
34

ZyPR: End-to-end Build Tool and Runtime Manager for
Partial Reconfiguration of FPGA SoCs at the Edge

ALEX R. BUCKNALL, University of Warwick, United Kingdom

SUHAIB A. FAHMY, King Abdullah University of Science and Technology (KAUST), Saudi Arabia

Partial reconfiguration (PR) is a key enabler to the design and development of adaptive systems on modern

Field Programmable Gate Array (FPGA) Systems-on-Chip (SoCs), allowing hardware to be adapted dynam-

ically at runtime. Vendor-supported PR infrastructure is performance-limited and blocking, drivers entail

complex memory management, and software/hardware design requires bespoke knowledge of the underly-

ing hardware. This article presents ZyPR: a complete end-to-end framework that provides high-performance

reconfiguration of hardware from within a software abstraction in the Linux userspace, automating the pro-

cess of building PR applications with support for the Xilinx Zynq and Zynq UltraScale+ architectures, aimed

at enabling non-expert application designers to leverage PR for edge applications. We compare ZyPR against

traditional vendor tooling for PR management as well as recent open source tools that support PR under

Linux. The framework provides a high-performance runtime along with low overhead for its provided ab-

stractions. We introduce improvements to our previous work, increasing the provisioning throughput for PR

bitstreams on the Zynq Ultrascale+ by 2× and 5.4× compared to Xilinx’s FPGA Manager.

CCS Concepts: • Computer systems organization → Reconfigurable computing; System on a chip; •

Software and its engineering→ Development frameworks and environments;

Additional Key Words and Phrases: Field programmable gate arrays, partial reconfiguration, adaptive systems

ACM Reference format:

Alex R. Bucknall and Suhaib A. Fahmy. 2023. ZyPR: End-to-end Build Tool and Runtime Manager for Partial

Reconfiguration of FPGA SoCs at the Edge. ACM Trans. Reconfig. Technol. Syst. 16, 3, Article 34 (June 2023),

33 pages.

https://doi.org/10.1145/3585521

1 INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are capable of providing high-performance custom

computing for resource-heavy data center applications as well as high-efficiency and low-power

embedded edge scenarios. FPGAs in edge computing have been used to provide acceleration for

applications such as machine learning [37], image processing [47], and in-network processing [29].

Datacenters have found use for FPGAs in the acceleration of complex computing tasks [9]. While

FPGAs excel at accelerating specific computations, system tasks such as hosting an operating

This work was supported by the UK Engineering and Physical Sciences Research Council, grant EP/N509796/1.

Authors’ addresses: A. R. Bucknall, University of Warwick, Gibbet Hill Road, Coventry, Warwickshire, United King-

dom; email: a.r.bucknall@warwick.ac.uk; S. A. Fahmy, Computer, Electrical and Mathematical Sciences and Engineer-

ing, King Abdul-lah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia; email: suhaib.fahmy@

kaust.edu.sa.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1936-7406/2023/06-ART34 $15.00

https://doi.org/10.1145/3585521

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

https://orcid.org/0000-0002-7077-2466
https://orcid.org/0000-0003-0568-5048
https://doi.org/10.1145/3585521
https://doi.org/10.1145/3585521
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3585521&domain=pdf&date_stamp=2023-06-21

34:2 A. R. Bucknall and S. A. Fahmy

Fig. 1. Example Linux PR workflow. Designers are required to propagate their changes up from the acceler-

ator, through to the shell, the Linux kernel, as well as track PL changes from their high-level applications.

system (OS) and managing high-level networking are better suited to general purpose processors

such as CPUs. Numerous academic works have demonstrated performance characteristics and

specialisation of discrete computing devices such as FPGAs, GPUs, and CPUs, defining their com-

parative strengths [3]. The combination of FPGA hardware for high-performance accelerators and

general purpose processing systems (PS) or CPUs has led to popular heterogeneous System

on Chip (SoC) platforms from leading manufacturers, such as the Zynq and Zynq UltraScale+

(ZynqMP) from Xilinx and the Stratix, Arria, and Cyclone families from Intel.

While such devices have the benefits of both generalised and accelerated computing, managing

the abstraction of custom accelerators in the programmable logic (PL) or FPGA fabric from the

application processor can be challenging, as it demands expertise in integrating low-level hardware

design with the higher levels of abstraction used for OS networking, and this is further complicated

for domain-specific design frameworks such as for machine learning. This challenge is further ex-

tended when the designer wishes to exploit specialised FPGA features such as Partial Reconfigu-

ration (PR), which allows the FPGA to modify/update specific regions while still processing data.

There are examples of PR being used in a variety of domains, such as space applications [1, 28],

in datacenters for cloud computing [12, 21], as well as image-processing systems [25]. Given the

rise in popularity of FPGAs as platforms for neural networks [15], generalised support for runtime

PR is becoming increasingly important to enable the performance of specialised hardware to be

coupled with some of the flexibility of software. Managing the state of the FPGA hardware logic

from software running on a CPU is challenging, making designing and deploying such systems

extremely complex.

For PR to finally become feasible in mainstream applications, a number of challenges must be

addressed: (1) designing and building PR systems should be possible by non-experts; (2) abstrac-

tions between hardware and software must be managed such that both PR and accelerator perfor-

mance are not impacted; (3) interacting with hardware accelerators should not require driver-level

access—applications should run from OS userspace; and (4) fragmentation of vendor hardware

should be managed by tooling; the tools should be modular to support new architectures.

Existing vendor as well as current academic tools typically either demand detailed platform ex-

pertise, tightly weaved into the development flow from start to finish or isolate each step, requiring

build tasks to be managed by separate domain experts [32]. Figure 1 shows the four major stages of

building for an FPGA operating system and how, under a traditional vendor flow, changes at any

stage (prior to the high-level application) require the designer to adjust other aspects of the build.

An OS runtime’s control over hardware typically has no context of the build process, being only

aware of what is in the FPGA through logic implemented by the end application designer, often

using custom drivers, bespoke memory mappings, and data transfer mechanisms. This applies

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:3

significant overhead to either the knowledge requirement of the end application designer or

the cumulative team that is building the various stages. Some frameworks such as Xilinx’s

PYNQ [42] platform do provide some hardware abstraction under a Python SDK and allow for

independent register transfer level (RTL) compilation to reduce the need to recompile the

Linux kernel; however, this is typically at a performance loss, using slow and unmanaged methods

for configuring hardware.

It is still difficult for edge application developers to build high-performance accelerators using

off-the-shelf hardware IP cores without highly specialised knowledge. Our motivation for devel-

oping ZyPR is to enable an independent designer to build PR-accelerated Linux applications for

modern edge applications. Designers should be able to use existing HDL projects or IP cores, leav-

ing the tools to determine compatibility and build hardware infrastructure to support them.

To fulfil the demands of a workflow targetted for an independent designer building PR-

accelerated edge applications on Linux, the build and runtime tools should be able to automatically:

(1) determine compatibility of PR modules and the static regions; (2) generate PR configurations

based upon a user supplied config file; (3) export PR configurations (memory maps, bitstreams,

register values) to a Linux image; (4) implement runtime abstractions that allow software-centric

control of hardware state; (5) support non-PS centric data generation/acquisition.

Meeting these criteria is an important step to democratising the use of PR in embedded appli-

cations, significantly reducing the complexity of heterogeneous systems design and deployment.

In an earlier publication [8], we introduced an early set of abstractions that we have built upon

to enable an end-to-end (E2E), from FPGA design to Linux image build, tool that allows for

complete abstracted PR application development. The following contributions were introduced

in Reference [8]:

• A high-performance PR controller and Linux runtime service (limited to approx. 380 MiB/s)

• PR build tool (only Vivado 2018.3, non-extensible, and no support for end-to-end designs)

• Generated PR infrastructure using shared DMA resources (between accelerators and ICAP)

with no support for PR chaining

Our complete framework, ZyPR, extends the previous work on ZyCAP and fulfils these crite-

ria by automatically constructing a ready-to-go Linux image for the designer to implement their

higher-level software applications, without needing to concern themselves with complexities of

hardware management from the Linux userspace. We abstract hardware and driver deployment,

generating the required infrastructure and kernel modules at build time and exporting human read-

able JSON objects that may by consumed by our runtime tool as well as be updatable/modified by

the designer to tweak behaviour. The key contributions of our framework are as follows:

• An extensible end-to-end FPGA PR and Linux build tool written in Python, for partially

reconfigurable designs that automates the generation of infrastructure to support user logic

and manages device tree overlays, drivers, and memory-mapped IO (up to Vivado 2020.3)

• A comprehensive hardware-software build abstraction that simplifies hardware man-

agement from a user’s software application based around the AXI standards

• Support for edge-oriented acceleration where non-PS sourced data paths are allowed for

chaining reconfiguration regions as well as from external PL peripherals

• Improved high-performance asynchronous PR controller using the ZynqMP ICAP in-

terface at near theoretical throughput (increased to 757 MiB/s)

• A runtime PR configuration API for PS-PL management that enables simple software

abstraction of memory-mapped I/O, DMA streaming, as well as loading/unloading partial

and complete bitstreams as part of our described mode and configuration abstractions

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:4 A. R. Bucknall and S. A. Fahmy

• A Vitis HLS case study using OpenCV edge accelerators in a PR application that demon-

strates our software abstraction and benchmarks performance and resources usage

2 CONCEPTS

We define a number of important concepts in the context of our custom tools and specify their rele-

vance to this work; to explain abstractions and concepts, we provide some definitions. We describe

states as hardware changes that may be configured by setting AXI registers or by communicating

with the hardware from another bus protocol (e.g., DMA stream path). We define modes as the

functional hardware accelerators that can be loaded and unloaded from the FPGA using partial

configuration. This includes the partial bitstreams that define the hardware accelerators. We refer

to a configuration as a functional arrangement of modes that may perform an abstracted acceler-

ation function such as multiple modes in the datapath, sampling and filtering the incoming data. A

configuration may consist of a number of modes, abstracting the operating state of the hardware

with both partial regions and the MMIO within the PR modules. In context of the build tool, a

specification file is a file type that defines the parameters of the building workflow. This can be

considered as an initial setup file, not to be confused with the definition of configurations; file is

referred to as the spec.json.

2.1 Heterogeneous Systems on Chip

Traditional edge computing has utilised generalised computing, typically application processors

(or CPUs), such as ARM A-Series processors. Application processors excel at tasks such as sched-

uling software running on top of an operating system, managing networking interfaces as well

as generalised data manipulation and support for high-level user applications and libraries. Con-

trastingly, FPGAs are programmable hardware devices best suited for accelerating parallel tasks

through custom datapath design. They are ideally suited to high data rate applications such as

image processing or machine learning, where generalised compute might only be able to provide

limited performance. However, FPGAs typically operate at significantly lower clock rates than

application processors and need to implement soft-CPU cores to execute software, limiting their

performance for general computing. Heterogeneous SoCs couple application processors and FP-

GAs to leverage high performance and efficiency in both generalised and accelerated computing,

respectively, using high-performance interfaces on the same chip. The application processor is con-

nected to a wide range of external interfaces and comprises the Processor Subsystem (PS). The

FPGA logic is generic and comprises the Programmable Logic (PL) region. Managing the abstrac-

tion interface between a CPU and an FPGA has been a long-standing topic of research discussion,

leading to many approaches to manage and ease the workflow between systems, in particular from

the perspective of how the OS views the hardware in the FPGA. At this time, Xilinx offers two de-

vice families for Heterogeneous SoCs, the Zynq and Zynq Ultrascale+; our framework supports

both devices.

2.2 Operating Systems

To control and manage a tightly coupled FPGA, an operating system may consist of a number

of management layers that include both the hardware and software infrastructure. We split the

hardware management into three layers: controlling the status of the FPGA logic (PR or full re-

configuration), controlling the shell interfaces for moving data between the PS and the PL, and,

finally, controlling the PL accelerator, such as managing modes, starting/stopping/interrupts, and

so on. While other embedded operating systems exist, in the context of this work, we specifically

refer to embedded Linux, as it is widely supported on ARM processors and is the target operating

system of major vendors’ build tooling, such as Xilinx’s PetaLinux.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:5

2.3 Partial Reconfiguration

Partial Reconfiguration is the modification of one or more sections of an FPGA’s logical resources

during which the remaining sections or static regions are unaltered. Reference [36] provides a wide

overview of technical aspects of PR as well as academic work in the area that examines and ad-

dresses improvements and benchmarks concerning the technology. Dynamic PR (DPR) describes

a feature of the FPGA’s to continue to perform operations while undergoing the reconfiguration.

Conversely, we label complete reconfiguration of the FPGA under a reset condition as static or

full reconfiguration. PR is achieved by writing partial bitstreams, generated specifically from the

FPGA build workflow, to a configuration port on the FPGA and in the case of a heterogeneous

SoC, is typically initiated by the application processor. PR has a number of benefits, including

time-multiplexing of hardware, making more efficient use of the logical resources available in the

FPGA, effectively allowing for larger hardware applications to be deployed. Additionally, the time

taken to update these partial regions is considerably shorter than static reconfiguration, as recon-

figuration is proportional to the size of the bitstream that is written to the FPGA’s configuration

port. In the context of this article, we use the term PR to describe dynamic PR.

2.4 PR Design Workflow

The workflow for designing PR applications is complex, requiring expertise across multiple do-

mains, including RTL design, operating system configuration, kernel driver, and high-level soft-

ware design. A typical workflow will include: designing the low-level shells for PR modules, devel-

opment of the PL accelerators, designing a custom Linux image with drivers and kernel support,

as well as the high-level application that will consume and control the PL.

Complexity in the design of accelerator hardware can be expressed as a design challenge, beyond

the scope of this research where numerous academic tools as well as vendor-supplied frameworks,

such as Xilinx’s Vitis HLS, provide a software centric approach to designing hardware acceler-

ators using simplified constructs in common software languages like C++. This article presents

abstractions for the reduction of complexity in the build times and runtimes specifically for PR

applications. Reducing the development complexity of the hardware accelerators themselves re-

mains a design challenge, as the paradigms for designing hardware are not a direct translation to

high-performance software design. We are able to leverage the fact that many of these higher-level

accelerator design flows have consistent interface generation, e.g., AXI.

2.5 PR Runtime (FPGA Manager)

Most Xilinx Zynq and all current Zynq Ultrascale+ PR runtimes use Xilinx’s supplied FPGA Man-

ager driver, which abstracts the Processor Configuration Access Port (PCAP) interface for

loading PR modules. FPGA Manager is a general reconfiguration driver available in the Linux ker-

nel for controlling/provisioning tightly coupled FPGAs from Linux. FPGA Manager uses the PCAP

on the SoC to load the PL with either static or partial bitstreams. To load the PCAP, FPGA Man-

ager must perform a sequence of register reads and writes to the Configuration Security Unit

(CSU) registers that are managed by the ARM Trusted Firmware (ATF) and then the Platform

Management Unit (PMU). Once the PCAP is set up and prepared for loading, a DMA transfer

can be performed to the CSU, containing the target bitstream for flashing, as shown in Figure 2.

We argue against using FPGA Manager for PR management for its limited performance (due to

the use of PCAP), blocking software paradigm (which halts the software flow until PR is complete)

and inability to apply design tree fragments while performing PR (required to alert the Linux

kernel to hardware changes). FPGA Manager also does not support caching of bitstreams and loads

bitstreams from the Linux filesystem, rather than higher-performance physical memory-mapped

locations.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:6 A. R. Bucknall and S. A. Fahmy

Fig. 2. Loading of the PCAP from FPGA Manager (ZynqMP)[43].

3 BACKGROUND

To effectively explain the current state of research for PR design flows, both vendor tooling and

academic works are evaluated.

3.1 Vendor Tools

Major FPGA vendors, including Xilinx and Intel, offer their own implementations of PR, with vary-

ing degrees of support on recent FPGA SoC platforms. The build tools specifically target Xilinx’s

Zynq and Zynq Ultrascale+ devices, as support for PR is more widely documented and there is a

larger user community than for other vendors. There is potential to support other vendors such

as Intel in future work.

3.1.1 Xilinx Vivado Design Suite. Xilinx Vivado is the suite of hardware tools for FPGAs, en-

compassed by the Vitis platform, to help users design, build, and deploy custom bitstreams onto

Xilinx FPGAs. This tool includes the workflows for synthesis, implementation, and place and route.

While this software does provide workflows for some automation of the PR design flow using the

Dynamic Function Exchange wizard tool, this is limited such that the designer must ensure that

their PR modules correctly match the base design including interfaces, the allocated pBlocks or

Reconfigurable Partitions (RP), as well as assembling and extracting any memory-mapped ad-

dresses from such modules if required to be exposed at runtime to the Linux kernel. We specifically

examined Vivado from version 2019.2 onwards, with the introduction of the Dynamic Function Ex-

change tools.

3.1.2 Dynamic Function Exchange. Dynamic Function Exchange (DFX) is a Xilinx device

feature that allows a user to dynamically modify blocks of logic by downloading partial bitstreams

while the remaining logic continues to operate without interruption, referred to elsewhere as DPR.

DFX is a collection of tools provided by Xilinx to reduce some of the complexities associated with

designing partially reconfigurable applications. DFX provides a simplified wizard for reducing

repetition when creating PR modules but this only extends as far as allowing the user to automate

the swapping in/out of PR modules into the build flow. The DFX suite does offer IP cores for

managing reconfiguration including tools for managing the flow of data into and between static

and PR regions but these do not support loading from an AXI-Stream transaction, such as with

Direct Memory Access (DMA) from the PS.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:7

Fig. 3. The Xilinx Linux build flow.

3.1.3 Xilinx Vitis. The Xilinx Vitis unified platform comprises a collection of hardware and

software layers for building embedded applications. In relation to the tools, we refer to Vitis SDK

as Xilinx’s previously named XSDK software suite for building bare metal and Linux applications.

Vitis is typically designed to build C/C++ Linux applications for the Zynq and ZynqMP platforms

where the user’s code may be required to interface with kernel drivers or modules. It is intended to

be used with the PetaLinux build workflow, for access to the kernel headers and dynamic libraries

required for linking.

3.1.4 PetaLinux. PetaLinux is Xilinx’s build tool for embedded Linux deployments and is based

on the open source Yocto build tooling, using the same recipes and build structures to generate

custom Linux images. Xilinx supports the ability to pass hardware configurations between Vivado

and PetaLinux using their XSA compressed object, which specifies information about hardware,

such as Memory Mapped Input/Output (MMIO) addresses, support for their own IP cores, and

drivers such as the DMA controller. Figure 3 shows the pipeline from Vivado, Vitis, and PetaLinux

for generating the boot.bin Linux image that contains bitstreams, first-stage bootloaders, as well as

other power-management firmware. While this pipeline supports static designs, due to the chang-

ing interfaces and modules, it is unsuitable for PR workflows, as definitions such as MMIO register

controls are not tightly defined, as the generated XSA file includes the build information for only

the base design, not the subsequent PR modules.

Figure 4 shows how the Xilinx tools are used together to design and develop embedded Linux

applications. While there are automated aspects of this design flow, such as the exporting of AXI

addresses (MMIO) to be used for generating a static Linux device tree, this only supports a tradi-

tional static design flow, with no support for PR hardware.

3.2 Current Research

Significant work has been conducted across various aspects of the PR workflow, in particular, on

the FPGA floor planning process, where floor planning is the spatial placement of logical designs

on the FPGA and/or on the scheduling of PR loading from the processing system. Tools like GoA-

head [4] leverage vendor tooling for the building of reusable Reconfigurable Modules (RM), in-

tending to make designs more portable and potentially compatible across different FPGA devices

and PR applications. GoAhead can generate interfaces for PR modules to enable simple integration

with the static region and abstract low-level designing. Reference [46] focuses on the DPR work-

flow for building RMs and automating RP generation; it is built on top of Vivado TCL scripts and

offers a simplified workflow for building PR applications. Their tool, however, impacts the size of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:8 A. R. Bucknall and S. A. Fahmy

Fig. 4. Stages of the PR build flow [8].

the partial bitstreams and thus further increases the time taken to load over the PCAP interface.

More recently, Reference [16] provides an automatic floor planning methodology that enables the

generation of IP, independent of architecture and able to target larger SoCs such as the Zynq Ultra-

scale+ devices. The work in Reference [48] introduces a hardware architecture that packages FPGA

resources as blackboxes, configurable at runtime where a software stack allows for task scheduling

in the FPGA using PR to load accelerators. Their design focuses predominately on task scheduling

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:9

and utilises a slot-based architecture with fixed interfaces. The results demonstrate high efficiency

when accelerator execution time exceeds the cost of reconfiguration delay.

Open source tools are essential to this field of research, as there is not a single approach that

can solve all of the issues of PR application development. Tools such as FPGA Operating System

[32] are designed to isolate each element of the workflow such that designers with expertise can

independently develop these components, while others [2] offer highly integrated workflows that

tightly integrate the movement of data between PS and PL using custom APIs.

3.2.1 FPGA Operating System. FOS [32] is a recent build framework and runtime that modu-

larises the design flow of PR applications for the Zynq and ZynqMP. It provides optimisations

in the domain of abstracting the FPGA-Linux barrier to focus on resolving challenges to do with

segmenting the design flow for interoperability across a team, enabling stages to be offloaded to

bespoke designers with domain expertise. In their flow, the designer(s) must be aware of non-

trivial considerations for PR hardware such as creating PL device constraints, generating a custom

Linux device tree, as well as how to interface high-level software applications with hardware ac-

celerators, either through kernel drivers or userspace abstractions on kernel drivers. FOS supports

compiling PR modules independent of the shell interfaces, performed by bitstream manipulation

to dynamically assign physical fabric mapping to the PR modules allowing them to abstract re-

source allocation [24], as opposed to the traditional flow, which requires locking a static design

to implement a PR module. However, similar to other frameworks that utilise custom PR shells,

there is limited support for interfacing peripherals such as Ethernet controllers, MIPI cameras,

and so on, directly with the accelerators, first requiring conversion into a standard shell interface

(AXI4 or AXI4-Lite), which is not factored into the design flow. FOS targets applications where a

development flow might be implemented across multiple designers working in isolation; the tools

aim to enable a workflow for a single software designer to build accelerated applications. The FOS

runtime supports a multi-tenancy scheduler that manages provisioning for multiple clients. For

the runtime, intended for a single user edge application, we choose not to build in unnecessary

complexity to the framework, arguing that multi-tenancy is more suited for centralised offloaded

compute applications.

Other tools [48] have also focused on scheduling of PR systems, aiming to provide a framework

for efficient task switching and provisioning of the PL within heterogeneous systems. As there is a

significant body of work in this domain, our tools predominately focus on the abstraction as well

as the build process for the designer, rather than the well-established domain of PR scheduling.

Instead, an open runtime API and abstraction are provided to enable task scheduling to be built

around the hardware and software infrastructure.

The work in Reference [23] suggests extensions to FOS that provide plugin support for the

ICAP. However, the driver and HDL code for this extension not been incorporated into the open

source release of FOS. It is difficult to quantify the features of their driver, such as if it supports

asynchronous triggering of PR, without additional insight into how the driver functions. It does,

however, appear to suggest that it offers reconfiguration directly from the network, described as

remote configuration, which offers similar advantages as described in Reference [7]. Table 1 shows

a comparison of current competing tools that target relevant devices and current vendor place and

route tooling. A comparison of runtime managers is shown in Table 2.

3.2.2 ReConOS. ReConOS [2] allows generation of PR bitstreams, but these must be compiled

along with the kernel as custom drivers and bespoke hardware components. This means that

future PR modules require the kernel to be recompiled with the new bitstreams and associated

drivers. Additionally, no device tree configurations for underlying modules are generated,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:10 A. R. Bucknall and S. A. Fahmy

Table 1. Build Tool Comparison

Framework H
ig

h
L

ev
el

S
p

e
c.

P
a
rt

it
io

n
in

g

F
lo

o
rp

la
n

n
in

g

P
h

y
s.

Im
p

l.

H
L

S
S
u

p
p

o
rt

Z
y

n
q

M
P

S
u

p
p

o
rt

C
u

st
o

m
S
ta

ti
c

L
o

g
ic

D
ev

ic
e

T
re

e
C

o
n

fi
g

D
ri

v
er

A
u

to
m

a
ti

o
n

P
o

st
B

u
il

d
M

o
d

u
le

s

B
it

st
re

a
m

P
re

p
.

C
u

st
o

m
R

o
o

t
F

S

Xilinx Vivado � � �� � � � �� �� � � � �
Intel Quartus � � �� � � � �� �� � � � �
ReconOS � � � � � � �� �� � � � ��
FOS � �� � � �� � �� �� �� � � �
ARTICo3 � �� � � �� � �� �� �� � � �
CoPR � � �� � � � � � � � � �
ZyPR � �� �� � � � � � � � � �
� : The step is fully automated by the tool requiring no designer intervention.� : No automation in this operation.�� :

Partial automation is provided by tool.

Table 2. Runtime Comparison

Runtime L
in

u
x

Su
p

p
o

rt

B
it

. M
an

ag
em

en
t

N
o

n
-B

lo
ck

in
g

P
R

M
u

lt
i-

U
se

r

IC
A

P
Su

p
p

o
rt

Z
y

n
q

M
P

Su
p

p
o

rt

P
R

Sc
h

ed
u

le
r

U
se

rs
p

ac
e

A
P

I

G
en

er
ic

D
ri

v
er

s

FPGA Manager � � � � � � �� �� �
ReconOS* � � � � � � � �� �
FOS* � � � � �� � � � ��
ARTICo3* � � � � � � � � ��
ZyCAP � � � � � � �� � �
ZyPR � � � � � � �� � �
� : Fully supported. � : Unsupported. �� : Partial support or allows other tools to implement. *Built on top of FPGA

Manager.

so PR modules that require specific configurations, such as differing memory maps, require

recompilation of the kernel.

The group behind ReconOS recently expanded this vision for a hardware abstracted Robot Op-

erating System (ROS2) platform built on top of ReconOS framework, ReconROS [19]. ReconROS

features multithreaded programming interfaces for both hardware and software control with APIs

for consistent programming models across hardware and software boundaries. They utilise the

shell interfaces present in ReconOS with additional APIs that wrap the ROS2 subscriber/publisher

methodologies to interface between hardware and software. A ReconROS application is designed

in a similar manner to the ReconOS workflow, extending the original tooling to generate a hard-

ware and software output but with ROS2 middleware accompanying. Their platform targets the

Zynq-7000 platform and not the Zynq Ultrascale.

While existing PR frameworks provide access to PR with the compromise of overhead, portabil-

ity, and performance, we offer a combination of lightweight build abstractions that extend ven-

dor tooling with limited modifications to kernel drivers, focusing on abstracting control from

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:11

the userspace while providing the highest possible performance for both PR and PL accelerators.

Frameworks such as FOS divide the build process between multiple domain experts and provide

support for multi-user distributed accelerators. The abstractions focus on enabling a single user to

develop and deploy high-performance adaptive system applications within Linux. The complexity

of standard vendor tooling presents a significant barrier to entry for new users and we attempt

to address this with the tooling abstractions. These extend to the runtime API, which means a de-

veloper without PR application experience can write the software to manage the reconfiguration

seamlessly at runtime.

3.2.3 ARTICo3. Reference [27] is another automated toolchain designed for PR application de-

ployment. They describe their tool as being able to dynamically adapt between tradeoffs with

computing performance, energy consumption, and fault tolerance, meeting the demands of a cy-

ber physical system. ARTICo3 extends the ReConOS system bus; the designer is expected to con-

form workflow APIs for controlling PR kernels, which provide abstracted access to hardware, with

the caveat that HDL or C/C++ kernels must conform to a shell-defined interface. This means that

accelerators (referred to as kernels in Reference [27]) must be designed to fit the shell interfaces

and thus their runtime API. This does provide an advantage to discretely allocate resources per PR

shell such as local memory banks for each shell, where accelerators act as virtual slave peripherals

in the AXI infrastructure. HLS libraries are offered to simplify kernel design, and all custom accel-

erators should be designed with the expectation that the local memory blocks for each accelerator

is used to move data between the accelerator and the rest of the infrastructure. This simplifies

PR with a standard interface between the static and reconfigurable regions but adds design time

complexity.

The ARTICo3 runtime executes from the Linux userspace, written in C. Their API uses a custom

kernel platform module to manage virtual-physical memory management as well as DMA control.

While the kernel platform module is relatively lightweight, it means that any changes in the Linux

kernel must be fixed in the framework, as opposed to using vendor drivers such as Xilinx’s DMA

driver.

3.2.4 Summary. Across the most recent and notable toolchains that target simplification of the

PR build process, we identify a number of key issues concerning the build tools and runtime man-

agers. Hardware kernels are common across the different tools, pushing designers to learn custom

workflows for designing/wrapping their acceleration functions as well as writing software with

consideration for framework specific APIs. Additionally, there is no support for non-PS centric

data transfer; accelerators are treated as isolated co-compute for the PS, and externally connected

devices such as high-speed cameras and sensors must be connected first to the PS before data

can be accelerated in the PL. The runtime managers included with these tools use Xilinx’s FPGA

Manager driver for reconfiguration, restricting the potential PR throughput and latency to that

available with the PCAP interface.

3.3 PR Managers

Most PR managers for FPGA SoC support the Xilinx Zynq; however, the differing architecture

of the ZynqMP requires the PS for loading bitstreams, and thus a software layer is required to

perform initial reconfiguration, either from within an OS or on bare metal. Most modern tools

are built on top of Xilinx’s FPGA Manager tool, including those noted in Table 2, for loading PR

bitstreams, and use the PCAP interface. Some of the mentioned works extend the functionality of

FPGA Manager but are generally limited at runtime by the drawbacks of FPGA Manager, including

those discussed in Section 2.5. We argue that FPGA Manager is unsuitable for high-performance

PR applications such as image processing or inline data streaming as the reconfiguration latency

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:12 A. R. Bucknall and S. A. Fahmy

and throughput are comparatively low compared to other methods, later highlighted in Section 6.2.

Reconfiguration time may be in the region of tens of milliseconds, for typically sized bitstreams,

of which crucial data may be lost/missed in this period, given a high-performance application.

The work in Reference [20] examines high throughput reconfiguration channels using the PR

performance of the ICAP (Internal Configuration Access Port), while others have overclocked

the primitive to see throughput of close to 800 MB/s [11]. These works have targeted standalone

FPGAs or older architectures and do not provide programming capacity for a tightly coupled pro-

cessing system such as on the Zynq or ZynqMP devices. ZyCAP [35] introduced the concept of a

high-throughput hardware controller along with a high-level software controller running on the

Xilinx Zynq-7000 processor. It achieved a reconfiguration throughput of 382 MB/s from the PS to

PL over ICAP but was limited by a lack of support for a full OS such as Linux as well as limited

support for high-levels of hardware abstraction. Our work in Reference [6] showed how the ICAP

could be programmed over DMA on the Zynq Ultrascale+ devices, and the authors of Reference

[23] increased the clock frequency of the ICAP to 200 MHz, further increasing performance to

close to the theoretical 800 MB/s.

4 BUILD TOOLFLOW

Our workflow differs from current tools with its aims and implementation details, generating PR

infrastructure specific for serving edge applications. The ZyPR tools provide a complete E2E FPGA

to Linux workflow to tightly integrating PR systems design as a simple software-centric design

solution. Tools such as FOS offer a design flow intended for multiple designers requiring specific

domain knowledge, albeit compartmentalised for offloading, meaning that for an optimal design

workflow, a diverse team of domain experts is required. Our tools extend recent works by:

• Trading fine-grain control at each stage of the design process for deeper abstractions, requir-

ing less expertise from a single designer

• Offering better support for varying accelerator interfaces by generating support infrastruc-

ture at build time rather forcing standardised shell interfaces

• Providing an alternative to a PS-driven dataflow; with the expectation for high data rate

sensors and peripherals to be attached to the PL

• Reduce the low-level complexity of end-to-end PR software application development by use

of mainline userspace-kernel software drivers

• Improving on loading throughput and latency for PR bitstreams for Linux applications

While academic works have examined the runtime of PR management, many of these tools still

require the designer to use the standard vendor build workflows. This approach is appropriate

for static designs, as hardware details such as hardware memory address locations are fixed and

can be passed between Vivado and the Vitis SDK tools using XSA export files, however, this is

not compatible with a workflow that generates multiple PR bitstreams. We provide an integrated

hardware build toolflow that generates structural outputs that are used to implement the driver,

software, and abstraction components required by the Linux build process and PR runtime.

The workflow is designed to allow a single user to implement accelerator cores directly with

their high-level software applications. The tools manage the shell generation through to Linux

kernel changes to support the various generated PR modules, abstracted through configurations

and modes. The build flow, both FPGA and Linux components, are written as an extensible Python

command line interface (CLI) tool, allowing them to be used either as a CLI or Python library

for custom build projects, such as automating for multiple device types. The build tool utilises the

Edalize Python library for interacting with EDA tools programmatically [17]. Edalize is used to

inject template TCL scripts that control the Vivado workflow at build time.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:13

4.1 Hardware Abstraction

Under the framework, states, modes, and configurations are defined to abstract hardware control

from the designer’s software application [6]. Individual hardware components can exist in a set of

possible states, each of which might adjust some internal hardware registers (a parametric change)

or force a hardware reconfiguration with a new circuit (a structural change). Combined together,

multiple components form a valid mode of the system that can be set by the cognitive decision logic.

In this way, it is shielded from managing the low-level states of individual components. Fundamen-

tal hardware structure may change through modification of access to specific sensors or actuators

(such as a radio switching from sensing to communication modes). These are referred to as distinct

hardware configurations, which may require a different set of data interfaces between software and

hardware. At runtime operation, the decision logic communicates configuration changes to the

hardware through a runtime or configuration manager (CM), which abstracts the underlying

changes to hardware required for the desired configuration and mode. The CM is responsible for ab-

stracting the software to hardware interface with an application programming interface (API).

4.2 Infrastructure Generation

To resolve the complexities of integrating custom accelerators, the tools attempt to automatically

build internal FPGA logic to accommodate interfaces and peripherals of the user’s design. Figure 5

shows the generalised architecture for how shell logic and infrastructure is generated for corre-

sponding PR designs. Currently, the tool is capable of parsing Verilog top-level modules for their

required interfaces as the port and interface extraction leverages Pyverilog [31], an open source

Verilog design processing toolkit written in Python. This, however, does not limit the provided

IP from only being supplied as Verilog sources, the tool can also accept VHDL libraries and TCL

scripts that are required to build the target modules. The only restriction is that the top-level ports

must be provided in Verilog so the tools can extract interfaces. High Level Synthesis (HLS)-

generated IP cores can also be used as input sources for PR modules, supporting building directly

from the imported core or pre-generating the IP cores to be consumed within the user’s logic. We

utilise Xilinx’s AXI interconnect and AXI-Stream arbiter IP cores for routing data paths between

the DMA controller and MMIO reads/writes from the PS. Any signalling within the PL is managed

by the ZyPR runtime, which will set the AXI-Stream arbiter master and slave addresses according

to the applied configurations. In future work, we aim to improve port extraction by providing full

support for VHDL and SystemVerilog.

4.2.1 Compile-time Generated Interfacing. To allow for a variety of PRRs, the build tool gen-

erates infrastructure at compile-time to support the accelerator interfaces. Module interfaces are

determined using a custom Python library, interfacer, which is able to extract supported proto-

col interfaces, which the build tool matches and generates infrastructure for, including AXI inter-

connects and AXI-Stream arbitrators (multiplexer/demultiplexers). Currently this supports AXI

Standard/Lite, AXI-Stream, General Purpose IO, Interrupts, Clocks, and Resets; it is designed to be

extensible by the designer, allowing them to specify their own protocols, such as using I2C and

MIPI interfaces. The Interfacer library is able to extract interface widths and pass this information

upwards to the toolchain, which then determines the infrastructure to generate, such as setting

default widths for interconnects as well as bus-width converters, if required. At present, the Inter-

facer library supports Verilog modules, however, due to the nature of this Python library, adding

support for additional languages only requires a port/interface parser for the target language. In

future work, we intend to support SystemVerilog and VHDL. The library does not currently han-

dle differing/crossing clock domains between PRRs, as this requires specific attention when floor

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:14 A. R. Bucknall and S. A. Fahmy

Fig. 5. PL architecture generated using the ZyPR build tooling.

planning. However, the designer may specify their own pblock placements for accelerators and

can manually accommodate for crossing clock domains with custom logic and pblock locations.

Listing 1 shows the interfacer protocol definition for the AXI-Stream master interface, used to

parse AXI-Stream interfaces and extend the generated AXIS arbitrator from Figure 5.

Listing 1. AXI-Stream Master Interface.

4.2.2 Automatic PR Region Generation. The tools will search the user’s specification file for

PRRs, assign the specified pBlocks, and build the PR logic accordingly. Listing 2 shows a specification

file with a two-region PRR, where a chroma filter is generated for both regions but the image resize

and Gaussian filter may only be generated in region_a and region_b. A user may choose to do this

if they know a module is resource-intensive, as there is only a finite selection of logic available

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:15

in the PL. The tools will assign the RP and then create synthesis and implementation runs for

each region in an out of context workflow, allowing for the modules to be used in PR bitstream

generation. Currently, the tools will warn the user that resource requirements exceed the PRR

specified (specification shown in Listing 2).

Listing 2. Multi-region specification with pblock definition.

Figure 6 shows an example of the post-build generated wrappers for the user’s HDL modules. In

this instance, the tools generated two wrappers (supporting two configurations), an AXI Lite for

control and an AXI-Stream interface for data streaming. The generated wrapper will at least con-

tain a union of the interfaces of the underlying modules, where any interfaces unused by a module

are automatically tied off. This can support varying-sized interfaces, for example, one module with

a 32 bit AXI-Stream and another with a 64 bit interface, with the caveat that performance may be

degraded if data-width conversion modules/IPs are used.

We choose not to address the issue of floorplanning within the tool and instead provide standard

slot-based PRR for the supported devices with layouts for 1 to 4 accelerator partitions. These slot

definitions are stored with the board files, and the tools provide a flexible mechanism (via Python

API) to automate this resource allocation, if required. We provide the ability to specify the pBlocks

via the specification files such that external floorplanning tools may be used in conjunction with

the build tool. Significant research [5, 26, 34] has already been conducted in this space and, thus,

we consider custom floorplanning to be out of the scope of this work. In future work, we intend

to automatically allocate the pBlock regions intelligently, without manual input from the designer,

based on methods such as those described in References [10, 33].

4.2.3 PR Module Chaining. The tools provide a chained region generation feature for edge ap-

plications, where multiple accelerators may be connected directly together to better serve stream-

ing data such as image processing or in-network packet processing. Currently, this feature supports

AXI streaming interfaces where the user can specify that the master and slave AXIS interfaces are

connected to another accelerator rather than directly back to the PS (via DMA). The compile-time

generated infrastructure allows PRRs to be connected to each other in the described data chaining

pipeline. Traditional shell-based accelerators must move data first to the PS before it can be redi-

rected to another accelerator, which disadvantages PL acceleration when the PL is the data ingress

for sensors and peripherals. The tool allows a user to declare in the specification file if regions

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:16 A. R. Bucknall and S. A. Fahmy

Fig. 6. Synthesis schematic after build tool generates wrappers for each PRR.

should be connected to each other or to even external IO on the FPGA for outboard sensors or

peripherals. This type of design is amenable to edge acceleration, where accelerators are likely to

ingest data from sources either connected directly to the PL before the data arrives at the PS or

where data might require manipulation in a sequence of accelerators.

4.2.4 Customised Base Design. Under the default settings, the base design will encapsulate the

user’s accelerator with a generated shell, built from the interface information extracted by the in-

terfacer library. This can be overridden with custom base designs to allow interfacing with external

interfaces, for example, high-speed camera interfaces such as MIPI CSI, assuming the underlying

hardware supports this. The default layout utilises a single DMA controller with generated arbi-

trators for both the ICAP control interface and any accelerator modules that use AXI Streaming

interfaces. The AXI Streaming interface is particularly important, as it enables a continuous block

of memory to be transferred between the PS and PL, as required for edge applications such as

image processing and network traffic analysis. The default workflow scales according to the num-

ber of user PRRs and exposed AXI interfaces identified within those PRRs. Additionally, this may

also be overwritten to isolate the reconfiguration DMA (for ICAP) and a unique DMA for the ac-

celerators (using a dedicated HP(C) port), where the DMA may also be configured as video DMA

or standard DMA. We target a base clock of 200 MHz for designs but can split the clock into a

200 MHz clock for the ICAP and a lower-speed clock for the accelerator if the accelerator does not

support such frequency. The memory addressing for the control of the DMA arbitration to ICAP

and accelerators is abstracted within configuration files and set by the Linux runtime manager.

4.2.5 Internal Configuration Access Port. For high-performance reconfiguration, we choose to

utilise a hard ICAP primitive within the PL for streaming partial bitstreams. The ICAP is a hard

macro available in modern Xilinx FPGAs, with minor differences between the ICAPE2 macro on

the Zynq and the ICAPE3 on the ZynqMP. The ICAPE3 officially supports transferring bitstreams

at a clock frequency of 200 MHz and provides more output signalling than ICAPE2, such as with

error statuses and the ability to trigger status interrupts. The interfaces for these primitives are

shown in Figure 7.

The tools automatically determine the target device and deploy infrastructure accordingly. If

targetting a Zynq device, then the ICAPE2 will be used at 100 MHz, and if a ZynqMP is selected,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:17

Fig. 7. ICAPE2 and ICAPE3 macros.

then the infrastructure builds for a 200 MHz clock and the ICAPE3 signalling. A unique DMA

controller can be allocated for the ICAP as well as for each of the user’s accelerators, at the cost of

additional logical resources. When sharing a DMA controller, the tool will prioritise the accelerator

clock frequency and clock the ICAP according to the slowest common clock, potentially reducing

reconfiguration time if the accelerated region is running at a lower frequency than the ICAP. We

use a Python toolbox for building digital hardware, nmigen [38], to generate the interfaces for

the ICAPE2 and ICAPE3 at compile-time. This allows us to parametrically build the interfaces and

signalling for the PR controller, routing ICAP status signals back to the PS over a common AXI-Lite

interface.

4.3 Linux Build Flow

We support building directly into a pre-prepared Linux image, implementing and generating the

requirements for each configuration and its supported modes from hardware. This information is

passed from the FPGA build stages in the form of configuration JSON objects consisting of the

memory address mappings, PR bitstreams, and default values for MMIO registers. This is used for

configuring the Linux image to allow for ICAP access, generating device tree overlays, preparing

userspace drivers, preloading bitstreams and configuration files.

4.3.1 PMU Firmware. To control the ICAP from the ZynqMP’s PS, the control registers in the

Configuration Security Unit (CSU) must be whitelisted for access; to do this, it must be enabled

from the PMU firmware upon booting. The PMU is a hardened Microblaze [45] processor embed-

ded within the ZynqMP’s processing system, responsible for power, error management, as well as

managing access to the CSU control registers. Under the vendor-provided firmware, these control

registers are blacklisted, and the Linux kernel may not access the registers that allow for toggling

between PCAP and ICAP control [43]. Due to this restriction, we build a modified version of the

PMU firmware that enables secure access to specific register addresses, in particular the 0xFFCA3008

register, which toggles bitstream loading between PCAP and ICAP (it defaults to PCAP).

4.3.2 Device Tree. The Linux kernel builds a mapping of the hardware made available to it-

self using a Device Tree (DT). Typically on embedded ARM-based architectures, this DT is con-

structed at build time to allow the kernel to load drivers in relation to the hardware described as

connected, for example, hardware that is memory-mapped or made available over a specific inter-

face such as I2C. Considering that the PL may be treated as generically definable logic, a designer

may choose to implement a number of custom processor peripherals such as memory-mapped or

streamed interfaces (via memory-mappable DMA, that may require internal switching), thus, it

is important to track hardware changes with a dynamic device tree. As the tools do not enforce

strictly defined shell interfaces, as such the ability to update the device tree is important for allow-

ing the kernel to track the location of memory maps within the FPGA.

The 3.18 release of the Linux kernel introduced the device tree overlay (DTO), an implemen-

tation of the in-kernel device tree that can be used to modify the kernel’s live tree and affect

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:18 A. R. Bucknall and S. A. Fahmy

Fig. 8. Applying DT fragment via configuration.
Listing 3. Example of AXI DT fragement@0.

the running kernel, such as applying driver changes, registering and deregistering nodes, in turn

loading/unloading modules. Xilinx’s FPGA Manager offers the ability to update the DTO while

programming bitstreams but does not possess the ability to import these overlays from the FPGA

build process or produce the overlays from the DFX workflow. The build tooling uses the data

from the FPGA build process to generate custom DTOs, describing required modes and configu-

rations that are then stored alongside the bitstreams for PR. Currently, this is performed for AXI

and AXI-Stream based accelerators, using the MMIO addresses and the DMA arbitrator location,

generated at build time, respectively. DTO loading is crucial when applying configurations that

require changes to nodes of the live device tree, for example, alerting a driver of the status of a

hardware module, as shown in Listing 3 and Figure 8.

4.3.3 Kernel Drivers. To accommodate varying PL peripherals, we opt for generic PL drivers

to handle data transfer between the PS and PL rather than rolling custom framework-specific

drivers. The configuration of the drivers required in the device tree overlay are generated for a

specified configuration during the FPGA build process. Nodes are generated for all of the available

MMIO (AXI) addresses as well as the position of any AXI-Stream interfaces, located under the

DMA controller.

5 RUNTIME MANAGEMENT

Managing the FPGA abstraction from the PS at runtime requires a software layer to determine

which hardware interfaces are exposed to the user and how to apply the target configurations.

The runtime is designed to run in the Linux userspace, providing an API to user applications

that abstracts how PL hardware is controlled and how data is moved between the PL and the PS.

This is one area where many existing PR frameworks have not dedicated much effort, assuming

that the designer should define the specific loaded bitstreams at runtime rather than abstracting

this based on the modes defined during the build phase. The abstraction aims to enable the high-

level adaptation logic to be written independent of the low-level reconfiguration details, without

needing knowledge of where bitstreams are stored, how to load device tree overlays or read/write

from specific memory addresses in the PL, and so on.

5.1 Configuration Abstraction

To simplify the user’s perspective for controlling the state of the PL, we use the concept of modes

and configurations mentioned in Section 2.

5.1.1 Hardware Resources. Hardware is abstracted into JSON configuration files that describe

the target state of the FPGA, expressed by the modes and configurations, and how the userspace

can interface with the current logic in the PL. The location of the PR bitstreams and arrangement

of RMs and RPs is handled by the configuration manager.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:19

Fig. 9. ZyPR Linux Stack [8].

5.1.2 Device Tree Overlay. The Linux kernel uses the device tree to instruct the operating sys-

tem to what physical hardware interfaces are available to the kernel. In recent versions of the

Linux kernel, support for device tree overlays has allowed changes to be made to the device tree

during runtime and can be applied with the kernel’s configs interface. For the PL, this can be used

to dynamically load and unload hardware according to what is present in the accelerator slots at

any point in time. During the building process, Vivado generates a compressed export directory,

an XSA (HDF in older versions) that contains a map of IP cores that have accompanying Linux

drivers. The PetaLinux build process uses this to construct a device tree, providing driver and

memory-mapped support for supported IP cores. While this works for static PL bitstreams, it gen-

erates a full device tree for the static hardware without support for dynamic logic in PR regions.

The PetaLinux-generated device tree is used to construct design-specific DT fragments, injecting

extracted memory address maps and clocks logic from the build time generated infrastructure to

create fragments for each configuration. A benefit of using DTOs to manage system-wide config-

urations is that it retains its state and configuration, regardless of the application. If the user’s ap-

plication is paused or stopped, then the configuration should be maintained/stored, otherwise the

designer must implement their own mechanisms to track memory addresses and configurations,

outside of the application’s runtime. Stopping the application should not unnecessarily unload or

reload the FPGA; a DTO allows this to be tracked outside of the user’s application.

5.1.3 Linux Userspace Drivers. The runtime service executes exclusively from userspace to

utilise the multitude of software libraries available, unlike the restrictive nature of kernel drivers.

We make use of existing mainline drivers such as UIO and a lightweight userspace wrapper for

Xilinx DMA Driver to reduce dependency on kernel compatibility. This has the advantage of be-

ing a consistent interface that is independent of kernel, reducing security risks of providing direct

hardware control to the user, reducing the likelihood of dangerous bugs impacting the kernel and

allowing for the reliability of existing upstream vendor drivers as opposed to custom drivers. An

alternative design pattern would be to build all the tooling as standalone loadable kernel modules,

however, this presents the challenge of needing to support and provide compatibility for our own

modules that would need to support Xilinx hardware such as the DMA controller. The Linux stack

for the ZyPR runtime is shown in Figure 9.

5.1.3.1 Generic Userspace IO. The Linux kernel ships with a module known as the Userspace

IO (UIO), which can be used to communicate directly with memory-mapped devices from the

Linux userspace. Using memory addresses generated from the PR build process (extracted to PR

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:20 A. R. Bucknall and S. A. Fahmy

configurations), the ZyPR runtime gives the software developer abstracted access to these UIO reg-

isters, without requiring them to directly initialise and set up these modules, themselves. The ZyPR

runtime manages the availability of these UIO addresses to prevent reading/writing to hardware,

while it is in an undefined state. For HLS-generated modules, this can be extended to provide inter-

nally addressable registers, as this is stored within the modules upon exporting for use as IP core.

5.1.3.2 u-dma-buf. The u-dma-buf module is designed to allocate contiguous physical memory

blocks in the kernel space for use as DMA buffers and provide access from the userspace [14]. These

blocks may be used as DMA buffers when a user application interfaces with UIO-mapped IP, such

as a DMA Controller in the PL for streaming data. We use u-dma-buf to cache PR bitstreams,

preparing reconfiguration bitstreams in contiguous memory buffers for rapid loading into the PL.

5.1.3.3 Xilinx AXI DMA. We use an open source userspace-accessible module for wrapping

Xilinx’s DMA controller kernel driver, enabling access to both the DMA and Video DMA IP cores

[22]. It allows for zero-copy, high-bandwidth DMA transfers between the PS and PL, allowing

data to be moved rapidly between either system. This wrapper driver supports transmit, receive,

and two-way DMA transactions between the PS and PL. Users can use this module as well as u-

dma-buf to create contiguous physical memory blocks mapped to the userspace to transfer their

application data into and out of the PL. We use this driver for both provisioning the ICAP as

well as moving data into user accelerators. This is used in part with the UIO driver to control the

AXI-Stream bus switches that may be shared between ICAP and n number of user accelerators

interfaces. The driver supports both synchronous and asynchronous transfer modes, allowing for

callbacks to be registered against the completion of asynchronous transfer. Asynchronous transfers

are used by the runtime to enable high-performance and non-blocking reconfiguration of the PL.

The original wrapper driver does not support Linux kernel releases greater than 4, so we use a

modified version of the driver that is compatible with both the Zynq and ZynqMP and has been

tested in PetaLinux 2019 (Linux Kernel 4.19.0). Xilinx has since published documentation on how

to wrap their mainline driver for userspace control; we intend to implement this to stay in better

sync with Xilinx’s own changes. The modified driver has been tested against the 5.x kernel and

supports PetaLinux 2020.

5.2 ICAP DMA Provisioning

To provide high-performance PR of the PL, we leverage DMA provisioning of the ICAP. Previous

academic work demonstrated a management platform for improving the performance of partial

reconfiguration via a high throughput direct memory access to the ICAPE hardware macro [35].

The tool builds upon this by providing the missing Linux controller for this interface, using an open

source DMA driver as well as physical to virtual memory mapping driver to enable the tool to be

controlled entirely from the userspace. Full and PR bitstreams can be stored at image build time as

well as added to the system at runtime. Additionally, the mechanism for provisioning provides a

non-blocking software routine that can raise an interrupt on completion, freeing the PS while PR

is ongoing and the PL is ready to receive data. This can be done by either modifying existing or

creating custom configuration files as the ZyPR system abstracts the hardware control. Given the

performance advancements of the Zynq Ultrascale+, we are able to clock the hardware controller

for ICAPE3 at 200 MHz, which results in a throughput of 757.2 MiB/s as the DMA transaction

approaches saturation.

5.3 Configuration Manager

The runtime or configuration manager (CM) enables the designer to abstractly control the hard-

ware modes and configurations and is a key feature of the framework. Figure 10 provides an

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:21

Fig. 10. Sequence diagram for the ZyPR runtime (loading and data transfer).

example sequence diagram of the API calls made by a user’s application to the runtime. Rather

than requiring the user to know which bitstreams contain which selection of modes and configu-

rations as well as the location of the target bitstream files, the runtime can apply these changes by

passing it just the name of the configuration. Referring to Figure 10, the CM provides an abstracted

means of preparing contiguous memory buffers via u-dma-buf (A), managing PL MMIO addresses

(C), transferring streamed data into the PL by selecting the desired AXI Switch channels (D) as well

as handling provisioning of PR and static bitstreams into the FPGA (B). In A, the CM checks to

see that the required kernel drives exist and initialises contiguous memory buffers to cache target

bitstreams with the u-dma-buf driver. This is performed to enable rapid loading of these buffers

into the DMA controller in the PL and thus triggering of reconfiguration of the FPGA. The number

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:22 A. R. Bucknall and S. A. Fahmy

of bitstreams to be cached can be configured at build time or at runtime to manage memory usage.

B highlights the CM passing a bitstream buffer pointer to the DMA driver, which triggers a DMA

transfer into the PL. The CM ensures that the AXI-Stream Switch is set to the ICAPE macro and

starts the DMA transaction. The loaded bitstream may also be read out from the ICAPE using this

same method. C demonstrates how the CM abstracts the addressing of memory-mapped PL periph-

erals (AXI & AXI Lite). The user is not required to track these PL memory addresses; they simply

need to load the required mode and the CM ensures that the correct registers are populated. When

building modes from HLS-generated IP cores, the build tool is able to generate hooks for the in-

ternal registers and provide granular access; without this, the designer must manually specify the

address spaces. In D, the CM checks which AXI-Stream path is required for the user’s transfer and

changes the transfer path such that it points at the target accelerator. The AXI DMA driver allows

for single direction transfers as well as bidirectional transfers, both of which can be set to trigger

on an interrupt from the PL, providing non-blocking transfers to the PL. At release, we provide pro-

grammatic access to the CM using the C++ API but intend to expose it generically as Linux service.

5.4 Runtime API

We provide a lightweight C++ API for controlling and provisioning modes and configurations

between the PS and PL. This API provides abstractions to the configurations and modes as well

as manages the data flow between an application and the PL. We intend to later release a Python

library, enabling software designers to further abstract their applications as well as extend the

Xilinx PYNQ platform to leverage abstractions. We use z for the ZyPR Manager and s for the

configuration.

• ZyPR z(hardware,configs) – ZyPR constructor takes overrides for default bitstream and con-

figuration directories.

• z.init(config) – load a default configuration into the PL. This uses the FPGA manager driver,

as the initialising bitstreams must be loaded over PCAP before the ICAP can be used.

• z.status() – returns a struct containing the status of the PL including the currently loaded

string:config, string:mode, and bool:pl_busy.

• z.configs() – returns the available configurations in the default location.

• z.config(config) – load a configuration into the PL.

• z.alloc(size, name) – allocates contiguous memory for accelerator use.

• z.exit() – cleanly tears down the ZyPR runtime.

• s.modes() – returns the available modes within the configuration.

• s.mode(mode) – load a mode into a configuration.

• s.write(reg) – read from a register specified in the mode.

• s.read(reg) – write to a register specified in the mode.

• s.transfer(buffer, type, direction) – read/write a buffer in PS to a configuration in the PL

either via DMA stream or a memory transfer. enum:type may either be dma or axi. enum:direction

may also be a two_way_transfer, which sends data from the PS to the PL and waits for the PL

to write back into the PS.

The runtime API is designed to predominately use the pre-generated JSON configuration objects

built by the tools in the build workflow. This allows the user to manually tweak the configurations

to suit their applications as well as easily group behaviours such as associated bitstreams, MMIO

maps, and values.

6 EVALUATION

We evaluate the ZyPR build and runtime tooling in terms of both runtime performance and

build complexity. It is important that the provided abstraction has minimal impact on both user

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:23

Table 3. PR Manager Static PL Resources

PR Region Interfaces FFs LUTs BRAMs
Total LUT Utilisation

of PL (%)

1 AXI4-Lite (32-bit) + 0 AXI4-Stream (32-bit) 7,688 5,132 5 7.27

2 AXI4-Lite (32-bit) + 0 AXI4-Stream (32-bit) 7,738 5,142 5 7.28

1 AXI4-Lite (32-bit) + 1 AXI4-Stream (32-bit) 8,817 5,619 5 7.96

2 AXI4-Lite (32-bit) + 2 AXI4-Stream (32-bit) 9,063 6,051 5 8.58

accelerator and software performance. The evaluation is performed on a ZynqMP development kit,

the Ultra96v2 (Xilinx Zynq UltraScale+ MPSoC ZU3EG), and build time evaluations are conducted

using Vivado 2019.2 on a 6-core 12-thread Intel i7-10750H running at 2.60 GHz with 32 GB of RAM.

6.1 FPGA Resource Consumption

Logical resource consumption is an important metric for custom infrastructure, as the more re-

sources consumed by the framework, the less that is available for user accelerators. The framework

scales the shell according to the number of modules and required interfaces provided by the user.

For example, if there are no AXI-Stream interfaces in any of the user’s accelerators, then the tools

will not generate an AXI-Stream switch.

6.1.1 Compile-time-generated Infrastructure. Here, we demonstrate a varying selection of cus-

tom accelerators with the respective interfaces that they expose and measure the resources con-

sumed by the infrastructure generated required to support the described interfaces. Table 3 shows

the resources across a selection of arrangements; the consumed resources never exceed 9% of the

LUT utilisation of the PL. The infrastructure generated to house additional buses is a Xilinx AXI4

Lite multiplexer, where minimal resources are required to route additional AXI4 Lite buses. The

same is true for the AXI-Stream interface, where ZyPR controller manages toggling between the

source and destinations of the Read/Write transactions/streams. This leaves over 90% of the PL

resources for the user’s accelerators or additional shell logic if required to interface with external

hardware. Considering that this is a small UltraScale+ device, larger devices will suffer even less

of a fractional overhead.

The generated infrastructure has some limitations enforced by the IP cores that are used to

generate bus routing. Both the AXI-Stream Switch (v3.0) [41] and the AXI Interconnect (v2.2)

[40] can support up to 16 master and/or slave interfaces. The tooling has a soft limit to prevent

the user creating more interfaces than a single switch or interconnect can support, although in

practice it could be possible to support more interfaces. We measure the resource consumption by

subtracting the resources consumed in the PR regions from the overall resources required for the

complete design.

6.2 Accelerator Performance

To evaluate the impact of ZyPR’s custom-generated infrastructure, we quantify the AXI and

AXI-Stream transfer performance. While this evaluation is indicative of the performance of the

userspace DMA driver, we show how there is no hardware performance penalty when using the

framework and tools. The tools do not add any additional infrastructure overhead to the Xilinx in-

terconnect (AXI and AXI-Stream) IP cores and, as such, performance is only limited by these cores.

We provide a benchmark of the userspace DMA driver transfers compared against Xilinx’s own

driver running under their PYNQ platform. This demonstration is performed across varying-sized

payloads, where the PL is clocked at 200 MHz using a 32-bit AXI-Stream bus, with maximum burst

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:24 A. R. Bucknall and S. A. Fahmy

Fig. 11. DMA Driver Benchmark across 1,000 transfers (PL clocked at 200 MHz).

size set to 256 bits, where the theoretical maximum throughput is expected to be 800 MB/s (approx

763 MiB/s). The drop in throughput for smaller bitstreams (less than 1 MiB) is amortised in larger

bitstream as the DMA stream saturates.

Across all the demonstrated transfers, the driver used within ZyPR consistently performs at

higher throughput than the equivalent transfer in PYNQ, as shown in Figure 11, approaching the

theoretical maximum throughput while providing a level of abstraction for controlling accelerators

without compromising on performance. We assume that this discrepancy is due to the Python

function calls adding a non-negligible overhead to the performance of the DMA driver.

As our tools generate virtual memory maps and buffers for accelerators in the PL, these ab-

stractions should have limited impact on the designer’s ability to orchestrate hardware tasks from

software. Unlike PYNQ, where an interpreted Python layer exists between the user’s software and

the hardware, we provide minimally impacted access to hardware resources from the ZyPR API.

Due to the performant interface (DMA from pre-prepared contiguous memory buffers) provided

between the processor and FPGA, the latency is kept low.

6.3 Software Overhead

To evaluate the performance impacts of the ZyPR runtime, including userspace abstractions, we

quantify various portions of the PRR management abstraction.

6.3.1 Build Time Complexity. While it is difficult to quantify the impact of abstracting the build

workflow, given the variation of efficiency due to designer’s knowledge, development machine

performance, among other variables, we provide a timed build run for the tools, generating four

specified combinations of modules. The tools automatically assemble the build flow for a given

spec.json and, thus, we quantify the time taken for each of these steps to be performed by the build

tool. Aspects of the build process are handled by Xilinx’s own tools, Vivado and PetaLinux, and

are applicable to any PR build flow; however, we can measure the time taken for assembling the

build projects, extracting ports and interfaces, as well as crafting the Linux build inputs such as

device tree overlays.

We measure the time taken to run the Vivado automated build tooling for the case study design,

where this is representative of the first two columns of Figure 4. To quantify the complexity, time

taken for port and interface extraction is captured as well as the time for a complete Vivado build.

For a three-configuration design with 1 AXI-Lite (slave) and 1 AXI-Stream (master and slave), port

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:25

Table 4. Runtime Latency Breakdown

Software Layer Latency (ms)

Set up CSU � 5.58

Initialise drivers � 4.87

Allocate buffers �� 3.18

Parse JSON �� 2.26

Load config (bitstream only) �� 0.21

Load config (bitstream + MMIO) �� 1.23

� : Performed once �� : May be performed multiple (per config).

extraction takes 37.94 seconds, and the total build time is 2,427 seconds for each partial bitstream

and the full bitstreams to be generated. To compare this against a complex design, assembled and

constructed manually, this equivalently could take hours or even days, given build failures, user

error, and so on. Comparatively, the overhead for the extensions to the workflow are negligible

compared against the vendor-locked aspects such as synthesis and implementation.

6.3.2 Runtime Latency. We evaluate the trigger latency for each stage of the reconfiguration

runtime called from within Linux. Trigger latency is defined as the time taken for an API call to

the CM and may be cumulative if called multiple times for a complex configuration, such as with

a mode that contains multiple MMIO reads/writes. Table 4 provides a breakdown for the software

overhead (measured as latency) required by the runtime to load and trigger configurations and

modes. This specifically highlights loading bitstreams (as well as a combined MMIO write), as

this suffers the greatest impact on overhead from the API. It is important to evaluate this, as these

software calls might be expected to be performed during an asynchronous transfer of PR bitstream

to the PL and thus should be minimal so as not to impact the total time to perform a provision

of a configuration. Notably, the parsing of configuration JSON files adds non-significant latency

to the actual configuration of the bitstreams, given that they can be performed asynchronously

and at higher throughput than other tools. We argue that given the significant increase in time to

load bitstreams versus FPGA Manager, this abstraction is justified to reduce complexity for tracing

bitstreams and managing configurations. Certain aspects of the tool may be performed at the boot

time of the device, such as initialising generic userspace drivers, however, these are included in the

table, as it could be assumed that they are not loaded until the runtime starts. Buffer generation

is measured with a 5 MiB contiguous block of memory allocated for the user’s accelerator in the

PL. This buffer generation is used for both accelerator and PR loading. It is important to note that

time to parse JSON objects scales, depending on the complexity of the configurations and modes.

6.4 Partial Reconfiguration Performance

We demonstrate the PR controller on the FPGA by clocking it at 200 MHz and provide a benchmark

comparing the runtime loading bitstreams into the PL against Xilinx’s FPGA manager runtime.

Theoretically, while the ICAP may be clocked at higher frequencies [13], we demonstrate it in the

context of this case study, where all the IP cores are also clocked at 200 MHz and share the same

DMA controller as the ZyPR PR controller.

6.4.1 Comparison to FPGA Manager. We evaluate the performance against Xilinx’s provided

FPGA manager tool, as shown in Figure 12. As previously discussed in Reference [8], the FPGA

manager tool is verbose, so both a default (verbose) and silent version are compared against

our runtime. In Reference [8], we showed the performance of the ICAPE3 running at 100 MHz;

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:26 A. R. Bucknall and S. A. Fahmy

Fig. 12. PR Runtime Performance (time to load bitstream).

given that we are able to further clock the ICAPE3 macro at 200 MHz [44], performance is signif-

icantly improved against the traditional PCAP reconfiguration flow. We benchmark our runtime

at 100 MHz and 200 MHz against Xilinx’s FPGA manager in default and silent modes, using three

varying-sized bitstreams (5.430 MiB, 2.565 MiB, and 1.330 MiB). The bitstreams were generated by

varying the size of the assigned RP. Timings for the asynchronous calls to the DMA engine from

the ZyPR runtime are provided, which, while not a true measure of the performance, give insight

into the earliest availability of the processor after reconfiguration is triggered. This is a fixed trig-

gering overhead of approximately 33 us for a bitstream of any size, where an interrupt handler

will fire when the DMA transaction completes. During this time the processor is free to begin

applying the device tree fragments, establishing any accelerator specific buffers, and so on. The

results demonstrate that the ZyPR runtime has a significant advantage over FPGA Manager, that

increases with bitstream size as the time taken to trigger the DMA transaction is amortized over

the whole transfer. Increasing the frequency of the ICAP from a base clock of 100 MHz to 200 MHz

resulted in an increased throughput of 94.8% (from 388.7 MiB/s to 757.3 MiB/s) demonstrated when

compared against the PL clocked at 100 MHz (measured using the 5.430 MiB bitstream).

7 CASE STUDY

We demonstrate the ZyPR build tool and runtime using an HLS Vitis Vision accelerated image pro-

cessing application case study that uses a USB webcam (Logitech C920) attached to the Ultra96v2’s

processing system. As our tools are aimed at users who may not be experts in RTL design, we

choose to demonstrate a simple image-processing application built from HLS sources, as this is a

likely choice for designers looking to generate complex accelerator logic from higher-level source

code. Our tools consume the Verilog output files from generated by the HLS source, matching the

ports and interfaces of the accelerator. While we do not suggest that our tools help with the design

of the RTL accelerators themselves, the ability to utilise HLS enables users to more rapidly iterate

on their applications.

We show how the simple runtime C++ API can be used to control the FPGA through loading

configurations and updating modes, demonstrating how PR and MMIO are managed.

The example design uses three PRRs with three independent configurations; an initial histogram

computation followed by two image-manipulation accelerators, which can be either pass-through

a Gaussian filter, chroma key filter, gamma correction, and/or histogram equalisation. These are

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:27

connected to the PS using a combination of AXI Lite and AXI-Stream interfaces. The acceleration

modules are generated from Xilinx’s Vitis Vision HLS libraries [39], which offer OpenCV function

acceleration for FPGAs. Using static reconfiguration and the FPGA Manager (limited to 256 MB/s),

bitstream loading would consume significant time, resulting in dropped frames. The case study

provides a demonstration of how accelerator chaining is relevant to image/video processing appli-

cations.

Interfaces extracted during the build flow are used to instruct the tools which interfaces on

the accelerators should be connected. Figure 13 highlights chaining accelerators using the tools.

Using a traditional shell-based PRR, data must first be sent to the PS to be redirected back into

another shell containing the next function, unless complex bus logic for interconnection has been

implemented. This case study also highlights the significance of high-performance PR, allowing

us to rapidly modify regions 0, 1, and 2 without loss of frames.

A histogram computation is performed in the first accelerator core and sent to the software ap-

plication (via MMIO AXI) which then determines the chained configurations required to improve

image quality. Fast reconfiguration during the video stream means the processing can be decided

in real-time without dropping frames. The thresholds for the histogram computation can be ad-

justed in the software application to be more or less aggressive with attempts to improve image

quality. While the demonstration shows the use of just a few acceleration cores, additional regions

could be used to chain further image manipulation such as resizing or scaling.

7.1 PR Region Data Chaining

To configure chaining, the designer can set the following parameters as shown in Listing 4:

Listing 4. Enable PRR chaining.

Listing 4 shows how the PR chain is configured with a JSON array. The order in which the

regions are referenced refers to how they will be connected, where region_a is the first region of the

chain (connected to the output of the PS DMA controller) and region_c is the last region (connected

to the input of the PS DMA controller). Figure 14 shows the process of the PS application using

the PL-accelerated histogram to make config/mode decisions based upon the current image in the

accelerator chain. The PS application is shown to apply a Gaussian filter to region 1 of the PL and

then a stream pass through for region 2, upon deciding the histogram data is acceptable.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:28 A. R. Bucknall and S. A. Fahmy

Fig. 13. Overview of HLS Vitis Vision chained accelerator demo.

Fig. 14. PS uses histogram to determine accelerators to apply.

Given this can be used with both configurations and modes, the software can intelligently de-

termine to load new bitstreams or make adjustments to the currently loaded accelerators (such as

applying a mode).

7.2 Design Effort and Framework Impact

To manually develop the application described in the case study, the designer would have to

undertake a series of manual steps, highlighted in 4. The initial stage of designing the accelerators

themselves is beyond the scope of this framework, but high-level synthesis tools are used to

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:29

reduce the complexity of RTL design, but without aid from automation, the complexity of the

vendor tooling provides a high barrier to entry for novice designers. Figure 4 describes the

workflow that is automated by the tools, where the nodes in the flow diagram represent each of

the steps that would need to be manually performed by a designer. This diagram assumes there

are no mistakes or errors on the designer’s behalf.

Figure 4 is a high-level overview of the complexity; in reality, there are significantly more steps

involved in the development process, such as tweaking board settings, correcting for mistakes,

and manually verifying compatibility across modules and regions. Some of the underlying steps,

such as parsing the interfaces from modules, can be quantified, however, the time taken to extract

interfaces and generate custom build infrastructure is amortised by the time taken for the tools

to perform synthesis and place and route. For the case study, the tools added 37.94 seconds of

overhead to extract interfaces compared to the 2,427-second implementation run within Vivado.

While it is largely arbitrary to measure the impact of our tools in the scope of the entire workflow,

it demonstrates that running our tools only contributes to 1.5% of the total build time. Provided

that the user is only required to define a single config file, to generate a ready-to-go Linux image,

this can be considered a significant advantage.

Comparing the case study project, for a user to design and develop the infrastructure to support

three different PR regions with three different accelerators, the configuration file is 230 lines of

JSON (including JSON syntax), where 38 lines are tooling setup. During build time, the tools gen-

erated approximately 1,706 lines of code (LoC), including TCL scripts, Verilog wrappers, data

stores (JSON), and memory maps (CSV). Additionally, this spans 36 different generated files and

does not include the templates used by the tools to generate the project files, which are not stored

in the case study build directory. While this is also a largely arbitrary measurement of complexity

reduction, it demonstrates the complexity of developing an application and how much automation

is performed by the tools. We expect to be able to even further reduce the LoC, as we could con-

dense the module extraction process by pointing the tools at a directory and infer the source files

to generate the accelerator cores.

7.3 Comparison to Existing Tools

The case study demonstration shows the webcam running at a resolution of 1,080 × 1,920 pixels at

30 frames per second. For a pBlock allocated to support the largest of configurations, the chroma

key function, the runtime is able to perform partial reconfiguration in 1.808 ms for a 1.330 MiB

bitstream. The pBlock is sized at 22.45%, 22.45%, 26.67% of the respective total available CLB LUTs,

CLB Flip-Flops, DSPs on the ZU3EG ZynqMP device (Ultra96v2). For a camera producing a new

frame every 33.3 ms, reconfiguration must be performed at least within this time frame and should

factor additional software overhead to ensure frames are not dropped. Comparing this to FPGA

manager, the same bitstream was loaded in 17.8 ms. While this is acceptable, given the low frame

rate of the USB camera, only one or two frames might be dropped; higher-performance systems

such as those used in critical safety systems for autonomous vehicles [30] or with complex PL

logic demanding larger pBlocks (thus, larger bitstreams) begin to become constrained by time to

reconfigure under FPGA Manager. This scenario could be envisioned with the use of a high data-

rate MIPI-based camera connected directly to the PL. At present, this is not achievable with the

target Ultra96v2 board, as there were no available MIPI camera modules but could be demonstrated

on another device in future work.

7.4 Runtime Application

The code in Listing 5 demonstrates the abstraction used to load a configuration and then apply

a subsequent mode. The JSON config files are generated from the build process and can be later

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

34:30 A. R. Bucknall and S. A. Fahmy

modified by the user to add additional modes, as shown by the full_hd mode in Listing 6. In the

case study, the mode full_hd is used to set MMIO registers in the accelerator module corresponding

to the resolution of the frames being transferred between the PS and PL.

The full_hd mode used in this snippet was added post-build by the designer; the default con-

figuration JSON object was produced by the tools and extendable by the user before the Linux

image is compiled. This is available to the runtime C++ API, requiring minimal understanding of

the mechanisms required for provisioning configurations and modes.

Listing 5. C++ API. Listing 6. JSON Config and Mode.

8 CONCLUSION

In this article, we presented ZyPR: a toolflow for automating the build process of PR designs, from

HDL through to a final ready-to-go Linux image supporting a custom runtime configuration man-

ager. ZyPR takes the logic from user applications, extracts interfaces, and generates infrastructure

at compile-time to support data transfer between the PS and PL. It hides the complexity of the PR

build process and the handover to PetaLinux for Linux kernel compiling and file-system construc-

tion. ZyPR also incorporates a high-performance configuration manager that utilises the hardened

ICAP on Zynq and Zynq Ultrascale+ architectures for near theoretical throughput provisioning of

PR bitstreams into the PL (388 MiB/s and 757 MiB/s for the Zynq and ZynqMP, respectively). The

ZyPR runtime manages both PR and hardware control under abstractions for configurations and

modes. We compared ZyPR’s performance against Xilinx’s own FPGA Manager driver used by

other design frameworks and showed performance benefits as well as functional behaviours such

as non-blocking DMA triggering, which free the processor to complete device tree overlay provi-

sions and buffer generation while awaiting an interrupt to denote PR completion. We demonstrate

how ZyPR can be used with a vision-processing case study that uses the build tools to generate a

design for HLS-based accelerators chained together for tuning image quality.

Given the scope of this work and the breadth of the problem being addressed, it is useful to state

what is presently unsupported

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

ZyPR: End-to-End Build Tool and Runtime Manager 34:31

• Further simplification of writing RTL (Xilinx’s Vitis HLS and others already exist)

• Support for non-Verilog modules (VHDL and SystemVerilog)

• Explicit floorplanning optimisations (tools allow for use with other tools/default pblock

placements per device)

• Runtime PR-resource scheduling (existing academic tools already perform this function)

We propose these features for future research as well as an intention to support building from

the FuseSoC [18] IP library tool to allow for users to easily fetch packages from libraries and include

them in their PR designs. This would allow for users to easily include modules for their PR designs

and reduce the RTL design complexity. We intend to further extend HLS support to expose the HLS-

generated module’s internal registers and allow generated MMIO register maps to be exposed via

the runtime API. Furthermore, it would provide additional abstraction to integrate this workflow

with Xilinx’s PYNQ tools, implementing low-level optimisations under lightweight Python wrap-

pers. Additionally, it would be advantageous to decouple the Linux build process from Xilinx’s

PetaLinux project, as maintaining this in an up-to-date manner is complex as development board,

Vitis, PetaLinux, Yocto Layers, and Linux Kernel versions must all align to successfully build Linux

images. The ZyPR framework is available at https://github.com/accl-kaust/zypr and the Python li-

brary at https://github.com/accl-kaust/interfacer as open source repositories for wider adoption

and contribution by the community.

REFERENCES

[1] Adewale Adetomi, Godwin Enemali, Xabier Iturbe, Tughrul Arslan, and Didier Keymeulen. 2018. R3TOS-based inte-

grated modular space avionics for on-board real-time data processing. In NASA/ESA Conference on Adaptive Hardware

and Systems (AHS’18).

[2] Andreas Agne, Markus Happe, Ariane Keller, Enno Lübbers, Bernhard Plattner, Marco Platzner, and Christian Plessl.

2013. ReconOS: An operating system approach for reconfigurable computing. IEEE Micro 34, 1 (2013), 60–71.

[3] Shuichi Asano, Tsutomu Maruyama, and Yoshiki Yamaguchi. 2009. Performance comparison of FPGA, GPU and CPU

in image processing. In International Conference on Field Programmable Logic and Applications (FPL’09). 126–131.

[4] Christian Beckhoff, Dirk Koch, and Jim Torresen. 2012. Go Ahead: A partial reconfiguration framework. In IEEE

International Symposium on Field-Programmable Custom Computing Machines (FCCM’12). 37–44.

[5] Christian Beckhoff, Dirk Koch, and Jim Torreson. 2013. Automatic floorplanning and interface synthesis of island style

reconfigurable systems with GoAhead. In International Conference on Architecture of Computing Systems. Springer,

303–316.

[6] Alex R. Bucknall and Suhaib A. Fahmy. 2021. Runtime Abstraction for Autonomous Adaptive Systems on Reconfig-

urable Hardware. In Design, Automation Test in Europe Conference Exhibition (DATE’21). 1616–1621.

[7] Alex R. Bucknall, Shanker Shreejith, and Suhaib A. Fahmy. 2019. Network enabled partial reconfiguration for dis-

tributed FPGA edge acceleration. In International Conference on Field-Programmable Technology (FPT’19). 259–262.

[8] Alex R. Bucknall, Shanker Shreejith, and Suhaib A. Fahmy. 2020. Build automation and runtime abstraction for partial

reconfiguration on Xilinx Zynq UltraScale+. In International Conference on Field-Programmable Technology (FPT’20).

215–220.

[9] Stuart Byma, J. Gregory Steffan, Hadi Bannazadeh, Alberto Leon Garcia, and Paul Chow. 2014. FPGAs in the cloud:

Booting virtualized hardware accelerators with openstack. In IEEE International Symposium on Field-Programmable

Custom Computing Machines (FCCM’14). 109–116.

[10] Norbert Deak, Octavian Cret, and Horia Hedesiu. 2019. Efficient FPGA floorplanning for partial reconfiguration-

based applications. In IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM’19).

309–309.

[11] François Duhem, Fabrice Muller, and Philippe Lorenzini. 2011. FaRM: Fast reconfiguration manager for reducing

reconfiguration time overhead on FPGA. In International Symposium on Applied Reconfigurable Computing. Springer,

253–260.

[12] Suhaib A. Fahmy, Kizheppatt Vipin, and Shanker Shreejith. 2015. Virtualized FPGA accelerators for efficient cloud

computing. In IEEE International Conference on Cloud Computing Technology and Science (CloudCom’15). 430–435.

[13] Simen Gimle Hansen, Dirk Koch, and Jim Torresen. 2011. High speed partial run-time reconfiguration using enhanced

ICAP hard macro. In IEEE International Symposium on Parallel and Distributed Processing Workshops and PhD Forum.

174–180.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

https://github.com/accl-kaust/zypr
https://github.com/accl-kaust/interfacer

34:32 A. R. Bucknall and S. A. Fahmy

[14] Kawazome Ichiro. 2015. u-dma-buf. Retrieved from https://github.com/ikwzm/udmabuf.

[15] Florian Kästner, Benedikt Janßen, Frederik Kautz, Michael Hübner, and Giulio Corradi. 2018. Hardware/Software

codesign for convolutional neural networks exploiting dynamic partial reconfiguration on PYNQ. In IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW’18). 154–161. DOI:https://doi.org/10.1109/IPDPSW.

2018.00031

[16] Nadir Khan, Jorge Castro-Godínez, Shixiang Xue, Jörg Henkel, and Jürgen Becker. 2020. Automatic floorplanning and

standalone generation of bitstream-level IP cores. IEEE Trans. Very Large Scale Integ. Syst. 29, 1 (2020), 38–50.

[17] Olof Kindgren. 2018. Edalize: Python Library for Interacting with EDA Tools. Retrieved from: https://github.com/

olofk/edalize.

[18] Olof Kindgren. 2018. FuseSoC: Package Manager and Build Abstraction Tool for FPGA/ASIC Development. Retrieved

from: https://github.com/olofk/fusesoc.

[19] Christian Lienen, Marco Platzner, and Bernhard Rinner. 2020. ReconROS: Flexible hardware acceleration for ROS2

applications. In International Conference on Field-Programmable Technology (FPT’20). 268–276.

[20] Shaoshan Liu, Richard Neil Pittman, and Alessandro Forin. 2010. Minimizing Partial Reconfiguration Overhead with

Fully Streaming DMA Engines and Intelligent ICAP Controller. Technical Report MSR-TR-2009- 150, Microsoft Research.

[21] David Ojika, Ann Gordon-Ross, Herman Lam, and Bhavesh Patel. 2019. FaaM: FPGA-as-a-Microservice—A case study

for data compression. In International Conference on Computing in High Energy and Nuclear Physics.

[22] Brendan Perez and Jared Choi. 2015. Xilinx AXI DMA Linux Driver. Retrieved from: https://github.com/bperez77/

xilinx_axidma.

[23] Khoa Pham, Dirk Koch, Anuj Vaishnav, Konstantinos Georgopoulos, Pavlos Malakonakis, Aggelos Ioannou, and

Iakovos Mavroidis. 2020. Moving compute towards data in heterogeneous multi-FPGA clusters using partial reconfig-

uration and I/O virtualisation. In International Conference on Field-Programmable Technology (FPT’20). 221–226.

[24] Khoa Dang Pham, Edson Horta, and Dirk Koch. 2017. BITMAN: A tool and API for FPGA bitstream manipulations.

In Design, Automation and Test in Europe Conference and Exhibition (DATE’17). 894–897.

[25] Ariel Podlubne, Julian Haase, Lester Kalms, Gökhan Akgün, Muhammad Ali, Habib Ulhasan Khar, Ahmed Kamal,

and Diana Göhringer. 2018. Low power image processing applications on FPGAs using dynamic voltage scaling and

partial reconfiguration. In Conference on Design and Architectures for Signal and Image Processing (DASIP’18). 64–69.

[26] Marco Rabozzi, Gianluca Carlo Durelli, Antonio Miele, John Lillis, and Marco Domenico Santambrogio. 2017. Floor-

planning automation for partial-reconfigurable FPGAs via feasible placements generation. IEEE Trans. Very Large

Scale Integ. Syst. 25, 1 (2017), 151–164.

[27] Alfonso Rodríguez, Juan Valverde, Jorge Portilla, Andrés Otero, Teresa Riesgo, and Eduardo de la Torre. 2018. FPGA-

based high-performance embedded systems for adaptive edge computing in cyber-physical systems: The ARTICo3

framework. Sensors 18, 6 (2018). Retrieved from: https://www.mdpi.com/1424-8220/18/6/1877.

[28] Siva Satyendra Sahoo, Tuan D. A. Nguyen, Bharadwaj Veeravalli, and Akash Kumar. 2019. Multi-objective design

space exploration for system partitioning of FPGA-based dynamic partially reconfigurable systems. Integration 67

(2019), 95–107.

[29] Shanker Shreejith, Ryan A. Cooke, and Suhaib A. Fahmy. 2018. A smart network interface approach for distributed

applications on Xilinx Zynq SoCs. In International Conference on Field Programmable Logic and Applications (FPL’18).

[30] Shanker Shreejith, Kizhepatt Vipin, Suhaib A. Fahmy, and Martin Lukasiewycz. 2013. An approach for redundancy in

FlexRay networks using FPGA partial reconfiguration. In Design, Automation Test in Europe Conference and Exhibition

(DATE’13). 721–724.

[31] Shinya Takamaeda-Yamazaki. 2015. Pyverilog: A Python-based hardware design processing toolkit for Verilog HDL.

In Applied Reconfigurable Computing (Lecture Notes in Computer Science), Vol. 9040. Springer International Publishing,

451–460.

[32] Anuj Vaishnav, Khoa Dang Pham, Joseph Powell, and Dirk Koch. 2020. FOS: A modular FPGA operating system for

dynamic workloads. ACM Trans. Reconfig. Technol. Syst. 13, 4 (Sept. 2020).

[33] Kizheppatt Vipin and Suhaib A Fahmy. 2012. Architecture-aware reconfiguration-centric floorplanning for partial

reconfiguration. In International Symposium on Applied Reconfigurable Computing. Springer, 13–25.

[34] Kizheppatt Vipin and Suhaib A. Fahmy. 2014. Automated partial reconfiguration design for adaptive systems with

CoPR for Zynq. In IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM’14).

202–205.

[35] Kizheppatt Vipin and Suhaib A. Fahmy. 2014. ZyCAP: Efficient partial reconfiguration management on the Xilinx

Zynq. IEEE Embed. Syst. Lett. 6, 3 (2014), 41–44.

[36] Kizheppatt Vipin and Suhaib A. Fahmy. 2018. FPGA dynamic and partial reconfiguration: A survey of architectures,

methods, and applications. Comput. Surv. 51, 4 (2018).

[37] Chao Wang, Lei Gong, Xi Li, and Xuehai Zhou. 2020. A Ubiquitous machine learning accelerator with automatic

parallelization on FPGA. IEEE Trans. Parallel Distrib. Syst. 31, 10 (2020), 2346–2359.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

https://github.com/ikwzm/udmabuf
https://doi.org/10.1109/IPDPSW.2018.00031
https://github.com/olofk/edalize
https://github.com/olofk/fusesoc
https://github.com/bperez77/xilinx_axidma
https://www.mdpi.com/1424-8220/18/6/1877

ZyPR: End-to-End Build Tool and Runtime Manager 34:33

[38] Whitequark. 2018. nmigen. Retrieved from: https://github.com/nmigen/nmigen.

[39] Xilinx. 2020. Retrieved from: https://www.xilinx.com/products/design-tools/vitis/vitis-libraries/vitis-vision.html.

[40] Xilinx Inc. 2017. PG059: AXI Interconnect v2.1. Xilinx Inc. v2.1.

[41] Xilinx Inc. 2018. PG085: AXI4-Stream Infrastructure IP Suite v3.0. Xilinx Inc. v3.0.

[42] Xilinx Inc. 2020. Python Productivity for Zynq. Xilinx Inc. http://pynq.io/.

[43] Xilinx Inc. 2020. UG1137: Zynq UltraScale+ MPSoC: Software Developers Guide. Xilinx Inc. v12.0.

[44] Xilinx Inc. 2020. UG909: Dynamic Function eXchange v2019.2. Xilinx Inc. v2019.2.

[45] Xilinx Inc. 2021. PG116: MicroBlaze Micro Controller System v3.0. Xilinx Inc. v3.0.

[46] Rafael Zamacola, Alberto Garcia Martinez, Javier Mora, Andres Otero, and Eduardo de La Torre. 2018. IMPRESS: Auto-

mated tool for the implementation of highly flexible partial reconfigurable systems with Xilinx Vivado. In International

Conference on ReConFigurable Computing and FPGAs (ReConFig’18).

[47] Shuaiqing Zhi, Yani Cui, Jiaxian Deng, and Wencai Du. 2020. An FPGA-based simple RGB-HSI space conversion

algorithm for hardware image processing. IEEE Access 8 (2020), 173838–173853. DOI:https://doi.org/10.1109/ACCESS.

2020.3026189

[48] Zongwei Zhu, Junneng Zhang, Jinjin Zhao, Jing Cao, Duan Zhao, Gangyong Jia, and Qingyong Meng. 2019. A hard-

ware and software task-scheduling framework based on CPU+FPGA heterogeneous architecture in edge computing.

IEEE Access 7 (2019), 148975–148988. DOI:https://doi.org/10.1109/ACCESS.2019.2943179

Received 21 July 2022; revised 31 January 2023; accepted 10 February 2023

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 34. Publication date: June 2023.

https://github.com/nmigen/nmigen
https://www.xilinx.com/products/design-tools/vitis/vitis-libraries/vitis-vision.html
http://pynq.io/
https://doi.org/10.1109/ACCESS.2020.3026189
https://doi.org/10.1109/ACCESS.2019.2943179

