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Abstract—Coarse-grained FPGA overlays built around the runtime programmable DSP blocks in modern FPGAs can achieve high
throughput and improved scalability compared to traditional overlays built without detailed consideration of FPGA architecture. These
overlays can be mapped to using higher level compilers, achieving fast compilation, software-like programmability and run-time
management, and high-level design abstraction. OpenCL allows programs running on a host computer to launch accelerator kernels
which can be compiled at run-time for a specific architecture, thus enabling portability. However, prohibitive hardware compilation times
in traditional design flows mean that the tools cannot effectively use just-in-time (JIT) compilation or runtime performance scaling on
FPGAs. We present a methodology for runtime compilation of dataflow graphs expressed as OpenCL kernels onto coarse-grained
overlays. The methodology benefits from the high level of abstraction afforded by using the OpenCL programming model, while the
mapping to the overlay significantly reduces compilation and load times. Key characteristics of this work include highly performant
DSP-optimized functional units that scale to large overlays on modern devices and the ability to perform automatic resource-aware
kernel replication up to the size of the overlay. We demonstrate place and route times orders of magnitude better than traditional HLS
flows, even when running on an embedded processor in the Xilinx Zynq.

Index Terms—Field programmable gate arrays, parallel processing, hardware accelerators.
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1 INTRODUCTION

The need for increased performance while considering en-
ergy efficiency has led to the emergence of heterogeneous
computing systems that combine traditional CPUs with
additional hardware to accelerate computationally intensive
tasks [1], [2]. These systems incorporate hardware accelera-
tors like GPUs and FPGAs to scale to large workloads [3].
Cloud computing infrastructure is increasingly heteroge-
neous, providing access to GPUs and FPGAs for hardware
acceleration [4]. Domain specific hardware accelerators,
such as for machine learning [2], graph processing [5], or
real-time data analytics [6] are also emerging, with FPGAs
enabling deployment of such accelerators in a diverse range
of application domains.

FPGAs allow modification of computational architec-
tures post-deployment and are commonly used for rapid-
prototyping of accelerators to be deployed in heterogeneous
computing platforms, allowing developers to customize
and update accelerator architectures as algorithms evolve.
Examples include Microsoft Catapult [7] that uses FPGAs to
accelerate search engine operations and neural network in-
ference [4]. Despite these success stories, FPGA-based hard-
ware accelerators remain difficult to design, maintain, scale,
and port to next generation devices using conventional
methods. Design productivity remains a major challenge,
restricting the effective use of FPGAs to niche disciplines
requiring highly skilled hardware design engineers [8].
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High level synthesis allows accelerators to be compiled
from high level software code in various high level or
domain-specific languages. By automating the extraction of
parallelism from sequential code, it is possible to simplify
the design process significantly [9]. FPGA vendors have
recently released OpenCL based tools (Altera OpenCL [10]
and Xilinx SDAccel [11]) to bridge the gap between the
expressiveness of software programming languages and the
parallel capabilities of the FPGA hardware [10].

OpenCL/high level synthesis (HLS) support reduces
developer effort, and enables design portability and rapid
design space exploration, thus improving productivity, ver-
ifiability, and flexibility. However, the FPGA design process
remains significantly more complex than that for CPUs or
GPUs, with extremely long compilation times for FPGAs
(hours rather than seconds) limiting the FPGA to fixed
accelerator implementations, similar to using pre-compiled
kernel binaries on GPUs. This is a significant obstacle to
software developers who are accustomed to rapid compile
times, with fast turnaround allowing more efficient testing
and tuning of accelerator kernels. It also prevents FPGAs
from taking advantage of Just In Time (JIT) compilation and
from scaling performance dynamically based on the avail-
ability of hardware resources [12]. FPGA design iterations
are already extremely slow, and as devices grow in size and
designs increase in complexity, this problem will worsen,
making JIT compilation on FPGA unlikely.

FPGA overlay architectures [13], [14], [15], [16], [17]
built around runtime programmable hardware blocks have
emerged as one possible solution to this challenge, offer-
ing improved design productivity, by virtue of fast com-
pilation, software-like programmability and run-time man-
agement, and high-level design abstraction. Runtime pro-
grammable hardware blocks may include (soft) processor
arrays [18], [19], DMA engines, SIMD/VLIW engines [20],
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Fig. 1. Timeline showing staging and run time for an application with
multiple kernels. Application staging time include the compilation of all
the kernels within the application. Application run time include reconfig-
ure and execute for all the kernels.

[21], programmable data-flow engines [22], [23], [24], [25],
or Network-on-Chip (NoC) nodes [26]. One example is the
GRVI Phalanx FPGA overlay [13] which uses the Hoplite
NoC IP [26] as a packet-switched network for connecting
a large number of clusters of RISC-V soft-processors, local
memory, accelerator blocks, and interconnect architecture.
Clusters can be customized by using different types and
combinations of building blocks (runtime programmable
hardware IP) to build domain specific massively parallel
accelerator infrastructure.

Programmable data-flow engines [22], [23], [24], [25]
are coarse-grained overlay architectures built on top of the
FPGA offering a simpler target architecture for the com-
pilation flow, resulting in fast compilation, but at the cost
of sometimes significant area and performance overheads.
Recent research in this area has demonstrated ways in which
more efficient overlays can be built [27], [28]. Being architec-
ture centric, these overlays use the dynamic programma-
bility of DSP blocks to more densely map computations to
functional units. These high performance overlays, coupled
with high-level design methods, can address both the design
and compilation aspects of the design productivity gap.

The proposed methodology benefits from the high level
of abstraction afforded by using the OpenCL programming
model, while mapping to the overlay significantly reduces
compilation and load times. Key characteristics of this work
include highly optimized functional units that fully exploit
DSP block capabilities while maintaining high throughput
and the ability to perform automatic resource-aware perfor-
mance scaling up to the full size of the overlay.

We envision scenarios where multiple kernels (within an
application) are required to be launched one after the other
on top of the overlay as shown in Fig. 1. We also assume that
the overlay can co-exist with other custom accelerators on
the FPGA device; bitstreams of different sized overlays are
available in an overlay library and a large overlay can be
replaced with a smaller one if custom accelerators require
more space on the FPGA device at a given point in time.
Since overlay size can vary on the device, we need JIT
compilation to dynamically exploit available resources at
runtime. Before launching the first kernel of the application,
we can JIT compile all the kernels (targetting the available
overlay size) during application staging time. This means

that only a few Bytes of configuration data need to be man-
aged at run time. Using an overlay means each kernel takes
less than a second to compile and application staging time
remains an order of magnitude smaller than compilation
with traditional flows. The overlay allows kernels to be
reconfigured in microseconds (us) while traditional partial
bitstreams take milliseconds (ms) due to their large size.

In this paper, we demonstrate run-time performance
scaling using the concept of on-demand resource-aware
kernel replication running entirely on a Xilinx Zynq FPGA
SoC as a use-case. We extend previous work on DSP block
overlays [27], [28] to present a complete architecture and
design flow including:

• Demonstration of the performance scalability of
these overlay architectures on a variety of FPGA
device families.

• A detailed methodology for run-time compilation of
dataflow graphs expressed as OpenCL kernels with
the ability to automatically scale performance in a
resource-aware manner.

• A comparison of place and route (PAR) times for
vendor tools targeting traditional fine-grained ar-
chitectures and the proposed overlay approach for
a set of benchmarks, including compilation on an
embedded Arm processor in the Xilinx Zynq.

2 BACKGROUND AND RELATED WORK

The increasing design size and fine granularity and hetero-
geneity of modern FPGA fabrics means compilation times
are constantly growing, preventing runtime compilation
and tight design iteration. Compilation times for coarse-
grained architectures, such as coarse-grained reconfigurable
arrays (CGRAs), are significantly lower on account of the
higher granularity used. However, CGRAs implemented as
ASIC devices [29], [30], [31], [32], [33] have not achieved
widespread adoption because functional units (FUs) are
often too application specific to be efficient and useful for
a wide enough range of applications, while a very general
CGRA tends to entail significant area and performance
overheads.

A detailed discussion on CGRA-like dataflow accelera-
tors is available in [34]. Such CGRAs implemented on top
of commercial FPGAs can be tuned to particular applica-
tions, allowing the FUs and interconnect to be adapted to
application requirements while still offering rapid compi-
lation. This method of overlaying can be viewed as using
an FPGA to emulate a custom CGRA architecture. After
refinement, an FPGA-based overlay can be deployed for
domain-specific workload acceleration as demonstrated by
Microsoft Brainwave [35]. The benefit of overlays comes at
the cost of performance, power, and area overheads over
fully custom designs. Reducing these overheads is an active
area of research.

Many dataflow CGRA overlay designs proposed in the
literature do not consider the low-level FPGA architecture,
and as a result, suffer from significant area and perfor-
mance overheads as shown previously with DySER archi-
tecture [36]. FPGA architecture has evolved significantly
over time, with the addition of highly optimized hard
macros, such as Block RAM and DSP blocks, to enable
higher throughput. For example, a key feature of DSP
blocks in recent Xilinx families of FPGAs is the ability to
dynamically modify functionality on a cycle-by-cycle basis
at runtime using dynamic control inputs. This has been used
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demonstrated in a variety of applications. The iDEA soft
processor [19] uses a DSP block to build a full processor
execution unit. The Hoplite-DSP NoC [37] embeds NoC
router functionality into DSP blocks. Application-specific
hardware synthesis [38] exploits the internal structure of
the DSP block to significantly improve mapping results
compared to Vivado HLS. The DSP Supertile Systolic Array
[39] uses DSP blocks to map matrix multiplication and
convolution efficiently at near the theoretical maximum
frequency achievable.

In our work, we propose exploiting the capabilities of
these DSP blocks to design dense high throughput func-
tional units for coarse grained overlays, and present a
compiler flow to enable fast mapping of dataflow graphs
(expressed as OpenCL kernels) to these overlays. There is
significant literature on HLS, including OpenCL to gen-
erate application-specific RTL targetting FPGAs [10], [11],
[12]. Similarly, several researchers have proposed overlay
architectures with methodologies for mapping data flow
graphs [22], [23], [24], [25]. JIT compilation of data flow
graphs (expressed as OpenCL kernels) was also explored
in [40], [41] for overlay architectures. However, performance
scaling and resource aware replication of OpenCL kernels
based on runtime resource availability has not been ex-
plored.

In [40], [41], the authors used overlays with one ded-
icated functional unit for each OpenCL kernel operation.
Five different relatively small overlays (2 floating point
and 3 fixed point) were designed, each specialized for a
specific set of kernels. A new overlay would be loaded if an
unsupported kernel was requested, hence ensuring a large
overlay is not underutilized for a small application.

In our work, instead of compiling OpenCL kernels onto
relatively small application-specific overlays, we compile
replicated instances of kernels onto a large overlay to
achieve effective utilization of resources and maximum per-
formance. Major new optimizations in our work include the
ability to exploit the OpenCL programming model to per-
form dynamic performance scaling using kernel replication
when additional hardware resources become available. The
size of the overlay depends on the available resources after
other system logic is mapped. Alternatively fixed funtion
accelerators can co-exist with the overlay, with remaining
area dedicated to the largest possible overlay. Hence, the
overlays we consider can have different sizes and FU types,
with this information being exposed by the OpenCL run-
time to the compiler, which performs on-demand resource-
aware kernel replication to effectively utilize available over-
lay resources.

In the context of software/hardware systems on hybrid
FPGAs, the reconfiguration time required to load a hard-
ware accelerator onto the FPGAis also a significant factor
alongside the compilation time [42]. In a cloud or IoT ac-
celerator environment, a large number of different compute
kernels need to run on the FPGA. Generation and storage of
partial bitstreams for each kernel is one approach to handle
that, but overlays allow much faster run-time compilation
and reconfiguration, and support for new unknown kernels.
Configuration data for the overlay is an order of magnitude
smaller than partial bitstreams which would need to be
stored on the board before launching the application.

Within a cloud computing setting, where FPGA re-
sources are provisioned to users on-demand, a user can
exploit given resources by loading the appropriately sized
overlay bitstream and the runtime system can inform the
JIT compiler of the available resources. The JIT complier

can then perform dynamic kernel replication to efficiently
exploit overlay resources. Finally, supporting runtime com-
pilation on an embedded processor allows a lightweight
edge accelerator node to compile unknown kernels without
the need for a powerful server, enabling the emerging trend
of in-network FPGA acceleration [43], [44].

In summary, we require an overlay architecture that
achieves high throughput through considered exploitation
of FPGA architecture capabilities, that can scale from small
to large FPGAs, and a lightweight design flow that can map
unknown kernels to this overlay without the need for a
powerful server host, exploiting available overlay resources
to scale performance beyond a single instance of a kernel.

3 ANALYSIS OF COMPUTE KERNELS

A key feature of OpenCL that we wish to exploit is the
ability to scale the performance of an application by exe-
cuting multiple replicated copies of the application kernel
in hardware. However, mapping multiple instances of a
small kernel to an array-based overlay must consider the
availability of both compute and I/O resources.

TABLE 1
Characteristics of the benchmarks used to evaluate our flow. Numbers

in parentheses represent those for the clustered graphs.

Benchmark I/O DFG Characteristics (DSP-Aware)

No. Name nodes graph op graph average graph

edges nodes depth parallelism width

1. chebyshev 1/1 12 (10) 7 (5) 7 (5) 1.00 (1.00) 1 (1)

2. sgfilter 2/1 27 (19) 18 (10) 9 (5) 2.00 (2.00) 4 (3)

3. mibench 3/1 22 (14) 13 (6) 6 (4) 2.16 (1.50) 3 (3)

4. qspline 7/1 50 (46) 26 (22) 8 (7) 3.25 (3.14) 7 (7)

5. poly1 2/1 15 (12) 9 (6) 4 (3) 2.25 (2.00) 4 (4)

6. poly2 2/1 14 (10) 9 (6) 5 (3) 1.80 (2.00) 3 (3)

7. poly3 6/1 17 (13) 11 (7) 5 (3) 2.20 (2.30) 4 (4)

8. poly4 5/1 13 (9) 6 (3) 4 (2) 1.50 (1.50) 2 (2)

9. poly5 3/1 43 (28) 27 (14) 9 (6) 3.00 (2.30) 6 (6)

10. poly6 3/1 72 (51) 44 (25) 11 (9) 4.00 (2.77) 11 (10)

11. poly7 3/1 62 (44) 39 (21) 13 (8) 3.00 (2.62) 10 (7)

12. poly8 3/1 51 (35) 32 (17) 11 (5) 2.90 (3.40) 8 (8)

13. fft 6/4 24 (22) 10 (8) 3 (3) 3.33 (2.66) 4 (4)

14. kmeans 16/1 39 (36) 23 (20) 9 (7) 2.55 (2.85) 8 (8)

15. mm 16/1 31 (24) 15 (8) 8 (8) 1.88 (1.00) 8 (1)

16. mri 11/2 24 (20) 11 (7) 6 (5) 1.83 (1.40) 4 (2)

17. spmv 16/2 30 (24) 14 (8) 4 (4) 3.50 (2.00) 8 (2)

18. stencil 15/2 30 (24) 14 (8) 5 (3) 2.80 (2.66) 6 (4)

19. conv 24/8 40 (32) 16 (8) 2 (1) 8.00 (8.00) 8 (8)

20. radar 10/2 18 (16) 8 (6) 3 (3) 2.66 (2.00) 4 (2)

21. atax 12/3 123(99) 60(36) 6(6) 12.00(7.20) 27(9)

22. bicg 15/6 66(54) 30(18) 3(3) 10.00(6.00) 18(6)

23. trmm 18/9 108(90) 54(36) 4(4) 13.50(9.00) 27(9)

24. syrk 18/9 126(99) 72(45) 5(4) 14.40(11.25) 36(18)

An examination of benchmark kernels for FPGA over-
lays from the literature [38], [45], [46] shows that most
of them are relatively small, limited by the small size of
the overlays they targetted. These kernels are taken from
benchmark suites like Parboil [47], PolyBench [45], and
Polynomial test suite [48]. Table 1 shows the characteristics
of these kernels after extracting the data flow graphs (DFGs),
including the number of I/O nodes, graph edges, operation
nodes, average parallelism, graph depth, and graph width.
The graph depth is the critical path length of the graph,
while the graph width is the maximum number of nodes
that execute concurrently in a timestep, both of which
impact the ability to efficiently map a kernel to the overlay.
The average parallelism is the ratio of the total number of
operations to the graph depth. We observe that for these
benchmarks, the average parallelism varies from 1 to 14.4,
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while the DFGs contain up to 72 operation nodes, 126 edges,
and exhibit a depth of up to 13 and a width of up to 36.

An overlay with FUs that properly exploit DSP block
capabilities allows us to pack more operations into a single
FU by combining simple arithmetic operations into the
more complex compound instructions, such as multiply-
add, multiply-subtract, add-multiply, subtract-multiply, etc.,
supported by the DSP block [38], as shown in Fig. 2 for
the chebyshev benchmark. Applying this transformation to
all the kernels results in the numbers shown in brackets
in Table 1. The op nodes column indicates that an overlay
with at least 45 DSP blocks is required to support this set
of benchmarks, down from the 72 single operation nodes
needed if DSP block capabilities were ignored, as is the case
in many other overlays, where each FU performs a single
operation. This consolidation of arithmetic operations into
the FUs also reduces the strain on the routing infrastructure
as a number of edges in the original DFG are now absorbed
into DSP block internal pipeline paths.

add Imm 5 N8

O0 N9

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul N5

mul N6

sub Imm 20 N7

(a) Input DFG
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(b) Node-merging
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(c) Mapped DFG

Fig. 2. DSP48E1 aware DFG generation.
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Fig. 3. Overlay architecture comprising functional units and routing
resources.

We consider an island-style overlay with a grid of FUs
connected by a grid of word-level interconnect, as shown in
Fig. 3(a). As the size of this overlay increases, the number of
I/O interfaces grows linearly while the number of compute
tiles grows quadratically. Thus, an N ×N overlay supports
N2 FUs, but as the I/O is determined by the overlay perime-
ter it is proportional to N (e.g. 4N , 8N , 12N depending on
the number of I/O nodes per tile).

It is also possible to make the FUs more dense by includ-
ing more than one operation nodes. Our DSP block based
FUs already include multiple operations, but multiple DSP

blocks can also be used in a single FU. In [28] we conducted
a thorough evaluation of different ratios of I/O and DSP
blocks, and found that four DSP blocks per FU was severely
I/O-bound as well as suffering from significant underutili-
sation of compute nodes. Meanwhile a dual-DSP FU based
architecture is well balanced, requiring 100 Slices per DSP
block, enabling an overlay with 128 DSP blocks to easily
fit onto a Xilinx Zynq 7Z020 device, requiring 12.8K Slices.
Further detailed architecture analysis is presented in [28].
In the next section, we describe the detailed architecture of
the single-DSP and dual-DSP block based overlay and its
associated mapping tool flow.

4 DISO OVERLAY ARCHITECTURES
We use the DSP blocks to create a programmable FU in
the overlay architecture as it provides an efficient, perfor-
mant datapath element. Two different FU configurations are
considered, resulting in two different overlay architectures.
The first, referred to as the DSP Island Style Overlay (DISO)
has FUs with a single DSP processing element, while the
second, referred to as the Dual DSP Island-Style Overlay
(Dual-DISO) has FUs with two DSPs.

The architecture of these overlays have a traditional
island-style topology, arranged as a virtual homogeneous
two-dimensional array of tiles as shown in Fig. 3(a), dis-
tributed across the fine grained FPGA fabric. The overlay
instantiates the tiles and borders, where each tile consists of
virtual word-wide routing resources, comprising one switch
box (SB) and two connection boxes (CB), and an FU (as
shown in Fig. 3(b)), and each border has one SB and one
CB, forming the boundary at the top and right of the array,
as shown in Fig. 3(a). This results in an overlay architecture
which contains I/O around the periphery which can then
be connected to a FIFO or BRAM I/O data port. Hence, an
N×N overlay includesN2 FUs, (N+1)2 SBs, and 2N2+2N
CBs.

4.1 Island-Style Interconnect Architecture
Routing resources include switch boxes, connection boxes,
and horizontal and vertical channels. Unlike the single-wire
tracks in fine-grained FPGA fabrics, the overlay tracks are
16 bits wide to support a 16-bit datapath. Additionally,
multiple tracks can exist in both the horizontal and vertical
directions, forming channels within the overlay architecture.
The number of tracks in a channel is referred to as the chan-
nel width (CW), and as this increases, application routing
becomes easier but the area overhead increases. The overlay
tile shown in Fig. 3(b) has two unidirectional tracks in each
channel corresponding to a CW=2.

Switch boxes (SBs) connect tracks to other tracks in inter-
secting channels, while connection boxes (CBs) connect FU
inputs and outputs to routing tracks in adjacent channels.
While it is possible to change the flexibility fs of the SBs
depending on the routing requirements of the compute
kernels, we choose fs = 3. That is, whenever horizontal and
vertical channels intersect, each wire segment can connect
to three other wire segments. Multiplexers are used to
implement each possible connection in the CBs and SBs,
resulting in the routing resources contributing significantly
to the overlay area overhead.

4.2 DISO Functional Unit
The DISO FU provides the resources for the mathemat-
ical or logical operations of the application and consists
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of a programmable processing element (PE), MUX based
reordering logic and variable length shift register based syn-
chronization logic for balancing pipeline latencies, as shown
in Fig. 4. Variable length shift registers are implemented as
SLICEM shift register LUTs (SRLs) to achieve maximum per-
formance. The FU has 4 input and 4 output ports logically
organized at the 4 cardinal points. The reordering logic is a
4×4 crossbar switch network which allows full connectivity
between FU inputs and PE inputs.

Instead of using fine-grained FPGA resources to imple-
ment the programmable FU, we use the DSP48E1 primitive
as a PE as detailed in [27]. The DSP48E1 primitive has a pre-
adder, a multiplier, an ALU, four input ports for data, and
one output port and can be configured to support a number
of compound instructions such as multiply-add, subtract-
multiply, etc. This functionality is determined by a set of
control inputs that are wired to configuration registers. Nor-
mally these inputs are fixed during the synthesis stage, but
we instantiate the DSP48E1 primitive directly, enabling total
control of its configuration, with all three pipeline stages
enabled to achieve maximum frequency. These stages, along
with the registered outputs of the SRLs result in a total FU
latency of 7 clock cycles. Since the DSP48E1 can support
three operations, an overlay of size N×N can support up to
3N2 operations. Hence, the peak throughput of an overlay
of size N × N operating at a frequency of Fmax is equal to
3N2Fmax ops/s. For CW=2, an overlay tile consumes 416
LUTs, 390 FFs and 1 DSP block and a border tile consumes
112 LUTs and 76 FFs. More details on the FPGA mapping of
DISO overlay is presented in [27].

4.3 Dual-DISO Functional Unit
To improve the compute-to-interconnect resource ratio and
hence reduce the number of LUTs per DSP block in the im-
plementation of the overlay, we design a modified version of
the DISO FU to include two DSP48E1 blocks [28]. This FU,
shown in Fig. 5, has the same 4-input, 4-output structure
as DISO, allowing it to connect to any of the four adjacent
channels. It also has similar LUT-based SRL32 primitives at
each FU input for latency balancing and multiplexer-based
reordering logic so that any of the four inputs of the FU can
connect to any of the four inputs of a DSP48E1 primitive.

The two DSP blocks are connected in series, with four
additional registers added to each input of the second DSP
block for pipeline balancing. Lastly, the output from either
DSP block can be selected as the FU output. To achieve
high frequency, all three pipeline stages in the DSP48E1
primitives are enabled. An N × N Dual-DISO overlay can
theoretically support up to 6N2 operations resulting in a
peak throughput of 6N2Fmax ops/s. For CW=2, an overlay
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TABLE 2
Scalability of Dual-DISO overlay on different FPGA architectures.

FPGA Size DSPs Freq. Peak GOPS

Zynq 7Z020 8×8 128 300 115
Virtex 7VX690T 20×20 800 380 912
Alveo XCU280 (3 SLR) 40×40 3200 500 4800
Alveo XCU280 (1 SLR) 22×22 968 650 1887

tile consumes 520 LUTs, 625 FFs and 2 DSP blocks while a
border tile consumes 112 LUTs and 76 FFs.

We explored how this architecture could scale on differ-
ent FPGA devices, achieving the results shown in Table 2,
all with CW=2. The Zynq FPGA SoC achieves a respectable
frequency of 300 MHz for an 8×8 overlay. The overlay
requires 109 configuration bits for the dual-DSP FU and
20 configuration bits for programming the routing network
tile. Thus, an 8×8 overlay has a configuration size of 9100
bits (1137 Bytes), and can be configured entirely in 45.5 us,
compared to 31.6 ms for the entire Zynq programmable
fabric using the PCAP port, a 1000× improvement in re-
configuration time.

A mid-sized Virtex-7 device (XC7VX690T) can accommo-
date a 20×20 overlay (using 800 DSP blocks) at a frequency
of 380 MHz, offering a peak throughput of 912 GOPS [28].
Being architecture-optimized, the overlay scales well with
improvements in the underlying FPGA architecture. On a
more modern multi-die SSIT FPGA device (Alveo XCU280)
a 40×40 overlay (using 3200 DSP blocks) achieves a fre-
quency of 500 MHz, offering a peak throughput of 4.8
TOPS, despite spanning 3 SLRs that have limited interposer
connectivity between them. A 22×22 overlay mapped to
a single SLR on the same device achieves a frequency of
650 MHz. For the experiments in section 6, we consider 8×8
Dual-DISO overlay mapped onto Zynq 7Z020 device.

4.4 Design Challenges and Architectural Optimization
A number of architectural optimizations are performed to
improve the performance of the DISO and Dual-DISO over-
lay architectures.

Frequency and Throughput Optimization: Firstly, both
architectures exploit deep pipelining to achieve high
frequency, thus maximizing application throughput. To
achieve this, we enable all three pipeline stages of the
DSP48E1 primitives, add a register at the output of each
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reordering multiplexer, and register the outputs of the SRLs.
As a result, the total latency of the FU is 7 cycles for
DISO and 8 or 13 cycles for Dual-DISO. To further increase
frequency and eliminate the possibility of combinational
loops in the resulting HDL we use a 16-bit register at the
output of each MUX in the CB.

Distinguishing PE Inputs: Any of the four inputs of the
FU can connect to any of the four inputs of the PE. However,
as the input pins of the DSP48E1 block are not logically
equivalent, unlike those of FPGA LUTs, we must implement
reordering logic for each input pin using a multiplexer. The
four outputs of the FU are logically the same single output
of the DSP block.

Latency Imbalance at the FU Inputs: The output of an
FU can connect to the inputs of multiple other FUs, and
multiple FUs may connect to the inputs of a single FU,
resulting in different signal propagation latencies due to
the deep pipelining in the two overlays. Hence, balancing
pipeline latencies at the different FUs is necessary to ensure
signal timing is correctly matched. Early work on balancing
pipeline latencies was shown in HSRA [49]. Elastic buffers
were used in [22] and credit-based flow control was used
in [50]. Both of these approaches exhibit stalls when pipeline
latencies are imbalanced. In [22], the authors use 64-slot
FIFOs to absorb stalls and demonstrate that there would
be stalls for less than a 32-slot FIFO. In [23], variable-length
shift registers are placed at the input of FUs to avoid stalls.
In this design, we use variable-length shift registers imple-
mented using the LUT-based SRL32 primitives. The depth
of these variable shift registers is set to introduce the correct
amount of delay for each path, and the maximum can be set
to 16, 32, or 64 cycles, depending on the flexibility desired.
We experimentally determine their optimal maximum depth
for our benchmark set. As long as the inputs at any node
are not misaligned by more than the depth of the variable
shift registers, the place and route algorithms discussed in
Section 5 can successfully map, avoiding the need for more
complex place and route algorithms supporting pipelined
interconnect [51].

5 COMPILING KERNELS TO THE OVERLAY
The design and implementation of the overlay itself requires
the conventional hardware design flow using vendor tools,
to allow it to achieve maximum frequency and exploit low
level architectural features. However, this process is done
offline, only once, and so does not impact the mapping
of applications on the overlay. Furthermore, the resulting
bitstream can be provided to the end user as a package
ready for their applications to be mapped onto it. Indeed
by ensuring a modular, parameterized design approach, it
is possible to build variations of the overlays without con-
siderable re-architecting. Since we propose an overlay built
around DSP block optimized FUs, we restrict support to ker-
nels requiring operations supported by the DSP block. DSP
blocks inherently support the most important fundamental
operations (add, sub, mul, logic, etc.) required in arithmetic
computations and hence are capable of supporting a wide
range of applications. Our approach is different from some
other overlays which require application-specialized FUs,
which have the disadvantage of requiring recompilation for
new applications though that approach solves the problem
of applications that use non-standard operations. For ker-
nels with non-DSP block supported operations, a hybrid
approach can be used where some of the FUs can be re-
placed with partially reconfigurable (PR) regions housing

more complex application specific FUs. Exploration of PR
regions to replace some FUs is out of the scope of this paper
though we plan to work on it in the future.

In OpenCL, parallelism is explicitly specified by the
programmer, and the compiler can use system informa-
tion at runtime to scale the performance of an application
by executing multiple replicated copies of the application
kernel [12]. That is, while OpenCL supports both online
and offline compilation, application kernels in OpenCL are
intended to be compiled at run-time [52] so that applications
are more portable across platforms. This online compilation
of kernels is referred to as just-in-time (JIT) compilation.

The JIT overlay compilation in this paper comprises
LLVM Intermediate Representation (IR) generation using
Clang for the DFG expressed as an OpenCL kernel, IR opti-
mization using LLVM optimization passes, DFG extraction
from the IR, mapping of the DFG nodes to the overlay
FUs, FU netlist generation, placement and routing of the
FU netlist onto the overlay, latency balancing, and finally,
overlay configuration generation. This automated overlay
compilation flow is shown in Fig. 6 and is described by
demonstrating the step by step process of compiling a
simple OpenCL kernel.

5.1 DFG Extraction from a Kernel Description
The flow starts with LLVM extracting a DFG from an
OpenCL description. Given a simple OpenCL kernel (as
shown in Table 3(a)), Clang 3.8.0 and the LLVM 3.8.0
disassembler generate the basic block IR, as shown in
Table 3(b). The mem2reg LLVM optimization pass is then
used to generate the optimized LLVM IR of the basic block,
shown in Table 3(c), by removing redundant load and store
operations. The Makefile is shown in Table 3(d).

A custom IR parser transforms the optimized IR descrip-
tion of the basic block to the DFG description shown in
Table 4(a). The DFG consists of nodes that represent op-
erations and edges that represent the flow of data between
operations. A node executes when all of its inputs are ready,
performs its operation, and produces an output, as per the
dataflow model of computation. Fig. 7(a) shows a graphical
representation of the DFG described by Table 4(a) derived
from the original OpenCL kernel.

5.2 DFG to FU-Aware DFG Transformation
The DFG description is then parsed and translated into
a DSP-aware DFG, as shown in Fig. 7(b). This involves

Latency Balancing and Configuration Generation

Placement and Routing

Resource-aware Replication

FU-aware DFG Transformation 

IR Generation and DFG Extraction

OpenCL Description of Compute Kernel

1

2

3

4

5

Overlay
Embedded ARM 

Processor

Fig. 6. Automated overlay compilation flow.
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merging nodes that can be combined into a single FU, based
on the capabilities of the DSP block primitive we have
used. For example, we can use a DSP block’s multiply-
subtract and multiply-add capabilities to collapse the N5–
N7 and N6–N8 nodes in Fig. 7(a) into the N5 and N6
nodes of Fig. 7(b), respectively. As a result, the FU aware
mapping requires only 5 FUs instead of the 7 that would
be required if each node were mapped to a single FU, as
is the case for other overlays. We use template matching
and node merging algorithms similar to those in [38] and
rely on greedy segmentation for clustering. While greedy
clustering provides sufficient results in our case, there are
opportunities to further improve this by using dynamic
programming techniques to achieve optimal clustering, as
discussed in DAGON [53].

Next, if compiling for the Dual-DISO overlay, an addi-
tional clustering step is applied to support the dual-DSP FU.
Two consecutive nodes in the DSP-aware DFG are merged if
the fan-in of the resulting node (excluding constants which
are instantiated inside the FU) is ≤ 4. In the DFG shown
in Fig. 7(b), N4 and N5 can be combined together and
similarly N3 and N6 can be combined together, resulting
in a condensed FU-aware graph as shown in Fig. 7(d).

Dual-DSP clustering results in a significant reduction in
the number of FUs required compared to an FU with just a
single DSP block, also meaning less global routing resources
are needed. Our FU-aware DFG transformation currently
only supports Xilinx DSP block based FUs, but could be
easily modified to support any user-defined FU type.

5.3 Resource-Aware Replication
The FU-aware DFG for the kernel can be optionally repli-
cated a number of times to fit the available resources as
exposed by the OpenCL runtime. This enables multiple
kernels to run in parallel to better utilize available overlay
resources. The replicated DFG is then used to generate the
FU netlist. If replication is not required, a replication factor
of one is used, meaning a single instance of the kernel is
mapped to the overlay.

5.4 Placement and routing of the FU Netlist
We use an adapted version of VPR [54] to map DFG nodes
onto the FUs and DFG edges to the overlay routing to con-
nect the mapped FUs. Rather than mapping logic functions

to LUTs and single-bit wires to 1-bit channels, we modify
VPR to operate at a higher level of abstraction, resulting
in fast compilation as the placement and routing problem
is much smaller than that of mapping to a fine-grained
FPGA. While we rely on simulated annealing for placing
DFG nodes onto the coarse-grained overlay, constructive
placement strategies have been demonstrated for fast dat-
apath placement [55] and could be explored in future.

The architecture of the DISO and Dual-DISO overlays
consists of a traditional island-style topology, arranged as
a virtual homogeneous two-dimensional array of tiles. A
VPR 5.0 architecture file is used to describe the overlay
architecture, as shown in Table. 5 for a 5×5 overlay. The
layout field is used to define the width and height of the
overlay. The switch box type, flexibility fs of the switch box,
and channel width distribution are specified in the device
field. The segmentlist field specifies that all the segments
are unidirectional and span only one block, resulting in one
connection box and two switch boxes per FU.

Fig. 7(c) shows the DFG of Fig. 7(b) mapped on a 5×5
DISO overlay using the VPR place and route tool. Similarly,
Fig. 7(e) shows the DFG of Fig. 7(d) mapped on a 5×5
Dual-DISO overlay (with two DSP blocks per FU). At this
level of granularity, a netlist can have 100s of edges, making
the problem much smaller than that of fine-grained FPGA
placement and routing which can involve netlists of millions
of edges.

To enable fast resource-aware mapping at runtime, the
previous steps (1 and 2 from Fig. 6) can be avoided at
runtime by pre-converting the kernels to FU-aware DFGs
offline. These FU-aware DFGs can then be used at runtime
for resource-aware replication (3) and placement and rout-
ing (4) on the overlay. We demonstrate this in Section 6,
performing runtime placement and routing on the ARM
processor of the Xilinx Zynq SoC.

5.5 Latency Balancing
As discussed previously, correct functioning of the mapped
compute kernel is ensured only if it is latency balanced,
which means that all inputs to an FU arrive at the same
cycle. It is clear from Fig. 7(b) that node inputs can arrive
in different cycles. For example, at N6, one input arrives
directly from the input node while the other input needs
to pass through 3 pipelined DSP blocks associated with
nodes N4, N5 and N3. The FUs have delay chains that must

add Imm 5 N8

O0 N9

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul N5

mul N6

sub Imm 20 N7

(a) DFG extracted
from OpenCL Ker-
nel

O0 N7

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul sub Imm 20 N5

mul add Imm 5 N6

(b) FU-aware DFG
where FU consists of
one DSP block

(c) FU-aware DFG placed
and routed on 5x5 DISO
overlay

O0 N7

I0 N1

mul N2

mul N3,
mul add Imm 5 N6

mul Imm 16 N4,
mul sub Imm 20 N5

(d) FU-aware DFG
where FU consists
of two DSP blocks

(e) FU-aware DFG placed
and routed on 5x5 Dual-
DISO overlay

Fig. 7. Steps of FU aware mapping, placement and routing on DSP block based overlay.
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TABLE 3
Compute kernel code descriptions.

(a) OpenCL description of the kernel:

__kernel void example_kernel(__global int *A,
__global int *B)

{
int idx = get_global_id(0);
int x = A[idx];
B[idx] = (x*(x*(16*x*x-20)*x+5)) ;

}

(b) Intermediate Representation (IR) of the kernel:

%0:
%1 = alloca i32*, align 4
%2 = alloca i32*, align 4
%idx = alloca i32, align 4
%x = alloca i32, align 4
store i32* %A, i32** %1, align 4
store i32* %B, i32** %2, align 4
%3 = call i32 bitcast (i32 (...)*

@get_global_id to i32 (i32)*)(i32 0)
store i32 %3, i32* %idx, align 4
%4 = load i32* %idx, align 4
%5 = load i32** %1, align 4
%6 = getelementptr inbounds i32* %5, i32 %4
%7 = load i32* %6
store i32 %7, i32* %x, align 4
%8 = load i32* %x, align 4
%9 = load i32* %x, align 4
%10 = load i32* %x, align 4
%11 = mul nsw i32 16, %10
%12 = load i32* %x, align 4
%13 = mul nsw i32 %11, %12
%14 = sub nsw i32 %13, 20
%15 = mul nsw i32 %9, %14
%16 = load i32* %x, align 4
%17 = mul nsw i32 %15, %16
%18 = add nsw i32 %17, 5
%19 = mul nsw i32 %8, %18
%20 = load i32* %idx, align 4
%21 = load i32** %2, align 4
%22 = getelementptr inbounds i32* %21, i32 %20
store i32 %19, i32* %22
ret void

(c) Optimized IR of the kernel:

%0:
%1 = call i32 bitcast (i32 (...)*

@get_global_id to i32 (i32)*)(i32 0)
%2 = getelementptr inbounds i32* %A, i32 %1
%3 = load i32* %2
%4 = mul nsw i32 16, %3
%5 = mul nsw i32 %4, %3
%6 = sub nsw i32 %5, 20
%7 = mul nsw i32 %3, %6
%8 = mul nsw i32 %7, %3
%9 = add nsw i32 %8, 5
%10 = mul nsw i32 %3, %9
%11 = getelementptr inbounds i32* %B, i32 %1
store i32 %10, i32* %11
ret void

(d) Makefile

all:
clang -emit-llvm -O0 -o IR.bc -c -m32 -x cl test.cl
llvm-dis IR.bc
opt -mem2reg < IR.bc > optIR.bc
llvm-dis optIR.bc
opt -dot-cfg optIR.bc
dot -Tpng cfg.example_kernel.dot > optIR.png

be configured to match these latencies. To determine the
latency imbalance at each node, we developed a tool that
parses VPR output files and generates an overlay resource
graph, as shown in Fig. 8 for the mapping of Fig. 7(c). An
unshaded node in the graph shows the FU information and
a shaded node shows the track information used to carry

TABLE 4
Compute Kernel DFG Descriptions

(a) DFG description of the kernel:

digraph example_kernel {
N8 [ntype="operation", label="add_Imm_5_N8"];
N9 [ntype="outvar", label="O0_N9"];
N1 [ntype="invar", label="I0_N1"];
N2 [ntype="operation", label="mul_N2"];
N3 [ntype="operation", label="mul_N3"];
N4 [ntype="operation", label="mul_Imm_16_N4"];
N5 [ntype="operation", label="mul_N5"];
N6 [ntype="operation", label="mul_N6"];
N7 [ntype="operation", label="sub_Imm_20_N7"];
N8 -> N2;
N1 -> N5;
N1 -> N6;
N1 -> N2;
N1 -> N3;
N1 -> N4;
N2 -> N9;
N3 -> N6;
N4 -> N5;
N5 -> N7;
N6 -> N8;
N7 -> N3;
}

(b) FU-aware DFG description of the kernel:

digraph example_kernel {
N7 [ntype="outvar", label="O0_N7"];
N1 [ntype="invar", label="I0_N1"];
N2 [ntype="operation", label="mul_N2"];
N3 [ntype="operation", label="mul_N3"];
N4 [ntype="operation", label="mul_Imm_16_N4"];
N5 [ntype="operation", label="mul_sub_Imm_20_N5"];
N6 [ntype="operation", label="mul_add_Imm_5_N6"];
N1 -> N5;
N1 -> N6;
N1 -> N2;
N1 -> N3;
N1 -> N4;
N2 -> N7;
N3 -> N6;
N4 -> N5;
N5 -> N3;
N6 -> N2;
}

the data from one FU to another. For example, at N5 (placed
at (2,1)), the data arrives from N1 (placed at (3,0)) in the
3rd cycle and from N4 (placed at (1,1)) in the 13th cycle.
The overlay resource graph is used to generate the configu-
ration of the overlay (including the latency imbalance SRL
configuration). This information is loaded onto the overlay
at runtime using the OpenCL API.

The tool flow described above supports runtime source-
level compilation to the overlay, ending with the accelerator
configuration being loaded to the overlay to implement
a specific accelerator. However, it is also possible to pre-
compile the accelerator configuration, and load a configura-
tion onto the overlay at runtime. However, in this scenario,
the exact overlay specification, including size and FU con-
figuration, must be known at compile time, similar to using
a kernel accelerator binary on GPU. Finally, it is possible to
pre-prepare the FU-aware DFGs which can then be repli-
cated, placed, and routed dynamically at runtime, based
on the available resources. The runtime compilation has the
added benefit of potential use in multi-tenancy accelerator
systems, where available overlay resources can change dy-
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TABLE 5
Architecture description of the overlay.

<architecture>
<layout width="5" height="5" />
<device>

<sizing />
<area />
<chan_width_distr>

<io width="1"/>
<x distr="uniform" peak="1"/>
<y distr="uniform" peak="1"/>

</chan_width_distr>
<switch_block type="wilton" fs="3"/>

</device>
<switchlist>

<switch type="mux" name="0" mux_trans_size="10" buf_size="1" />
</switchlist>
<segmentlist>

<segment freq="1" length="1" type="unidir" >
<mux name="0"/>
<sb type="pattern">1 1</sb>
<cb type="pattern">1</cb>
</segment>

</segmentlist>
<typelist>

<io capacity="1">
<fc_in type="frac">1</fc_in>
<fc_out type="frac">1</fc_out>

</io>
<type name=".fu">

<subblocks max_subblocks="1"
max_subblock_inputs="4" max_subblock_outputs="4" >
</subblocks>
<fc_in type="frac">1</fc_in>
<fc_out type="frac">1</fc_out>
<pinclasses>

<class type="in">0 1 2 3 </class>
<class type="out">4 5 6 7 </class>
<class type="global">8 </class>

</pinclasses>
<pinlocations>

<loc side="left">3 7 8 </loc>
<loc side="right">1 5 </loc>
<loc side="top">0 4 </loc>
<loc side="bottom">2 6 </loc>

</pinlocations>
<gridlocations>

<loc type="fill" />
</gridlocations>

</type>
</typelist>

</architecture>

namically at runtime, thereby restricting the choice of how
to place and route a new task when requested.

6 RUNTIME COMPILATION

To demonstrate the on-demand OpenCL source-level com-
pilation infrastructure, we consider a lightweight hetero-
geneous computing system based on the Xilinx Zynq
XC7Z020, which consists of a dual-core Arm Cortex-A9
processor running at 650 MHz with 512 MB of RAM, and an
Artix-7 class FPGA fabric on a single die. The heterogeneous
infrastructure, shown in Fig. 9, includes the overlay in the
programmable logic region (the FPGA fabric) of the Zynq
device. Configuration and overlay management are via an
AXI-Lite interface to the ARM processor, while data is
streamed from memory via DMA, with BRAM buffers to
maintain performance.

The overlay size and FU type are exposed by the
OpenCL runtime to the compiler so that it can dynamically
replicate a suitable number of kernel copies to fully utilize
available overlay resources. We deliberately do not consider
a fixed overlay size as other system design requirements
may consume significant FPGA fabric resources, requiring a
smaller overlay. In that case, the overlay size can be reduced
accordingly without requiring any change to the OpenCL
source code. For example, in the case where other logic
consumes significant resources, leaving only minimal room
for a small 2×2 overlay, this information can be exposed by
the OpenCL runtime to the compiler which can then choose
to map only a single copy of a kernel, as shown in Fig. 10(a).

In the case where the other logic is minimal a large
8×8 overlay can be implemented and the compiler can

DDR

ARM Processor

DDR 
Controller

Hard DMA

HP PortGP Port

Central 
Interconnect

M M S S S S S S

FPGA Fabric

Configuration 
Buffer

BRAM BRAM BRAM...

Overlay
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Soft DMA

Fig. 9. Overlay infrastructure, implemented on the Xilinx Zynq, with
overlay size and FU type exposed by OpenCL runtime.

(a) 1 kernel (b) 3 kernels (c) 5 kernels (d) 8 kernels

(e) 12 kernels (f) 14 kernels (g) 16 kernels

Fig. 10. Performance scaling by the compiler using overlay size informa-
tion provided by the OpenCL runtime.

choose to map multiple copies of the kernel, in this case 16
copies of the Chebyshev benchmark as shown in Fig. 10(g),
limited only by the available I/O. Figs. 10(b)–10(f) show
cases in between these two extremes. This dynamic scaling
also has a benefit in multi-tenancy applications where a
large overlay can be used to support multiple accelerator
requests, allocating resources based on the occupancy of the
overlay by other users.

Clearly, different sized overlays have different perfor-
mance characteristics. Fig. 11 shows the effect of perfor-
mance scaling using kernel replication on overlays having
different sizes. The top curve shows the throughput in
GOPS for replicated copies of the Chebyshev kernel mapped
to a Dual-DISO overlay. A throughput of approximately 35
GOPS can be achieved using an 8× 8 overlay by replicating
16 kernel instances while a single instance of the kernel
operates at 2.45 GOPS (as shown by horizontal dashed
line). The bottom curve shows the throughput in GOPS for
replicated copies of the Chebyshev kernel mapped to a DISO
overlay. A throughput of ≈ 28 GOPS can be achieved using
an 8 × 8 overlay by replicating 12 kernel instances while
a single instance of the kernel achieves a performance of
2.66 GOPS. The main benefit of resource aware replication
of kernels at runtime is the possibility of exploiting higher
performance on a larger FPGA fabric without changing the
application source code.

The time taken to map these different accelerator kernels
to the FPGA is important for a runtime compilation flow,
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Fig. 11. Performance scaling by replicating the Chebyshev kernel on an
N×N Dual-DISO and DISO overlay.

as the traditional FPGA flow is too slow to make on-
demand kernel replication, exploited with great success by
GPUs, feasible. To demonstrate the difference in mapping
times for our overlay we compile benchmarks (from Ta-
ble 1) described in OpenCL onto the Dual DISO overlay
and measure the placement and routing time. This is then
compared to that of a traditional FPGA implementation.
Since overlay size is known only when kernels are launched,
we must perform replication and place and route based on
the overlay resource availability. Since the FU netlist for
a kernel needs only be prepared once offline (using steps
1 and 2 from Fig. 6), we focus on the time to place and
route replicated netlists onto the overlay. We consider three
different scenarios, with the results shown in Table 6.

Here, the number of replicated copies of the benchmark
is shown in brackets after the benchmark name. The first
column shows the placement and routing time using Vivado
2014.2 running on the HP Z420 workstation (x86 machine
with an Intel Xeon E5-1650 v2 CPU running at 3.5 GHz
with 16 GB of RAM) targeting the Zynq FPGA fabric. This
shows the place and route time for HLS generated kernels
in the context of generating partial bitstreams. The second
column (Overlay x86) shows the placement and routing
time for the proposed overlay mapping tool on same HP

TABLE 6
Comparison of place and route times for Zynq XC7Z020 (in seconds).

Target architecture FPGA Fabric Overlay Overlay

Place and Route machine x86 x86 Zynq

chebyshev(16) 240 0.12 0.90
sgfilter(10) 420 0.16 1.20
mibench(7) 240 0.14 0.80
qspline(3) 240 0.11 0.70
poly1(9) 255 0.10 0.66
poly2(10) 270 0.12 0.97
poly3(3) 240 0.07 0.32
poly4(5) 240 0.08 0.44
poly5(4) 300 0.10 0.66
poly6(2) 240 0.09 0.55
poly7(4) 232 0.14 1.00
poly8(6) 270 0.12 0.90
fft(3) 232 0.09 0.55
kmeans(1) 240 0.06 0.30
mm(1) 240 0.06 0.30
mri(2) 270 0.07 0.32
spmv(1) 255 0.06 0.30
stencil(1) 240 0.06 0.30
conv(1) 255 0.07 0.32
radar(2) 270 0.07 0.32
atax(1) 275 0.09 0.55
bicg(1) 282 0.06 0.30
trmm(1) 268 0.08 0.44
syrk(1) 270 0.11 0.90
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Fig. 12. Effect of Chebyshev kernel replication factor on PAR time.

workstation, and represents the situation where an FPGA
accelerator card is installed into a workstation. The third
column (Overlay Zynq) shows the placement and routing
time for the proposed overlay mapping tool on the Xilinx
Pynq board consisting of a Xilinx Zynq XC7Z020 device
with a dual-core Arm Cortex-A9 CPU, running at 650 MHz
with 512 MB of RAM. Ubuntu 15.04 runs on the dual-
core Arm with the Portable Computing Language (pocl)
infrastructure [56] installed.

For the set of benchmarks tested, PAR takes on average
0.1 s, 0.58 s, and 262 s for the overlay on a host workstation,
overlay on the Zynq, and for Vivado on the workstation,
respectively. This represents a speed-up on the workstation
of approximately 2600×, when compiling to the overlay
versus using Vivado. When using the Zynq Arm processor,
the placement and routing process targeting the overlay is
still over 450× faster than the HLS flow on the workstation.
In Fig. 12, the Chebyshev kernel is replicated multiple times
to show the effect of kernel replication on PAR time. It also
shows that the place and route time increases with array
size. For larger platforms, such as a Xilinx Alveo U280 with
a 40x40 overlay, it would take longer to map kernel copies
to the overlay.

As a further comparison, we compare the performance,
in terms of throughput (in GOPS, calculated as the product
of the DFG compute nodes and the implementation operat-
ing frequency), of a conventional hardware implementation
with that of the overlay. To achieve this, we generate RTL
using Vivado HLS as well as the vendor independent map-
ping to the overlay using our automated tool flow for the
benchmark set. Fig. 13 shows a performance comparison
of the overlay implementations (left bar) and Vivado HLS
implementations (right bar) in terms of throughput. Many
benchmarks can have multiple instances kernel instances
mapped to the overlay as shown in brackets. For example,
an overlay throughput of 57.6 GOPS is achieved by instan-
tiating 6 instances of the poly8 benchmark (32 operations
per kernel) on the overlay running at 300 MHz. When
Vivado is used to map same number of instances of the
poly8 benchmark to the FPGA, implementation frequency
drops significantly (145 MHz). All the benchmarks run on
the overlay at 300 MHz since this is achieved and fixed
when mapping the overlay to the FPGA. As we increase
the number of kernel instances on top of the overlay, we
continue to observe linear speedup with the number of
kernels that can fit. On the other hand, Vivado struggles
with timing closure as we increase the number of kernel
instances.

Our overlay achieves an average throughput improve-
ment of 40% compared to HLS due to the pipelined in-
terconnect structure and fully pipelined DSP block based



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. AA, NO. B, MONTH 2021 11

ch
eb

ysh
ev

(16
)

sg
filte

r(1
0)

m
iben

ch
(7)

qsp
lin

e(3
)

poly1(9
)

poly2(1
0)

poly3(3
)

poly4(5
)

poly5(4
)

poly6(2
)

poly7(4
)

poly8(6
)

fft
(3)

km
ea

ns(1
)

m
m

(1)

m
ri(

2)

sp
m

v(1)

ste
ncil

(1)

co
nv(1)

ra
dar

(2)

ata
x(1

)

bicg
(1)

trm
m

(1)

sy
rk

(1)
0

20

40

60

80

3
3
.6

5
4

2
7
.3

2
3
.4

2
4
.3

2
7

9
.9

9

3
2
.4

2
6
.4

4
6
.8

5
7
.6

9 6
.9

4
.5 6
.6

4
.2

4
.2

4
.8

4
.8 8
.4

6
.9 8
.4

7
.2

2
5
.2 3
3
.3

2
0
.9

1
2
.9

1
4
.2

1
5
.3

6
.3

5

5
.8

5 1
8
.6

8

1
4
.0

8

2
3
.4

2
7
.8

4

8 5
.7

4
.4 5
.9

4
.1

5

4
.2

4
.3

5

4
.8 6
.4

4

5
.1

1

6
.0

2

6
.7

T
hr

ou
gh

pu
t(

G
O

PS
)

Overlay Vivado HLS

Fig. 13. Performance comparisons of the Dual-DISO overlay and Vivado HLS implementations (number of kernel replications in parentheses).

compute architecture with predictable performance scaling.
Fast compilation comes at the cost of interconnect area
overhead because LUTs and FFs are used to implement
programmable interconnect (word-wide switch boxes and
connection boxes).

Next, we evaluate the area overhead of proposed overlay
compared to direct FPGA implementation of kernels. The
implementations we are comparing use different hardware
resource types, making them difficult to compare directly.
Instead we normalize the hardware resource utilization
using a single “equivalent slices” (e-Slices) metric, where
we assume that 1 DSP block is equivalent to 60 slices based
on the ratio of slices to DSP blocks on the Zynq 7020
device (which is approximately 60) [57]. Note that this ratio
changes from device to device, even within the same family.

For each benchmark in Table 1, we obtain the area
in e-Slices, the throughput in MOPS and throughput per
unit area in MOPS/eSlice. We observe that the average
throughput per unit area for the HLS implementation of
the benchmark set is ≈ 10 MOPS/eSlice. In comparison,
the Dual-DISO overlay achieves 2.2 MOPS/eSlice, which is
around one fifth of the HLS implementations. However, this
4.5× hardware performance penalty is traded off against
a 2600× improvement in place and route time and 1000×
improvement in kernel context switch time, making the
overlay concept a promising possibility for general pur-
pose on-demand application acceleration. Area overheads
associated with overlay interconnect architecture can be
reduced by introducing coarse-grained routing primitives
in the FPGA fabric such as hardened multi-bit switch boxes
and connection boxes [58], [59], [60].

While it is true that an HLS implementation could repli-
cate more copies of a kernel in the same area, we make
this comparison to quantify the overhead of the flexibilty
afforded by overlays, while also bearing in mind that larger
replication factors in HLS implementations would suffer
further reductions in frequency, that bring the gap down. As
previously demonstrated, the architecture centric approach
of the DISO overlay offers a 3.3× improvement in through-
put per unit area over a non architecture centric overlay [61],
hence narrowing the gap to HLS implementations signifi-
cantly.

7 SUMMARY AND CONCLUSIONS

We have presented a coarse grained FPGA accelerator over-
lay and just-in-time compilation flow for OpenCL kernels.
An overlay architecture optimised around the capabilities

of modern FPGA DSP blocks significantly improves perfor-
mance and efficiency compared to previous overlays. The
compilation methodology benefits from the high level of
abstraction afforded by the OpenCL programming model,
while mapping to the overlay offers fast compilation in the
order of milliseconds, even on an embedded processor. We
demonstrated an end-to-end compilation flow with resource
aware mapping of kernels to the overlay. Using a typical
workstation, the overlay place and route is ≈2600 times
faster than the FPGA place and route using Xilinx Vivado.
Furthermore, the overlay can be reconfigured in less than
50µs using the OpenCL API. Using the pocl infrastructure
on a Xilinx Zynq board we demonstrated execution of
OpenCL applications, and place and route onto the overlay
running entirely on the Zynq in under a second for most
applications. We intend to explore the integration of this
overlay with partially reconfigurable functional units, and
extension of the runtime system to a fully virtualised multi-
tenancy accelerator system in future work.
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