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Long-Short Term Memory (LSTM) networks, and Recurrent Neural Networks (RNNs) in general, have

demonstrated their suitability in many time series data applications, especially in Natural Language Pro-

cessing (NLP). Computationally, LSTMs introduce dependencies on previous outputs in each layer that

complicate their computation and the design of custom computing architectures, compared to traditional

feed-forward networks. Most neural network acceleration work has focused on optimising the core matrix-

vector operations on highly capable FPGAs in server environments. Research that considers the embedded

domain has often been unsuitable for streaming inference, relying heavily on batch processing to achieve

high throughput. Moreover, many existing accelerator architectures have not focused on fully exploiting the

underlying FPGA architecture, resulting in designs that achieve lower operating frequencies than the theo-

retical maximum. This paper presents a flexible overlay architecture for LSTMs on FPGA SoCs that is built

around a streaming dataflow arrangement, uses DSP block capabilities directly, and is tailored to keep param-

eters within the architecture while moving input data serially to mitigate external memory access overheads.

The architecture is designed as an overlay that can be configured to implement alternative models or update

model parameters at runtime. It achieves higher operating frequency and demonstrates higher performance

than other lightweight LSTM accelerators, as demonstrated in an FPGA SoC implementation.
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1 INTRODUCTION

Various Neural Network (NN) topologies have demonstrated good performance in specific
domains, for example, Convolutional Neural Networks (CNNs) are widely used in computer
vision while Recurrent Neural Networks (RNNs) work well for time-series data. Hybrid NN
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structures are also used for more complex tasks, for example, a Long Short Term Memory

(LSTM) network, a type of RNN, can be used after a CNN to generate captions for images [1].
Fully Connected (FC), or dense layers, are often embedded in the last parts of these networks to
implement the classification or regression task. Alternatively, NNs comprising only dense layers
can be used for less complex tasks such as specific event detection [2]. The increasing popularity
of NNs has driven significant efforts to accelerate computation of different network topologies on
a heterogeneous spectrum of computing platforms, from powerful servers to less capable devices
at the edge.

NNs are typically trained on highly parallel GPU platforms due to the high computational work-
loads that suit offline centralised implementation. Inference scales well on more constrained de-
vices since various optimisations can be applied [3–6]. Hence, there has been ample research on
architectures for NN inference acceleration on a variety of platforms. A number of silicon vendors
have also augmented processors with specialised neural processing units that offer the required
parallelism, enabling significant acceleration of these workloads [7, 8].

Most previous work on FPGAs has focused on accelerating the generic matrix-vector opera-
tions used for NN inference. Weight pruning and quantization have also been widely used to ef-
fectively reduce the memory requirements of models. Other work has focused on bridging the gap
between software programmable platforms and FPGAs by proposing automated toolflows [9]. In
the same context, Xilinx Vitis enables compilation of accelerators from higher level standard frame-
works. Much of the published work targets more capable FPGAs on servers, with high bandwidth
PCIe interconnect [10–13]. Though research in the embedded domain has also flourished, many of
these efforts either rely heavily on batch processing to generate high throughput, thus underper-
forming on single network inference and streaming data applications, or time multiplex complex
compute units, thus not fully exploiting parallelism. Other optimisation methods include extreme
quantization, even down to single bit data, and pruning. Although neural networks have been
shown to tolerate such optimisations, these come at the cost of flexibility in the compute architec-
ture while requiring additional design space and accuracy exploration, in addition to quantisation
aware training. Finally, the majority of published work does not consider the FPGA architecture
in detail, so fails to maximise achievable frequency. This results in lower performance than what
should be achievable and poorer energy efficiency since leakage power is clock independent [10].
Some work on large scale matrix multiplication on datacenter FPGAs has demonstrated near the-
oretical maximum performance, but relies on large FPGA fabrics to enable full unrolling of NN
computations [10, 11].

Many consumer applications rely on processing in both embedded and datacenter contexts. For
example, the widely used voice assistants, such as Amazon Alexa and Apple Siri [14, 15], process
natural language both at the edge device and in the datacenter. The edge device is responsible for
wakeword detection, e.g., “Hey Siri”, through the use of lightweight NNs, while the words that
follow are processed in the cloud. At the edge, hybrid processing is usually employed to maximise
efficiency which includes the use of a low-power, always-on processor along with the device’s
main processor. A lighter network runs on the low-power processor and once this network gener-
ates a value that exceeds a threshold, the main microprocessor is woken up to run a more complex
network. Depending on the device’s capabilities, these networks can indicatively be five layers
deep, using fully connected layers with either 32, 128, or 192 neurons [15]. Hence, we envisage
a growing need for edge devices to accommodate lightweight or moderate sized NNs, to support
offloading of further processing to the cloud. This could be a result of the constrained resources
of the edge device, or to protect the intellectual property of an organisation by adding a layer be-
tween the edge device and their trained Neural Network. Architectures for this purpose should be
self-contained and flexible enough to support different NN structures dynamically. Most previous
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Fig. 1. An LSTM unit.

work has proposed co-processors that rely on a host processor to coordinate their operation and
manage data transfers or only considered one layer type, offloading others to general purpose
architectures.

LSTMs combined with fully connected layers are an ideal combination for processing time-
series data in such lightweight applications, especially in wakeword or event detection, and hence
we focus on these. Lightweight LSTM NNs have found applications in healthcare [16], weather
prediction [17], and network security [18], among other applications. While fully connected layers
are the most regular form of NNs, LSTMs include data feedback from previous timestep results
and disrupt the regular flow of data, which in turn breaks up back to back matrix multiplications.
Although this can be somewhat alleviated with batch processing or by executing multiple NNs
simultaneously, both methods increase the volume of intermediate results to be cached, and may
not fit all application data rate requirements.

In this work, we propose an overlay architecture that can process Fully Connected (FC) and
LSTM layers flexibly, while operating at high frequency. Low level computations are abstracted
to building blocks that can easily be replicated to reflect the structure of a model, while tailor-
ing the datapath to their complex dataflow pattern. Support for the various activations functions
is provided through approximations that maintain low complexity and resource utilization. The
proposed architecture is self contained and flexibly reconfigurable to implement different models
and adapt to weight updates. Our approach is tailored to operate within edge SoC environments
and can be used to accommodate lightweight to moderate NN workloads. It operates in streaming
mode, with computations carefully mapped to DSP blocks, each mimicking the operation of a neu-
ron, leaving LUTs for weight storage and other functionality. This architecture caches very few
intermediate results as they are consumed by subsequent processing units in a streaming manner.
Finally, the overlay can be tailored to a specific set of models or support models that fit the size
constraints without hardware reconfiguration.

2 LSTM BACKGROUND

Long Short Term Memory (LSTM) and Gated Recurrent Units (GRUs) are Recurrent Neural
Networks (RNNs) that have been proposed to overcome the vanishing gradient problem in vanilla
RNNs. Although both perform similarly in many tasks, the more complex structure of LSTMs
theoretically allows them to learn more complex dependencies.

Equations (1) to (6) describe the operation of an LSTM unit, which is also illustrated in Figure 1,
where � denotes element-wise multiplication, and W and U are the weights of current input fea-
tures and the previous cell outputs, respectively. More precisely, an LSTM unit consists of the
forget gate (ft ), input gate (it ), and output gate (ot ), along with the cell state (Ct ), its partial result

(C̃t ), and the LSTM cell output (Ht ). The forget gate controls the amount of information to discard
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from the previous cell state, the input and partial cell state define the new information to add to
the cell state and the output gate defines the LSTM cell’s output based on the current cell state.

An LSTM network can process a sequence of inputs, each of which can be a scalar or a vec-
tor. The sigmoid (σ ) and tanh activation functions are most commonly used in this configuration.
However, some flexibility in the application of activation functions is required to support different
networks.

ft = σ (Wf xt +Uf Ht−1 + bf ) (1)

it = σ (Wixt +UiHt−1 + bi ) (2)

C̃t = tanh(Wcxt +UcHt−1 + bc ) (3)

ot = σ (Woxt +UoHt−1 + bo ) (4)

Ct = ft � Ct−1 + it � C̃t (5)

Ht = tanh(ct ) � ot (6)

The main difference between LSTMs and RNNs compared with other NNs, is the feedback con-
nections from previous outputs (Ct−1 and Ht−1). These dependencies restrict their performance
while making routing, and dataflow in general, in custom architectures more complex. Nonethe-
less, common computing patterns in LSTMs and fully connected layers exist in Equations (1) to (4).
A challenge in LSTMs however is the fact that the dimensions ofW andU are not necessarily the
same. The former depends on the number of input features and the number of units while the
latter depends solely on the number of units of the LSTM. This translates to unbalanced latencies,
when the two are computed separately. These two matrices can be concatenated into one, creating
a single larger matrix with the same dimensions across all gates. This not only balances the com-
pute latency within each gate but also makes the compute pattern of each gate the same as the the
multiply accumulate operations in the fully connected layers. Each of Equations (1) to (4) can be
mapped to a single neuron in a fully connected layer, thus, an LSTM unit occupies the equivalent
of four neurons in a fully connected layer.

3 RELATED WORK

Previous related work that targets LSTMs in the embedded domain is presented in [4, 19–22],
demonstrating the benefits of custom computing architectures in energy efficiency and perfor-
mance, compared to software programmable computing platforms. Specifically, the work in [19]
uses quantised (6–16 bit) LSTM models for speech recognition enabling their design to keep
weights and intermediate results on chip and avoid energy consuming external memory accesses.
The authors implement a matrix-vector multiplication unit that partially unrolls parallelism within
an LSTM layer and is time-multiplexed for a complete layer computation. Their proposed imple-
mentation operates at 100 MHz on a Xilinx Zynq XC7Z045 FPGA and shows a distinct advantage
in terms of energy efficiency compared to a high-end NVIDIA GeForce Titan X GPU.

The work in [20] presents a bi-directional LSTM for optical character recognition that uses 5-bit
weights and fits in the on-chip memory of a Xilinx Zynq XC7Z045 device. The authors implement
a single LSTM cell and unroll the computations of each gate in it, time multiplexing the instance
according to the dimensions of each LSTM layer. In addition, the authors take advantage of the
fact that in bi-directional LSTMs, two inputs are processed at a time and overlap their computa-
tions in order to alleviate the idle cycles between dependent LSTM iterations. The effectiveness
of this approach is evaluated by implementing various designs, starting with a design that uses a
single instance of their proposed architecture, exploring its scalability by instantiating six such
computing blocks. For single input inference, the single instantiation design offers 152 GOPs
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throughput at 166 MHz or 130 GOPs at 142 MHz. The design that incorporates six instances,
operates at 142 MHz and obtains 308 GOPs for single input inference whereas for offline pro-
cessing, in which batch processing with six images is used, 693 GOPs is achieved. The results
show that the proposed approach does not scale well for single image inference, offering only a
2.4× scaling when instantiating six instances of the design. The proposed architecture scales bet-
ter with batch processing, offering 5.3× the baseline throughput, however this is still not linear.
The authors further expanded their work in [4] exploring extreme quantization methods using
1–8 bits. Their exploration yields a design that operates at 266 MHz,on a Xilinx Zynq UltraScale+
XCZU7EV, and offers throughput that ranges from 661 to 4201 GOPs for the different precisions
used.

A unified LSTM accelerator flow is presented in [21], that takes as input a trained model and the
target FPGA device specification and generates an accelerator design accordingly. The proposed
flow generates an accelerator for each model and the accelerator is time multiplexed for each LSTM
layer within a network. The generated accelerator does not support the activation function com-
putations, which are offloaded to software on the ARM core. The LSTM gate results are therefore
transferred to the off-chip memory, processed by the ARM core and then transferred back to the
accelerator, resulting in frequent external memory transfers that are energy demanding and add
a performance overhead. The overall SoC design uses the ARM core for coordinating the acceler-
ator throughout LSTM computation, in addition to the activation function computation, thus not
offering a self-contained accelerator solution. The authors implemented various versions of their
accelerator, using 16 bit fixed point, 32 bit floating point and their equivalent pruned versions, on a
Xilinx Zynq XC7Z020 FPGA operating at 150 MHz. The pruned equivalents reduced the inference
time by 32% and 42% for the fixed and floating point implementations, respectively. Compared
to the work in [23], the authors obtained about 10× improved inference time for the fixed point
implementation whereas the floating point implementation offers negligible acceleration. Both im-
plementations, however, demonstrate better power efficiency, being 11.7% and 0.32× more power
efficient. The authors extend their evaluation by exploring the scalability of their floating point
architecture by implementing a larger LSTM layer on a Xilinx Virtex VX485T, FPGA, obtaining
10.7 GFLOPs/s.

The mapping of large LSTM layers on Xilinx Virtex VX690T and Zynq 7Z045 FPGAs is explored
in [22]. The authors aimed at optimising the matrix-vector multiplications and their dependencies
in LSTMs with weight matrix partitioning and an optimised batch processing strategy. Their pro-
posed approach is tailored for batch processing and uses 16-bit fixed point representation while
operating at 125 MHz and 142 MHz on the Virtex 7 and Zynq devices, respectively. The authors ob-
tained 356 GOPs on the Virtex 7 and 221 GOPs on the Zynq, demonstrating improved performance
and energy efficiency compared to an Intel Xeon E5-2665 CPU, Nvidia TITAN X Pascal GPU, and
other related previous work on FPGAs.

Other related work that targets the same LSTM models as in our evaluation, therefore better
suited for direct comparisons, is described in [23–26]. The work in [23, 24] presents three different
LSTM co-processors on an FPGA that balance memory bandwidth and internal storage utilization
to optimize performance per unit power. The first streams all the necessary data from off-chip
memory, the second stores all data on chip and the third is a more balanced design. The authors
test their co-processors on a character level network comprising two LSTM layers, each with 128
units. The NN model used, includes a fully connected layer at the end that uses 65 neurons for
the final classification, which has not been included in the architecture. All co-processors use
Q8.8 fixed point representation and operate at 142 MHz on a Xilinx Zynq-7000 FPGA. The three
architectures are compared in terms of resource utilization and memory bandwidth, and shown to
provide orders of magnitude better performance per unit power compared to embedded processors,
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with the design that stores all data on-chip being the most efficient in terms of performance per
unit power.

A stochastic computing based LSTM implementation is presented in [25], focusing on reduc-
ing the hardware cost and power consumption of fundamental arithmetic components within an
LSTM. The authors evaluate their approach on an LSTM layer with 16 hidden units, trained on
the MNIST dataset. As with other previous work, the fully connected layer comprising 10 neurons
was not included in the architecture. The authors implement their designs on a Xilinx Zynq-7000
FPGA, operating at 100 MHz, and make comparisons between the baseline and their two proposed
designs in terms of power consumption, classification accuracy, and runtime. They show a trade-
off between runtime and resource utilization and power, demonstrating their ability to scale to a
suitable specification.

The authors in [26] propose a high throughput and energy efficient LSTM architecture utilizing
an approximate multiplier. This results in a multiplierless implementation and effectively reduces
power consumption and resource utilization, at the cost of multiple and variable clock cycles due
to its data dependent nature. As a result, performance is less predictable. Hierarchical pipelining is
used to improve performance by overlapping these computations. The proposed approach applies
range-based linear quantization to a language model LSTM, with the same configurations as the
model in [23, 24], on a Xilinx Zynq XC7Z030 FPGA. The implemented design uses 8-bit fixed
point precision and operates at 100 MHz. The authors expanded their work in [27], in an ASIC
implementation using 65 nm CMOS technology. The proposed ASIC implementation operates at
322 MHz while the low power approach resulted in an energy efficient implementation.

Related work can also be found in [10–13], in which the authors have focused on accelerating
LSTM computation on more capable FPGAs with PCIe interconnect in servers. The approaches
used, however, are not suitable for constrained edge devices, where fully unrolling computations
cannot be achieved.

Additionally, algorithmic optimisations have been explored in [28, 29], where the authors take
advantage of sparsity as a result of pruning to generate FPGA accelerators. The architecture in [29]
achieves a frequency of 238 MHz, though results at 200 MHz were used for comparisons with
previous work. The achieved 200 GOPs raw throughput translates to 22.2 GOPs/W raw energy
efficiency. Taking into account the model sparsity, the effective throughput is 1600 GOPs, which
in turn amounts to 177.9 GOPs/W energy efficiency. The work in [28] has explored pruning in
more capable devices with PCIe interconnect, obtaining 200 MHz.

The majority of previous related work focuses solely on the LSTM computation, not including
the implementation of fully connected layers, and thus do not provide a complete edge solution.
Moreover, all reported operating frequencies are well below the devices’ theoretical maximum,
which results not only in lower performance, but also in lower energy efficiency due to leakage
currents [10]. Meanwhile, generic NN accelerator architectures cannot implement LSTMs without
modification, or suffer a significant performance and energy overhead due to the dependencies
on previous outputs necessitating transfers to off-chip memory. This calls for more programmable
custom computing architectures for LSTMs.

Architecture centric overlays were shown to offer high throughput since they utilize the under-
lying FPGA resources more efficiently [30]. The work in [31] described a streaming overlay for
fully connected layers utilizing the DSP blocks of a Zynq Ultrascale+ ZU7EV FPGA. That design
was shown to achieve close to the theoretical maximum frequency while using minimal resources,
but supported only feed-forward networks with the ReLU activation function, and was not shown
to scale. We propose a streaming overlay architecture that supports the computation of LSTM
and Fully Connected layers, offering a complete edge solution, while supporting the more com-
plex Sigmoid and Tanh activation functions through approximations. The overlay heavily exploits
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programmable DSP block capabilities and is carefully designed to maintain short critical paths and
relatively moderate routing complexity in order to achieve high operating frequency. At the same
time, the overlay concept offers a more programmable solution, compared to fixed accelerators,
allowing model parameters to be updated. The proposed architecture also operates in streaming
mode, which is more responsive compared to batch processing and is therefore more suitable for
devices at the edge.

4 PROPOSED LSTM ARCHITECTURE

This section outlines the various design choices and operation of the main building blocks of the
proposed streaming architecture that can be configured to implement LSTM or fully connected
layers. The architecture uses DSP blocks for the neural network computations while also sup-
porting other widely used settings in these layers (e.g., the option to return sequences in LSTM
layers). Although systolic arrays are popular for inference architectures, as they are efficient for
matrix-matrix multiplications, this works best for CNNs with batch processing rather than other
NN structures including LSTMs. This batching helps reduce the overheads of loading weights. In
streaming processing, as targeted by this work, systolic arrays would be less efficiently utilized
due to the lack of batching and shared weights. Additionally pipeline parallelism would be harder
to achieve due to the dependencies inherent in LSTMs. Hence, we adopt an alternative approach
to implementing the multiply-accumulate operations, as outlined in the following sections.

4.1 Serial vs Fully Parallel Multiply Accumulate

While fully unrolling the individual multiplications followed by an adder tree, as shown in
Figure 2(b), has been widely used to take advantage of parallelism in multiply-accumulate

(MAC) operations in FIR filters and convolutions [32], it is not always ideal when considering
streaming applications with a high degree of parallelism, for example in neural networks. FIR fil-
ters and convolutions are usually of smaller dimensions, compared to neural networks, having
fewer coefficient storage requirements and workload to accelerate. The former does not hinder
on-chip storage while the latter calls for more parallelism. MAC tree architectures are less flexible
and adaptable to varying filter dimensions, being underutilized when computing a smaller filter or
requiring complex partitioning of larger filters in order to fit. Meanwhile, latency for each pass re-
mains the same. The computation at each layer of a neural network can be decomposed into a large
vector-matrix multiplication that enables the sum of products for each neuron in the current layer
with each in the previous layer and the corresponding weights. But this full unrolling is costly in
terms of hardware, and the scale of these matrix multiplication units can hamper achievable fre-
quency. Furthermore, this typically results in a layer-wise operation that necessitates significant
transfers on/off chip between layers. These overheads are amortised by batch processing. Instead,
we consider the fact that neural networks typically contain sufficient numbers of neurons to offer
a coarser grained level of parallelism to exploit, where each neuron is mapped to a computational
element, and its own results are calculated serially. This offers less dense signal connectivity and
enables the compute units to operate at high frequency, while also affording flexibility to different
network parameters, and avoiding memory transfers.

Our implemented serial computing architecture is ideally suited to LSTMs as it alleviates some
of the inherent dependencies on previous outputs. Specifically, a subsequent LSTM iteration can
be initiated as soon as 75% of the current iteration’s outputs have been generated. This is because
the implemented LSTM addon is able to generate one output every four clock cycles, meaning
that the remaining 25% of the outputs will be generated by the time they are needed by the DSP
blocks. LSTM computations using MAC trees on the other hand, require a previous iteration to
be fully completed before starting the new one, since all the input data needs to be present in
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Fig. 2. Different compute architectures for the Multiply-Accumulate operation in Neural Networks.

Table 1. Latency and Resource Utilization of the Two Compute Methods

k = 100 k = 128 k = 256

Latency

(Clock Cycles)
DSP Blocks

Latency

(Clock Cycles)
DSP Blocks

Latency

(Clock Cycles)
DSP Blocks

Serial Compute 101 1 (100) 129 1 (128) 257 1 (256)
MAC tree 14 149 14 191 16 383

the registers for the new computation. The latter, coupled with the fact that it is very difficult
to implement even a lightweight neural network on chip with fully parallel-fully unrolled MAC
trees, without extreme optimisations, makes the MAC tree based architectures not ideal for edge
processing, where we do not typically want batching to be applied to amortise overheads.

In addition, serial multiply-accumulate operation can be more efficiently mapped to a single DSP
block, fully utilizing the multiplier and adder, while also requiring less memory for the intermedi-
ate results since they are consumed in a single register throughout the flow of inputs. This method
is shown in Figure 2(a). In contrast, adders in direct MAC trees are usually implemented either
using LUTs or DSP blocks. When implemented using LUTs, the adders consume FPGA resources
that could otherwise be used to support the neuron operation (e.g., Control logic, memories in
LUTRAMs, registers) while also potentially consuming more power, since functions implemented
in a DSP block use less power compared their equivalent implementations in logic [33]. When
implemented using DSP blocks, only the adder in each block is used, underutilizing the DSP block
capabilities by leaving the multiplier unused, which may have a significant impact on efficiency for
larger numbers of inputs. Systolic array implementations can efficiently utilize both components
of the DSP block, but require considered data scheduling at the inputs to the array.

Table 1 shows the DSP utilization and latency for each of the two MAC architectures for a neu-
ron with k inputs. For simplicity, we assume that the input data from the previous layer is already
loaded in the registers while we also do not consider routing complexity, both of which favour the
MAC tree architecture. Each multiplier along with each adder that follows in the first row of the
MAC tree is considered to be mapped to a single DSP block, using their cascade interconnect [34].
To enable direct comparisons between the two compute methods, we assume that each of the
adders that follow is mapped to a DSP block instead of FPGA fabric. This would enable the MAC
tree to achieve higher operating frequency, as close as possible to the serial compute frequency,
at the cost of underutilizing the DSP block capabilities by not using the multiplication while
requiring two clock cycles latency for each addition. Starting with the MAC tree, its latency scales
according to the next greatest power of two of k . The MAC tree offers latency improvements
that range from 6.2× to 15.1× while consuming 148× to 382× more DSP blocks. We observe that

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 8. Pub. date: December 2022.



Streaming Overlay Architecture for Lightweight LSTM Computation on FPGA SoCs 8:9

the benefits of the MAC tree in terms of latency are disproportional compared to the resources
used, thus less efficient. Although it might be argued, under ideal circumstances, that the the
MAC tree is able to generate a new output every clock cycle whereas the serial compute every
k cycles, this can be compensated with the coarser, per neuron, parallelism. For example, for k
inputs, exploiting parallelism for at least k neurons (numbers reported in brackets in Table 1) in a
layer results in having the exact same throughput while consuming 27% to 33% fewer DSP blocks
(assuming that there is sufficient parallelism within a layer to do so).

4.2 Proposed Neuron Architecture

Our architecture takes the neural network computation and does away with the matrix repre-
sentation, instead opting for neuron-based parallelism where each neuron is implemented as a
computational unit that processes its output in a serial manner. Each neuron is mapped to a single
DSP block, supported by the required control logic and memory to enable it to fully implement
the neuron’s function. It operates in three modes: configuration, control, and compute. Initially,
configuration takes place, in which all weights, biases and activation functions are set for each
neuron. Once configuration is complete, compute and control operations run concurrently and in-
put data starts to flow in. Outputs from the previous layer stream serially, one for each neuron from
that layer at a time, and are multiplied in each neuron in the current layer by the corresponding
weight stored in the weight memory. An address counter manages weight memory addressing and
DSP block opmode selection. Each DSP block operates in one of two different opmodes, the first
input-weight product is added to the configured bias, while subsequent products are accumulated
with this sum. This is enabled by the dynamic DSP block control in modern Xilinx FPGAs [35].
This results in not having to reset the accumulation register before a new neuron computation
and saves a clock cycle compared to adding the bias after the completion of multiply-accumulate.
The proposed architecture is depicted in Figure 3, showing the details of a neuron compute unit
among others in a layer. The serial dataflow of the overlay, coupled with the more minimal use of
resources and fanouts, allows for a more scalable architecture in which each self-contained neu-
ron can be replicated as many times as needed to form a layer, and each layer in turn to form a
lightweight neural network on chip.

4.3 Neural Network Multiply-Accumulate

The Neural Network Multiply-Accumulate architecture, shown in Figure 4, consists of a series of
DSP blocks, each calculating the multiply and accumulate operation. The inputs flow in each layer
serially, multiplied by their corresponding weights and accumulated in each DSP block.

The word length of inputs, weights, and biases are defined to fit the DSP48E2 primitive in Xilinx
UltraScale+ devices. Inputs are 27 bits, weights 18 bits, and biases are 16 bits. All word lengths are
signed and use 11 fractional bits. The accumulation register within the DSP block is 48 bits and
uses 22 fractional bits. Unrolling parallel operations at each neuron results in a naturally balanced
workload between DSP blocks, while being more resource efficient by using both multipliers and
adders within the DSP blocks. This unrolling scheme enables the overlay to map all the neurons
of lightweight to moderate NNs on chip, and by accumulating all the intermediate results of each
neuron within a single register, it reduces on chip memory requirements.

Moreover, this arrangement enables the serial flow of input data from neuron to neuron, which
results in relatively low fanout, while also passing all input data to each neuron just once, avoiding
additional storage and operational overhead to cache and re-flow previous input data. The use
of DSP blocks coupled with the more compact dataflow result in a short critical path and more
manageable routing which in turn enables a high frequency of operation. The Neural Network
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Fig. 3. Neuron architecture showing the configuration, control and compute paths.

Fig. 4. Neural Network Multiply-Accumulate architecture.

MAC’s operation deviates from the more mainstream acceleration methods on larger devices used
for the matrix-vector operations (e.g., systolic arrays) to better suit the constraints of edge devices.

Due to the weight depth of each neuron within a layer being equal, neurons are expected to fire
one after the other, propagating the serial dataflow to the following layers. In order for the serial
flow to be maintained, only one neuron within a layer should fire at any given time. This means
that if the number of inputs to a layer is less than the number of neurons in that layer, stall cycles
are required to maintain this serial firing. The aforementioned data flow and stall operation are
graphically depicted over time in Figure 5.

When the Neural Network MAC architecture is configured as a fully connected layer, the data
flows serially to it from the input source. If it is configured as an LSTM layer, however, the new
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Fig. 5. Neural Network MAC serial flow and stalling operation.

input data flows in at first, while the previous output, Ht−1, stored in a FIFO, follows. Each of
Equations (1) to (4) is mapped to a DSP block, with one LSTM unit occupying four DSP blocks.
The input selection has been implemented with multiplexers and corresponding control logic.
A 2-bit register sets the desired activation function for each neuron. The top level architecture
supports the ReLU, approximated versions of Sigmoid and Tanh, and a passthrough datapath in
case none is selected.

4.4 Activation Function Approximations

Various activations functions are used in neural networks for non-linearities, with ReLU, Sigmoid,
and Tanh being the most widely used. Although activation functions may not be the most com-
putationally complex part of neural network architectures, the use of exponents in Sigmoid and
Tanh functions make them difficult to implement in embedded architectures.

Although ReLU is suitable for hardware implementation, various NN applications call for the
use of Sigmoid or Tanh functions. For example, the forget gate in an LSTM layer uses the Sigmoid
function, the output of which determines the percentage of information to be kept from the
previous layer. This has led to the exploration of alternative ways to implement these functions
more efficiently, especially in fault-tolerant, approximate computing applications. The majority
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of previous neural network implementations map the activation functions in look-up-table
memories, one for each function. With this approach, accuracy depends on the granularity of
the look-up-table, with error being inversely proportional to the size of the table. This approach
can use significant area in lightweight unrolled implementations, in which multiple tables are
required. Furthermore, in architectures where multiple activation functions need to be supported,
separate look-up-tables are required, of which only a subset are used at any one time. Other
previous work has focused on piece-wise approximations of these functions [36], while others
have approximated the active region of these functions linearly with cut-off regions [26]. Another
example of the latter is the hard sigmoid activation function in Tensorflow [37]. More complex
activation function architectures have also been presented in [38], where implementations in half
and full precision floating point have been explored.

We propose activation function approximation using piecewise linear approximation while also
considering how some coefficients can be modified to be more efficiently implemented in hardware.
Moreover, since only one activation function is used at a time in each unit, common expressions
are merged between the different activation functions in hardware. As a result, the logic required
is minimized, contributing not only to reduced area but also improved performance. The proposed
activation function architecture can be configured to any one of the most popular activation func-
tions at runtime, without re-implementation or re-loading of a lookup table, while maintaining
low area utilization and high performance.

1 def custom_sigmoid_hw(x):
2 point_twenty_five = _constant_to_tensor (0.25, x.dtype.base_dtype)
3 point_five = _constant_to_tensor (0.5, x.dtype.base_dtype)
4 x = math_ops.mul(x, point_twenty_five)
5 x = math_ops.add(x, point_five)
6 x = clip_ops.clip_by_value(x, 0., 1.)
7 return x
8

9 def custom_tanh_hw(x):
10 point_seventy_five = _constant_to_tensor (0.75, x.dtype.base_dtype

)
11 x = math_ops.mul(x, point_seventy_five )
12 x = clip_ops.clip_by_value(x, -1., 1.)
13 return x

Listing 1. Approximation functions for Tensorflow.

4.4.1 Approximations Applied in Software. The most relevant previous work to ours in approx-
imating the activation functions is summarized in Table 2, where Sigmoid and Tanh functions are
bounded to 0,1 and−1,1, respectively. The approximated coefficients used in this work are modified
slightly from those referenced to more efficiently suit the fixed point representation and hardware.
Although the Tanh approximation used in [26] is simpler to implement, especially in hardware, it
deviates more from the true function. All aforementioned approximations are presented graphi-
cally against the Sigmoid and Tanh in Figures 6(a) and 6(b).

The main difference in our work is that the approximations can be applied during training, in
addition to post-training. Similarly to how the hard sigmoid is defined in Tensorflow, by changing
the coefficients accordingly, the approximations can be defined as shown in Listing 1 and be used
to train a model in floating point. The error introduced by the approximations is therefore taken
into consideration during training and is alleviated, leaving more margin for error in fixed point
representation.
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Table 2. Approximated Functions Equations

Act. Func. Equation Work MAE

Hard Sigmoid y = 0.2x + 0.5 [37] 0.019
Approx. Sigmoid y = 0.25x + 0.5 [26], This work 0.033
Approx. Tanh y = x [26] 0.088
Approx. Tanh y = 0.75x This work 0.063

Fig. 6. Activation functions and their approximations.

To demonstrate the effectiveness of this approach, we initially compare the approximations
used in this work with those presented earlier in Table 2. We calculate the Mean Absolute Error

(MAE) between the baseline functions and their approximations on 40 data points between −2
and 2 with a step of 0.1. As expected, the hard sigmoid approximation in Tensorflow generates
less error compared to the approximation used in our design, however the 0.25x has a far more
straight forward fixed point representation and multiplication. Meanwhile, the Tanh approxima-
tion used in [26], although simpler to implement, generates more error compared to that used
in this work. Moreover, since common computations exist between the two approximations, the
additional complexity introduced in the Tanh approximation is mitigated.

We further explore the benefits of using the approximations during training by training a three
layer LSTM for temperature forecasting, similar to that in [39]. We use the weather time series
dataset from the Max Planck Institute for Biogeochemistry to train a network with two LSTM lay-
ers, with 64 and 32 units, respectively, and a fully connected layer for the output layer comprising
one neuron. We used the RMSprop optimizer while measuring the loss using mean absolute error.
The model is trained to receive the last 720 measurements that span over the last five days, and
predict the temperature in 12 hours. Initially, a baseline model is trained for 10 epochs with Tensor-
flow v2.2 using the default activation functions while a variation of this model is trained using the
approximated activation functions. We then run inference on the two models while also changing
the activation functions of the baseline model to the approximations. The losses obtained from
these three models are summarised in Table 3, showing that by using the approximated functions
during training, loss is comparable to the original function implementations.

4.4.2 Activation Functions in Hardware. We present a hardware architecture in Figure 7 that
supports the most widely used activation functions, ReLU, approximated Sigmoid, and Tanh, while
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Table 3. Impact of Approximated Activation Functions

on the Weather Forecast Dataset

Trained with Sigmoid-Tanh Approx.

Inf. using Sig.-Tanh Approx. Approx.

Train Loss 0.3141 0.4358 0.3182
Validation Loss 0.3370 0.4283 0.3302
Test Loss 0.3575 0.5569 0.3751

Fig. 7. Activation functions architecture.

also providing a passthrough path in case none is needed. A key feature is that common compu-
tations between Tanh and Sigmoid approximations are merged while all the multiplications are
replaced by shifts and adds, avoiding the use of computationally expensive multiplications since
the coefficients are fixed. Furthermore, since the output of the Sigmoid function is between 0 and
+1, and the result of the Tanh function is between −1 and +1, the complexity of the component is
not expected to grow significantly.

A parametrized architecture has been created in Verilog HDL, and implemented using Xilinx
Vivado 2018.2 on a XCZU7EV Ultrascale+ device. We used various wordlengths and implemented
these designs to make comparisons in terms of resource utilization. The results in Table 4 show
that the proposed activation function architecture uses very few resources, less than 1% of the
device, and these are able to operate at the device’s maximum frequency.

4.5 LSTM Addon

The LSTM Addon computes Equations (5) and (6) of an LSTM layer. The results of it , C̃t , ft and ot

flow in serially, in this particular order. This data flow pattern repeats for each LSTM unit in the
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Table 4. Resource Utilization of the Activation

Functions Architecture

Bits Fraction Bits LUTs Registers

16 8 36 86
27 12 74 141
32 16 90 166
48 24 132 246

Fig. 8. LSTM Addon compute architecture.

Neural Network MAC. The it , C̃t and ft are used by the datapath on the right in Figure 8, while
ot passes through delay registers and is used only by the DSP block at the output. Initially, it is

multiplied by C̃t , stored in the accumulation register of the DSP block, then the product of ft and
Ct−1 that is read from the FIFO is calculated and added to accumulation register. This completes
computation of Equation (5) and the result then fans-out to theCt−1 FIFO, where it is stored for the
following timestep, and to the Act. Func. Comp., where the activation function used in Equation (6)
is applied. The DSP block at the output uses only the multiplier and completes the computation
in Equation (6). An internal counter is used to synchronize all the operations and to reset the
accumulation register of the DSP block between runs. Specifically, it increments with every valid
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Fig. 9. Top level layer architecture.

input that passes through and selects which source is multiplexed into the DSP block. Initially, it
is multiplied by C̃t , where the counter selects the register to be passed as input to the DSP block.
Then, ft multiplied by Ct−1 follows, where the counter selects the Ct−1 FIFO as the source to the
27 bit input of the DSP block. The result of latter multiplication is accumulated to the DSP block
to complete the computation of Equation (6).

4.6 Top Level Layer and Network Architecture

Figure 9 shows the top level layer architecture that includes all these functional blocks, along
with control logic to synchronise and configure the dataflow for a single layer. A complete NN is
formed by stacking multiple of these according to the network structure as shown in Figure 10,
which shows the arrangement, interconnect, and interaction of the FIFOs with various building
blocks. Each FIFO stores only the data required from the previous LSTM iteration, since the stored
data is consumed by various compute blocks in the subsequent iteration, alleviating the need to
store redundant data from more than one iteration as happens in many architectures that time
multiplex their compute units. The largest network our architecture can fully support is roughly
estimated in Equation (7). It is based on the number of layers, multiplied by the neurons in fully
connected layers or number of units ×4 in LSTM layers, in addition to two DSP blocks used in
each LSTM addon component.

#DSP = (#LSTM Units × 4 + 2) × #Layers (7)

This yields the number of required DSP blocks which should be fewer than what is available on
the target device. Although our proposed approach ideally targets lightweight LSTM networks
that can be fully unrolled at the neuron level, where its efficiency is maximised, it is also versatile
enough to be implemented as a single layer-time multiplexed implementation or even folding
parallel compute units, trading off performance and resource utilization to potentially adapt to
larger networks.
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Fig. 10. Top level Neural Network architecture.

The main control blocks in the top level layer architecture are the Stall Comp. and the Control

State Machine. The Stall Comp. is configured with the number of weights, stall cycles needed, the
type of layers, the number of iterations and whether to return the sequences in LSTMs. It generates
the control signals required in the Neural Network MAC, for example, to enable the address counters
or which input source to choose from. Meanwhile, the Control State Machine synchronizes the flow
between the Neural Network MAC and the other blocks.

A multiplexer after the Neural Network MAC selects which DSP block fires at each time step.
Another at the output selects the appropriate datapath depending on whether it is an LSTM or
fully connected layer. The Neural Network MAC’s serial operation, coupled with the ability to se-
lect the datapath according to the layer’s configuration, through the use of multiplexers, forms an
architecture that is able to adjust its latency and throughput for different neural network config-
urations. Although large scale multiplexers and decoders within the proposed architecture may
cause delay, they can be pipelined according to the device’s LUTs capabilities for high throughput
at the cost of latency. Moreover, a FIFO is placed after each output multiplexer to gather the data
required for the following layer.

The top level design that implements the whole NN is parametrised with the neural network
configuration, i.e., number of layers, number of neurons in each layer, wordlengths, etc. This allows
for a more flexible overlay that can also be ported to other devices that employ different DSP blocks.
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Specifically, it supports any modern FPGA that incorporates the DSP48E2 or DSP48E1 primitives,
which covers all Xilinx FPGAs currently available. DSP block instantiation, signal interconnection,
and bit range is managed automatically using top level parameters that are passed to the various
sub-modules. An overlay configuration can be used alongside a processor in an FPGA SoC. The
processor can then configure the overlay at runtime with a specific network configuration. More
importantly, weights and biases can also be set at runtime, enabling the overlay not only to adapt
to weight updates and finetuning after deployment, but also to compute other LSTMs that fit
within the bounds of the specified architecture. Underutilizing the overlay does however incur a
performance overhead since data must still flow through unused layers.

4.6.1 Runtime Overlay Configuration. In addition to the weights and biases, the various control
components of the overlay can be configured at runtime to accommodate different NN topologies
that can be mapped to available overlay resources. Specifically, the programmable control mecha-
nism in each layer is able to control the weight counter for each neuron, i.e., how many weights to
read, and the number of neurons to iterate to within the layer. This effectively controls the number
of weights and neurons in each layer. It also controls when to stall and for how many cycles, to
support different layer dimensions. The weights and biases configuration in each neuron enables
the overlay to accommodate different NNs or finetune an NN through weight updates. Although
the number of layers cannot be changed at runtime, layers can be bypassed by multiplying the
inputs with a weight of 1, adding 0 bias and selecting the pass-through activation function. The
latter is effectively a trade-off between more complex routing at the cost of a few clock cycles
overhead in terms of latency, which can be deemed negligible compared to the total clock cycles
required for a complete network inference.

5 EVALUATION

5.1 Models for Evaluation

We use two LSTM models to evaluate our proposed architecture. These models have been used
previously in [23–26], with which we make comparisons. While we are unable to use the exact
code and framework, the models have been recreated to the best extent possible in Tensorflow
v2.2 [37], according to the information provided in these references. The first model consists of a
single LSTM layer with 16 units and a fully connected layer of 10 neurons. This network is trained
as a classifier on the MNIST handwritten digit dataset, with the 10 output neurons corresponding
to digits 0 to 9. The inputs to the LSTM model are 28 × 28 images with all pixel values normalised
to a range from 0 to 1, this translates to 28 pixels being sent at a time for 28 iterations.

The second model is a character level LSTM trained on a part of Shakespeare’s writing and
comprises two LSTM layers, each with 128 units, and a fully connected layer with 65 neurons. The
input to the LSTM is a vector with 65 one hot encoded values, each one representing a unique
character that has been found in the text. A sequence of 50 of these vectors is passed to the LSTM
model which generates the scores of the predicted 51st character at the output. The complexity
of this model is representative of the real world application described in [15]. Specifically, the
voice assistant NN described in [15], under our proposed compute scheme, would require about
960 DSP blocks, whereas the latter NN in our test case uses 1095 DSP blocks. We create an overlay
architecture for each model for direct comparison with previous work, although the MNIST model
could be run on the larger character overlay.

5.2 Impact of Approximated Activation Functions

We first evaluate how the use of the approximated activation functions impacts model accuracy
for the models in our test case, as discussed in Section 4.4.
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Table 5. Impact of the Approximated Activation Functions on the MNIST Dataset

Trained with Sigmoid-Tanh Approx.

Inf. using Sig.-Tanh Approx. Approx.

Train (Loss/Accuracy) 0.0762/98.0% 0.984/80.7% 0.067/98.1%
Validation (Loss/Accuracy) 0.108/97.3% 0.944/81.7% 0.109/97.4%
Test (Loss/Accuracy) 0.106/97.5% 0.955/80.7% 0.117/97.4%

Table 6. Impact of the Approximated Activation Functions

on the Shakespeare’s Writing Dataset

Trained with Sigmoid-Tanh Approx.

Inf. using Sig.-Tanh Approx. Approx.

Train Loss 0.8733 2.9 1.29

The results are presented in Tables 5 and 6. While we observe an increase in loss, along with a
decrease in accuracy for the MNIST network, when the activation functions are simply switched
after training, we then see that this can be alleviated by using the proposed activation functions
during training. Although the loss in the character level LSTM can be considered high, we believe
this is due to the learning complexity. More specifically, even though a low loss would mean that
a model can work more accurately in inference, in this case it would mean that the model has
memorised the textbook, which is a very difficult task. Instead, we would like the model to learn
the coarser text patterns, rather than the finer details, and generate similar text.

5.3 Compute Overlap

The dependence of LSTM layers on previous outputs usually means the next iteration in a layer
cannot start until the previous iteration has completed, reducing the parallel processing efficiency
and effective throughput. The dataflow used in the proposed LSTM architecture coupled with un-
rolling parallelism at each neuron, enables the overlay to overlap part of the computations between
iterations. In addition, the serial computing in the LSTM architecture enables the propagation of
any compute configurations at the initial layer to the following layers, e.g., stall cycles applied in
the first layer affect when the next layer will initiate its computation and so on.

The Initiation Interval (II) of the overlay is the clock cycle count between consecutive
timestep computations in an LSTM layer. In other words, the number of clock cycles after which
the next LSTM iteration computation can begin. Since each timestep in an LSTM layer depends
on its previous outputs, the II essentially corresponds to the latency of the first layer in an unopti-
mised compute flow. The pipeline of the overlay is therefore underutilized between LSTM timestep
executions in a naive execution, which in turn results in a less efficient and underperforming archi-
tecture for streaming applications. The latency of an LSTM layer, and therefore the unoptimised
II, is modelled by Equation (8), in which the #Inputs and #Previous Outputs are initially passed
through the first neuron. The first neuron requires 17 clock cycles to generate its output, followed
by #Units*4 clock cycles for the LSTM layer to generate all its outputs.

The serial neuron compute flow of the overlay enables the next timestep of an LSTM layer to
begin with only part of its previous timestep outputs generated. Specifically, a new LSTM itera-
tion starts with the new inputs flowing in the overlay serially, computing Wyxy in each of the
Equations (1) to (4). The computation of the LSTM layer follows, which requires data from the pre-
vious timestep to compute UyHt−1 in each of the Equations (1) to (4). Since the proposed overlay
compute flow generates an LSTM layer output every four clock cycles, the next iteration can start
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Table 7. Overlapped Computing Compared to Unoptimised Execution

Unoptimised Overlapped

MNIST Char. LSTM MNIST Char. LSTM

II-1st layer 125 722 80 530
Clock Cycles 3503 37131 2342 27723

Table 8. Weights to Input Size Ratio

Number of coeff. Size in bits

MNIST Char. LSTM MNIST Char. LSTM

Weights (18 bits) 2976 238208 53568 4287744
Biases (16 bits) 74 1089 1184 17424
Inputs (27 bits) 784 3250 21168 87750

Coefficients to total data – – 72.12% 98.00%

as soon as 75% of the previous outputs have been generated. Therefore, in the overlapped comput-
ing scenario, the computation of the next timestep can start #Inputs+#Units earlier, with the floor
of this equation being #Units × 4. The overlapped II is modelled in Equation (9) and requires an
additional clock cycle in order for the last required output to be stored in the layer buffer.

LSTM Layer Latency = 17 + #Inputs + #Previous Outputs + (#Units × 4) (8)

Overlapped II = 17 + #Previous Outputs + (#Units × 3) + 1 (9)

For the LSTM networks in our case study, the impact of overlapped computing on the II of the
first layer is shown in the first row of Table 7, as the number of clock cycles required to initiate a
new LSTM iteration. The second row of Table 7 shows how the II reduction impacts the latency
of the complete network computation for a set of inputs. This is the clock cycle count for an end
to end NN computation, including the generation of the final output results at the fully connected
layer, of a whole image for the MNIST LSTM and 50 iterations of characters for the character level
LSTM.

The ability of the proposed architecture to overlap part of the computation within consecutive
LSTM layer iterations, leads to a latency reduction of 33% for the MNIST-LSTM and 25% for the
character level LSTM.

5.4 Weight Stationary Architecture

Previous work in neural networks has explored a wide spectrum of optimisations in an effort to
reduce off-chip memory bandwidth, from computing parts of the neural network in batches and
transferring weights accordingly, to extreme quantization of weights. In this architecture, the com-
pute units, that typically consume most FPGA resources, are mapped to DSP blocks. This, coupled
with the minimalistic approach in the design of other building blocks, results in releasing FPGA re-
sources that can be used to store more weights on chip, maximising the device’s storage capabilities.
In Table 8, we show the total weight and data sizes for a single classification for the two networks.
The weights and biases in the MNIST LSTM amount to about 73% of total data and about 98% for
the character level LSTM. Architectures that store these parameters in off-chip memory require
high bandwidth to achieve high throughput, while our approach reduces bandwidth requirements
and potentially energy consumption.
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Table 9. Resource Utilization and Performance Comparisons with Same Models

MNIST LSTM Character LSTM

Baseline [25] Appr. A [25] Appr. B [25] This work [24] Deepstore [23] Appr. [26] This work

FPGA XC7Z020 XC7Z020 XC7Z020 XCZU7EV XC7Z020 XC7Z045 XC7Z030 XCZU7EV

Precision N/A N/A N/A 16-27 fixed 16 fixed 16 fixed 8 fixed 16-27 fixed
LUTs 7741 (14.55%) 9529 (17.91%) 6763 (12.71%) 4244(1.84%) 7201 (13.54%) N/A 23036 (29.31%) 95263 (41.35s%)

Flip-Flops 2412 (2.27%) 8456 (7.95%) 5928 (5.57%) 9308(1.75%) 12960 (12.18%) N/A 28481 (18.12%) 118261 (25.66%)

BRAM 3.58KB 0 0 0 (0%) 16 (11.43%) N/A 180 × 36KB (67.92%) 518 × 18KB(83.01%)

DSP 1 (0.45%) 0 (0%) 0 (0%) 78(4.51%) 50 (22.73%) N/A 0 (0%) 1095(63.37%)

Freq. (MHz) N/A 100 100 640 142 142 100 420

DSP Max (MHz) 464 464 464 775 464 650 548-742 775

DSP Freq. (%) N/A 21.6 21.6 82.6 30.6 21.8 18.2-13.5 54.1

Power (w) 0.142e 0.072e 0.038e 0.679e 1.94 2.3 1.19e 8.531e

Latency (ms) 0.17a,c 18.58a,c 18.58a,c 0.0037d 0.932a,c N/A N/A 0.066d

T’put-LSTM (GOPs) 0.928 0.00847 0.00847 44.5 0.29 1.05 8.08(max)/2.26(avg) 363.7

T’put (class./s) 5882.4b,c 53.8a,b 53.8a,b 282186.9d 1073.0a,b 1969.0 a,b N/A 15819.2d

T’put (GOPs) N/A N/A N/A 44.6 N/A N/A N/A 363.9

Efficiency (GOPs/W) 6.54a 0.12a 0.22a 65.67d 0.15a 0.46a 6.79(max)/1.89(avg)a 42.7d

a LSTM layers only.
b Estimated from the reported average runtime.
c Reported as average runtime.
d Complete network (i.e., including FC layers).
e Vivado power estimator.

Table 10. Resource Utilization and Performance Comparisons with Different Models

Single Instance [20] 6 Instances [20] 6 Instances [20]
[4] [22] [22] [21]

(Streaming) (Streaming) (Batch)

FPGA XC7Z045 XC7Z045 XC7Z045 XCZU7EV VX690T XC7Z045 XC7Z020
Precision 5 fixed 5 fixed 5 fixed 1-8 fixed 16 fixed 16 fixed 16 fixed
LUTs 32815 (15%) 161574 (74%) 190036 (87%) N/A 204000 (47.0%) 166000 (75.8%) 51604 (97%)
Flip-Flops 14532 (3%) 51213 (12%) 78516 (18%) N/A 222000 (25.6%) 150000 (34.4%) 69160 (65%)
BRAM 83 (15%) 339 (62%) 498 (91%) N/A 1070 (72.8%) 517.5 (94.9%) 179.2 (64%)
DSP 33 (4%) 195 (22%) 198 (22%) N/A 2060 (57.0%) 900 (100%) 180.4 (82%)
Freq. (MHz) 166 142 142 266 125 142 150
DSP Max (MHz) 548-742 548-742 548-742 775 548-741 650 464
DSP Freq. (%) 30.3-22.4 25.9-19.3 25.9-19.3 34.3 22.8-16.9 21.8 32.3

T’put (GOPs) 152.16b 308.05b 693.12b 746-4201b 356 221 4.25

Power (W) 1.7 a,b 6.97a,b 12.46a,b N/A 26.5 10.6 2.29

Efficiency (GOPs/W) 89.52a,b 44.22a,b 55.62a,b N/A 13.48 20.84 1.86

a Calculated from authors’ reported results.
b Complete network (i.e., including FC layers).

5.5 Performance, Resource Utilization, and Comparisons

We implement two versions of our proposed overlay architecture, one for each NN, on a ZU7EV
FPGA as found on the Xilinx Zynq Ultrascale+ ZCU104 board. Both overlays have been imple-
mented in Verilog HDL using Xilinx Vivado 2018.2. Moreover, both have been integrated in an
SoC implementation with the Arm Cortex A53 on the device and functionally verified, baremetal,
on part of the datasets using Xilinx SDK. To enable the integration of the high operating frequency
overlay in the SoC and overcome the lower operating frequency of required IPs, our overlay em-
ploys a dual clock configuration. A high frequency clock is used for the overlay’s compute mode,
whereas a slower clock that operates at a quarter of the fast clock frequency is used to configure
the overlay and to transfer the input and output data. To match the rate of the slow clock input
data with the fast clock compute, four inputs are transferred at a time at the slow clock rate to a
dual clock FIFO, subsequently each input slot is extracted at the fast clock rate.

All results presented in this section are post-place and route for the overlay module only, ex-
tracted from the hierarchical results of the implemented SoC. Tables 9 and 10 compare the at-
tributes of our proposed approach to previous work. To enable more objective comparisons with
work targeting different FPGA devices, we derive attributes for overall efficiency. In addition, we
report the theoretical maximum frequency of the DSP blocks for those devices, as found in the
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devices’ datasheets [40–43], and the frequencies achieved. In cases where the device’s speed grade
is not reported by the authors, we use a range of highest and lowest speed grades. Although the
MNIST model can be computed within the larger overlay, we provide an overlay for each LSTM
model to enable objective comparisons with previous work and to have a benchmark on how our
overlay scales. The MNIST overlay would consume 6.8% of the DSP blocks and about 1.24% of the
implemented memories of the character level LSTM overlay.

In addition to the MNIST overlay reported in Table 9, which uses LUTRAMs for the neuron
memories, we have explored the use of BRAMs in an identical architecture. Naturally, this resulted
in varying utilization of memory elements on the FPGA, but importantly, this also resulted in a
reduced frequency and higher power estimation for the BRAM based overlay. The BRAM based
overlay is able to compute at 520 MHz and configured at 130 MHz, whereas the LUTRAM based
overlay is able to compute at 640 MHz and configured at 160 MHz. Meanwhile, the power esti-
mation for the BRAM is higher, amounting to 0.845W compared to 0.679W the LUTRAM based
overlay, which in turn results in poorer efficiency.

This suggests that the weight memories in lightweight and shallow neural networks are more
performance and energy efficient when mapped to LUTRAMs, which can be partly due to the
fact that only a small percentage of each BRAM bank is utilized. Meanwhile the simple routing
of small FPGA fabric based memory offers better operating frequency. The configuration of the
weights and biases takes place in streaming mode, using the slower clock, and is estimated to be
around 0.02ms with negligible difference between the two overlays.

Our proposed overlay for the character level LSTM model is implemented using a hybrid mem-
ory arrangement in the first two LSTM layers, e.g., one neuron uses LUTRAM memory, the other
BRAM memory, etc, while the output layer uses LUTRAM memories. A uniform memory overlay
with either type of resource does not fit in the device when integrated with the SoC. Similarly to
the MNIST overlay, the weights and biases are configured in streaming mode, using the slower
clock, and this is estimated to take 2.29ms. Considering the BRAM based MNIST overlay as the
baseline, the character level overlay scales well as the frequency is reduced by 19.2% while utilizing
14× to 37× more resources.

Table 9 summarises other relevant previous work that implements the exact same LSTM models
as in our work. Our proposed MNIST overlay is competitive in terms of resource utilization with
the work in [25] which focuses on approximate computing to yield multiplierless-low power im-
plementations, while significantly outperforming in terms of latency, throughput, and efficiency.
In addition, our proposed architecture achieves 82.6% the theoretical DSP block maximum fre-
quency, compared to 21.6% achieved in [25]. Regarding the more complex character level LSTM
overlay, although it utilizes more resources due to the higher neuron and layer parallelism and
higher precision, our implementation is significantly better in terms of latency, throughput, and
efficiency. Specifically, it is 22.6×more efficient compared to the average performance of the most
competitive previous work in [26]. Meanwhile, our proposed architecture operates at 54.1% of the
DSP block theoretical maximum frequency in the target FPGA, compared to 30.6% of the most
competitive previous work in [24].

Although achieving high frequency does not necessarily result in the best overall performance,
it is a good proxy for how well designed and efficient the architecture is on the underlying FPGA.
In addition, we have shown how this operating frequency along with the various architectural and
algorithmic optimisations, translate to overall performance metrics (e.g., latency and throughput).

Finally, we supplement our evaluation by porting the overlay to Xilinx Zynq 7000 devices, as re-
ported in Table 11, for direct comparisons with previous work. These results demonstrate that our
approach is effective on older devices as well. Specifically, we see that our MNIST overlay achieves
208 MHz, which is 44.83% of the devices’ theoretical maximum. Compared to previous work using
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Table 11. Resource Utilization and Frequency on Zynq

7000 Series

MNIST LSTM Character LSTM

FPGA XC7Z020 XC7Z100
Precision 16-27 fixed 16-27 fixed
LUTs 4120 (7.74%) 93920 (33.86%)
Flip-Flops 8972 (8.43%) 113838 (20.52%)
BRAM 0 (0%) 259 (34.30%)
DSP 78 (35.45%) 1095 (54.21%)
Freq. (MHz) 208 312
DSP Max (MHz) 464 650
DSP Freq.% 44.83% 48%

MNIST in Table 9, the proposed overlay operates twice as fast on the same device. Furthermore,
the character level overlay achieves 312 MHz, which is 48% of the theoretical maximum (650 MHz)
of the XC7Z100 device and is approximately 2.2–3× faster compared to relevant previous work in
Table 9.

We extend our comparisons with previous work in the embedded domain in Table 10. Although
these implementations do not target the same models, they use various architectural approaches
of interest on more modern FPGA devices. The implementations in [4, 20] target a Bidirectional-
LSTM model for optical character recognition. The complete network consists of a single Bidirec-
tional LSTM layer with a total of 200 nodes followed by a fully connected layer, both of which have
been implemented in the compute architecture. Compared to our character level LSTM, this model
is less complex in terms of LSTM cells used, number of layers, and precision, using 68.8–81.5% re-
duced precision. Nonetheless, our overlay architecture obtains better throughout compared to the
single instance and six instances that operate in streaming mode. Although the single instance
in [20] is more efficient, its performance does not scale well when six instances are implemented
on the device, resulting in reduced efficiency which is slightly better than our proposed overlay. Its
corresponding batch processing implementation with six instances yields improved throughput,
compared to our streaming operation, while increasing its efficiency. This shows that streaming
processing is more challenging to optimise, since it doesn’t scale linearly with the increase of com-
pute resources, whereas batch processing scales better with the availability of more input data.
The authors further expanded their work in [4] for a more systematic exploration of the trade-offs
of reduced precision, improving their obtained throughput significantly. The work in [22] aims at
partitioning large LSTM layers and achieves the obtained throughput efficiency with a batch size
of 64, which our proposed overlay outperforms. Lastly, the authors in [21] target a single LSTM
layer only, with a similar configuration to the first layer of the character level LSTM, while some
of the computations are offloaded to the ARM core, obtaining lower performance and efficiency
with, however, a less capable device. Regarding the operating frequencies of previous work in
Table 9, the most competitive one operates at 32.3% of the device’s DSP block theoretical max-
imum, while our least competitive overlay operates at 54.1%. This demonstrates the frequency
gains of our proposed approach, irrespective of the different FPGAs used in previous work.

6 CONCLUSIONS AND FUTURE WORK

We present a streaming overlay architecture based on DSP blocks that is able to compute
lightweight to moderate sized LSTM and fully connected layers, storing all required weights on
chip. Our approach is aimed at enhancing programmability and flexibility by using the overlay
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concept, while providing high performance and resource efficiency by employing an architecture
that achieves high operating frequency and consumes data serially. Its serial data flow, parallel
neuron computation, and pipelined operation coupled with optimizations in compute overlap
and on chip weight storage result in high throughput operation. The low level operation of
the architecture is abstracted to form an overlay that can be configured at the top level with
model configurations. Moreover, the implemented overlay, can be configured after deployment,
at runtime, with the different model configurations, weights, and biases. Our experiments have
shown that the standalone overlay architecture can operate at much higher frequencies in an SoC
design, alongside the ARM core, within which it has been implemented and functionally verified.
We show how our overlay architecture is competitive in terms of efficiency and outperforms
other generic previous work in stream processing, while using higher precision. In the future, we
intend to investigate reduced precision, along with pruned models, and explore how they can be
efficiently mapped to the proposed overlay. Furthermore, we plan on expanding our approach to
a framework with software support for an end to end NN overlay generation, able to partition
and schedule the execution of large networks that may not fit on a device.
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