
dataflow graph is very narrow, and HLS is able to implement
it efficiently. For Motion Vector and EWF, Pipe achieves
a higher frequency than HLS. For Motion Vector, the Pipe
graph schedule and structure fit well with the DSP blocks,
and also allows the mapping tool to take advantage of the
internal cascade connection from PCOUT (DSP1) to PCIN
(DSP2), reducing routing delay significantly. For EWF, the
schedule of the dataflow graph feeds forward with no parallel
delay paths. As a result, all the sub-blocks are used in 4
DSP blocks while the other 4 use 2 sub-blocks, leading to
high throughput. On the contrary, HLS uses the DSP blocks
mostly for multiplications (7 out of 8) with extra nodes in
logic. For complex graphs, both Pipe and HLS are unable
to come close the frequency achievable using our proposed
techniques. The maximum frequency for Inst is up to 3× and
1.4× better than Pipe and HLS respectively. We expect Vivado
HLS, being the most architecture aware high-level synthesis
tool for Xilinx devices, to be the most competitive HLS tool
for such mappings.

We analysed the DSP block configurations used in Pipe
and HLS implementations. For Pipe, the tools utilise sub-
blocks well but do not enable all pipeline stages due to the
fixed schedule and only one register stage between dependent
nodes. This significantly affects throughput, as previously
demonstrated in Table II. For HLS, we have observed that
sub-blocks are not used very often. Across all 169 DSP48E1
primitives used by HLS across all benchmarks, none use all
three sub-blocks, while for Inst, 46 such instances exist. Since
we set the pipeline latency for HLS to equal that of Inst, it has
sufficient slack to achieve similar performance, and this also
explains some of its advantage over Pipe.

We show sub-block usage across all benchmarks in Fig. 9.
For Comb and Pipe, over half the DSP blocks are used only for
multiplication, and this is even higher for HLS. The proposed
DSPRTL and Inst methods make more use of the sub-blocks

Comb Pipe HLS DSPRTL Inst

0

20

40

60

80

100

PreAdd-Mul-ALU Mul-ALU PreAdd-Mul Mul

Fig. 9: DSP48E1 primitive sub-block utilisation.

0.8 1 1.2 1.4 1.6 1.8 2

200

300

400

500

Regs+LUTs

M
ax

F
re
q
u
en
cy

2 stage 3 stage Inst HLS

Fig. 10: Frequency-resource trade-off.

including around 20% of instances using all three sub-blocks.
Overall, we see that the throughput achievable by existing

methods is significantly less than what we are able to achieve
through our proposed Inst and DSPRTL approaches, though
the proposed methods suffer from higher resource usage due
to heavily pipelined structures. The proposed methods use
DSP block templates with either 3 or 4 stages (depending on
the sub-blocks used). This pipelining within the DSP block
is “free” since those registers are not implemented in the
fabric, however, extra registers are then required to balance
other paths through the graph. Pipeline depths for the Pipe
and other approaches are shown in Table IV. Fig. 10 shows
an area/throughput trade-off using DSP block templates of
different pipeline depths. Resource usage (#Regs+#LUTs)
is normalized against HLS for all benchmarks. Out of 18
benchmarks, only 6 achieve over 400 MHz using HLS, while
Inst implementations can run at over 450 MHz for all bench-
marks. This higher frequency comes at the expense of re-
sources required for balancing registers. Benchmarks with no
pre-adder templates can achieve high throughput using 2 and
3 stage DSP block templates (as evident from Table II).

The two segmentation algorithms result in the same max-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

0

2,000

4,000

6,000

8,000

Chebyshev Mibench2 FIR2 SG Filter Horner Bezier Poly1 Poly2 Poly3 Poly4Algorithm

R
es
o
u
rc
es

DSPs×196 LUTs Regs

0

100

200

300

400

500

M
a
x
im

u
m

fr
eq
u
en

cy
(M

H
z)

Freq

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

C
om

b
P
ip
e

H
L
S

D
S
P
R
T
L

In
st

0

2,000

4,000

6,000

8,000

Poly5 Poly6 Poly7 Poly8 Quad Spline ARF EWF Motion Vector Smooth TriangleAlgorithm

R
es
ou

rc
es

0

100

200

300

400

500

M
ax

im
u
m

fr
eq
u
en

cy
(M

H
z)

Fig. 8: Resource usage and maximum frequency.

TABLE IV: Pipeline depth for Pipe and other approaches
(Comb/HLS/Inst DSPRTL).

Benchmark Pipe Others Benchmark Pipe Others

ARF 9 26 Poly5 10 24
Chebyshev 6 14 Poly6 12 31
EWF 15 28 Poly7 13 34
FIR2 10 27 Poly8 12 31
Mibenc2 7 16 Horner Bezier 5 12
Poly1 5 13 Motion Vector 5 11
Poly2 5 13 Quad Spline 7 22
Poly3 6 15 SG Filter 8 14
Poly4 5 12 Smooth Triangle 7 21

imum frequency but the improved algorithm marginally im-
proves LUT eqv usage by 1–3% in some cases. Combining
frequency results across all benchmarks, the geometric mean
in the frequency improvement of Inst is 7.4× over Comb, 2×

over Pipe, and 1.2× over HLS. These gains are at the cost of
1.1–1.23× LUT eqv usage, compared to other methods.

A key positive finding of this study is that maximum DSP
block frequency can be achieved without architecture-specific
instantiation of the DSP48E1 primitive. Explicit instantiation
of primitives is not desirable as it leads to complex code
and hinders portability to other architectures. With DSPRTL,
we instead replace those direct instantiations with behavioural
Verilog code that exactly matches the required template, in-
cluding pipeline configuration. We can see that this offers
almost the same performance as Inst but with code that remains
portable. The tools can correctly map these general templates
to DSP blocks, including internal pipeline stages. Just offering
sufficient pipeline stages (as we do for HLS) does not guarantee
maximum throughput. It is essential to take into account the
structure of the DSP blocks when translating the dataflow
graph into Verilog for implementation.

Note, however, that it was necessary to add an additional

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

TABLE V: RMS error reduction due to Gappa.

Without Gappa With Gappa Improvement (×)

range: [0, 1] 0.0020 0.0013 1.54
precision: 15

range: [0, 15] 0.0922 0.0013 70.92
precision: 15

range: [0, 1] 0.0021 0.0009 2.33
precision: 31

range: [0, 15] 0.0919 0.0008 114.88
precision: 31

register stage after each extracted DSP block template for this
to work, likely because the tools could only correctly map
to DSP blocks with a margin of one cycle between them to
break the possible long routing paths between subsequent DSP
blocks and reduce routing delays. Although there are cascade
wires that allow DSP blocks in a column to be connected
without going through the routing fabric, these connect the
output of a DSP block to only the ALU input of the subsequent
block, limiting their use in general mapping where the output
of a DSP block may need to be connected to any input of
a subsequent block. This tweak significantly improved the
performance of DSPRTL from a mean frequency of 383 MHz
to 470 MHz, close the 471 MHz of Inst.

C. Error Minimisation
As discussed in Section V, we have used Gappa to iterate

and re-segment the graph to minimise error. To analyse the
impact on error by incorporating Gappa, we have compared the
error results with and without the Gappa analysis, over 1000
randomly generated test inputs, distributed uniformly between
the range of inputs.

Error is calculated as follows:

error =

1000∑
i=1

|outi−idealouti|
idealouti

1000
(1)

All 18 benchmarks together produce 42 outputs (Table I).
We explore the effect of the Gappa optimisation across all the
benchmark outputs using root mean square (RMS) error:

rmsError =

√√√√√ 42∑
i=1

error i2

42
(2)

To analyse how error varies with the increase in
wordlengths, we run these error experiments on a set of four
inputs ranges and precisions. With a precision of 15 bits, we
calculate error for inputs ranges of [0, 1] and [0, 15]; and we
repeat this with a precision of 31 bits. The results are shown
in Table V for improved segmentation. We can see that for
smaller inputs ranges, error is not very significant even without
using the Gappa optimisation. This is because the integer parts
of intermediate outputs do not exceed DSP block input port
ranges for most intermediate outputs, and for those where the

TABLE VI: Resource usage and frequency for color saturation
correction case study.

Resource Comb Pipe HLS DSPRTL Inst

Registers 144 110 346 488 495
LUTs 136 68 180 206 210
DSP48E1s 9 9 8 9 9
Eqv LUTs 1900 1832 1748 1970 1974
Max Freq (MHz) 91 263 358 473 473

range is exceeded, only fractional bits are trimmed, adding a
small amount of error.

However, with the larger input range of [0, 15], we see
a significant increase in error, from approximately 0.2% to
more than 9%. Without the Gappa optimisation, intermedi-
ate wordlengths are calculated by considering the maximum
possible output ranges, resulting in wider intermediate outputs
and more truncation in the fractional parts, and in some cases,
truncation in lower significant bits of integer parts, resulting
in significant error. We also found that the preference of the
ALU over the pre-adder for 2-node templates had negligible
impact on overall error. The Gappa optimisation allows our
tool to determine tighter bounds for intermediate outputs,
resulting in the ability to trim unnecessary integer MSBs
without introducing error. Overall, adding Gappa optimisation
allows much larger input ranges to be mapped with comparable
error.

D. Case Study
We also designed an end-to-end case study implementation

of “Colour Saturation Correction” from high-level descrip-
tion to implementation, and testing on the Xilinx ML605
development board. The algorithm takes RGB values, with a
percentage saturation value representing the amount of colour
to be added back to the luminance, outputting the saturation-
corrected image.

We use improved segmentation with error minimisation
using Gappa. The resulting segmented dataflow graph is shown
in Fig. 11. We validated the generated RTL on-board, using
the open-source DyRACT framework [24], which allows us to
test the design with multiple images easily, interfacing over
PCIe.

The resource usage and maximum frequency for all methods
are shown in Table VI. Inst achieves a frequency improvement
of 5.2× over Comb, 1.8× over Pipe, and 1.3× over HLS.
These gains are at the cost of a 4–13% increase in equivalent
LUT usage. We verified the correctness of the implementations
against a Python model of the same algorithm, with negligible
error recorded.

VIII. CONCLUSIONS

We have presented an automated tool for mapping arbitrary
add-multiply expressions to FPGA DSP blocks at maximum
throughput. This is done by considering DSP block structure
in an initial graph partitioning step prior to scheduling. A
high level description of the expression is partitioned across

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

redIn

n1mul

n8sub

70

redIn

n2mul

n9add n11add

30greenIn

n3mul

n7add

59

greenIn

n4mul

n12sub

41

blueIn

n5mul

n13add

11

blueIn

n6mul

n10sub

89

n14mul n15muln16mul

n17add n18add n19add

sat satsat

redOut greenOut blueOut

Fig. 11: Segmented dataflow graph for the Color Saturation
Correction case study.

DSP blocks, exploiting the various supported configurations
and enabling pipeline stages as needed to achieve maximum
throughput, including balancing of parallel flows. Error anal-
ysis using Gappa allows truncation to be applied intelligently
thereby minimising error in the final output. We modify our
tool to produce a number of other typical mappings and present
detailed results comparing our approach. We show consistently
better throughput than all other methods, including a mean
1.2× improvement over Vivado HLS, at the cost of a 1.1–
1.23× increase in LUT area.

We are working on an extension of this paper to allow
resource-constrained implementations by exploiting the dy-
namic programmability of the DSP block. We also plan to
release our tool for use by others interested in these investi-
gations. Integration within a functional HLS flow would also
allow these results to be exploited in more complex designs.

REFERENCES

[1] Xilinx Inc., UG479: 7 Series DSP48E1 Slice User Guide, 2013.

[2] F. de Dinechin, C. Q. Lauter, and G. Melquiond, “Assisted verification
of elementary functions using Gappa,” in Proceedings of the ACM
Symposium on Applied Computing, 2006, pp. 1318–1322.

[3] Z. Chun, Z. Yongjun, C. Xin, and G. Xiaoguang, “Research on tech-
nology of color space conversion based on DSP48E,” in International
Conference on Measuring Technology and Mechatronics Automation
(ICMTMA), vol. 3, 2011, pp. 87–90.

[4] G. Conde and G. Donohoe, “Reconfigurable block floating point pro-
cessing elements in Virtex platforms,” in Proceedings of the Interna-
tional Conference on Reconfigurable Computing and FPGAs (ReCon-
Fig), 2011, pp. 509–512.

[5] F. Brosser, H. Y. Cheah, and S. A. Fahmy, “Iterative floating point
computation using FPGA DSP blocks,” in Proceedings of the Inter-
national Conference on Field Programmable Logic and Applications
(FPL), 2013.

[6] R. Mehra and S. Devi, “FPGA implementation of high speed pulse
shaping filter for SDR applications,” in Recent Trends in Networks and
Communications. Springer Berlin Heidelberg, 2010.

[7] A. de la Piedra, A. Braeken, and A. Touhafi, “Leveraging the DSP48E1
block in lightweight cryptographic implementations,” in Proceedings of
the IEEE International Conference on e-Health Networking, Applica-
tions & Services (HealthCom), 2013, pp. 238–242.

[8] S. Xu, S. A. Fahmy, and I. V. McLoughlin, “Square-rich fixed point
polynomial evaluation on FPGAs,” in Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA),
2014, pp. 99–108.

[9] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, “The iDEA
DSP block-based soft processor for FPGAs,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 7, no. 3, pp.
19:1–19:23, Sep. 2014.

[10] “[Online] Impulse-C,” http://www.impulsec.com/.
[11] “[Online] Bluespec,” http://www.bluespec.com/.
[12] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.

Anderson, S. Brown, and T. Czajkowski, “LegUp: high-level synthesis
for FPGA-based processor/accelerator systems,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA), 2011, pp. 33–36.

[13] “[Online] Xilinx Autopilot,” http://www.xilinx.com/.
[14] F. De Dinechin and B. Pasca, “Designing custom arithmetic data paths

with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, 2011.

[15] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville,
K. B. Kent, P. Jamieson, and J. Anderson, “The VTR project: archi-
tecture and CAD for FPGAs from verilog to routing,” in Proceedings
of ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, 2012, pp. 77–86.

[16] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin II -
an open-source Verilog HDL synthesis tool for CAD research,” in
Proceedings of the IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2010, pp. 149–
156.

[17] A. Tisserand, “Automatic generation of low-power circuits for the
evaluation of polynomials,” in Conference Record of the Asilomar
Conference on Signals, Systems and Computers, Oct 2006, pp. 2053–
2057.

[18] ——, “Function approximation based on estimated arithmetic opera-
tors,” in Conference Record of the Asilomar Conference on Signals,
Systems and Computers, Nov 2009, pp. 1798–1802.

[19] M. D. Linderman, M. Ho, D. L. Dill, T. H. Meng, and G. P. Nolan, “To-
wards program optimization through automated analysis of numerical
precision,” in Proceedings of the IEEE/ACM International Symposium
on Code Generation and Optimization, 2010, pp. 230–237.

[20] H. Martorell and N. Kapre, “FX-SCORE: A framework for fixed-point
compilation of SPICE device models using Gappa++,” in Proceedings
of the IEEE International Symposium on Field-Programmable Custom
Computing Machines (FCCM), April 2012, pp. 77–84.

[21] S. Gopalakrishnan, P. Kalla, M. B. Meredith, and F. Enescu, “Find-
ing linear building-blocks for RTL synthesis of polynomial datapaths
with fixed-size bit-vectors,” in Proceedings of IEEE/ACM International
Conference on Computer-Aided Design, Nov 2007, pp. 143–148.

[22] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: a tool
for evaluating and synthesizing multimedia and communications sys-
tems,” in Proceedings of International Symposium on Microarchitecture,
Dec 1997, pp. 330–335.

[23] “[Online] Polynomial Test Suite,” http://www-sop.inria.fr/saga/POL/.
[24] K. Vipin and S. A. Fahmy, “DyRACT: A partial reconfiguration

enabled accelerator and test platform,” in Proceedings of International
Conference on Field Programmable Logic and Applications (FPL), Sept
2014.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

Bajaj Ronak received his B.Tech. degree in Elec-
tronics and Communication Engineering from the
International Institute of Information Technology,
Hyderabad (IIIT-H), India, in 2010. From 2010 to
2011, he worked as an intern at Xilinx Research
Labs, India. Since 2011, he has been pursuing the
Ph.D. degree with the School of Computer Engineer-
ing at Nanyang Technological University, Singapore,
working on architecture awareness in high-level syn-
thesis.

Suhaib A. Fahmy (M’01, SM’13) received the
M.Eng. degree in Information Systems Engineering
and the Ph.D. degree in Electrical and Electronic
Engineering from Imperial College London, UK, in
2003 and 2007, respectively.

From 2007 to 2009, he was a Research Fellow
at Trinity College Dublin, and a Visiting Research
Engineer with Xilinx Research Labs, Dublin. Since
2009, he has been an Assistant Professor with
the School of Computer Engineering at Nanyang
Technological University, Singapore. His research

interests include reconfigurable computing, high-level system design, and
computational acceleration of complex algorithms.

Dr. Fahmy was a recipient of the Best Paper Award at the IEEE Conference
on Field Programmable Technology in 2012, the IBM Faculty Award in 2013,
and is also a senior member of the ACM.

