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Abstract—The rapid growth of connected sensing devices has
resulted in enormous amounts of data being collected and
processed. Air quality data collected from different monitoring
stations is spatially and temporally correlated, and hence, collab-
orative learning can improve deep learning model performance.
Research on collaborative learning at the edge has not specifically
focused so far on air quality prediction, which is the subject of
this work. We compare three collaborative learning strategies and
implement them on edge devices, such as the Raspberry Pi and
Jetson Nano, with communication facilitated through the MQTT
protocol. Federated learning is shown to enhance model accuracy
in comparison to local training alone. An approach called
clustered model exchange reduces communication costs during
training. Finally, our proposed spatiotemporal data exchange
approach exploits information from neighboring sensing stations
to enhance model performance. It achieves the highest accuracy
in air quality predictions, outperforming other methods in min-
imizing loss during training. It results in RMSE improvements
ranging from 0.525% to 8.934% when compared to models that
are only trained locally. We compare the real training costs of
the three methods on real hardware to validate them.

Index Terms—Air pollution, collaborative learning, edge de-
vices, federated learning, spatiotemporal.

I. INTRODUCTION

POPULATION growth and economic development, expan-
sion of urban areas, and industrial development have all

contributed to the increase in air pollution worldwide [1],
[2]. The major causes of air pollution are vehicle exhausts,
industrial emissions, agricultural practices, and natural disas-
ters. Exposure to air pollution has negative effects on human
health [3] and economic activity [4]. Emotional and cognitive
impairments [5], cardiovascular diseases [6], and lung can-
cer [7] are associated with air pollution. Air pollution can be
in the form of particulate matter (PM), nitrogen dioxide (CO2),
carbon monoxide (CO), ozone (O3), and sulfur dioxide (SO2),
among other pollutants [8]. Hence, building a forecasting
system for air quality is crucial for health alerts [9].
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An extensive network of low-cost sensor nodes has recently
been proposed to monitor air quality status [10]. Under this
new paradigm, air quality monitoring aims to collect spa-
tiotemporal air pollution data using many sensing devices,
supplementing the traditional methodology with more accurate
and expensive instrumentation [11]. Data collected from these
sensing devices is often transmitted through the Internet, mak-
ing monitoring air quality remotely possible. In response to the
rapid growth of sensing devices, the amount of data generated,
stored, and transmitted has increased significantly [12].

Machine Learning (ML) methods are being applied to air
quality prediction tasks [13]. Deep Learning (DL), the subset
of machine learning, offers a promising approach to predicting
air quality status with its ability to extract features in the spatial
and temporal domains.

Traditional centralized learning operates by gathering all
data from end devices, which is then stored and processed
in a central data center to train models. However, with the
increasing number of connected devices, network congestion
has led to a preference for processing more data at the
edge [14], [15]. Edge computing involves processing data
close to the data source [16], in our case, air quality sensing
devices. Edge computing offloads computing tasks from the
centralized cloud to the near-sensing devices and reduces
transferred data by performing preprocessing functions at the
edge [17]. Regarding memory cost, energy consumption, and
latency, edge computing excels in various applications.

Air quality data collected from different air monitoring
stations are spatially and temporally correlated [18]. Over a
given period, the air quality of a particular area typically does
not change significantly, and a similar variation in spatial
dimensions can often be observed in adjacent areas [19].
Understanding spatial and temporal dependencies is essen-
tial [32], and we can make more informed decisions regard-
ing air quality status by understanding these dependencies.
Furthermore, collaborative learning using spatiotemporal data
may improve model performance [19].

In this work, we investigate collaborative learning strategies
for on-device training and inference. Specifically, our contri-
butions are as follows:

1) We propose new approaches for air quality prediction
based on spatiotemporal data and deep learning model
sharing and compare them to the commonly imple-
mented federated learning.

2) We develop algorithms for running collaborative learn-
ing directly on edge devices communicating using the
MQTT protocol.
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3) We evaluate various characteristics of the proposed col-
laborative learning strategies, including training losses,
learning accuracy, learning period, and communication
cost.

4) We extend this body of work by discussing some insights
regarding the expansion of edge device networks.

II. RELATED WORK

Existing methods for air quality predictions are mainly cat-
egorised into three: deterministic methods, statistical methods,
and machine learning methods. Deterministic methods use
mathematical equations and need high-speed calculation and
simulation to predict atmospheric pollutant concentration [20],
which is considered not viable for edge devices due to their
limited energy capacity and computational resources [21]. Sta-
tistical methods implement statistical models by trying to find
the relationship between influencing factors (meteorological
data, spatiotemporal factors, and others) and air pollutants
[22]. Many statistical models are based on linear assumptions
that affect their prediction accuracy for commonly non-linear
real problems. To overcome these problems, researchers im-
plement non-linear machine learning approaches.

For example, Reid et al. [23] used ensemble machine
learning models to forecast daily PM2.5 levels. These models
were trained using 24-hour PM2.5 measurements gathered from
monitoring stations situated across 11 states in the western
United States. Input features were derived by temporally
merging the data using the date and spatially merging the
nearest spatial observations based on latitude and longitude.
Although spatiotemporal factors were considered in this study,
the training and prediction processes were centralized based
on gathered data from the sensors.

Moreover, diverse types of machine learning models have
been proposed for forecasting PM2.5 and other pollutant levels
in recent years. Promising results have been reported using
Long Short-Term Memory (LSTM) models [24]–[27]. Addi-
tionally, combining Convolutional Neural Network (CNN) and
LSTM models has received significant attention [28]–[30]. Li
et al. [31] demonstrated the effectiveness of the CNN-LSTM
approach using a one-dimensional CNN to extract features
from sequence data, followed by an LSTM to predict future
values.

Collaborative learning has emerged to address large-scale
machine learning problems [33]. Henna et al. [34] utilized
topological dependencies in mobile edge networks using a
graph neural network (GNN) for efficient inference. The
collaborative GNN-edge approach is trained using a com-
pressed learning algorithm, outperforming cloud-based predic-
tion. Song and Chai [35] proposed a collaborative learning
framework for multi-class classification problems that reduces
generalization errors and increases robustness to incorrect
labels or data augmentation.

A widespread approach for collaborative learning is model
averaging used in the federated learning (FL) approach [36].
FL eliminates the need to upload sensitive data to a central
server [37], allowing edge devices to train a shared global
model locally using their own data. To address poor con-

vergence on heterogeneous data and a lack of generaliza-
tion, personalized federated learning (PFL) has also been
proposed [38].

Gholizadeh and Musilek showed how the convergence time
of federated learning could be reduced with hyperparameter-
based clustering [16] for predicting individual and aggregate
electrical loads. Mi et al. [39] claimed that model averaging
could be effectively implemented for distributed learning by
using a cyclical learning rate and increasing the local training
epochs. FL has also been implemented in various applications,
such as cybersecurity for IoT [40], healthcare [41], and man-
ufacturing [42]. In the case of air quality studies, it is possible
to utilize FL as multiple monitoring stations can share their
knowledge.

Our proposed approach differs from previous works as
follows. Most previous work only investigates model develop-
ment using large collected datasets trained centrally; our work
implements collaborative learning directly on edge devices,
offloading computation close to the data source. Furthermore,
the current body of collaborative learning research has not
specifically focused on the subject of air quality prediction,
which is the subject of our work. We show that the primary
benefit of collaborative learning lies in its capacity to enhance
accuracy compared to individual learning. This approach is
highly suited for real deployments of monitoring devices,
eliminating the necessity for cloud access. We consider the
availability of air pollution data from multiple neighboring
observation stations, the spatial and temporal correlation be-
tween stations, and the possibility of improving air quality
prediction through collaborative learning. We examine the
effectiveness of the proposed collaborative learning methods,
including losses during training, accuracy, and communication
costs for each method alongside a common baseline.

III. PROPOSED APPROACH

A. Research Framework Overview
Our research framework is depicted in Fig. 1. Initially, a

subset of air quality monitoring stations was chosen from the
available dataset, considering device availability. The original
dataset contained missing values, which were addressed by
filling them with the most recent valid measurements. Subse-
quently, the dataset was divided into three divisions: training,
validation, and test sets.

A feature selection process was conducted to determine the
optimal number of input variables. The preprocessed datasets
were then subjected to collaborative learning techniques, im-
plemented directly at the edge utilizing the MQTT proto-
col. Three collaborative learning methods, namely FedAvg,
ClustME, and SpaTemp, were employed in this study.

In addition to the collaborative learning approach, the
locally trained model was also evaluated. Several evaluation
metrics were employed, including Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Mean Absolute Per-
centage Error (MAPE), coefficient of determination (R2), and
improvement on RMSE (RIR). Furthermore, edge computing
performance was specifically evaluated, particularly in terms
of the time required for each device to complete the training
session.
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Fig. 1. Methodology framework for collaborative learning at the edge.

B. Air Quality Dataset

We used the Beijing air quality dataset provided by Zhang et
al. [43], which can be obtained from the University of Califor-
nia, Irvine (UCI) Machine Learning Repository. The dataset is
a collection of air quality data collected from 12 monitoring
sites in Beijing and its surroundings, namely Aotizhongxin,
Changping, Dingling, Dongsi, Guanyuan, Gucheng, Huairou,
Nongzhanguan, Shunyi, Tiantan, Wanliu, and Wanshouxigong.
The locations of all air quality monitoring sites can be shown
in Fig.2. Each monitoring station has 12 columns and 36,064
rows, collected from 1 March 2013 to 28 February 2017. Each
row record is hourly data, consisting of several pollutant data
(PM2.5, PM10, SO2, CO, NO2, and O3) and meteorological data
(temperature, air pressure, dew point, rain, wind direction and
wind speed). The wind direction is categorical data, admitting
16 values: N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW,
SW, WSW, W, WNW, NW and NNW, which were converted
to degrees. For missing values in the dataset, we filled them
with the last timestamp data. All attributes were normalized
to 0 and 1.

We arranged the stations alphabetically according to their
names and chose the first eight stations for this study.

Fig. 2. Map of air quality monitoring stations in Beijing and its surroundings.

The selected stations are Aotizhongxin, Changping, Dingling,
Dongsi, Guanyuan, Gucheng, Huairou, and Nongzhanguan.
In this work, the selected stations are labelled as Station-01,
Station-02, Station-03, and so on, up to Station-08. Finally, we
used eight edge devices representing all monitoring stations.

The dataset was partitioned as follows: approximately 70%
of the data was allocated for training, around 20% for valida-
tion during learning, and the remaining 10% for testing pur-
poses. This work focuses on predicting PM2.5 concentrations,
evaluating the best model for short-term predictions, specif-
ically the next one-hour PM2.5 concentrations. Additionally,
the work includes a discussion on predictions for longer time
periods.

C. Collaborative Learning Overview

We implemented three collaborative learning strategies. As
illustrated in Fig.3, these methods are federated learning using
federated averaging, learning with clustered cyclic peer-to-peer
model exchanges, and learning with spatiotemporal data ex-
changes. We refer to these three learning strategies as FedAvg,
ClustME, and SpaTemp, respectively. In federated learning
(FedAvg) and learning with cyclic peer-to-peer model ex-
change (ClustME), the edge devices transfer models between
them, with no measurement data exposed to other devices.
In learning with spatiotemporal data exchanges (SpaTemp),
measurement data is exchanged.

FedAvg consists of four steps, as illustrated in Fig. 3(a).
First, model initialization is conducted directly on the edge
devices (stations). Then, each station performs model updates
by training its model with local data. Once local training is
complete, each station sends its local update to the coordinator.
The coordinator collects all updated models from stations and
performs aggregation. Finally, the coordinator transmits the
newly aggregated model to all stations. The process repeats
until the desired number of training rounds is achieved.

Fig. 3(b) shows the ClustME workflow. Time-series cluster-
ing is performed before local updates and model exchanges.
Two clusters of air monitoring stations are created based on
time-series similarity using K-means clustering. Each cluster
follows the same process. Each station trains its model us-
ing local data and then shifts its trained model to another
monitoring station. Each station also receives a trained model
from another station, forming a circular exchange. The process
repeats until all stations obtain all trained models from other
stations.

SpaTemp is based on the strategy described in [44]. For each
station, we selected the three most correlated nearby stations
based on Pearson’s correlation. First, a station requests data
from the three most correlated stations. Second, the station
serves other stations that request its local data. Finally, once
these subscribe/publish processes are finished, each station
trains locally using the shared data. Fig. 3(c) depicts the
SpaTemp workflow.

D. Federated Learning (FedAvg)

We follow the Federated Average (FedAvg) algorithm pro-
posed by McMahan et al. [36], which is broadly used as a
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Algorithm 1 Modified Federated Averaging implemented in
this work (FedAvg).

COORDINATOR EXECUTES:
for each global round t = 1, 2, . . . , R do

for each station k ∈ K in parallel do
θkt+1 ← StationUpdate(θt)

θkt+1 ←
∑K

k=1
1
K θkt+1

StationUpdate(θ) :
B ← (split local dataset into batches of size B)
for each local epoch i from 1 to E do

for each batch b ∈ B do
θ ← θ − η∇L(θ; b)

return θ to coordinator

standard FL setting. Algorithm 1 shows the FedAvg modified
for this work. In this work, we have K edge devices that
represent air quality monitoring stations, where K = 8. Each
station has its local air quality data and trains its model locally
rather than sending raw data to a centralized coordinator. The
local dataset is split into batches with the size of B and is
used to train the local model during the local epochs E. At
round t, each station k trains its model locally. For each local
epoch and batch, the station updates its respective model, that
is θkt ← θkt − η∇Lk(θ

k
t ), where θkt represents the model

parameters, η is the learning rate, and Lk(θ
k
t ) is the loss

function. Each device then transmits the parameter update,
and the coordinator receives this update from each station as
θkt+1. The coordinator aggregates the parameters received from
all participating stations, that is θkt+1 ←

∑K
k=1

1
K θkt+1. The

coordinator sends the aggregated results back to the stations,
and the process repeats until R rounds are complete.

It is worth noting that all edge devices are involved in all
FL rounds. Consequently, the coordinator does not sample
stations in each round. The air quality datasets were trained at
all stations using the same size, and the updated parameters
received from stations were equally weighted during the
aggregation step. To reduce the communication cost in the first
round, we initialized the model’s weight directly at the edge
instead of sending the initial weights from the coordinator to
edge devices.

The MQTT publish/subscribe topics manage the FL work-
flow on edge devices. The FL process path can be executed
by determining the topics required at each step and selecting
which device should publish/subscribe to a specific topic.

E. Clustered Peer-to-Peer Model Exchange (ClustME)

The locally trained models are circulated among the stations
in this learning strategy. The model trained at a station will
be passed to another station. As all stations perform the same
procedures, a cyclic peer-to-peer model transfer is performed.
To reduce the number of model transfers, we used a clustering
technique. As our target is to predict the value of PM2.5, we
implement K-means clustering based on the series of PM2.5
data. The clustering method allows many edge devices to be
involved in collaborative learning by reducing the number of
exchanges, and, hence, the total learning time.

The history of PM2.5 data (the training data) from all
stations is collected, and the clustering method is performed

TABLE I
CLUSTER OF STATIONS BASED ON TIME-SERIES OF PM2.5 DATA

Cluster-1 Cluster-2
Station-01,-02,-03, and -07 Station-04,-05,-06, and -08
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Algorithm 2 Clustered peer-to-peer model exchanges
(ClustME).

for each cluster c = 1, 2, . . . do
for each global round t = 1, 2, . . . , R do

for each station k = 1, 2 . . . ,K in parallel do
θkt ← StationUpdate(θt)

for each station k = 1, 2 . . . ,K do
θkt+1 ←ModelSharing(θkt )

StationUpdate(θ) :
B ← (split local dataset into batches of size B)
for each local epoch i from 1 to E do

for each batch b ∈ B do
θ ← θ − η∇L(θ; b)

return θ

ModelSharing(θk) :
// if k = K, then send to k = 1
Send θk to k + 1
// if k = 1, then receive from k = K
Receive θk−1 from k − 1
// update model
θk ← θk−1

return θk

using dynamic time warping as the metric for assignment and
barycenter computations. We use the Tslearn Python package
to determine the time-series cluster [45]. We divided the sta-
tions into two clusters, and Table I shows the clustering results.
Station-01, Station-02, Station-03, and Station-07 belong to the
same group, and other stations form another group. As each
cluster consists of four stations, the model must be shifted
three times after the local updates (see Fig. 3(b)) to complete
one learning workflow.

Algorithm 2 shows the general workflow of ClustME per-
formed in a station cluster. Instead of sending local updates
to the coordinator, the locally trained model is sent to a target
station. For example, in Cluster-1, Station-01 sends its updated
model to Station-02, Station-02 sends its updated model to
Station-03, Station-03 sends its updated model to Station-
07, and Station-07 sends its updated model to Station-01. By
performing these steps, a cyclic peer-to-peer model exchange
is formed. There is no aggregating method conducted in this
method. A station updates the received model with its local
data and sends the updated model to a target station.

In this work, we assigned a coordinator to orchestrate the
entire process. Each station has different speeds to complete
the training rounds. Thus, a coordinator is required to manage
data transmitted from one station to another.

F. Learning with Spatiotemporal Data Exchange (SpaTemp)

In SpaTemp, we send pollutant data instead of deep learning
models to other stations. Each station combines local and
nearby pollutant data to train its local model. With these
data, each station trains the model locally without transmitting
the updated model to other stations or the coordinator, as
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Fig. 4. (a) Subscribing and publishing data pairs performed in SpaTemp, and
(b) An example of publishing and subscribing implemented at Station-01.

performed in FedAvg and ClustME. Our previous work [44]
utilized spatiotemporal data to predict PM2.5 concentrations.
Based on the proposed model in our previous work, we
adjusted parameters to reduce the number of filters in the
convolutional layers. Each station collects data from the three
most correlated nearby stations based on their PM2.5 values.

Besides collecting data from the three most correlated
nearby stations, each station also sends pollutant data to other
stations that request it. We use the MQTT protocol concepts
of publishing and subscribing to enable this. For example, if
Station-01 wants to collect data from Station-04, Station-01
will subscribe to a specific topic that Station-04 publishes.
Thus, data is transmitted from Station-04 to Station-01. After
performing the Pearson correlation coefficient on all stations,
we obtained the subscribing and publishing pairs, as shown in
Fig. 4(a). Each station subscribes to the three most correlated
nearby stations and publishes its data to one or more stations.

Algorithm 3 Learning with spatiotemporal data exchanges
(SpaTemp).

STATION DATA COLLECTION:
M← (Collect PM2.5 data from participating stations)
C ← (Perform Pearson’s correlation on M)
for station k ∈ K do

// create a list of nearby stations
S ← (Select three significant C relative to k)
D ← (Collect PM2.5 from all members of S)
H ← (Combine D with station’s local dataset)

for each global round t = 1, 2, . . . , R do
for each station k = 1, 2 . . . ,K in parallel do

θkt+1 ← StationUpdate(θt)

StationUpdate(k, θ) :
B ← (split local dataset into batches of size B)
for each local epoch i from 1 to E do

for each batch b ∈ B do
θ ← θ − η∇L(θ; b)

return θ



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. XX, NO. XX, MONTH 2023 6

For instance, Station-01 subscribes to data from Station-05,
Station-04, and Station-08. Besides subscribing data, Station-
01 also publishes data to Station-04, Station-05, Station-06,
and Station-08, as shown in Fig. 4(b). The SpaTemp process
workflow can be presented in Algorithm 3.

G. Deep Learning Models

Fig. 5 shows the proposed deep learning models used
in this work. We built these models using the Tensorflow
framework [46]. These models mainly consist of three dif-
ferent layers: one-dimensional convolutional (Conv1D) layers,
long-term short memory (LSTM) layers, and fully connected
(Dense) layers. The main properties of each layer (e.g., number
of filters, kernel size and unit size) are shown in Fig.5. Except
for the last layer, each layer uses the rectified linear unit
(ReLU) activation function. No activation is applied for the
output (Dense) layer, and other layer parameters follow the
default properties set by the framework.

While FedAvg and ClustME utilize the same model archi-
tectures (Fig. 5(a)), SpaTemp uses a slightly different design
(Fig. 5(b)). SpaTemp has a parallel structure of convolutional
layers, and both paths share the same layer properties. In
this architecture, the first path extracts the local data features,
and the second path obtains the characteristics of shared spa-
tiotemporal data. These spatiotemporal data are collected from
three nearby air quality stations with the highest Pearson’s
correlation coefficients to the target station. In our case, we
used time-series data for regression purposes. Thus, the air
quality data sequence should be maintained to extract the
correct information. In addition to retaining the time-series
data sequence, SpaTemp also collects multiple data from other
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stations. Thus, we proposed a parallel structure previously
mentioned to cover these requirements.

All models process data for the current and past seven hours,
making the length of the input equal to eight. As the selected
dataset consists of 11 columns (i.e., PM2.5, PM10, SO2, CO,
NO2, O3, temperature, air pressure, dew point, wind direction
and wind speed), the size of the input sets is 8 × 11. These
input sets are used to train the model and predict the hourly
values of PM2.5. The deep learning model used in SpaTemp
accepts not only local air quality data (the first path of the input
model) but also the collection of PM2.5 data from itself and
the other three stations (the second path of the input model).
Thus, the second path of the input model accepts a matrix
with the size of 8× 4.

H. Collaborative Learning Evaluation

The performance of the proposed collaborative learning
approaches is evaluated across a number of metrics. The
first step is input feature selection. The number of features
is evaluated from the original dataset to find the optimum
performance. Then, we visualize the losses during training to
understand how well the model learns from training data. Next,
we evaluate the model performance for each round against the
unseen data (test data). The time required by each method to
complete the learning task is evaluated, and the performance
of each edge device is measured. Also, the communication
costs that occurred while performing a learning strategy are
assessed. Finally, we discuss the expansion of edge device
networks.

The model performances on test data were evaluated using
root mean squared error (RMSE), mean average error (MAE),
mean absolute percentage error (MAPE), and coefficient of
determination (R2). Their definitions are given in Equations
(1), (2), (3) and (4):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (1)

MAE =
1

n

n∑
i=1

|yi − ŷi| (2)

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3)

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)
2 (4)

where n is the total number of data samples, yi are the actual
values, ŷi are the predicted values, and ȳ is the overall mean
of the actual values.

Additionally, to measure the improvement of the proposed
collaborative learning strategies compared with the locally
learned method, we implemented a metric called rate of im-
provement on RMSE (RIR) using the following equation [2],
[47]:

RIRL,C =
RMSEL −RMSEC

RMSEL
× 100% (5)
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where, RMSEL denotes the RMSE obtained using the
locally-learned method, and RMSEC is the RMSE obtained
using the proposed collaborative learning.

Pearson’s correlation coefficient was employed to ascertain
the relationships among features within the dataset and to
identify neighboring stations for the SpaTemp method. Pear-
son’s correlation coefficient between two series is described
as follows [2], [44]:

r(St,Ss) =

∑
((sti − µt)(s

s
i − µs))√∑

(sti − µt)2
∑

(ssi − µs)2
(6)

where, r(St,Ss) denotes the Pearson’s correlation coefficient
between the time series St and Ss, sti and ssi represent the i-th
samples of St and Ss, respectively. Finally, µt = 1

n

∑N
i=1 s

t
i

and µs = 1
n

∑N
i=1 s

s
i denote the mean values of time series

St and Ss, respectively.

I. Application Scenario

As shown in Fig 6, edge devices used for the experiment
represent eight air quality monitoring stations. Three variants
of Raspberry Pi (RPi) boards are employed for Station-01 to
Station-07, and an NVIDIA Jetson Nano 2GB Developer Kit
is used as both Station-08 and the coordinator.

The Edge devices’ network communication is based on
the MQTT (Message Queuing Telemetry Transport) protocol.
This protocol implements a client-server architecture, performs
message transmission based on topic publishing and sub-
scribing, and works over TCP/IP [48]. The publish/subscribe
protocol provides a scalable and reliable way to connect
resource-constrained edge devices over the Internet or within
a local area network (LAN). Moreover, the MQTT protocol is
simple and lightweight, designed to transmit information over
unreliable networks with low bandwidth or high latency [49].

Stations can act as both publishers and subscribers. The
messages can be air quality measurement data or deep learning
models in this work. Stations receive messages from other
stations by subscribing to topics of interest to the server
(MQTT broker). A wireless router is used to create a local

MQTT Broker

Station-01

Station-02

Station-03

Station-04

Wireless Router

Station-08

Station-06

Station-07

Station-05

Fig. 6. Application scenario of the edge devices. The devices communicate
with the server via the MQTT protocol within a local area network (LAN).
Station-08 also acts as an MQTT broker.

area network, and the devices communicate with the broker
via MQTT.

All boards used run off a 5V power supply, with varying
current usage from 1.2–3A. Rpi boards use Raspberry Pi OS
Lite version 10 (Debian Buster), whereas the Jetson Nano uses
NVIDIA JetPack 4.6 with Ubuntu 18.04. In this work, all
boards operate in headless mode.

IV. RESULTS AND DISCUSSION

A. Feature Selection

This study aims to predict PM2.5 levels and builds upon
our prior research [44] in selecting input features. We cal-
culated Pearson’s correlation coefficients among features and
determined the overall correlation by averaging the coefficients
across all monitoring stations. The averaged correlation coef-
ficients are reported in Fig. 7.

PM2.5 levels exhibit strong positive correlations with PM10,
NO2, and CO (r > 0.6), moderate positive correlation with
SO2 (r = 0.47), and weak negative correlation with O3
(r = −0.13). Rainfall (RAIN), dew point (DEWP), air
pressure (PRES), and air temperature (TEMP) display the
weakest correlations with PM2.5. We evaluated the absence
of these four features to determine the optimal input set for
the deep learning model by training the model locally without
utilizing collaborative learning. The model architecture used
for training is illustrated in Fig. 5(a).

The presence of weak correlation coefficients implies that
there is minimal redundancy or information duplication among
these variables, rendering them suitable for direct utilization
as inputs for our prediction model [50]. It is important to note
that this does not diminish the importance of rainfall and other
meteorological factors. Instead, given our focus on resource-
constrained devices with limited computational power, we aim
to identify the most efficient input features.

Table II shows that the best performance is achieved by
removing the rain feature during training, resulting in the
selection of 11 attributes: PM2.5, PM10, SO2, CO, NO2, O3,

PM2.5 PM10 SO2 NO2 CO O3 TEMP PRES DEWP RAIN WD WSPD
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D

1 0.87 0.47 0.67 0.77 -0.13 -0.12 0.0041 0.12 -0.014 -0.13 -0.27

0.87 1 0.45 0.65 0.68 -0.085 -0.086 -0.037 0.069 -0.025 -0.1 -0.17

0.47 0.45 1 0.49 0.51 -0.17 -0.33 0.22 -0.27 -0.04 -0.094 -0.12

0.67 0.65 0.49 1 0.7 -0.44 -0.29 0.15 -0.04 -0.043 -0.15 -0.4

0.77 0.68 0.51 0.7 1 -0.3 -0.33 0.19 -0.069 -0.013 -0.13 -0.28

-0.13 -0.085 -0.17 -0.44 -0.3 1 0.59 -0.45 0.32 0.024 0.036 0.28

-0.12 -0.086 -0.33 -0.29 -0.33 0.59 1 -0.83 0.82 0.037 -0.047 0.026

0.0041 -0.037 0.22 0.15 0.19 -0.45 -0.83 1 -0.77 -0.062 0.036 0.065

0.12 0.069 -0.27 -0.04 -0.069 0.32 0.82 -0.77 1 0.087 -0.14 -0.3

-0.014 -0.025 -0.04 -0.043 -0.013 0.024 0.037 -0.062 0.087 1 -0.018 0.02

-0.13 -0.1 -0.094 -0.15 -0.13 0.036 -0.047 0.036 -0.14 -0.018 1 0.21

-0.27 -0.17 -0.12 -0.4 -0.28 0.28 0.026 0.065 -0.3 0.02 0.21 1

Fig. 7. Average correlation coefficients among features.
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TABLE II
FEATURE SELECTION RESULTS BASED ON THE AVERAGE OF RMSE AT

ALL STATIONS

Input Feature # inputs Avg. RMSE
All 12 23.126
Without PRES 11 23.370
Without RAIN 11 23.018
Without PRESS and RAIN 10 23.316
Without PRESS, RAIN, and DEWP 9 23.424
Without PRESS, RAIN, and TEMP 9 23.270
Without PRESS, RAIN, DEWP, and TEMP 8 23.526

temperature, air pressure, dew point, wind direction and wind
speed as model input features.

B. Losses During Collaborative Training

Losses measure how well a predictor can map the relation-
ship between inputs and the provided targets. The better the
predictor, the smaller the loss. While the training losses are
calculated during training, the validation losses are measured
at the end of each epoch. The training loss indicates how well
the model fits the training data, whereas validation loss is
evaluated on validation data. This work measures training and
validation losses using mean squared error (MSE). Examples
of training and validation losses evaluated at Station-06 are
shown in Fig. 8(a) and 8(b), respectively.

We initialized the proposed deep learning models with the
same random seeds for all methods to provide reproducible
model outputs and less biased results. We then evaluated train-
ing performance. Consequently, FedAvg and ClustME yield
the same training and validation losses during the first round
as these methods use the same model architecture, training and
validation data. Then, due to different learning approaches, the
variation of losses between FedAvg and ClustME occurs after
the first round. Fig. 9 illustrates how training losses vary after
the first round (when there is a significant reduction in losses
for all approaches).

Fig. 9 shows that learning by utilizing spatiotemporal data
(SpaTemp) outperforms other methods in minimizing loss
during training at all participating stations. The collaborative
pollutant data sharing among stations effectively improves
model performance. As mentioned previously, SpaTemp does
not involve model sharing or aggregation processes to gain
knowledge from other stations but includes raw measurement
data as additional inputs.
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Fig. 8. Examples of (a) training loss and (b) validation for Station-06.
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Fig. 9. Better presentation of training losses at all stations after the first round
and local training performances.

C. PM2.5 Prediction on Test Data

We reserve about 10% of the dataset for use as test data. Ta-
ble III shows the model performance evaluated using RMSE,
MAE, MAPE, R2, and RIR for the first four stations. This table
also includes the performance of locally-learned models with-
out collaborative strategies. A locally-learned model means
that the model is trained using its local data only and excludes
aggregation or model-sharing as performed by FedAvg and
ClustME. Also, the model gains knowledge from its local
data without collecting pollutant data from other stations, as
implemented in SpaTemp. In conclusion, no data is leaving
the station during training.

SpaTemp outperforms other methods in predicting unseen
data for all monitoring stations, displayed in bold in Table III.
Moreover, based on RMSE, the RIR can be calculated, and
the results are reported in the table. A positive RIR value
indicates an improvement in the proposed collaborative learn-
ing method against the locally learned approach. SpaTemp
outperforms other collaborative learning methods, with RIR

TABLE III
MODEL PERFORMANCE IN PREDICTING PM2.5 ON TEST DATA FOR THE

FIRST FOUR STATIONS.

Station-01 Station-02 Station-03 Station-04
RMSE(µg/m3)
FedAvg 21.743 23.135 21.097 25.118
ClustME 21.978 23.345 20.772 25.021
SpaTemp 19.917 22.140 20.738 24.299
Local 21.871 23.744 20.890 25.170
MAE(µg/m3)
FedAvg 12.008 13.182 10.981 12.916
ClustME 12.028 13.263 10.910 12.863
SpaTemp 10.729 12.173 10.741 12.395
Local 11.967 13.708 10.967 12.965
MAPE(%)
FedAvg 26.881 28.441 30.090 37.727
ClustME 27.351 28.411 31.288 37.299
SpaTemp 26.239 27.594 28.645 36.817
Local 26.347 28.747 30.768 37.996
R2

FedAvg 0.958 0.935 0.950 0.953
ClustME 0.957 0.934 0.951 0.953
SpaTemp 0.964 0.941 0.952 0.956
Local 0.957 0.932 0.951 0.952
RIR(%)
FedAvg 0.588 2.564 -0.995 0.208
ClustME -0.488 1.681 0.565 0.593
SpaTemp 8.934 6.756 0.725 3.461
Local (baseline) 0.000 0.000 0.000 0.000
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ranging from 0.525% to 8.934%. The most significant im-
provement is recorded at Station-01. Nevertheless, not all
collaborative learning strategies performed better than the
locally-learned method. ClustME degrades model performance
slightly at Station-01, Station-05, and Station-08, indicated
by the minus values of RIR. These degradations vary from
0.092% to 0.488%. The federated learning approach degrades
performance by 0.995% and 0.636% at Station-03 and Station-
05, respectively.

Fig. 10 provides a more intuitive representation of model
performance, specifically at Station-02. The plots provide a
quick assessment of the proximity between the predicted and
observed values using diagonal lines as a reference. The
SpaTemp model performs better in capturing extreme PM2.5
levels, resulting in a higher R2 score of 0.941. The figure illus-
trates that the predicted values closely align with the observed
values, particularly in capturing very high concentrations of
PM2.5 compared to other methods.

It is also feasible to estimate longer time periods, with
3-hour, 6-hour, 9-hour, and 12-hour period results presented
in Fig. 11 for Station-05. The figure indicates a decline in
model performance as the prediction period extends. Evalu-
ation based on R2 scores reveals that the model’s accuracy
ranges from approximately 0.8 for 3-hour predictions to about
0.4 for 12-hour predictions. Moreover, the SpaTemp approach
demonstrates better performance compared to the locally-
trained model.

D. Learning Execution Time

We also consider the time taken to complete the collab-
orative learning strategies. We executed the approaches four
times and averaged the period to complete training. Federated
Learning (FedAvg) completed training faster than other meth-
ods (about 49 minutes). In contrast, SpaTemp took about 61
minutes. SpaTemp utilizes a larger deep learning model and
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Fig. 11. Longer prediction hours of PM2.5 evaluated at Station-05

TABLE IV
AVERAGE TIME TO COMPLETE THE COLLABORATIVE TRAINING

FedAvg ClustME
(Cluster-1)

ClustME
(Cluster-2) SpaTemp

Time(s) 2954.40 3220.62 2979.62 3682.09
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Fig. 12. Average time for edge devices to complete training rounds.

input data, resulting in slower epoch completion than other
methods. In Table IV, we report the training time using the
slowest edge device as SpaTemp essentially trained the model
locally without model-sharing.

For ClustME, we trained two different clusters. The first
cluster (Station-01,-02,-03, and -07) consists of slower edge
devices, the Raspberry Pi Zeros. In another cluster (Station-
04,-05,-06, and -08), the completion times are about 240
seconds faster than the first cluster, as it mainly consists of
faster devices, such as Raspberry Pi 3B+, Raspberry Pi 4B,
and Jetson Nano.

We also reported the average time each edge device needs
to complete the training steps. After performing 40 rounds,
we obtained the average times shown in Fig 12. As we used
multiple Raspberry Pi (RPi) 4 and Zeros, we averaged the
execution time for device types. The figure shows that the
Jetson Nano 2GB developer kit outperforms other devices,
being up to nine times faster than Raspberry Pi Zero when
executing SpaTemp. The slower devices contribute to longer
completion times of collaborative learning strategies.

E. Communication Cost Considerations

We consider communication costs based on the transferred
payload contained in MQTT topics. During learning, FedAvg
and ClustME exchange models, while SpaTemp exchanges
pollutant data during data collection. As the devices involved
in collaborative learning have different speeds, we utilize
some governing MQTT topics with zero-length payloads to
synchronize. For example, the coordinator uses a governing
topic to start local updates or instruct participating devices
to send their models. We exclude these topics from the
communication cost measurement.

In this work, the initial model size for FedAvg and ClustME
is about 44 kB and for SpaTemp about 77 kB. All models are
compiled with Adam optimizer. After completing one round of
training, the model file sizes increase, as the Adam optimizer
maintains important gradient states during training: to 91 kB
for FedAvg and ClustME and 149 kB for SpaTemp. The deep
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TABLE V
COMMUNICATION COST OF COLLABORATIVE LEARNING.

FedAvg ClustME SpaTemp
Comm. cost (MB) 11.648 5.824 8.415

learning models for FedAvg and ClustME are transmitted as
byte array objects. However, for SpaTemp, pollutant data is
represented using a 5-byte UTF-8 text string [51].

Table V shows the amount of data transferred for both in-
coming and outcoming payloads at all participating stations for
the three methods. In FedAvg, the coordinator receives models
from participants, aggregates them and transfers them back
to participants. In ClustME and SpaTemp, the coordinators
only function as governing devices. As a result, FedAvg con-
sumes significantly more data communication, while ClustME
reduces communication costs by half. SpaTemp transmits
data much more frequently, up to 35,064 rounds during data
collection, resulting in a communication cost between FedAvg
and ClustME.

F. Network Scaling

We now consider how these approaches deal with an in-
creased number of stations, which would increase the amount
of data exchanged during learning. For FedAvg and ClustME,
the amount of data transmitted during learning can increase
as the number of rounds increases. In SpaTemp, however, the
amount of data sent increases with the increasing size of hourly
pollutant data, regardless of the number of learning rounds.

For FedAvg, the coordinator sends θ0 (initialization weights
or model) to all stations. Each station k trains on its own local
data and sends the result to the coordinator. The coordinator
aggregates all collected θkt and returns the updated global
parameters θkt+1 to all stations. The number of data exchanges
can be expressed as follows:

Dsta = Nθ(0) +

T∑
i=1

CiKθi(tx) +

T∑
i=1

CiKθi(rx) (7)

where Dsta is the number of data exchanges on the station’s
side, K is the total number of stations, N is the number of
participating stations, C is the fraction of stations participating
in each round, T is the number of FL rounds and θi is the
amount of information exchanged per round.

The amount of data transmitted to the coordinator (θi(tx)) is
the same as the amount of received data by the station (θi(rx)).
In our work, we force all stations to be involved in FL rounds
(N = K and C = 1). Therefore, the number of data exchanges
becomes:

Dsta = K

(
θ0 +

T∑
i=1

2θi

)
(8)

On the coordinator’s side, the amount of data exchanged is
the same as on the station’s side. Also, in this work, the initial
model is generated on the station side (θ0 = 0), and every
round consists of the same number of epochs (i.e., the model
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Fig. 13. Comparison of model exchanges between FedAvg and ClustME with
the same number of participating stations.

size is the same at every round). Thus, the total communication
cost between stations and the coordinator can be expressed as:

DFedAvg = 4KTθ (9)

ClustME does not require the stations to transmit data to
the coordinator, as the coordinator is only responsible for
orchestrating the workflow. Thus, the payloads are transferred
among stations, as shown in Fig. 13.

A station receives and transmits the same amount of data.
Despite having the same number of participants, the commu-
nication cost in ClustME is half that of FedAvg. Equation 10
expresses the communication cost for ClustME, considering
the total number of participating stations without explicitly
mentioning the communication cost in each cluster.

DClustME = 2KTθ (10)

In SpaTemp, the information transferred to a target station
is measurement data (not deep learning models), specifically
PM2.5. The communication cost depends on the number of
nearby stations sending their data to the target stations and
the total required hourly data. In this work, we selected three
nearby stations. The data exchange can be indicated as the
coloured squares in Fig.3(a), where subscribe-publish pairs
exist. Finally, the communication cost in SpaTemp can be
expressed as follows:

DSpaTemp = 2KNneighHφ (11)

where K is total number of stations, Nneigh is the number of
participating nearby stations, H is the number of hourly data,
and φ the amount of information exchanged during learning.

As shown in Fig. 14, the communication costs for FedAvg
and ClustME increase linearly with the number of rounds
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(Fig. 14(a)), while the communication cost for SpaTemp re-
mains constant. Increasing the number of participating stations
affects the communication cost for all methods, as shown in
Fig. 14(b).

V. CONCLUSIONS AND FUTURE WORK

Air quality data collected from various monitoring stations
exhibits spatial and temporal correlations, suggesting that
collaborative learning could enhance the performance of deep
learning models. Unfortunately, collaborative learning has not
been applied to air quality prediction specifically. In this study,
we have compared three collaborative learning methods for
predicting air pollutant levels: federated learning, learning
with clustered model exchange, and our proposed learning
with spatiotemporal data exchanges. We show that the latter
two approaches complement the well-established federated
learning approach for achieving collaborative learning on edge
devices. The effectiveness of spatiotemporal data exchanges
during training results in a significant 8.934% improvement
in RMSE compared to locally trained models. However, it
is worth noting that it incurs slower training times due to
its larger model size, approximately 700 seconds slower than
federated learning when tested on edge devices.

The communication costs associated with these methods
may depending on several factors, including the number of
participating stations, rounds, and dataset size as we have
explored. We assessed the impact of increasing the number
of edge devices and increasing the number of rounds and
dataset size for each method. Learning with model sharing
demonstrated the lowest communication costs, approximately
two times lower than federated learning and 1.4 times lower
than spatiotemporal learning.

We utilized single-board computers to validate this work.
Our future work will explore this collaborative learning frame-
work on more varied edge devices including those with more
constrained computational resources as well as exploring the
role of edge offloading in improving performance.
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