
Machine Learning at the Edge

for Air Quality Prediction

by

I Nyoman Kusuma Wardana

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

School of Engineering

January 2024

Contents

List of Tables vi

List of Figures ix

List of Acronyms xiii

Acknowledgments xvii

Declarations xviii

Abstract xx

Chapter 1 Introduction 1

1.1 Air Pollution as a Global Threat . 1

1.2 Air Pollution Assessment . 2

1.3 Initiatives to Reduce Air Pollution Impact 3

1.4 Machine Learning for Air Quality Research 4

1.5 Moving Machine Learning Towards the Edge 5

1.6 Thesis Aims and Objectives . 6

1.7 Thesis Organisation . 7

Chapter 2 Background and Literature Review 10

2.1 Introduction . 10

2.2 Machine Learning for Air Pollution Prediction 12

2.3 Machine Learning at the Edge . 14

2.3.1 Edge Computing . 14

2.3.2 Machine Learning Platform 15

2.3.3 Quantised Neural Networks 16

2.3.4 Tiny Machine Learning . 17

2.4 Edge Devices . 19

i

2.4.1 Software Programmable Platforms 19

2.4.2 Application Specific Integrated Circuits 19

2.4.3 Field-Programmable Gate Arrays 20

2.4.4 Computing Platform Selection 21

2.4.4.1 Single Board Computers 22

2.4.4.2 Microcontrollers . 25

2.5 Neural Networks . 25

2.5.1 Artificial Neuron . 25

2.5.2 Convolutional Neural Network 26

2.5.3 Long Short-Term Memory . 29

2.6 Evaluation Metrics . 31

2.7 Summary . 32

Chapter 3 Deep Learning for Missing Data Imputation 33

3.1 Introduction . 33

3.2 Approaches for Dealing with Missing Data 34

3.3 Missing Data Imputation in Air Quality Research 36

3.4 Contributions . 37

3.5 Air Quality Dataset . 38

3.5.1 Beijing Dataset . 38

3.5.2 Delhi Dataset . 39

3.5.3 London Dataset . 40

3.6 Spatiotemporal Convolutional Autoencoder 40

3.6.1 Denoising Autoencoder . 40

3.6.2 Correlation of Pollutant Data 42

3.6.3 Proposed Deep Learning Model 42

3.7 Processing of Spatiotemporal Data 44

3.7.1 Air Quality Monitoring Stations 44

3.7.2 Data Preprocessing for Spatial Correlation 45

3.7.3 Data Preprocessing for Temporal Correlation 47

3.7.4 Missing Period Distribution 47

3.7.5 Missing Data Generation and Perturbation Procedure 49

3.7.6 Pre-training Model Input Construction 51

3.7.7 Post-training Model Outputs 51

3.8 Spatiotemporal Evaluation . 53

3.8.1 Temporal Evaluation . 53

3.8.2 Spatial Evaluation . 57

ii

3.9 Imputation Performance . 60

3.9.1 Model Architecture Evaluation 60

3.9.2 Short Interval Imputation . 62

3.9.3 Long Interval Imputation . 64

3.9.4 Effect of Correlation Levels 67

3.9.5 Comparison with Other Methods 70

3.10 Summary . 74

Chapter 4 Optimising Deep Learning at the Edge 76

4.1 Introduction . 76

4.2 Contributions . 80

4.3 Air Quality Data . 80

4.3.1 Dataset and Preprocessing . 80

4.3.2 Feature Selection . 82

4.4 Deep Learning Model Architecture 83

4.4.1 Hybrid CNN-LSTM . 83

4.4.2 Spatiotemporal Model Inputs 87

4.5 Model Architecture Benchmark . 88

4.6 Model Optimisation for the Edge . 95

4.6.1 Edge Devices . 95

4.6.2 Lite Models . 95

4.6.3 Post-training Optimisations 96

4.7 Summary . 100

Chapter 5 Collaborative Edge Learning 102

5.1 Introduction . 102

5.2 Rapid Expansion of Sensing Devices 104

5.3 Chapter Contributions . 106

5.4 Proposed Framework . 106

5.5 Data Preprocessing . 108

5.6 Collaborative Strategies . 109

5.6.1 Learning Overview . 109

5.6.2 Federated Learning (FedAvg) 112

5.6.3 Clustered peer-to-peer model exchanges (ClustME) 114

5.6.4 Spatiotemporal data exchanges (SpaTemp) 116

5.7 Deep Learning Models . 117

5.8 Collaborative Learning Evaluation 119

5.9 Application Scenario . 120

iii

5.10 Results and Discussion . 121

5.10.1 Feature Selection . 121

5.10.2 Losses During Training . 123

5.10.3 Model performance on testing data. 125

5.10.4 Learning Execution Period 128

5.10.5 Communication Cost Estimations 129

5.10.6 Network Scaling . 131

5.11 Summary . 133

Chapter 6 Tiny Machine Learning for Microcontroller Applications135

6.1 Introduction . 136

6.2 Contributions . 138

6.3 TinyML Low-cost Air Quality Monitoring Device 139

6.3.1 Motivation . 139

6.3.2 Data Collection and Preprocessing 139

6.3.3 Device Design . 140

6.3.4 TinyML Framework . 142

6.3.5 Model Predictor and Model Imputer 142

6.3.6 Perturbation Method . 144

6.3.7 Device Realisation . 145

6.3.8 Model Performance . 145

6.3.9 Post-training Quantisation 147

6.3.10 Summary . 148

6.4 Optimising TinyML with Binary Weight Network 149

6.4.1 Introduction . 149

6.4.2 Objectives . 149

6.4.3 Binary Neural Network . 150

6.4.4 Layer Quantisation . 150

6.4.5 Proposed Model . 151

6.4.6 Research Workflow . 152

6.4.7 Data Collection . 152

6.4.8 Quantisation Results . 153

6.4.9 Summary . 154

6.5 TinyML with Meta-Learning . 155

6.5.1 Introduction . 155

6.5.2 Objectives . 156

6.5.3 Air Quality Dataset . 156

iv

6.5.4 Stacking Ensemble Process 157

6.5.5 Proposed Stacking Ensemble Model 158

6.5.6 Results and Discussion . 159

6.5.7 Summary . 161

Chapter 7 Conclusions and Further Work 162

7.1 Overview . 162

7.2 Objectives and Achievements . 165

7.3 Conclusions . 167

7.4 Further Work . 169

7.4.1 Broader Perspectives of AI-based Smart Sensing and Approaches

to Driving Change . 169

7.4.2 Collaborative Learning and Air Quality Monitoring Network 170

Reference 173

Appendix A Additional Evaluation of Correlation Coefficients 199

A.1 Pearson’s Correlation for Beijing Air Quality Data 199

A.2 Pearson’s Correlation for Delhi Air Quality Data 200

A.3 Neighbouring Stations Selection for Beijing Air Quality Data 201

A.4 Neighbouring Stations Selection for Delhi Air Quality Data 202

Appendix B Additional Model Evaluation Metrics 203

Appendix C Post-Training Quantisations 206

v

List of Tables

2.1 Nvidia Jetson Nano 2GB Developer Kit technical specifications. . . . 23

2.2 Raspberry Pi 4 Model B technical specifications. 24

2.3 Raspberry Pi 3 Model B+ technical specifications. 24

2.4 Raspberry Pi Zero W technical specifications. 24

2.5 Raspberry Pi Pico W technical specifications. 26

3.1 Descriptive statistics of Aotizhongxin dataset. 39

3.2 Descriptive statistics of Anand Vihar monitoring station. 39

3.3 Descriptive statistics of Trafalgar Road monitoring station. 40

3.4 Layer properties of proposed convolutional autoencoder model. . . . 44

3.5 Dataset and stations involved in the experiment. 45

3.6 Average of RMSE(µg/m3) and standard deviation values after 5-fold

cross-validation targeting NO2 for the London dataset. 56

3.7 Coefficient of correlation targeting NO2 in London data. 57

3.8 Coefficient of correlation targeting PM10 in London data. 58

3.9 Average of RMSE (std. deviation) after 5-fold cross-validation for se-

lecting the number of involved neighbouring stations targeting PM10

in London (measured in µg/m3). 59

3.10 Strongest correlation coefficient for neighbouring stations selection in

London data. 59

3.11 Proposed autoencoder architectures. 61

3.12 Average RMSE (µg/m3) for deep autoencoder architecture selection

in Beijing, focusing on CO pollutants. 61

3.13 Properties of short-interval imputation experiment. 63

3.14 Performance metrics of short-interval imputation for all experiments

described in Table 3.13. 64

3.15 Results of long-interval consecutive imputation. 65

3.16 Coefficient of correlation among stations measuring NO2 in Delhi data. 67

vi

3.17 Coefficient of correlation among stations measuring PM2.5 in Delhi

data. 67

3.18 Average of RIR values calculated from all stations. 73

4.1 Correlation coefficients (r) among attributes at Node 1. 82

4.2 Model performance based on different input attributes for Node 1. . 83

4.3 Hybrid CNN-LSTM network properties of the proposed model. . . . 85

4.4 PM2.5 coefficient correlation (r) for all nodes. 87

4.5 Comparison of RMSE and MAE values (in µg/m3) for PM2.5 predic-

tion using different model architectures calculated for Node 1. 91

4.6 TensorFlow and TensorFlow Lite file size comparison. 96

5.1 Cluster of stations based on time-series of PM2.5 data. 114

5.2 Feature selection results. 123

5.3 Model performance in predicting PM2.5 on test data. 126

5.4 Average time to complete the collaborative training. 128

5.5 Collaborative learnings communication costs. 131

6.1 Descriptive statistics of direct measurement dataset. 140

6.2 Comparison of different tinyML model sizes. 148

6.3 RMSE values of different TF model formats. 148

6.4 RMSE predictions obtained from different model versions. 154

6.5 RMSE values of base and stacked models. 161

A.1 Coefficient of correlation targeting CO in Beijing air quality data. . . 199

A.2 Coefficient of correlation targeting O3 in Beijing air quality data. . . 200

A.3 Coefficient of correlation targeting PM2.5 in Delhi air quality data. . 200

A.4 Coefficient of correlation targeting NO2 in Delhi air quality data. . . 201

A.5 Strongest correlation coefficient for neighbouring stations selection in

Beijing air quality data. 201

A.6 Strongest correlation coefficient for neighbouring stations selection in

Delhi air quality data. 202

B.1 Comparison of RMSE values for PM2.5 prediction using different

model architectures for all nodes. 204

B.2 Comparison of MAE values for PM2.5 prediction using different model

architectures for all nodes. 205

vii

C.1 Effect of post-training quantisation techniques on RMSE and MAE

values. 207

viii

List of Figures

1.1 Processing data in the cloud versus at the edge. 6

2.1 Shifted paradigm of air pollution monitoring [78]. 13

2.2 An example of a low-cost air quality monitoring device called AQmesh

installed at an airport (donated by Environmental Instruments Ltd.) [82]. 14

2.3 Post-training optimisation methods provided by TensorFlow (adapted

from [124]). 17

2.4 Internal structure of an FPGA (adapted from [134]). 20

2.5 Ethos-U system coupled with a Cortex-M series CPU (adapted from [137]). 22

2.6 Edge devices: (a) Jetson Nano 2GB, (b) RPi 4B, (c) RPi 3B+, and

(d) RPi 0. 23

2.7 Raspberry Pi Pico W microcontroller development board. 26

2.8 An artificial neuron. 27

2.9 A typical CNN model. 28

2.10 The feature detector of 1D CNN slides over time-series data. 28

2.11 Examples of pooling layer operations. 29

2.12 An example of flattening operation. 30

2.13 An LSTM cell structure. 30

3.1 A denoising convolutional autoencoder workflow. 41

3.2 Proposed deep convolutional autoencoder model. 43

3.3 Target station leverages measurement data from neighbouring sta-

tions to impute the missing data. 46

3.4 Probability density function of missing data in all stations. 48

3.5 (a) Implemented method to handle the initial missing data in the

original datasets, and (b) illustration of perturbation patterns applied

to the dataset. 49

3.6 Extracting input sets from the preprocessed dataset. 51

3.7 Approach to obtaining the final prediction. 52

ix

3.8 Temporal characteristics of air quality datasets based on autocorre-

lation coefficients. 54

3.9 The proposed base model for temporal and spatial characteristic eval-

uations. 55

3.10 Locations of two target stations (S1 and S2), along with their selected

neighbouring stations and respective distances in the London dataset. 60

3.11 Short-interval missing patterns in the test set obtained from station

S3 of London dataset. 62

3.12 Long-interval missing patterns in the test set obtained from station

S8 of Beijing dataset. 65

3.13 Plot of long-interval missing imputation between actual and imputed

values along with 95% confidence intervals. 66

3.14 Scatter plot of short-interval imputation at Delhi station S5, with

20% and 40% of missingness levels. 68

3.15 Example of input and output sets retrieval before and after denoising

process in Delhi station S5: (a) retrieval of NO2, and (b) retrieval of

PM2.5. 69

3.16 Performance comparison of the proposed model and commonly used

methods. 71

3.17 Performance comparison of the proposed model against commonly

used methods. 72

4.1 Optimisation options for deep learning models on embedded devices. 77

4.2 PM2.5 concentration at Node 1 (Aotizhongxin monitoring site) from

1 March 2013 to 28 February 2017. 81

4.3 Autocorrelation coefficients for PM2.5 concentration with different

time lags. 84

4.4 Proposed hybrid CNN-LSTM model. 84

4.5 Details of data processing in the proposed deep learning model. . . . 86

4.6 Illustration of spatiotemporal consideration for predicting the value

of PM2.5 concentration at Node 1. 88

4.7 Boxplot of the prediction deviations at Node 1. 92

4.8 Line plot of real and predicted PM2.5 data at Node 1. 93

4.9 Scatter plots of real and model predicted values of PM2.5 at all nodes. 94

4.10 TensorFlow Lite model size comparison. 96

4.11 Comparison of TensorFlow Lite execution time for test data. 97

4.12 Boxplot of prediction deviation resulted from each TFLite model. . . 98

x

4.13 Scatter plot of the prediction data obtained by TensorFlow and Ten-

sorFlow Lite models. 99

5.1 Proposed framework for collaborative learning at the edge. 107

5.2 Map of air quality monitoring stations in Beijing and its surroundings.108

5.3 Implemented collaborated learning strategies. 110

5.4 (a) Subscribing and publishing data pairs performed in SpaTemp,

and (b) An example of publishing and subscribing implemented at

Station-01. 118

5.5 Proposed deep learning architectures. 119

5.6 Edge devices application scenario. 121

5.7 The average correlation coefficients among features. 122

5.8 Examples of losses for Station-06: (a) Training loss and (b) validation

loss. 123

5.9 Better presentation of training losses at all stations after the first round.124

5.10 Comparison between the observed and predicted values at Station-02. 127

5.11 Longer prediction hours evaluated at Station-05. 128

5.12 The average time of edge devices to complete the training sessions. . 129

5.13 The comparison of model exchanges between FedAvg and ClustME

with the same number of participating stations. 132

5.14 The amount of communication cost calculated by changing (a) the

number of rounds, and (b) the number of stations. 133

6.1 TensorFlow lite development workflow. 138

6.2 Module interfaces of the proposed device. 141

6.3 Model predictor architecture. 143

6.4 A denoising convolutional autoencoder workflow. 144

6.5 Model imputer architecture. 145

6.6 The low-cost air quality monitoring device. 145

6.7 Performance of model predictor on testing data. 146

6.8 R2 scores yielded from different missing rates. 147

6.9 BWN development workflow. 149

6.10 Computational graph of layer quantisation. 151

6.11 Proposed model with binary weight section. 152

6.12 BWN implementation workflow. 153

6.13 Model size comparisons. 153

6.14 Deployed BWN performance. 155

6.15 Meta development workflow. 156

xi

6.16 Stacking ensemble architecture. 157

6.17 Flowchart of deploying stacking ensemble meta-learning model. . . . 158

6.18 Proposed base models. 159

6.19 Process of acquiring the meta-learner output. 160

xii

List of Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

AQG Air Quality Guidelines

AQI Air Quality Index

ARIMA Auto Regressive Integrated Moving Average

ARMA Auto Regressive Moving Average

ASIC Application-Specific Integrated Circuit

AURN Automatic Urban and Rural Network

BAN Binary Activation Network

Bi-LSTM Bi-Directional Long Short-Term Memory

BLE Bluetooth Low Energy

BNN Binary Neural Network

BWN Binary Weight Network

CLB Configurable Logic Block

ClustME Clustered Model Exchange

CNN Convolutional Neural Network

CPU Central Processing Unit

DAE Denoising Autoencoder

xiii

DL Deep Learning

FedAvg Federated Averaging

FF Flip-Flop

FL Federated Learning

FPU Floating-Point Unit

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

I2C Inter-Integrated Circuit

I/O Input/Output

IC Integrated Circuit

ICT Information and Communication Technology

IoT Internet of Things

KNN k-Nearest Neighbours

LAQN London Air Quality Network

LoRa Long-Range

LPDDR Low-Power Double Data Rate

LR Linear Regression

LSTM Long Short-Term Memory

LUT Look-Up-Table

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MAR Missing at Random

MCAR Missing Completely at Random

MICE Multiple Imputation by Chained Equation

xiv

MNAR Missing Not at Random

ML Machine Learning

MLP Multi Layer Perceptron

MLR Multiple Linear Regression

MQTT Message Queuing Telemetry Transport

NB-IoT NarrowBand-Internet of Things

NERC Natural Environment Research Council

NN Neural Network

NPU Neural Processing Unit

OLS Ordinary Least Squares

OS Operating System

PM Particulate Matter

PM10 Particulate matter that are 10 µm or less in diameter

PM2.5 Particulate matter that are 2.5 µm or less in diameter

PSU Power Supply Unit

QNN Quantised Neural Network

RAM Random-Access Memory

RBF Radial Basis Function

ReLU Rectified Linear Unit

RIR Rate of Improvement on RMSE

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RTC Real-Time Clock

RPi Raspberry Pi

xv

SBC Single-Board Computer

SDG Sustainable Development Goals

SDRAM Synchronous Dynamic Random-Access Memory

SoC System-on-a-Chip

SpaTemp Spatiotemporal Data Exchange

SPI Serial Peripheral Interface

SSH Secure Shell

STE Straight-Through Estimator

TF TensorFlow

TFLite TensorFlow Lite

TFLM TensorFlow Lite for Microcontrollers

TinyML Tiny Machine Learning

UART Universal Asynchronous Receiver-Transmitter

UN United Nations

VFP Vector Floating Point

Wi-Fi Wireless Fidelity

WHO World Health Organization

xvi

Acknowledgments

I am deeply indebted to my supervisors, Prof. Julian Gardner and Dr. Suhaib
Fahmy, for their unwavering support, patience, and motivation throughout my time
at the University. Their invaluable feedback has significantly contributed to devel-
oping my research skills and personal growth. Their guidance and expertise have
been instrumental in the completion of this thesis.

I would like to acknowledge the Indonesia Endowment Fund for Education
(LPDP), Ministry of Finance, Republic of Indonesia, for providing me with financial
support under grant number Ref: S-1027/LPDP.4/2019. Without LPDP’s support,
studying abroad would not have been possible.

My sincere gratitude to all the individuals I have encountered during my
studies, particularly the WARC lab members (Ryan, Alex, Lenos, and Nidhin),
PhD students (Augusta, Naser, Dyah, Joseph, and Satria), and colleagues in the
Connected System group and at the Microsensors and Bioelectronic Laboratory.
Their companionship and insightful discussions have greatly enriched my daily life.

I extend special thanks to Amanda Billingsley, CEO/Managing Director of
Environmental Instruments Ltd, for generously donating an AQmesh picture and
providing valuable insights about air pollution monitoring studies. I sincerely thank
my colleagues at Politeknik Negeri Bali for granting me permission and supporting
me in pursuing a doctoral degree at the University of Warwick.

My heartfelt appreciation goes to my family, especially my parents (Bapak
Surim and Ibu Martina), my brothers (Suwardika and Dwipayana), my sisters-in-
law (Wulan and Hiroe), and Hartawan’s family (Bapak Hartawan, Ibu Swandewi,
Fufe and DeAgus) for their unwavering support and understanding.

I cannot fail to express my deepest gratitude to my beloved wife, Juliani,
and my daughter, Gauri, whose constant encouragement and unconditional support.
They have sprinkled moments of joy and happiness throughout this PhD journey. I
apologise for the occasions when my physical presence may have been there, yet I
acknowledge that my true availability was lacking.

All praises and glories to Sri Guru and Sri Gauranga for giving me the
blessing and strength to complete my study and thesis. I offer my obeisances to
Srila Subhag Swami Guru Maharaj and all the Vaishnavas.

xvii

Declarations

This thesis is submitted to the University of Warwick to support my application for

the degree of Doctor of Philosophy. It has been composed by myself and has not

been submitted in any previous application for any degree. All work presented was

carried out by the author, except where otherwise indicated. Parts of this thesis

have been published in peer-reviewed journals and international conferences.

Publications

The author has published parts of this thesis as follows:

Journal Papers

• I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, ”Optimising Deep Learn-

ing at the Edge for Accurate Hourly Air Quality Prediction,” Sensors, vol. 21,

no. 4, p. 1064, Feb. 2021 [1].

• I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, “Estimation of Missing Air

Pollutant Data Using a Spatiotemporal Convolutional Autoencoder,” Neural

Comput & Applic, vol. 34, no. 18, pp. 16129–16154, Sep. 2022 [2].

• I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, ”Collaborative Learning at

the Edge for Air Pollution Prediction,” IEEE Transactions on Instrumentation

& Measurement, vol. 34, pp.1-12, Dec. 2023 [3].

xviii

• I. N. K. Wardana, S. A. Fahmy, and J. W. Gardner, “TinyML Models for a

Low-cost Air Quality Monitoring Device,” IEEE Sensors Letters, vol. 7, no.

11, pp. 1-4, Sep. 2023 [4].

Conference

• I. N. K. Wardana, S. A. Fahmy, and J. W. Gardner, ”TinyML with Meta-

Learning on Microcontrollers for Air Pollution Prediction,” Eurosensors 2023

Conference, Lecce, Italy, 10 - 13 September 2023 [5].

Posters

• I. N. K. Wardana, S. A. Fahmy, and J. W. Gardner, ”Optimising Tiny Machine

Learning with Binary Weight Network for a Low-cost Air Quality Monitoring

Device,” The 3rd Imperial Workshop on Intelligent Communications, Imperial

College London, 19 - 20 June 2023 [6].

• I. N. K. Wardana, S. A. Fahmy, and J. W. Gardner, ”Optimising TinyML

Using Binary Weight Network and Meta-Learning for a Low-cost Air Quality

Monitoring Device,”Warwick Secure and Intelligent Communications (WSIC)

Workshop, University of Warwick, 31 July 2023 [7].

Sponsorships and Grants

I was supported with a PhD scholarship from the Indonesia Endowment Fund for

Education (LPDP), Ministry of Finance, Republic of Indonesia, under grant number

Ref: S-1027/LPDP.4/2019.

xix

Abstract

Air pollution has emerged as a notable worldwide threat to public health,
emphasising the importance of monitoring air quality status. A recent develop-
ment involves establishing an extensive network comprising low-cost sensor nodes
to facilitate air quality monitoring. Typically, these affordable devices are linked to
cloud infrastructure. Nevertheless, processing data near its source presents a po-
tential solution to the latency, privacy, and scalability challenges often encountered
in cloud-based systems. The considerable amount of data generated also enables
the potential implementation of machine learning for air quality research. Current
research has yet to delve extensively into how best to leverage machine learning on
edge devices for air quality monitoring applications. This thesis addresses this gap
by presenting new approaches encompassing various aspects: overcoming missing
data, optimising machine learning models, facilitating collaborative learning across
devices, and deploying models on resource-constrained devices.

Based on the conducted experiments, the proposed autoencoder model out-
performs commonly used univariate imputations to deal with missing data that can
occur in such networks. This results in root mean square error improvement rates
of approximately 50% to 65% against univariate and about 20% to 40% against
multivariate imputation. The thesis also introduces a hybrid deep learning model
that combines 1D Convolutional and Long Short-Term Memory networks for ac-
curately predicting PM2.5 pollutant levels by leveraging spatiotemporal data from
neighbouring stations. The proposed model outperformed the other 19 models. Dy-
namic range quantisation was found to be a beneficial solution. Furthermore, this
thesis discusses three collaborative learning methods that can be applied in such
a distributed sensor setting: federated learning, learning with model sharing, and
learning with spatiotemporal data exchanges, showing that the latter minimises loss
during training across all participating air quality monitoring stations. Finally, de-
veloping a real low-cost air quality device is discussed, including implementing tiny
machine learning on microcontrollers by investigating techniques such as binary
weight networks and meta-learning.

These contributions address the key challenges of data integrity, neighbour-
hood correlation, collaborative methods for building models, and hardware consider-
ations for real deployments. This holistic approach has identified further challenges
for applying machine learning in this important area.

Keywords: air pollution prediction, machine learning, missing data imputation,
edge computing, collaborative learning, tinyML.

xx

Chapter 1

Introduction

1.1 Air Pollution as a Global Threat

The quality of the air we breathe significantly affects our health [8, 9]. Neverthe-

less, in 2019, 99% of the global population resided in areas where air quality did

not meet the levels recommended by the World Health Organization (WHO) Air

Quality Guidelines (AQG) [10]. The adverse impacts of pollutants released into

the atmosphere impact local environments, ecosystems, human health, and climate

on a global scale. Air pollution affects individuals of all ages, regardless of socioe-

conomic status, across diverse communities worldwide. Air pollution poses a sig-

nificant global risk and requires immediate attention and comprehensive solutions.

Addressing the complex challenge of air pollution requires collaborative efforts, in-

novative technologies, and proactive policies to reduce its far-reaching impacts.

The primary source of air pollution worldwide stems from the combustion of

fossil fuels such as coal, diesel fuel, gasoline, oil, and natural gas [11]. This occurs

predominantly in activities such as electricity production, heating, transportation,

and industrial processes. Several factors have been linked to the heightened combus-

tion of fossil fuels, including population growth, urbanisation, industrial expansion,

and economic development [12]. The world population continues to grow, and the

United Nations estimates that the world population will grow to around 8.5 billion

by 2030 and 9.7 billion by 2050 [13]. The population growth has led to increased

demand for energy, transportation, and resources, thereby increasing emissions of

pollutants into the atmosphere. Urbanisation, city development, and industrialisa-

tion increase pollutant concentrations through vehicle exhaust gases and industrial

processes. While economic development is a pivotal catalyst for national progress,

it frequently entails an associated cost in elevated pollution levels. This occurs as

1

industries expand and the demand for energy experiences a surge. Among the pollu-

tants are particulate matter (PM), nitrogen dioxide (NO2), carbon monoxide (CO),

ozone (O3), and sulphur dioxide (SO2).

The impact of diseases caused by air pollution is comparable to other global

health risks, such as unhealthy eating patterns and smoking [14]. Air pollution is

increasingly recognised as the greatest environmental hazard to human health and

is becoming a major threat to public health on a global scale. The effects of air

pollutants on the human body vary depending on the type, quantity, and dura-

tion of exposure to the contaminants. Regarding human health, air pollution is

associated with lung cancer [15, 16], cardiovascular diseases [17, 18, 19], impaired

cognitive function, and human emotion [20, 21]. Furthermore, in 2017, air pollution

was responsible for approximately 4.9 million deaths [8]. In addition to negatively

affecting human health, it also influences socioeconomic activity [22, 23], one of

them is reducing physical activity during periods of high pollution or discouraging

a person from engaging in physical activity at all, especially in highly polluted envi-

ronments [24]. Other socioeconomic consequences of air pollution include premature

mortality, adverse social and educational outcomes, and a catastrophic climate [25].

Research also indicates a connection between air pollution and poverty [26].

Some countries suffer more from air pollution. In Central and Southern Asia

and Sub-Saharan Africa, populations continue to face escalating levels of air pollu-

tion [27]. India, Nepal, Bangladesh, and Pakistan rank among the most polluted

countries globally [28]. Bangladesh was the most polluted country, while New Delhi,

India, was recognised as the world’s most polluted capital. The nations with the

highest levels of air pollution, surpassing WHO guidelines by tenfold, included In-

dia, Pakistan, and Bangladesh [14, 29]. In China, prior economic growth heavily

depended on fossil fuels, leading to significant air pollution problems [30]. Fortu-

nately, there have been developments in air pollution control in China, emphasising

a strategic shift from focusing only on emissions control to comprehensive air quality

management [31].

1.2 Air Pollution Assessment

Monitoring and assessing pollution levels and air quality is important in maintaining

public health, preserving the environment, and guiding policy decisions [32]. The

importance of assessing air quality can be exemplified by the following:

• Public Health Protection: Harmful pollutants can adversely affect human

health [33]. Thus, efforts to assess air quality are pivotal in measuring con-

2

centrations of harmful pollutants. This information is crucial for informing

the public and decision-makers about the necessary actions to protect public

health. Moreover, early detection of high pollution levels allows for timely

public health interventions, reducing the risk of pollution-related diseases.

• Climate Change and Environmental Protection: Air pollution and climate

change are closely linked because the substances that contribute to deteriorat-

ing air quality often share emissions with greenhouse gases [34, 35, 36]. Thus,

monitoring and assessing air quality can improve efforts to address climate

change and protect the environment.

• Policy Development: Accurate air quality data is crucial for formulating poli-

cies and regulations to control emissions and enhance air quality standards.

Making policies in the field of air pollution has fundamental benefits, primar-

ily aimed at preventing and controlling pollution originating from emission

sources. The goal is to improve air quality and prevent negative impacts on

health [37].

• Resource Allocation: A crucial aspect of regional air quality management

involves allocating resources for air pollution mitigation to maximise environ-

mental and human health benefits [38, 39]. Efficient resource allocation can

be facilitated through monitoring, targeting areas with the most prominent

air quality problems, and ensuring interventions are directed where they are

most needed.

• Research, Technology and Innovation: Considerable research attention has

been devoted to technological innovation and environmental pollution [40].

Air quality data helps researchers understand how pollution affects health,

leading to technological innovations and policies addressing these issues.

1.3 Initiatives to Reduce Air Pollution Impact

Intervention is required to mitigate the negative impacts of air pollutants [41], and

implementation of policy interventions has proven effective in improving air qual-

ity [42]. The United Nations introduced the Sustainable Development Goals (SDGs),

also called the Global Goals, in 2015. These goals serve as a worldwide initiative to

eliminate poverty, safeguard the planet, and ensure peace and prosperity for every-

one by 2030 [43]. The SDGs aim to promote sustainable living for humanity, and

naturally, addressing air pollution is intertwined with these goals in several ways.

3

Advancing specific SDGs can improve air quality as a positive result, and initiatives

to reduce emissions will directly contribute to several SDGs [44].

The World Health Organization (WHO) published the Air Quality Guide-

lines (AQG), which are global standards for national, regional, and municipal gov-

ernments. These guidelines aim to improve their citizens’ health by minimising air

pollution [45]. The WHO AQG updated in September 2021 recommends targeting

annual mean concentrations of PM2.5 not exceeding 5 µg/m3, NO2 not exceeding

10 µg/m3, and a peak season mean 8-hour ozone concentration not surpassing 60

µg/m3 [14]. Moreover, in December 2023, the United Nations Climate Change Con-

ference (COP28) concluded with an agreement marking the start of the transition

away from fossil fuels [46]. The agreement aims for a rapid, fair, and equitable shift,

supported by substantial reductions in emissions and increased financial support.

Following this two-week-long conference, there is a consensus that global green-

house gas emissions need to be cut by 43% by 2030, compared to 2019 levels [46].

This development raises optimism for improved global air quality.

Many nations have created and implemented plans to decrease air pollution,

specifically emphasising reducing transportation, industry, and energy production

emissions. For example, in 2013, the Chinese State Council introduced the Air

Pollution Prevention and Control Action Plan (APPCAP) to reduce particulate

matter (PM) levels [47]. Since 2013, China’s National Environmental Monitoring

Centre has increased its air pollution monitoring network, now consisting of over

2000 stations nationwide, measuring pollutant concentrations [48]. China has taken

effective measures to significantly lower air pollution in recent years. However,

achieving nationwide air quality standards remains a long-term challenge for the

country [49]. Another country, India, launched the National Clean Air Programme

(NCAP) in 2019, aiming to enhance air quality in 122 cities [50]. This initiative

comprises regulations, policies, and programs focused on identifying cost-effective

measures to reduce emissions from various sources, ultimately improving air quality

and public health. The NCAP aims to develop clean air action plans to reduce PM2.5

pollution by 20–30% by 2024 compared to 2017 levels in designated cities [50, 51].

1.4 Machine Learning for Air Quality Research

A large network of low-cost sensor nodes has recently been proposed for monitoring

air quality [52]. This new paradigm aims to gather spatial and temporal data on air

pollution using multiple sensing devices, incorporating the established methodology

with more accurate and expensive instrumentation [53]. Additionally, these sensors

4

are often connected to the Internet, allowing remote air quality monitoring. The

Internet of Things (IoT) is a rapidly growing field that has become vital to our

everyday lives. By leveraging cloud computing capabilities, IoT technology can link

many heterogeneous devices to the cloud with different communication technolo-

gies, allowing data to be processed and represented in various ways. IoT technology

has benefited numerous domains, including home automation, personal health care,

environmental monitoring, and industry [54]. While the IoT offers many bene-

fits, it provokes a critical situation for time-sensitive applications. IoT applications

encompass devices linked to a network. The duration required to transmit data be-

tween end devices and the server, in both directions, may induce delays, presenting

potential challenges for time-sensitive applications. Additionally, IoT applications

frequently rely on a consistent internet connection, and a failure in connectivity

could result in significant delays or even system faults.

A significant increase in the volume of data generated, stored, and transmit-

ted has been attributed to the rapid growth of these sensing devices [55]. Due to

the large amount of data being collected, Machine Learning (ML) techniques have

greater potential for predicting air pollution [56]. With its ability to extract spatial

and temporal features from data, Deep Learning (DL), a subset of machine learning,

offers a promising approach to predicting air quality status. A deep learning model

comprises multiple layers containing neurons and extracts meaningful patterns from

large quantities of input data to support inference. By leveraging the availability of

air quality data, DL techniques can be effectively utilised in various areas of air qual-

ity research. These include imputing missing air pollution data, developing accurate

deep learning models, optimising embedded deep learning models, and facilitating

collaborative learning among sensing devices.

1.5 Moving Machine Learning Towards the Edge

The future of machine learning is shifting towards edge computing, and a recent

survey sheds light on how developers are driving innovation in tiny machine learning

(tinyML) [57]. ML technology has become a viable option for endpoint devices

within a few years. The key advantages of embedded machine learning, summarised

as BLERP [58, 59], are as follows:

• Bandwidth: By reducing the need to send data to the cloud, processing data

locally at the edge minimises bandwidth requirements.

• Latency: Performing data processing at the edge enables quicker decision-

5

Computation
takes place here

Computation
takes place here

Edge Computing

Edge Server

Cloud Computing INTERNET

LAN/WAN

EDGE
DEVICES

Figure 1.1: Processing data in the cloud versus at the edge.

making, as there is no delay in transmitting data to a remote server.

• Economics: Local processing at the edge eliminates the need for cloud services,

resulting in reduced operational costs.

• Reliability: Edge computing does not rely on an internet connection, making

it more reliable for time-critical applications.

• Privacy: Concerns over privacy increase when sending sensitive data to the

cloud. Edge computing allows for local processing and consumption of data,

reducing the risk of privacy breaches.

The integration of ML processing at the edge is commonly known as edge

computing. Fig. 1.1 depicts that edge computing involves deploying computation

closer to the data sources, as opposed to a more centralised approach seen in cloud

computing. This approach effectively tackles latency, privacy, and scalability chal-

lenges often encountered in cloud-based systems.

1.6 Thesis Aims and Objectives

This thesis aims to develop methods related to some aspects of air quality domains

using machine learning (or deep learning) techniques, emphasising edge devices as

deployment targets. Leveraging edge devices such as single board computers (SBCs)

6

and microcontrollers requires machine learning models to be tailored to the avail-

able computational capabilities and memory capacity. With the increasing number

of air quality monitoring devices and the presence of spatiotemporal correlations

among these devices in a specific region, it becomes imperative to explore strate-

gies for implementing collaborative learning among edge devices. Such approaches

can potentially enhance the performance of models used in predicting air quality

data. Based on the aforementioned aims, the thesis objectives can be summarised

as follows:

1. To develop a method for imputing missing values on measurement data, con-

sidering spatiotemporal behaviour of air quality status.

2. To develop a deep learning model to predict air pollution levels accurately

with model optimisations for edge devices.

3. To develop collaborative learning strategies among edge devices and evaluate

the proposed strategies in terms of model accuracy, device performance, and

communication cost.

4. To deploy tiny machine learning models on resource-constrained microcon-

trollers as target devices to address air quality issues.

1.7 Thesis Organisation

This thesis can be organised in the following order:

• Chapter 1 Introduction discusses the effects of air pollution on human

health, assessments of air pollution, initiatives to minimise its impact, the

application of machine learning in air quality research, and the transition of

machine learning to the edge. This chapter covers the development of low-cost

air quality monitoring devices. The significant air quality data generated and

transmitted to the cloud by these devices may result in data congestion. Thus,

edge devices have become crucial in computing tasks, including executing ma-

chine learning algorithms. This chapter also describes the research aims and

objectives.

• Chapter 2 Background and Literature Review covers relevant research

background. This chapter examines a significant paradigm shift in air pol-

lution monitoring. This approach has evolved from relying solely on stan-

dard government-operated networks to combining reference-level monitors and

7

emerging sensor technologies. The following discussion investigates the feasi-

bility of integrating low-cost sensor nodes into an air quality monitoring sys-

tem. Recent research on air quality prediction using machine learning methods

is presented, followed by research related to edge computing. It also covers

the most commonly used deep learning models for air quality prediction and

methods for quantising these models. Furthermore, this chapter addresses

the issue of missing data, a common occurrence when collecting air quality

data. The chapter concludes by explaining air quality datasets and evaluation

metrics utilised in this thesis.

• Chapter 3 Deep Learning for Missing Data Imputation discusses the

implementation of deep learning for missing data imputation. Since air qual-

ity status exhibits spatiotemporal correlation, incorporating data from nearby

stations can aid in estimating measurement values at a station with missing

data. The background to this chapter includes an explanation of the types of

missing data and the utilised dataset. The contributions of the chapter involve

extracting air pollution features using a deep convolutional denoising autoen-

coder with spatiotemporal considerations, introducing a method well-suited

for both short-period and long-interval consecutive scenarios, and minimising

data exchange by incorporating only the pertinent pollutant data from neigh-

bouring stations. Finally, the performance of the proposed model is evaluated

and compared to commonly used imputation techniques.

• Chapter 4 Optimising Deep Learning at the Edge presents a novel deep

learning model for air quality prediction. Unlike models that rely solely on

a station’s local data, the proposed model considers local and spatiotemporal

data, resulting in more precise predictions. To reduce file size and execu-

tion time performed on edge, some post-training quantisation techniques are

introduced. Finally, the original and quantised model characteristics and per-

formances are assessed.

• Chapter 5 Collaborative Edge Learning discusses collaboratively- and

locally-trained deep learning models. The application scenario includes Rasp-

berry Pi boards and a Jetson Nano Developer kit as edge devices. The chapter

further examines losses during training, model performances, and communi-

cation costs. Finally, expanding the number of participating edge devices

and deriving mathematical formulations for each learning scenario is also ex-

plained.

8

• Chapter 6 Tiny Machine Learning for Microcontroller Applications

focuses on developing machine learning for resource-constrained devices, such

as microcontrollers. Despite their limited memory capacity and computing

capability, microcontrollers are well-suited for low-power applications that in-

volve sensors. The chapter discusses the implementation of tiny machine learn-

ing on a low-cost air quality monitoring device. This chapter also includes

optimisations using binary weight networks and meta-learning approaches.

• Chapter 7 Conclusions and Further Work provides a summary of all

preceding chapters. This chapter also presents an overview of the objectives

stated in Chapter1 and highlights the corresponding accomplishments. Finally,

potential areas for future work are also discussed.

9

Chapter 2

Background and Literature

Review

2.1 Introduction

The global population is increasing, and the United Nations estimates the number

will reach around 9.7 billion in 2050 [13]. A growing global population can contribute

to urbanisation. Urbanisation is a major global trend that has significantly changed

how humans and the environment interact in recent decades [60]. Rapid urbanisation

has increased environmental problems, such as toxins and signs of climate change,

affecting both developed and developing countries [61]. Globally, most people reside

in urban areas, comprising 55% of the world’s population in 2018. In 1950, only 30%

lived in cities, and projections anticipate that by 2050, 68% of the global population

will be living in urban areas [62]. Currently, the regions with the highest levels of

urbanisation include Northern America (82%), Latin America and the Caribbean

(81%), Europe (74%), Oceania (68%), and Asia (50%). In Africa, most people live

in rural areas, with 43% in cities [63].

The growth in economic activity from urbanisation and improved living stan-

dards has led to environmental problems. Industrial and urban growth makes bal-

ancing environmental protection and economic growth increasingly difficult [64, 65].

Excessive releases of greenhouse gases from industrial activities have exacerbated

environmental damage and climate change, endangering global security and human

well-being [64]. Urban air pollution, which results from expanding urban areas, im-

proving industrial technology, and improving transportation, poses health risks and

contributes to the disruption of the atmosphere and ecosystems. Urban air pollu-

tion continues to be a significant issue in many cities worldwide [66]. In pursuing

10

environmental sustainability, many interested parties have developed air pollution

monitoring systems to measure, analyse and predict the concentration of most crit-

ical air pollutants [2].

Measuring air pollution and its related factors is frequently integrated into

a smart city framework [67]. The smart city concept emerged by combining In-

formation and Communication Technology (ICT) with fixed/mobile sensors placed

throughout the city, and this approach has transformed into a sustainable urban

data source [66]. Under the smart city framework, environmental health scientists

and other parties can relate the measured air contaminants with potential exposures

to health impacts [68]. For example, potential exposures tend to occur during traffic

congestion. The smart system can propose the best route for drivers towards their

target destinations by avoiding traffic congestion and minimising the health impact

caused by air pollution [69]. Another example can be seen in smart hospital con-

cepts [70]. Intelligent air pollution sensors located in the field can be connected to

the hospital system to improve the quality of medical care. Furthermore, the vast

majority of individuals, approximately 80-90%, spend a significant portion of their

time indoors, encompassing various settings like homes, schools, and offices [71].

Therefore, monitoring indoor air quality becomes an important aspect to ensure

overall well-being and health. Understanding and addressing the factors that con-

tribute to indoor air quality is critical to creating an environment that supports the

health and comfort of its occupants [72, 73, 74]. Nowadays, smart city initiatives

are being adopted globally [75].

As discussed in Chapter 1.2, monitoring and assessing pollution levels and

air quality are crucial for maintaining public health, preserving the environment,

and guiding policy decisions. These activities are integrated into the smart city

framework, involving the use of air quality monitoring instruments. Precise and

traceable air quality monitoring devices built to industrial standards are costly.

The prices of these devices can vary significantly, typically ranging from e 5,000

to e 30,000 [76]. These devices generally have large dimensions (not optimised for

mobile instruments) and require dedicated installation space. Regular maintenance

and calibration are essential to ensure the accuracy of data. The data produced by

these devices serve as a reference for other devices. While these devices deliver pre-

cise results, their high costs and stringent maintenance requirements restrict their

widespread deployment, resulting in a region’s sparse network of air quality moni-

tors. In small cities, the availability of standard air quality monitoring instruments

may be limited or nonexistent.

There has been a paradigm shift in air pollution monitoring, transitioning

11

from reliance on standardised government-operated networks (using standard air

quality monitoring instruments) to a combination of reference-grade monitors and

emerging sensor technologies [77, 78]. Recent research has demonstrated the fea-

sibility of low-cost sensor nodes for air quality monitoring systems. The growing

utilisation of low-cost air quality devices is attributed to their ability to lower pro-

duction costs, compact size, and enhanced mobility [79, 80, 81]. This emerging

sensor-based air quality monitoring field can provide high-density spatiotemporal

pollution data, supplementing the established methodology with more precise and

expensive devices [53]. The global deployment of small, low-cost, interconnected

air pollution sensors has spurred communities worldwide to expand city-wide sensor

networks. This aims to comprehensively understand the air pollution levels citizens

encounter daily [67].

In their work, Snyder et al. (2013) summarised the paradigm shift in air

pollution monitoring, as depicted in Fig. 2.1. The new paradigm emphasises using

low-cost air quality monitoring devices for collecting air quality data. This shift is

not limited to government agencies; it includes communities, hobbyists, and indi-

viduals interested in monitoring air pollutants. Citizen science initiatives leverage

community-based participatory monitoring and crowd-sourcing, where individuals

voluntarily gather extensive data that is later compiled and analysed [78]. An ex-

ample of a low-cost air quality monitoring device is shown in Fig. 2.2

2.2 Machine Learning for Air Pollution Prediction

Pollutant level prediction is usually associated with various meteorological factors,

such as wind speed, wind direction, relative humidity, precipitation, barometric

pressure, and solar radiation. All these recorded factors can be categorised as a

time-series problem. The existing methods for time-series forecasting are mainly

categorised into three methods: deterministic methods, statistical methods, and

machine learning methods. Deterministic methods use mathematical equations to

determine the numerical model of air pollution. It is based on the understanding

of aerodynamic, physicochemical and environmental knowledge. This method needs

high-speed calculation and simulation to predict the atmospheric pollutant concen-

tration [83], which is considered not viable for edge devices due to their limited

energy capacity and computation resource [84].

Statistical methods implement statistic-based models by trying to find the

relationship between influencing factors (meteorological data, spatiotemporal fac-

tors, and others) and air pollutants [85]. There are some commonly used statistical

12

methods. These methods include the multiple linear regression (MLR) methods

[86, 87, 88] the autoregressive moving average (ARMA) and autoregressive inte-

grated moving average (ARIMA) methods [89], [90]. However, these models are

based on linear assumptions that affect their prediction accuracy for commonly

non-linear real problems. To overcome these problems mentioned above, researchers

implement a non-linear machine learning approach, such as multilayer perceptron

(MLP) model [91], [92], radial basis function (RBF) model [93], support vector

machine (SVM) model [94], and artificial neural network (ANN) model [95], and

neuro-fuzzy model [96].

The immense volume of collected spatiotemporal data from low-cost air qual-

ity monitoring devices has provided a better opportunity to apply machine learning

(ML) techniques in air quality areas, such as air contaminant predictions [1, 97],

missing data imputations [2, 98], classification tasks [99], or even personal pollutant

exposure [100, 101]. In recent years, deep learning (DL), a subset of machine learn-

New

Paradigm

Expanded
used by

communities
and individuals

New and
enhanced

applications

Increased data
availability and

access

Old

Paradigm

Limited mostly to
governments,
industry, and
researchers

Compliance
monitoring,

enforcement,
trends, research

Government
websites, permit

records, research
databases

SENSOR

TECHNOLOGY

Who collects the

data?

Why are data

collected?

How are data

accessed?

How are data

collected?

Figure 2.1: Shifted paradigm of air pollution monitoring [78].

13

Figure 2.2: An example of a low-cost air quality monitoring device called AQmesh
installed at an airport (donated by Environmental Instruments Ltd.) [82].

ing, has been actively explored by many researchers. Deep learning methods can

effectively learn the features from a complex and large amount of data [102]. This

thesis exclusively focuses on deep learning-based methods as the foundation for all

proposed techniques.

2.3 Machine Learning at the Edge

2.3.1 Edge Computing

Machine learning (ML), especially deep learning (DL), has gained popularity across

various applications, such as image recognition and pattern matching. By learning

features from input sets, deep learning enables the discovery of good representations,

often achieved on multiple levels. Deep learning is more resilient to noise and able

to deal with non-linearity. Instead of relying on hand-crafted features, deep learning

automatically extracts the best possible features during training. During training,

the deep neural network architecture can extract very coarse low-level features in

its first layer, recognise finer and higher-level features in its intermediate layers and

achieve the targeted values in the final layer [103]. However, deep learning models

require substantial computational resources and often rely on cloud computing plat-

forms for training and evaluation. However, in recent years, a new trend in deep

learning has emerged, bringing computation to the edge [103].

Edge computing refers to deploying computation closer to data sources rather

14

than more centrally, as is the case with cloud computing [104]. It can address latency,

privacy and scalability issues faced by cloud-based systems [105, 106]. In terms of

latency, moving computation closer to the data sources decreases end-to-end net-

work latency. Regarding privacy, the computation performed at the edge or a local

trusted edge server prevents data from leaving the device, potentially reducing the

chance of cyber-attacks. Regarding scalability, edge computing can avoid network

bottlenecks at central servers by enabling a hierarchical architecture of edge nodes

[107]. Moreover, edge computing can address energy-aware and bandwidth-saving

applications [108]. Incorporating intelligence directly into edge devices is now fea-

sible to facilitate data processing and information inference. This can be achieved

by leveraging machine learning (ML) or deep learning algorithms [109, 110]. Deep

learning [111] can now be implemented on edge devices, such as mobile phones,

wearables and the Internet of Things (IoT) nodes.

2.3.2 Machine Learning Platform

Embedded machine learning is the application of machine learning technology on

hardware with limited resources. This involves the development of models that can

work efficiently on devices with small memory and processing power [112]. This dis-

cipline is experiencing substantial expansion in scale and scope, driven by advances

in system performance and the development of more sophisticated machine learning

models. This growth is increasingly driven by increased affordability and greater

accessibility. Consequently, there is a marked improvement in the quality, power

consumption efficiency and overall effectiveness of these systems [113].

A machine learning platform is a comprehensive software setup that provides

tools, libraries, and resources to make it easy to build, deploy, and manage machine

learning models and applications. This platform is designed to increase the effi-

ciency of the machine learning process, from preparing data and building models

to training, evaluation, deployment, and monitoring. Many machine learning plat-

forms are accessible, including TensorFlow [114, 115], PyTorch [116], Keras [117],

Caffe [118], and MATLAB [119], among others. The choice of a machine learn-

ing platform depends on the developer or researcher’s project requirements, skill

level, and preferences. Each platform has its own strengths and weaknesses, and

the choice depends on the context of use. For example, TensorFlow is a robust

and mature deep-learning library renowned for its formidable visualisation capa-

bilities, production-ready deployment solutions, and extended support to mobile

platforms. Conversely, PyTorch provides flexibility, robust debugging capabilities,

dynamic computational graphs, efficient memory usage, and shorter training dura-

15

tions [120, 121].

This thesis constructs all deep learning models using the TensorFlow (TF)

framework, which can be freely downloaded from the official website: https://www.

tensorflow.org. The versions utilised were 2.2, 2.4, and 2.12. TensorFlow is a

comprehensive platform designed to simplify the process of building and deploying

machine learning models. It provides solutions to enhance the efficiency of machine

learning tasks at all workflow stages. With TensorFlow, users have the flexibility

to build machine learning models using features such as the Keras Functional and

Model Subclassing Application Programming Interfaces (APIs). Additionally, Ten-

sorFlow supports an extensive ecosystem of add-on libraries and models, offering

the opportunity to explore and experiment with various advanced capabilities [115].

TensorFlow offers TensorFlow Lite (TFLite), a lightweight version specifi-

cally designed to facilitate the deployment of TensorFlow models on edge devices.

TensorFlow Lite has been instrumental in popularizing the use of machine learning

in mobile and IoT devices, making the technology more accessible and applicable

in various real-world scenarios. TensorFlow Lite is optimised to run on mobile and

embedded devices with high efficiency. This includes support for ARM processors

and lower resource usage than standard TensorFlow [122]. Bringing the standard

concept to the lite version typically involves building, training, testing, and optimis-

ing deep learning models on a desktop computer. Once an optimised deep learning

model is obtained through these steps, the model is deployed to the edge devices. To

execute the model on the target hardware, the TensorFlow Lite Interpreter library

is utilised, enabling seamless portability and execution of the deep learning model.

2.3.3 Quantised Neural Networks

Quantised Neural Networks (QNNs) can operate with lower precision for weights

and activations than full-precision models. Generally, neural network models use

high precision, such as floating-point 32-bit, to represent weights and activations

[123]. In QNN, this precision is reduced to integers with fewer bits, such as 8-bit

integers. The primary goal of QNN is to reduce the computational and memory

resource requirements needed to run a neural network model without significantly

sacrificing the model’s performance. One approach to achieving quantised models

is by performing post-training quantisation, meaning that the quantisation process

is performed after the full-precision model has been trained. Figure 2.3 depicts the

post-training provided by the TensorFlow framework.

In post-training quantisation, optimisation occurs after the training pro-

cess has been completed. There are three post-training quantisation methods pro-

16

https://www.tensorflow.org
https://www.tensorflow.org

Optimise model?

Without quantisationLimit to float16
supported types?

Float16 quantisation
Have a representative

dataset?

Dynamic range
quantisation

Limit to int8
operations?

Integer-only
quantisation

Integer with float
fallback

Yes No

Yes No

Yes No

Yes No

Figure 2.3: Post-training optimisation methods provided by TensorFlow (adapted
from [124]).

vided by TensorFlow, namely dynamic range quantisation, full integer quantisation

and float16 quantisation. Dynamic range quantisation statically quantises only the

weights, from floating-point (32 bits) to integer (8 bits). During inference, weights

are converted back from 8 bits to 32 bits and computed using floating-point kernels.

Compared to dynamic range quantisation, full integer quantisation offers latency

improvements.

Full integer quantisation supports two methods, namely integer with float

fallback and integer-only conversions. The integer with float fallback means that a

model can be fully integer quantised, but the execution falls back to float32 when

operators do not have an integer implementation. The integer-only method is appro-

priate for 8-bit integer-only devices, such as microcontrollers and accelerators, e.g.,

EdgeTPU. In this method, the conversion fails if the model has unsupported opera-

tions. Finally, float16 quantisation converts weights to float16 (16-bit floating-point

numbers).

2.3.4 Tiny Machine Learning

Tiny Machine Learning (TinyML) is an innovative field within machine learning

focusing on edge devices such as microcontrollers and low-power embedded sys-

tems [125]. Unlike powerful desktop computers or cloud servers, microcontrollers

17

typically have limited memory capacity and computing power. Effective deploy-

ment of tinyML models requires a thorough understanding of hardware, software,

algorithms, and applications. However, they offer the advantage of sensing environ-

mental parameters through sensors. Microcontrollers can be employed to generate

data, forming the fundamental backbone of machine learning disciplines. From these

data, microcontrollers can perform decisions based on ML algorithms [126].

As an illustration in air pollution research, microcontrollers can be equipped

with various sensors to capture physical quantities of air pollutants, such as particu-

late matter, carbon monoxide, sulfur dioxide, ozone, etc. These physical parameters

are translated by an analog-to-digital converter, one of the unique peripherals that

microcontrollers possess. Microcontrollers collect data from sensors periodically,

forming time series data. The collected data usually includes the concentration of

pollutants in the air at a specific time. Microcontrollers can perform initial data

processing, such as calibration, normalisation, or noise filtering. The data recorded

by the microcontroller can then be stored through storage media, such as an SD

card. This recorded data can then be used to create a machine learning model.

This modelling is generally not done directly on the microcontroller, as microcon-

trollers have limited computing capabilities. The pre-trained model obtained is then

brought to the microcontroller using the tiny machine learning libraries for micro-

controllers. The embedded deep learning model in the microcontroller then receives

this input data from direct measurements and can produce the desired results, for

prediction purposes or classification of certain pollutant data.

An example of work related to tinyML for air quality monitoring has been

published by Botero-Valecia et al. [127]. They developed an affordable, open-source

station for measuring pollution, suitable for outdoor and indoor environments. This

station can assess air pollution, noise, light, relative humidity and ambient tem-

perature. It employs tinyML technology to linearise the variables against reference

values, effectively minimising measurement errors. In another instance, Sakr et

al. [128] implemented machine learning models on a range of STM 32-bit micro-

controllers. Their study utilised multiple datasets, including one focused on the air

quality index (AQI). To address different research questions, they explored various

machine learning algorithms, such as Linear Support Vector Machine (SVM), k-

nearest Neighbours (k-NN), and Decision Trees. These questions encompassed com-

parative analysis of inference performance, training duration, data pre-processing,

and hyperparameter tuning.

18

2.4 Edge Devices

The term edge refers to devices positioned close to data sources. Based on the

specific applications in use, various devices can be classified within this category,

including but not limited to software programmable platforms, Application Specific

Integrated Circuits (ASICs), and Field-Programmable Gate Arrays (FPGAs) [129].

2.4.1 Software Programmable Platforms

Software programmable platforms encompass a range of devices, notably Central

Processing Units (CPUs) and Graphics Processing Units (GPUs). CPUs provide the

computational infrastructure for executing machine learning models. The widespread

prevalence of generic CPU architectures and their cost-effectiveness has established

this category as advantageous for neural network (NN) execution. It is impor-

tant to note that CPU capabilities can exhibit substantial variability based on the

specific computing platform they are integrated into. For instance, server-grade

CPUs generally boast higher capabilities than personal computers, surpassing the

computational power of embedded microprocessors like single-board computers or

microcontrollers.

Initially developed for accelerating computer graphics and image process-

ing, Graphics Processing Units (GPUs) have found their utility in various electronic

devices necessitating graphical processing. These include video cards, personal com-

puters, workstations, mobile phones, game consoles, and more. In the neural net-

works (NN) domain, GPUs have substantial attention for training and inference

tasks. Their parallel computing architecture has significantly cut execution times

for training and inference while maintaining the user-friendly nature of software pro-

gramming. NVIDIA, in particular, has emerged as a key player in manufacturing

GPUs tailored for general-purpose computing applications [130].

2.4.2 Application Specific Integrated Circuits

An ASIC is a special computer chip that integrates several circuits onto a single

chip. This unique architecture allows customisation for specific tasks rather than

catering to general-purpose applications. ASICs are specifically designed for par-

ticular tasks. This allows maximum optimisation in terms of performance. ASIC

chips can be customised for the desired task, resulting in better performance than

general-purpose chips or FPGAs. Because ASICs are designed for a specific pur-

pose, they can be optimised for highly efficient power use. This is important in

applications that require low power consumption, such as battery-operated or mo-

19

bile devices. ASICs usually have a minimal physical size because they only contain

the components needed for a specific task. This makes it ideal for devices that

require a compact form factor [131]. When applications require mass production,

ASICs can be a more cost-effective option in the long run. In the machine learning

field, ASICs can also serve as accelerators for training machine learning or deep

learning models [132].

2.4.3 Field-Programmable Gate Arrays

FPGAs are semiconductor integrated circuits (ICs) that can be customised and

reconfigured to meet specific needs. Its computing role sets it apart from other de-

vices in the computing world (CPUs and GPUs) and dedicated accelerators such as

ASICs. Unlike CPUs and GPUs, which adhere to a fixed hardware architecture for

program execution, FPGAs and ASICs empower the creation of purpose-built hard-

ware optimised for specific program tasks. Although ASICs generally outperform

FPGAs in certain assignments, ASIC development requires substantial time and

financial commitment. On the other hand, FPGAs offer a more budget-friendly and

quickly accessible option, allowing reprogramming for each new application [133].

Figure 2.4 illustrates the internal architecture of the FPGA. These arrange-

ments consist of a limited set of general-purpose routing resources and Configurable

Logic Blocks (CLBs), also known as slices. Each CLB consists of Look-Up-Table

(LUT) memories capable of executing various logic functions and synchronous mem-

ory elements, known as Flip-Flops (FFs). To facilitate connectivity, each CLB is

Routing Channel

I/O Block

Slice

Switchbox

Figure 2.4: Internal structure of an FPGA (adapted from [134]).

20

connected to a routing channel that can be configured to connect the I/O CLB to

a programmable interconnect. This routing channel interacts with the switchboxes,

facilitating connections between accessible routing channels.

In the field of air quality research, Ramı́rez-Montañez et al. engineered a

modified LSTM (Long Short-Term Memory) neural network, executed on an FPGA

board for modelling and forecasting pollutants like nitrogen dioxide, carbon monox-

ide, and particulate matter [135]. This method achieved an 11% enhancement in

performance relative to the standard LSTM network architecture. The findings

highlight that the modified architecture effectively retains its operational capabil-

ities even with a reduced neuron count in the initial layers. In a separate study,

Abbasi et al. developed and implemented a device for atmospheric testing in con-

fined spaces, utilising FPGA technology [136]. This device integrates various gas

sensors into an FPGA-based system, including those for oxygen, methane, and ni-

trogen dioxide. This system is designed to provide field users with warning signals

based on the sensor readings.

2.4.4 Computing Platform Selection

This thesis focuses on using development boards as edge devices. The develop-

ment board can be categorised into single-board computers (SBCs) and microcon-

trollers. Single-board computers (SBCs) can incorporate both Central Processing

Units (CPUs) and Graphics Processing Units (GPUs), whereas microcontrollers

predominantly rely on CPUs as their primary processor. More recently, micro-

controllers have seen the integration of neural network accelerators, called Neural

Processing Units (NPUs), into their systems. For example, the Ethos-U NPU can

be connected to a Cortex-M series CPU, effectively minimising inference time and

memory demands essential for the execution of machine learning models [137].

In this study, using FPGA and ASIC is considered too complicated and

demanding. In contrast, widely used single-board computers can smoothly run ma-

chine learning models created using TensorFlow, while a microcontroller board can

efficiently manage light versions with minimal effort. Hence, this thesis exclusively

employs Single-Board Computers (SBCs) and microcontrollers as edge devices for

conducting experiments. Furthermore, all the utilised microcontrollers can execute

machine learning models seamlessly without requiring a dedicated NPU.

21

Interconnect

Arm Cortex-M

Arm Ethos-U

SRAM

Flash Memory

External
peripherals

Figure 2.5: Ethos-U system coupled with a Cortex-M series CPU (adapted
from [137]).

2.4.4.1 Single Board Computers

Single-board computers (SBCs) consolidate all the components to operate a func-

tional computer onto a single board. With a compact form factor (roughly the size

of a credit card), SBCs offer a streamlined solution for edge computing applications.

Specifically, the SBCs utilised in this research are from two companies: Nvidia [138]

and Raspberry Pi [139]. Chapter 5 of this thesis utilises the Nvidia Jetson Nano

2GB developer board. For the experimentation conducted in Chapter 4 and Chap-

ter 5, the Raspberry Pi 4 Model B (RPi 4B) and Raspberry Pi 3 Model B+ (RPi

3B+) boards are utilised. Additionally, the Raspberry Pi Zero W (RPi 0W) boards

are exclusively used in Chapter 5. Fig. 2.6 shows the physical appearance of the

single-board computers used in this thesis. The standard size, measuring 85.6mm

× 56.5mm, is consistent across all Model B versions of the Raspberry Pi, while the

zero size, measuring 65mm × 30mm, is uniform for all Raspberry Pi Zero versions.

All single-board computers are equipped with specific operating systems

(OS). In this thesis, the Jetson Nano board utilises Ubuntu 18.04 as its operating

system, whereas the Raspberry Pi boards employ Raspberry Pi OS (Buster version)

as their respective operating system [140]. While these single-board computers can

support essential input/output peripherals such as keyboards and display monitors

when equipped with an operating system, they are operated in headless mode dur-

ing experiments. In this mode, users interact with the SBCs remotely using the

SSH (Secure Shell) protocol to send commands and access its functionality. The

SSH approach eliminates the need for a physical interface, making SBCs suitable

for applications where space constraints or remote operation are priorities. Most

importantly, these SBCs can run TensorFlow, a widely-used framework for building

22

(a) (b)

(c) (d)

Figure 2.6: Edge devices: (a) Jetson Nano 2GB, (b) RPi 4B, (c) RPi 3B+, and (d)
RPi 0.

and deploying deep learning models [114].

Technical specifications for Jetson, RPi 4B, RPi 3B+, and RPi 0 boards are

shown in Table 2.1, Table 2.2, Table 2.3, and Table 2.4, respectively. The RPi 4B

stands out for its superior computing capabilities among the Raspberry Pi boards.

Table 2.1: Nvidia Jetson Nano 2GB Developer Kit technical specifications.

Selected Features Details

CPU Quad-core ARM A57 @1.43 GHz

GPU 128-core MaxwellTM GPU

RAM 2 GB 64-bit LPDDR4 SDRAM

Storage MicroSD card

Input Power 5V/2.5A DC (minimum) via USB-C connector

23

Table 2.2: Raspberry Pi 4 Model B technical specifications.

Selected Features Details

SoC Broadcom BCM2711

CPU Quad-core Cortex-A72 (ARMv8) 64-bit @1.5 GHz

GPU Broadcom VideoCore VI @500 MHz

FPU VFPv4 + NEON

RAM Up to 8GB LPDDR4 SDRAM

External storage MicroSD card

Power ≈ 3− 4W (idle), ≈ 6W (stress load)

Table 2.3: Raspberry Pi 3 Model B+ technical specifications.

Selected Features Details

SoC Broadcom BCM2837B0

CPU Quad-core Cortex-A53 (ARMv8) 64-bit @1.4 GHz

GPU Broadcom VideoCore IV @250 MHz

FPU VFPv4 + NEON

RAM 1 GB LPDDR2 SDRAM

External storage MicroSD card

Power ≈ 1.15W (idle), ≈ 3.6W (stress load)

Table 2.4: Raspberry Pi Zero W technical specifications.

Selected Features Details

SoC Broadcom BCM2835

CPU Quad-core Cortex-A72(ARMv8) 64-bit @1.5GHz

GPU Broadcom VideoCore IV @ 400 MHz

FPU VFPv2

RAM 512 MB

Storage MicroSD card

Power ≈ 0.5W (idle), ≈ 1W (stress load)

However, this board consumes the highest power compared to other models during

idle periods and under stress load.

24

2.4.4.2 Microcontrollers

The microcontroller is specifically utilised in Chapter 6 of this thesis. One of the pri-

mary advantages of utilising microcontrollers is their ability to interface with sensors

to generate data, which is a fundamental requirement for building a machine learn-

ing workflow. To generate data, microcontrollers are commonly equipped with an

analogue-to-digital converter (ADC), which converts analogue quantities collected

by sensors into digital forms suitable for internal microcontroller operations [141].

In addition to acquiring signals from analogue sensors, microcontrollers often in-

clude digital serial communication interfaces such as serial peripheral interface (SPI),

Inter-integrated Circuit (I2C), or serial universal asynchronous receiver-transmitter

(UART). These digital serial communication interfaces have become popular choices

for commercial sensors.

This thesis employs microcontrollers to run the tiny machine learning (tinyML)

algorithm. The term tiny is typically associated with small devices like microcon-

trollers, as they consume significantly less power than SBCs. For instance, even the

smallest Raspberry Pi (RPi 0) can consume several hundred milliwatts, whereas

the Nvidia Jetson can consume approximately 12 watts when operating at full

speed [140]. Despite resource and computing power limitations, microcontrollers are

highly popular and widely used devices for embedded and Internet of Things (IoT)

applications. For instance, the Raspberry Pi Pico, utilised in this thesis, recorded

sales of nearly two million units within the first 18 months of its release [142].

Another notable example is ST Microelectronics, which has shipped over 6 billion

STM32 32-bit Arm Cortex-M-based microcontrollers worldwide since its introduc-

tion in 2007 (the report is accessed on 4 July 2023) [143]. These numbers highlight

the extensive usage and significance of microcontrollers in various applications. An

example of an Arm Cortex-M-based microcontroller is the Raspberry Pi Pico W

microcontroller developed by Raspberry Pi in the UK [144]. RP2040 chip powers

the development board and is currently priced at approximately £6.3 as of the time

of writing this thesis. Fig. 2.7 shows the development board, and Table 2.5 presents

the technical specifications for the RPi Pico W.

2.5 Neural Networks

2.5.1 Artificial Neuron

Artificial Neural Networks (ANNs) consist of interconnected layers of nodes, also

called neurons. These nodes perform mathematical computations to recognise pat-

25

Figure 2.7: Raspberry Pi Pico W microcontroller development board.

Table 2.5: Raspberry Pi Pico W technical specifications.

Selected Features Details

Chip RP2040

Processor Dual ARM Cortex-M0+ up to 133MHz

Memory 264kB of SRAM, 2MB of onboard Flash memory

Wireless IEEE 802.11n wireless LAN

Bluetooth 5.2

GPIO 26 multi-function GPIO pins

Peripherals 2 × UART, 2 × I2C, 2 × SPI, 16 × PWM channels

terns within data. ANNs are designed to simulate the behaviour of human neurons.

An artificial neuron is summarised in Fig. 2.8. In an artificial neuron, multiple input

values are received along with their respective weights. These weighted inputs are

then summed, and an activation function is applied to generate the output. This

output is subsequently passed on to other neurons in the network. In the case of

the final layer, it serves as the overall output of the network.

2.5.2 Convolutional Neural Network

As depicted in Figure 2.9, a typical CNN model consists of two layers: 1) convo-

lutional layers and 2) fully connected layers. The convolutional layers are situated

immediately after the input layer, and their output is subsequently passed to the

fully connected layer. The primary function of the convolutional layer is to extract

features through convolutional operations and other operations. To classify or pre-

dict the desired values, the fully connected layer acts as a decision-making block,

utilising the extracted features generated by the convolutional network.

26

Many articles focus on two-dimensional Convolutional Neural Network (2D

CNN) models. The 2D CNNs work best for image classification problems. The same

approach can be applied to data sequences (time-series data) by implementing one-

dimensional (1D) CNN. A 1D CNN model learns to extract features from time-series

data and maps the internal features of the sequence. This model efficiently gathers

information from raw time-series data directly, especially from shorter (fixed-length)

segments of the overall dataset.

Figure 2.10 illustrates how the feature detector (or kernel) of the 1D CNN

slides across the features. In this thesis, these features are air pollutants and meteo-

rological data. Examples of pollutant data are PM2.5, PM10, SO2, CO, NO2 and O3.

Meteorological data, including temperature, air pressure, dew point, wind direction

and wind speed, are often combined with pollutant data as the input features.

If the input data to the convolutional layer of length n are denoted as x, the

kernel of size k as h and the kernel window is shifted by s positions, then the output

y is defined as:

y(n) =


∑k

i=0 x(n+ i)h(i) if n = 0∑k
i=0 x(n+ i+ (s− 1))h(i) otherwise

(2.1)

For example, if n = 6, k = 3 and s = 1, then the output will be:

y(0) = x(0)h(0) + x(1)h(1) + x(2)h(2)

y(1) = x(1)h(0) + x(2)h(1) + x(3)h(2)

y(2) = x(2)h(0) + x(3)h(1) + x(4)h(2)

y(3) = x(3)h(0) + x(4)h(1) + x(5)h(2)

If it is assumed that there is no padding applied to the input data, then the

x1

x2

xn

b

෍

ො𝑦 = 𝑓(𝐰 ∙ 𝐱 + 𝑏)
𝒇 ∙

Inputs

Weights

Bias

Activation

⋮

Output

w1

w2

wn

Figure 2.8: An artificial neuron.

27

In
p
u

t
la

y
e

r

C
o

n
v
o

lu
ti
o

n
a

l
la

y
e

r

F
u

lly
 c

o
n

n
e
c
te

d
 l
a

y
e

r

O
u

tp
u

t
la

y
e

r

Figure 2.9: A typical CNN model.

length of output data o is given by:

o = ⌊n− k

s
⌋+ 1 (2.2)

Therefore, the length of y based on the example mentioned above is o = (6− 3)/1+

1 = 4.

Apart from the convolutional layer, another commonly used layer in convolu-

tional neural networks is the pooling layer. Typically placed after the convolutional

steps, the pooling layer is responsible for downsampling the dimensions of the con-

volution output. There are different types of pooling layers, including max pooling

and average pooling. In Fig. 2.11, it can be observed that max pooling selects the

Start Position

Stop Position

Kernel size

Data length

Data width

Feature Detector
(Kernel)

Features

Figure 2.10: The feature detector of 1D CNN slides over time-series data.

28

maximum value within the pooling window, while average pooling computes the

average value within the window.

The convolutional layers in a neural network can produce output with mul-

tiple dimensions. A flattening process is employed to prepare CNN output for fully

connected layers, as shown in Fig. 2.12. This process reduces the output dimen-

sionality and creates a flattened structure suitable for further processing in fully

connected layers.

2.5.3 Long Short-Term Memory

Long Short-Term Memory (LSTM) [145] is a structural modification of the Recur-

rent Neural Network (RNN) that adds memory cells in the hidden layer so that it

can be implemented to control the flow of information in time-series data. Figure

2.13 shows the LSTM network cell structure.

As shown in Figure 2.13, the network inputs and outputs on the LSTM

structure are described as follows:

Ft = σ(Wf · [Ht−1, Xt] + bf) (2.3)

It = σ(Wi · [Ht−1, Xt] + bi) (2.4)

C̃t = tanh(Wc · [Ht−1, Xt] + bc) (2.5)

Ct = Ft ∗ Ct−1 + It ∗ C̃t (2.6)

Ot = σ(Wo · [Ht−1, Xt] + bo) (2.7)

Ht = Ot ∗ tanh(Ct) (2.8)

σ(x) =
1

1 + e−x
(2.9)

tanh(x) =
ex − e−x

ex + e−x
(2.10)

Max([4,6,2,8,3,7]) = 8 Avg([4,6,2,8,3,7]) = 5

Figure 2.11: Examples of pooling layer operations.

29

7 1 1

6 5 8

2 2 4

1

1

7

8

5

6

4

2

2

Flattening

Figure 2.12: An example of flattening operation.

with Wf , Wi, Wc and Wo as input weights; bf , bi, bc and bo as biases; t the current

time; t− 1 the previous state; X the input; H the output; and C the status of the

cell. The notation σ is a sigmoid function, which produces an input between 0 and

1. A value of 0 means not allowing any value to pass to the next stage, while a value

of 1 means letting the output fully enter the next stage. The hyperbolic tangent

function (tanh) is used to overcome the loss of gradients during the training process,

which generally occurs in the RNN structure.

x +

σ σ σtanh

x

x

tanh
Ft It

Ht-1

Xt

Ct-1 Ct

Ht

Ot
Ct
͠

Figure 2.13: An LSTM cell structure.

30

2.6 Evaluation Metrics

There are several methods usually used to evaluate the model performance. This the-

sis uses root mean square error (RMSE) and mean absolute error (MAE). Another

broadly used method to evaluate model performance in machine learning studies is

the coefficient of determination (R2 or R-squared). Also, mean absolute percentage

error (MAPE) is also used as an evaluation metric, especially in Chapter 5.

Chicco et al.[146] suggested implementing R2 for regression task evaluation

as this method is more informative to qualify the regression results. However, the

limitation of R2 arises when the calculated score is negative. In this case, the model

performance can be arbitrarily worse, but it is impossible to recognise how bad a

machine learning model performed [147]. RMSE, MAE, MAPE, and R2 can be

calculated using Equations (2.11), (2.12), (2.13), and (2.14), respectively.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (2.11)

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.12)

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (2.13)

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
(2.14)

where n is the total number of data samples, yi are the actual values, ŷi are the

predicted values, and ȳ is the overall mean of the actual values.

Following work conducted by Ma et al. [148], this thesis implemented a rate

of improvement on RMSE (RIR) to measure the performance of our methods in

comparison with the existing imputation techniques. The RIR is calculated using

the following equation:

RIRA,B =
RMSEA −RMSEB

RMSEA
× 100% (2.15)

where, RMSEA denotes the RMSE value of the benchmarked method and RMSEB

is the RMSE value of the proposed method.

31

2.7 Summary

The surge in economic activity due to urbanisation and rising living standards has

led to significant environmental challenges. Expanding industrial and urban areas

complicates the balance between ecological preservation and economic development.

Industrial activities, particularly the excessive emission of greenhouse gases, have

intensified environmental degradation and climate change, posing risks to global

security and human well-being. Consequently, integrating air pollution measurement

into smart city initiatives has become increasingly important. Within the smart

city framework, environmental health scientists and other stakeholders correlate air

pollutant levels with potential health impacts. Monitoring and evaluating pollution

and air quality are essential for protecting public health, conserving the environment,

and informing policy-making.

Air pollution monitoring has shifted from exclusive reliance on standardised

government-operated networks to a hybrid approach incorporating reference-grade

monitors and novel sensor technologies using low-cost air quality devices. The sub-

stantial volume of spatial and temporal data gathered by low-cost air quality moni-

tors presents enhanced opportunities for applying machine learning (ML) techniques

in air quality. ML, particularly deep learning (DL), has gained prominence in various

domains, including air quality research. However, deep learning models demand sig-

nificant computational resources and often depend on cloud computing for training

and evaluation.

Recently, a trend towards edge computing in deep learning has emerged,

shifting computational processes closer to data sources rather than centralising them

in cloud systems. Edge computing can solve issues of latency, privacy, and scalability

that cloud-based systems encounter. ”Edge” in this context refers to devices located

near data sources. Depending on the application, a range of devices, including soft-

ware programmable platforms, Application Specific Integrated Circuits (ASICs),

and Field-Programmable Gate Arrays (FPGAs), fall into this category. Machine

learning at the edge is closely associated with Embedded machine learning, which

involves applying ML on hardware with constrained resources. This requires devel-

oping models that function efficiently on devices with limited memory and processing

capabilities. To adapt to these constraints, researchers often modify standard ML

models to lower precision through quantisation, enabling these models to function

with reduced precision in weights and activations compared to full-precision models.

One method to achieve quantised models is post-training quantisation, where the

quantisation process is applied after training the full-precision model.

32

Chapter 3

Deep Learning for Missing Data

Imputation

This chapter is based on work published in:

• I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, “Estimation of missing

air pollutant data using a spatiotemporal convolutional autoencoder,” Neural

Comput & Applic, vol. 34, no. 18, pp. 16129–16154, Sep. 2022 [2].

3.1 Introduction

Predicting air pollution by its potential exposures and health impacts can be even

more challenging when there are missing values in measurement data. The presence

of missing data can impact the interpretation of the data being processed and the

research conclusions [149]. Moreover, missing data can ultimately affect the function

of public services related to air quality [150]. Missing data is a common problem

in air pollutant measurement processes and can often be experienced in other fields

such as clinical, energy, traffic, etc [151, 152, 153]. The causes of data loss can

vary, including power outages, sensor malfunctions, computer system failures, sensor

sensitivity, routine maintenance, human error, and other reasons often experienced

in the field [148, 154]. Depending on the cause, air pollution data can be lost

over long-consecutive periods or short intervals [155]. While power outages and

temporary routine maintenance can cause short intervals of missing data, sensor

malfunctions, severe natural disasters, and other critical failures can cause long

gaps in data collection.

Missing data can occur due to scenarios such as a node going down or the

absence of a single reading. When a node goes down, it usually indicates a complete

33

loss of data over a period of time. Various factors, such as power outages, connec-

tivity disruptions, or equipment failure, can cause these absences. As a result, all

data that should have been captured during this period is lost. This absence can be

important, especially if the node is critical in collecting important or unique data. In

contrast, a single reading missed refers to occasional irregularities when certain data

points are missing, even though most of the data was collected correctly. Reasons

may include temporary interruptions, short-lived sensor problems, or environmental

conditions preventing data collection. In these cases, lost data is usually an isolated

incident and often does not significantly impact the integrity of the data set as a

whole. The impact depends largely on how frequently and uniformly these events

occur.

When dealing with air pollution measurements and assessing potential ex-

posures and health impacts, encountering missing data can present significant chal-

lenges. The presence of missing data can potentially affect the interpretations and

conclusions of studies. According to Rubin, incomplete data can be classified based

on their generating mechanisms into three categories: missing completely at random

(MCAR), missing at random (MAR), and missing not at random (MNAR) [156].

MCAR refers to data that is missing purely due to random events [157]. How-

ever, the assumption that missing values in MCAR are a random sample of observed

values is restrictive [158]. In MAR, the probability of missingness may depend on

observed data values but not on the missing values themselves. In MAR conditions,

it is possible to estimate the missing values using other observed predictor variables

[68, 157]. On the other hand, MNAR occurs when the probability of an observa-

tion being missing depends on unobserved values, including those of the missing

observations [156, 157, 159]. MNAR represents nonignorable missingness and can

lead to biased parameter estimates [160]. It is important to note that missing data

in practice often do not strictly adhere to either MCAR or MNAR [159]. In the

case of air quality data, the missingness can be considered at least MAR. While the

reasons for missing air quality data may be unknown (i.e., MCAR), most missing

values can be attributed to explainable circumstances such as routine maintenance,

sensor malfunction, power outages, etc. [157, 161]. Therefore, in this thesis, MAR

conditions are assumed for the air quality data.

3.2 Approaches for Dealing with Missing Data

Two common ways to handle missing data are deleting the missing parts and im-

puting (substituting) the missing values [162]. The deletion method can be further

34

specified as pairwise deletion and listwise deletion. The pairwise deletion method

discards the specific missing values, whereas the listwise approach removes the entire

record, even if there is only one missing value. Excluding incomplete observations

with a high level of missing values may reduce the precision of the analysis [158].

In addition, since pollutant measurement generates time-series data, the deletion

method may corrupt the data structure, resulting in the loss of important informa-

tion.

In contrast to the deletion method, the imputation method reconstructs the

missing values using existing information [163]. Reconstruction techniques inspired

by machine learning have been developed to recover corrupted data. One of these

techniques is the denoising autoencoder (DAE) [164]. Many fields have adopted the

standard DAE and its variants, such as image denoising [165, 166, 167, 168], medical

signal processing [169, 170], fault diagnosis [171, 172], etc. Some works also utilised

DAE to impute missing data. Gondara et al. [173] attempted to address the chal-

lenge of multiple imputations by utilising an overcomplete representation of DAEs.

Initial training for the proposed method does not require exhaustive observations,

making it applicable to real-world scenarios. Abiri et al. [174] showed that DAE

could recover various missing data for many datasets, demonstrating the method’s

robustness. Abiri et al. provided evidence that the proposed stacked DAE outper-

formed other established methods, such as K-nearest neighbour (KNN), multiple

imputations by chained equations (MICE), random forest and mean imputations.

Jiang et al. [175] utilised DAE to approximate the missing traffic flow data and

compared three different architectures composing the DAE, namely standard DAE,

convolutional neural network (CNN), and bi-directional long short-term memory

(Bi-LSTM). Jiang et al. evaluated the proposed model’s test sets with a general

missing rate of 30%. Moreover, splitting traffic data into weekdays and weekends

significantly improved the model performances. Jiang et al. noted distinct error pat-

terns between weekdays and weekends, with the latter showing significantly higher

errors. They divided the dataset into weekday and weekend categories for separate

training, testing, and error calculation. This segmentation strategy proved effec-

tive for training and testing the model’s predictive accuracy. Such an approach can

be practically applied in traffic data prediction to achieve more precise imputation

results.

Imputation techniques for missing air quality data have faced numerous chal-

lenges and have seen significant advancements in recent years. First, missing data

is a recurring issue in environmental research. Although several methods have been

proposed for dealing with missing data in various fields, additional research is re-

35

quired to predict missing data for air quality [148]. Many works were mainly focused

on clinical, energy, traffic, images, etc. Second, most related studies concentrated

on a small number of missing data. Ma et al. stated that the previous works apply

to short-interval missing imputations or consecutive missing values with a missing-

ness rate of less than 30%. This concern was also raised by Alamoodi et al. [176].

Only a few works investigated missing data at large percentages (i.e., more than

80%), either using deletion or imputation. Third, multiple imputation methods

can improve imputation performance [149]. This chapter considers that imple-

menting multiple imputations for air quality data is a deserving attempt. Fourth,

many studies demonstrated the robustness of denoising autoencoder in recovering

noisy data. However, few studies implemented the denoising autoencoder for miss-

ing air quality data imputation [177]. Finally, even though air pollutants strongly

relate to spatiotemporal characteristics, these factors are rarely included in predict-

ing the missing values of air pollution data. The air quality data collected from air

monitoring stations can hold intensely stochastic spatiotemporal correlations among

them [178].

3.3 Missing Data Imputation in Air Quality Research

Several works address the topic of missing data in air quality research. One of the

studies conducted by Chen et al. introduced a method known as “First five last

three logistic regression imputation (FTLRI)” [179]. This approach combines stan-

dard logistic regression with the newly proposed “first Five & last Three” model.

The model is adept at describing relationships between various attributes and iden-

tifying the most relevant data points for missing values, both temporally and by

attribute. FTLRI was compared with conventional imputation techniques (mean

imputation, median imputation, k-nearest neighbour imputation, logistic regression

imputation, and random forest imputation) and a new dynamic imputation method

utilising neural networks to assess its effectiveness. This comparison was carried out

at different levels of missing data, namely 5%, 10%, 20%, and 40%. In another study,

Alsaber et al. explored the use of an iterative imputation technique named ”miss-

Forest”, which is based on the random forest approach, to address missing values in

air quality data [180]. They collected air quality data from five monitoring stations

in Kuwait. To improve the accuracy of their estimates, climatological variables such

as air temperature, relative humidity, wind direction, and wind speed were included

as control factors. The findings show that the MAR technique produces the lowest

RMSE and MAE. MissForest showed the lowest calculation error among the various

36

calculation methods tested, indicating its suitability for air quality data analysis.

Belachsen and Broday (2022) introduced a new approach known as the

weighted k-nearest neighbours multivariate imputation method (wkNNr) for pre-

dicting missing PM2.5 values at 59 air quality monitoring stations across Israel [181].

Data intervals were randomly omitted to evaluate the method’s performance, vary-

ing in length from 0.5 hours to 2 years. Unlike the standard kNN approach, which

fills in missing values using the average from the k most similar non-missing obser-

vations, this novel method leverages correlations between station records to weigh

the distances between observations. Additionally, including lagging and leading ob-

servations as model inputs provides insights into short-term temporal relationships.

Although several approaches have been proposed to handle missing data in

various fields, there is a need for more research addressing air quality missing data

prediction. Because there is a spatial and temporal correlation in the air qual-

ity data collected from various air monitoring stations, developing a deep learning

model architecture that can include spatiotemporal factors as input for the model

is necessary. In other words, imputing missing values in a target station can be

realised by leveraging the neighbouring stations’ data.

This chapter discusses how deep learning can be implemented to predict miss-

ing values by leveraging air quality spatiotemporal data. Inspired by the denoising

autoencoder’s ability to reconstruct corrupted images [164], this section proposes a

novel imputation method for the air quality domain.

3.4 Contributions

The contributions in this chapter are listed as follows:

• Extracting air pollution features using a deep convolutional denoising autoen-

coder with spatiotemporal considerations. The suggested method utilises data

from neighbouring stations to impute the missing data at the target station.

• Proposing a method suitable for short-period and long-interval consecutive

missing imputations and simultaneously offering multiple imputations to ob-

tain less biased results.

• Minimising data exchange by incorporating only the targeted pollutant data

from neighbouring stations.

37

3.5 Air Quality Dataset

Machine learning, a subset of artificial intelligence (AI), involves training computers

to learn from experience and make predictions based on input data [182]. In machine

learning, the term dataset typically refers to the data used for developing models.

Datasets are commonly divided into three subsets: training, validation, and test

sets. In this thesis, the air quality dataset is categorised into two main types: the

public dataset and the direct measurement dataset. The public datasets consist of

air quality data from three cities: Beijing, Delhi, and London. On the other

hand, the direct measurement dataset is obtained by collecting air parameter data

using a low-cost air monitoring device. In this thesis, Chapters 3, 4, and 5 utilise

the public datasets, while Chapter 6 focuses specifically on the direct measurement

dataset.

3.5.1 Beijing Dataset

Beijing dataset is multi-station air quality data provided by Zhang et al. [183],

which can be downloaded from the UCI Machine learning repository page [184].

The dataset captures Beijing air quality, collected from 12 different Guokong (state-

controlled) monitoring sites in Beijing and its surroundings [183]. These 12 moni-

toring sites are Aotizhongxin, Changping, Dingling, Dongsi, Guanyuan, Gucheng,

Huairou, Nongzhanguan, Shunyi, Tiantan, Wanliu andWanshouxigong. The dataset

comprises 12 columns (features) and 36,064 rows, representing data collected from

1 March 2013 to 28 February 2017. Each row represents hourly data, including

pollutant measurements (PM2.5, PM10, SO2, CO, NO2, and O3) and meteorological

data. The meteorological data are temperature (Temp), air pressure (Pres), dew

point (Dewp), rain, wind direction, and wind speed (Wspd).

The dataset consists of both numerical and categorical data. One of the

categorical attributes in the dataset is the wind direction, which can take on 16

different values: N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W,

WNW, NW, and NNW. These categorical features have been label-encoded. To

determine the labels, the 360-degree circle is divided by 16 (the number of wind

directions) and rounded down to the nearest integer. Consequently, the label for N

is assigned as 360, NNE as 22, NE as 45, ENE as 67, and so on. Instead of labelling N

as 0, the value 360 is assigned to this particular direction. An example of descriptive

statistics of the Aotizhongxin monitoring station (excluding wind direction) is shown

in Table 3.1

38

Table 3.1: Descriptive statistics of Aotizhongxin dataset.

PM2.5 PM10 SO2 NO2 CO O3 Temp Pres Dewp Rain Wspd

count 35,063 35,063 35,063 35,063 35,063 35,063 35,064 35,064 35,064 35,064 35,064

mean 83.17 110.11 17.64 59.42 1271.04 55.36 13.58 1011.85 3.12 0.07 1.71

std 82.60 95.64 23.14 37.30 1255.37 57.47 11.40 10.40 13.69 0.91 1.20

min 3.00 2.00 0.29 2.00 100.00 0.21 -16.80 985.90 -35.30 0.00 0.00

25% 22.00 38.00 3.00 30.00 500.00 7.00 3.10 1003.30 -8.10 0.00 0.90

50% 59.00 87.00 9.00 54.00 900.00 41.00 14.50 1011.40 3.80 0.00 1.40

75% 115.00 154.50 22.00 82.00 1600.00 82.00 23.30 1020.10 15.60 0.00 2.20

max 898.00 984.00 341.00 290.00 10000.00 423.00 40.50 1042.00 28.50 72.50 11.20

3.5.2 Delhi Dataset

The dataset was compiled by Rohan Rao from the Central Pollution Control Board

(CPCB) website and can be downloaded from Kaggle’s collection [185]. The dataset

consists of air quality data and Air Quality Index (AQI) at both hourly and daily

levels for multiple stations across various cities in India. The dataset includes data

from 26 cities, including Ahmedabad, Aizawl, Amaravati, Amritsar, Bengaluru,

Bhopal, Brajrajnagar, Chandigarh, Chennai, Coimbatore, Delhi, and more. The

recorded features in the dataset include PM2.5, PM10, NO, NO2, NOx, NH3, CO,

SO2, O3, Benzene, Toluene, Xylene, AQI and AQI bucket.

Missing values significantly impact the India air quality dataset. Hence,

Chapter 3 of this thesis addresses the missing data imputation technique. Specif-

ically, this thesis focuses on air quality data from the city of Delhi, covering the

period from February 2018 to July 2020. Table 3.2 presents the descriptive statis-

Table 3.2: Descriptive statistics of Anand Vihar monitoring station.

PM2.5 PM10 NO NO2 NOx NH3 CO SO2 O3

count 17,976 17,444 16,481 17,126 16,850 16,851 16,772 17,664 17,545

mean 131.50 281.29 88.24 87.69 112.26 45.55 2.21 13.85 34.62

std 120.90 188.86 99.23 61.82 97.88 29.32 1.50 11.87 31.09

min 0.2 1 0.1 0.2 0.05 0.1 0 0.1 0.1

25% 53.00 145.25 17.75 43.95 39.15 24.29 1.25 7.05 14.60

50% 90.125 235 54.92 76.39 85.33 38.6 1.85 10.72 23.24

75% 168.25 367.00 116.40 114.17 151.13 60.55 2.73 17.88 45.15

max 985.00 1000.00 500.00 490.55 500.00 139.20 19.70 193.60 197.95

39

Table 3.3: Descriptive statistics of Trafalgar Road monitoring station.

NO2 PM10 Temp Dwpt RH WD Wspd Press

count 15,452 15,452 15,452 15,452 15,452 15,452 15,452 15,452

mean 38.48 20.50 12.54 7.57 74.75 184.48 14.67 1014.10

std 20.57 13.83 6.70 4.86 17.88 96.67 8.45 10.97

min 1.18 -3.11 -5.00 -9.50 19.00 0.00 0.00 971.20

25% 22.47 12.79 7.68 4.20 64.00 100.00 9.40 1007.70

50% 35.26 17.87 11.70 7.60 79.00 210.00 13.00 1015.20

75% 51.21 25.08 17.20 11.20 89.00 260.00 18.40 1021.30

max 137.89 380.53 37.20 19.80 100.00 360.00 66.60 1047.40

tics of selected features measured at the Anand Vihar monitoring station.

3.5.3 London Dataset

The London datasets were collected using the Openair tool [186]. Openair is an R

package developed by Carslaw and Ropkins to analyse air quality data. The package

finds extensive usage in academia, as well as in the public and private sectors.

Initially funded by the UK Natural Environment Research Council (NERC), the

project also received additional funding from Defra [187].

The package offers a range of functions that enable users to access a com-

prehensive collection of UK air quality data, including the Automatic Urban and

Rural Network (AURN) and Imperial College London’s London Air Quality Net-

work (LAQN). Additionally, the package includes data from other networks such

as Air Quality Scotland, Air Quality Wales, Air Quality England, and Northern

Ireland. Furthermore, a function is available to import data from locally managed

air quality networks in England, primarily operated by Local Authorities. These air

quality databases provide free public access to the data [188]. Table 3.3 presents the

descriptive statistics of selected features measured at the Trafalgar Road monitoring

station from January 2018 to January 2021.

3.6 Spatiotemporal Convolutional Autoencoder

3.6.1 Denoising Autoencoder

Figure 3.1 shows denoising autoencoder concept implemented in this work. The

denoising autoencoder consists of three parts: encoder, code and decoder. The

40

Encoder Decoder

Feed Input
with missing
values into

autoencoder

Add missing
values and fill

them with zeros

Calculate the reconstruction input loss
against the actual input

Input with
actual values

Input with
missing values

Reconstructed
input

𝑥

𝑟෤𝑥

Code

ℎ

𝒇𝜽 ∙ 𝒈𝝓 ∙

Figure 3.1: A denoising convolutional autoencoder workflow.

encoder function fθ(·) is parameterised by θ = {W,b}, and decoder function gϕ(·)
is parameterised by ϕ = {W′,b′}, where W, W′, b and b′ represent the weight

and bias of the encoder and decoder, respectively. Then, the encoder function is

written as h = fθ(x) and the decoder function as r = gϕ(h), where x is the input,

h is the code representation learning, and r is the reconstructed input. In the ideal

condition, the output model can be expressed as gϕ(fθ(x)) = x, meaning that the

model can reconstruct the noisy inputs perfectly. However, the perfect condition

can not be achieved, and instead, the model tries to minimise the error between

the actual input and the reconstructed input [189]. For each input set x(i), the

parameters θ and ϕ are optimised to minimise the average reconstruction error. If

L is the model loss function, the optimisation can be expressed as [164]:

θ∗, ϕ∗ = argmin
θ,ϕ

1

n

n∑
i=1

L(x(i), gϕ(fθ(x
(i)))) (3.1)

The loss function is typically defined as squared error, that is, L(x, r) =

∥x− r∥2. Instead of the original input x, a notation of x̃ is mentioned as the noisy

input of x in the case of denoising autoencoder [189]. Finally, the loss function of

the denoising autoencoder is written as:

L(θ, ϕ) =
1

n

n∑
i=1

(x(i) − gϕ(fθ(x̃
(i))))2 (3.2)

41

3.6.2 Correlation of Pollutant Data

The correlation coefficient of pollutant data under investigation is calculated by col-

lecting the same pollutant from all monitoring stations. For instance, if the PM10 is

decided as a target pollutant, PM10 values from all monitoring stations will be com-

bined, and Pearson’s correlation formula is applied to find the relation among air

quality monitoring stations. Pearson’s correlation captures the linear correlation of

two time-series data [148]. In statistics, Pearson’s correlation is utilised primarily to

evaluate the linear relationship between two continuous variables. Pearson’s corre-

lation formula measures this linear relationship’s strength and direction. Therefore,

neighbouring stations are selected based on their degree of correlation with the

target stations rather than their geographical proximity.

A temporal sequence of specific pollutant data in the target station can

be written as St = [st1, s
t
2, s

t
3, . . . , s

t
n−1, s

t
n], and a temporal sequence of the same

pollutant data at a neighbouring station is written as Ss = [ss1, s
s
2, s

s
3, . . . , s

s
n−1, s

s
n].

It is worth noting that this work assumes St and Ss have the same time frame,

ranging from sample 1 to n. Pearson’s correlation coefficient of temporal data

between the target station and a neighbouring station is written as follows:

r(St,Ss) =

∑N
i=1((s

t
i − µt)(s

s
i − µs))√∑N

i=1(s
t
i − µt)2

∑
(ssi − µs)2

(3.3)

where, r(St,Ss) denotes the Pearson’s correlation coefficient between temporal se-

quence St and Ss. sti and ssi represent the i-th samples of St and Ss, respectively.

Finally, µt = 1
n

∑N
i=1 s

t
i and µs = 1

n

∑N
i=1 s

s
i are the mean values of temporal se-

quence of St and Ss, respectively.

The numerator in equation 3.3 is called the covariance, a measurement about

how temporal sequence St and Ss vary together from their mean value. In the

denominator, the equation covers the variance of St and Ss. Correlation is a nor-

malised version of covariance, scaled between -1 to 1 [190]. When r = 1, the temporal

sequence of St and Ss are completely positively correlated. When r = −1, St and

Ss are completely negatively correlated. Finally, when r = 0, the linear correlation

between St and Ss is not obvious [191].

3.6.3 Proposed Deep Learning Model

This study proposes a convolutional autoencoder model to learn the missing pat-

terns from the corrupted input sets and the provided actual sets. The proposed

model architecture is shown in Figure 3.2. The main idea of this approach is to

42

… … … … … … … … …

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Output

7×80
6×50

5×30
4×20 3×10 4×20

5×30 6×50
7×80

8×48×4

Encoder Decoder

Input

8-
ho

ur
 p

er
io

d

Reconstructed Input

Latent

Space

Figure 3.2: Proposed deep convolutional autoencoder model.

apply the denoising concept using a deep autoencoder. The model will learn how to

reconstruct the ”noised” input. Analogous to a noised image, the commonly imple-

mented autoencoder model will learn how to rebuild that image. In this approach,

the ”noise” is the missing data itself. The ”image” is created based on pollutant

data of the target station and the neighbouring stations. No meteorological data

are involved in this reconstruction technique so that the reconstruction process can

be done effectively.

The autoencoder model accepts the collection of input sets as 8×4 matrices.

The individual input comprises four columns of pollutant data, a group of hourly

targeted pollutant concentrations from four monitoring stations, and eight rows that

indicate 8-hour of observed data. The original input sets are purposely corrupted by

deleting the actual values and filling them with zeros to train the model. The input

columns represent spatial behaviour, and the rows capture temporal characteristics

of air pollution features.

The autoencoder contains an encoder, a code and a decoder. All parts are

based on one-dimensional convolution layers in this work. While the encoder con-

sists of convolution layers, the decoder is constructed using transposed convolution

layers. The code layer (latent space) has the smallest dimension and can be con-

sidered the encoder’s last layer. As the model receives eight temporal values as the

feature’s length, a small kernel should be applied to extract the information from

input features. In this work, the kernel and stride sizes are set to two and one,

respectively. Also, no padding is implemented in each layer. These selections are

applied to all layers, both in the encoder and decoder sections.

Figure 3.2 illustrates the layers’ height and width size changes. The width of

the next layers is governed by the size of the filter used in the previous layer. After

conducting various experiments, the number of filters is determined and reported in

Table 3.4. The encoder comprises different output filters, from 80 in the first layer

to 10 in the fifth. From the latent space, the number of filters is expanded from 20

43

Table 3.4: Layer properties of proposed convolutional autoencoder model.

No. Type Filter Kernel Activation Output

0 Input Layer - - - (8,4)

1 1D Convolution 80 2 ReLU (7,80)

2 1D Convolution 50 2 ReLU (6,70)

3 1D Convolution 30 2 ReLU (5,50)

4 1D Convolution 20 2 ReLU (4,30)

5 1D Convolution 10 2 ReLU (3,10)

6 1D Transposed conv. 20 2 ReLU (4,30)

7 1D Transposed conv. 30 2 ReLU (5,50)

8 1D Transposed conv. 50 2 ReLU (6,70)

9 1D Transposed conv. 80 2 ReLU (7,80)

10 1D Transposed conv. 4 2 ReLU (8,4)

in the sixth layer to 80 in the ninth layer. Finally, the final layer size is conditioned

equally to reconstructed inputs (i.e., 8× 4 matrices).

3.7 Processing of Spatiotemporal Data

3.7.1 Air Quality Monitoring Stations

This chapter uses air quality datasets from three cities: London, Delhi, and Bei-

jing. Each city has ten monitoring stations that study two pollutants per station.

This selection of ten stations per city is considered sufficient for implementing and

evaluating the performance of the proposed algorithm. Additionally, the choice

of pollutants in each city is varied to demonstrate the applicability of the proposed

method to different pollutants. Several considerations are taken into account during

the station selection process. Two major concerns are the availability of pollution

data and the measurement period for all stations. Only stations with at least three

years of data from the same period are included in the analysis. Furthermore, since

the proposed method relies on the correlation coefficient between stations, stations

with varying degrees of correlation are incorporated to ensure the robustness of the

proposed method.

In the London city dataset, the selected pollutants are nitrogen dioxide (NO2)

and particulate matter with a diameter of less than 10 µm (PM10). Data from ten

monitoring stations across London are used, covering the period from January 2018

44

Table 3.5: Dataset and stations involved in the experiment.

London Delhi Beijing

Code Station Code Station Code Station

CT3 Aldgate School DL02 Anand Vihar AOT Aotizhongxin

GN5 Trafalgar Road DL03 Ashok Vihar CHA Changping

GR8 Woolwich Flyover DL04 Aya Nagar DIN Dingling

IS2 Holloway Road DL07 Mathura Rd. DON Dongsi

IS6 Arsenal DL08 DTU Delhi GUA Guanyuan

LB5 Bondway Intchg. DL10 Dwarka-Sec.8 GUC Gucheng

LW4 Loampit Vale DL12 IGI Airport HUA Huairou

SK6 Elephant & Castle DL13 IHBAS, Delhi NON Nongzhanguan

TH001 Millwall Park DL14 ITO, Delhi SHU Shunyi

TH002 Victoria Park DL15 Jahangirpuri TIA Tiantan

to January 2021. Ten monitoring stations across Delhi are considered for the Delhi

dataset, and the data spans from February 2018 to July 2020. The chosen pollutants

for the Delhi dataset are hourly measurements of nitrogen dioxide (NO2) and par-

ticulate matter with a diameter of less than 2.5 µm (PM2.5). In the Beijing dataset,

the hourly pollutant data covers the period from January 2013 to February 2017.

The focus is on carbon monoxide (CO) and ozone (O3) measurements. The selected

monitoring stations for the Beijing dataset are Aotizhongxin, Changping, Dingling,

Dongsi, Guanyuan, Gucheng, Huairou, Nongzhanguan, Shunyi, and Tiantan. Ta-

ble 3.5 summarises the air quality monitoring stations used in this study.

3.7.2 Data Preprocessing for Spatial Correlation

The visual concept of leveraging neighbouring data is illustrated in Figure 3.3. In

the event that S3 is unable to collect pollutant data from the environment, the

neighbouring stations S2, S5 and S6 send their data to S3. The participating

neighbouring stations (S2, S5 and S6) eligible to send data are chosen based on

their coefficient correlations with the target station. A deep autoencoder model at

S3 that covers the spatiotemporal behaviour of pollutant data is applied. Based

on the collected spatiotemporal data at the target and neighbouring stations, the

missing data at S3 can be estimated.

This work’s final design covers spatial correlation involving three neighbour-

45

S6

S3

S2

S5

S8

S1

S4

Neighbouring Sta.

Neighbouring Sta.

Neighbouring Sta.

Neighbouring Sta.

Neighbouring Sta.

Neighbouring Sta.

Target Station

(with missing data)

S7

Neighbouring Sta.

Figure 3.3: Target station leverages measurement data from neighbouring stations
to impute the missing data.

ing stations (discussed further in Section 3.8.2) with the closest relationship to the

station under investigation.

Let St =



st1,1 st1,2 . . . st1,n

st2,1 st2,2 . . . st2,n
...

...
. . .

...

stm,1 stm,2 . . . stm,n


= (sti,j) ∈ Rm×n be a matrix containing

m rows of measurement data and n different pollutants at target station t, where

t ranges from 1 to 10 (this work uses ten different stations). Besides measurement

data at target station St, there is a collection of pollutant data from all stations of

S1, S2, S3,. . . , S10. In this case, each row in matrix St is hourly measurement data.

A matrix J =



s11,p s21,p . . . s101,p

st2,p s22,p . . . s102,p
...

...
. . .

...

s1m,p s2m,p . . . s10m,p


as a collection of the same pollutant p taken

from all stations can be defined, where p is a single value chosen from 1 to n.

p represents the selected column in St. In this scenario, all monitoring station data

46

in the same city have the same column header. Finally, the pairwise correlation of

columns in J using equation 3.3 can be calculated, excluding null/missing values.

After collecting neighbouring data, Pearson’s correlation between stations

can be measured using equation (3.3). The yielded correlation coefficients for each

station are then sorted from the highest to the smallest. Based on this result,

three neighbouring stations are selected. Finally, along with the target station, four

columns of the input set reflecting spatial correlation are obtained.

3.7.3 Data Preprocessing for Temporal Correlation

Air quality temporal correlation indicates dependency among pollutants at different

times [192]. The temporal characteristic in this work is determined by implementing

the autocorrelation coefficient of the contaminant under investigation. Evaluating

the paired series of targeted pollutants and its shifted self reflects the concept of

autocorrelation. In other words, autocorrelation computes the relation between the

same time series at current and lagged times, i.e., the historical air pollutant data.

Assume that the temporal series of pollutant data at the target station is given as

St = [st1, s
t
2, s

t
3, . . . , s

t
n−1, s

t
n], then the equation (3.3) can be restructured to express

the lag-k relations, described as follows:

rk =

∑n
i=k+1((s

t
i − µt)(s

t
i−k − µt))∑n

i=1(s
t
i − µt)2

(3.4)

where, rk denotes the autocorrelation function, k is a lagged event, sti and sti−k

represent the i-th and lag-k samples of St, and µt = 1
n

∑N
i=1 s

t
i denote the mean

values of time series St. Implementing this formula, the seven lagged data are chosen

(will be discussed further in Section 3.8.1).

3.7.4 Missing Period Distribution

As this study develops a model for short-term and long-interval consecutive miss-

ing imputations, the nature of missing patterns is essential to be investigated. The

duration of all missing patterns in the original dataset is explored, and the findings

are reported in Figure 3.4. The figure visualises the distribution of missing data

durations using continuous probability density curves. The graph delivers informa-

tion on how the missing data durations are distributed. The results show that most

missing durations in the London dataset are less than 400 hours, whereas the Delhi

and Beijing datasets exhibit shorter missing durations, approximately less than 200

hours. The peaks of the probability density curve in all datasets commonly occur

47

0 250 500 750 1000 1250
Hours

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

De
ns

ity

London: NO2

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10

0 250 500 750 1000 1250
Hours

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

De
ns

ity

London: PM10

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10

0 100 200 300 400 500
Hours

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity

Delhi: NO2

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10

0 100 200 300 400 500
Hours

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

Delhi: PM2.5

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10

0 100 200 300 400 500
Hours

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

Beijing: CO

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10

0 100 200 300 400 500
Hours

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

Beijing: O3

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10

Figure 3.4: Probability density function of missing data in all stations.

within 100 hours. Thus, all datasets are occupied mainly by short-interval missing

patterns with less than one-week periods.

48

3.7.5 Missing Data Generation and Perturbation Procedure

Another pre-processing step in this chapter is handling the initial missing data in the

original datasets. Missing values can occur every time in the form of discontinuous

or consecutive missing patterns. The input sets should be well-prepared to cover any

possibilities during model training. As the proposed deep convolutional autoencoder

in this study is trained in a supervised manner, the input-target set pairs should

be engineered. Deleting missing data from the original dataset is a straightforward

procedure for many cases and may give a satisfying model prediction. However, this

action may break the data structure for cases involving time-series sets, and valuable

information contained in the dataset may be lost. One solution offered in this study

is to carefully pick the series of data with a minimum period of one week (168 hours)

to minimise the defect of the original data structure. The minimum period of one

week is obtained after investigating the missing pattern of the original dataset (as

will be reported in Section 3.7.4). This study involves multiple air quality monitoring

stations, and other station periods comply with the target station’s period when

selecting the input sets for model training.

This work’s strategy focuses on acquiring continuous segments of training and

test data. This work utilises an unsupervised learning approach, which requires the

target to be known beforehand. Therefore, it is crucial to select uninterrupted data

segments, both for target and neighbouring stations. Subsequently, certain data is

intentionally removed to simulate missing information. This deliberate removal is

critical in aligning with the unsupervised learning methodology.

… … … …

Short-term
missing

patterns

Neighbouring sites
Target site

Ti
m

e
(h

o
u

rl
y)

Same target pollutant

Long-term
consecutive

missing pattern

… … … …

≥168-hour of full observed values
(without missing values)

Selected
period

Filled with zeros

Target site

Neighbouring sites

Selected
period

(a) (b)

Figure 3.5: (a) Implemented method to handle the initial missing data in the original
datasets, and (b) illustration of perturbation patterns applied to the dataset.

49

Figure 3.5(a) depicts a possibility of missing patterns in the original dataset.

The shadowed areas indicate measurements without missing values, whereas the

white strips indicate the existing missing values. Among periods without missing

values, a minimum of 168 hours of observations are carefully selected from the sta-

tion’s columns under investigation (target station). The same selection periods are

then expanded to the entire columns to maintain the consistency of the time frame

between monitoring stations. After completing these steps, the target station’s col-

umn has no missing data. However, unlike the target station’s column, there is

a possibility that missing values still exist in the neighbouring stations’ columns.

The remaining data at neighbouring station columns with missing values are filled

with zeros to solve this issue (please refer to Figure 3.5(b)). After completing the

aforementioned steps, the collections of input sets contain no unknown values, and

the actual targets for all input sets can be provided.

In the following steps, a perturbation procedure can be performed. The per-

turbation procedure is carried out to cover as many missing patterns as possible in

the dataset, either in the form of short-interval or long-interval consecutive miss-

ing patterns. The variations of missing patterns can be achieved by intentionally

removing some values in the input sets, and all deleted values are filled with zeros.

Two perturbation pattern procedures can be explained as follows:

1. Short missing interval. Different missing levels are applied to the input sets

for the short-interval perturbation procedure. Following the work conducted

by Hadeed et al. [68], four missing rates are set for the target station. These

variations are 20%, 40%, 60% and 80% of missing rates. While the missing

rate varies for the target station, a fixed missing rate of 20% is applied to the

neighbouring stations. The missing rate of 20% is considered an error proba-

bility for the neighbouring stations [193]. Due to the initial zero imputation

illustrated in Figure 3.5(a), the neighbouring stations will have more than a

20% missing rate after the perturbation procedure.

2. Long-consecutive missing interval. A maximum of 500 hours of consecutive

values is removed from some parts of the correct dataset for the long-interval

perturbation procedure. The successive missing periods vary between 100 and

500 hours. This procedure is implemented only in the target station, and the

neighbouring stations follow the short interval procedure (i.e., 20% of missing

rate is applied to neighbouring stations).

50

Neighbouring
sites

…

T

m

Model Input Input set 1
Input set 2

Input set 3

Input set T-m
Input set T-m+1

1

Target site

Rolling-window

Figure 3.6: Extracting input sets from the preprocessed dataset.

3.7.6 Pre-training Model Input Construction

The normalisation of the input set takes place after completing the perturbation

procedure. Following the normalisation step, the model input construction is per-

formed. The step yields input sets ready to be fed to the model during training

and testing. As illustrated in Figure 3.6, the dataset contains air pollutant data,

sampled between t = 1, . . . , T , with the rolling window size of m. The input sets

for the model are obtained by shifting the pre-processed dataset. This study takes

8 hours of data and shifts the features by one hour to get the next input set. This

process is similar to the rolling window scheme. In our case, the increment between

successive rolling windows is one period.

The proposed model acts as a denoising tool, trying to recover the noisy

inputs (input with missing values). Given the noisy inputs, the autoencoder model

will reconstruct these inputs to achieve the given target, that is, the complete dataset

itself. Constructed by convolutional layers, our proposed model can be called a

denoising convolutional autoencoder.

3.7.7 Post-training Model Outputs

To evaluate the effectiveness of the proposed method, the test sets are fed to the

model after model training. The model accepts input and produces output with

the same size (8 × 4). Since min-max normalisation is employed to scale the input

and target sets for effective learning, the model’s predictions must be reverted to

their original values. After reverting the scaled outputs to their original values,

51

Calculate means

Output set T-m
Output set T-m+1

Output set 1
Output set 2

Output set 3

m
=

 8
 h

ou
r

…
Final

predictions

Take only the target site
prediction columns

Figure 3.7: Approach to obtaining the final prediction.

each hour’s single prediction must be determined. As illustrated in Figure 3.7,

the autoencoder produces overlapping outputs for a certain prediction period. An

approach conducted in this study is aggregating the values of overlapped output sets

to give a single-point estimation. As the targeted results are located in the model

outputs’ first columns (target station), the means of the first columns of the output

sets is calculated, as illustrated in Figure 3.7.

The post-training output interpretations are systematically presented in Al-

gorithm 3.1. As shown in Algorithm 3.1, the test sets X are fed to the model (row

3), resulting in a 3-dimension prediction set Y with a size of (n, 8, 4), where n is

the number of test sets fed to the model. The prediction set Y must be scaled back

to their original values, resulting in a matrix YY (row 4). Only predictions in the

target station’s columns are selected to minimise the computing process. The target

station prediction values are obtained by extracting the first column of each output

set (row 5). This process results in a 2D matrix YY with a size of (n, 8). Next, the

following row is right-shifted one step from the previous row (rows 10:12), provided

that there is a sparse matrix A appropriate to handle this rolling scheme (rows 6:8).

The sums of each column are computed to get a single row matrix S (row: 13). As

the matrix S is obtained from different layers of overlapped values, the divisors of

each element in S are varied (rows 16:23). For the first seven elements of S, divisors

52

Algorithm 3.1 Interpretation of post-training model outputs.

1: Input: Given test sets X
2: Output: Series of imputed missing values S
3: Y ← model predict(X)
4: YY ← invers transform(Y)
5: YY ← YY[:, :, 1]
6: ry ← row size(YY)
7: Z← zeros(ry, ry − 1)
8: A← concatenate ((YY,Z), axis = 1)
9: ra ← row size(A)

10: for i = 0, ra do
11: A[i, :]← roll(A[i, :], i)
12: end for
13: S← sum(A, axis = 0)
14: ls ← column size(S)
15: lp ← 8
16: for i = 0, lp − 1 do
17: j ← i+ 1
18: S[i]← S[i]/j
19: S[−j]← S[−j]/j
20: end for
21: for i = lp − 1, (ls − lp + 1) do
22: S[i]← S[i]/lp
23: end for

are increased from 1 to 7, whereas for the last seven elements, divisors are decreased

from 7 to 1. All values between the seven first and seven last elements of S are

equally divided by 8.

3.8 Spatiotemporal Evaluation

3.8.1 Temporal Evaluation

The temporal relationship is evaluated to determine the length of the input series

to be fed to the model. Temporal behaviours for each monitoring station are as-

sessed based on obtained Pearson’s autocorrelation coefficient between the series.

As previously explained, the correlation coefficient is computed between the actual

time series data and their shifted lag-k hour data. This study sets the variable k

between 1 and 11. For instance, k = 1 means that the actual time-series data are

shifted 1 hour backwards. A maximum of k = 11 is considered enough to capture

the temporal behaviour. Too long historical data leads to less contribution for model

53

training as the temporal correlation of historical data degrades over time.

Figure 3.8 reports the calculated autocorrelation coefficients for each city

and pollutant. For k ≤ 11 hours, the autocorrelation coefficients vary between 1

(i.e., at k = 0) and 0. For the London dataset, all monitoring stations measuring

NO2 pollutants have similar autocorrelation coefficient slopes, ranging from 1 to

about 0.2. Monitoring station S1 has the flattest slope, indicating that S1 has

the strongest relationship among the lagged hours of NO2 pollutants compared to

other stations. For PM10 in the same air quality dataset, the stations S2, S3 and S6

0 1 2 3 4 5 6 7 8 9 10 11
Lag

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
ef

fic
ie

nt

London: NO2
S1
S2
S3
S4
S5

S6
S7
S8
S9
S10

0 1 2 3 4 5 6 7 8 9 10 11
Lag

0.2

0.4

0.6

0.8

1.0

Co
ef

fic
ie

nt

London: PM10
S1
S2
S3
S4
S5

S6
S7
S8
S9
S10

0 1 2 3 4 5 6 7 8 9 10 11
Lag

0.4

0.6

0.8

1.0

Co
ef

fic
ie

nt

Delhi: NO2
S1
S2
S3
S4
S5

S6
S7
S8
S9
S10

0 1 2 3 4 5 6 7 8 9 10 11
Lag

0.5

0.6

0.7

0.8

0.9

1.0

Co
ef

fic
ie

nt

Delhi: PM2.5
S1
S2
S3
S4
S5

S6
S7
S8
S9
S10

0 1 2 3 4 5 6 7 8 9 10 11
Lag

0.5

0.6

0.7

0.8

0.9

1.0

Co
ef

fic
ie

nt

Beijing: CO
S1
S2
S3
S4
S5

S6
S7
S8
S9
S10

0 1 2 3 4 5 6 7 8 9 10 11
Lag

0.0

0.2

0.4

0.6

0.8

1.0

Co
ef

fic
ie

nt

Beijing: O3
S1
S2
S3
S4
S5

S6
S7
S8
S9
S10

Figure 3.8: Temporal characteristics of air quality datasets based on autocorrelation
coefficients.

54

autocorrelation coefficients plunge to about 0.2 in the first six lagged hours, whereas

other stations’ coefficients remained above 0.5. Among these, S2 has the weakest

temporal dependency.

For the Delhi air quality dataset, the PM2.5 autocorrelation coefficient slopes

are relatively flattered for the same pollutant, ending between 0.55 and 0.65 at

k = 11. Autocorrelation coefficients for NO2 between monitoring stations in Delhi

degrade more diversely, especially from k = 3 to k = 11. Station S1 and S8 have

exceptional slopes, which the coefficients tend to increase after k = 7. Less varied

autocorrelation coefficient slopes are shown in Beijing dataset for both CO and O3

data. However, O3 pollutant coefficients decrease more rapidly than CO coefficients.

The number of pollutants (i.e., the length of the input set) for the autoen-

coder model is based on the obtained coefficients shown in Figure 3.8. A simple

model is introduced as a base model to determine these properties carefully. The

base model is used to evaluate the temporal and spatial dependencies. Temporal

evaluation determines the number of input set rows, whereas spatial evaluation de-

fines the number of input columns. Some other model architectures are derived

from the base model until the final design is decided. The final design is shown in

Figure 3.2 with properties presented in Table 3.4.

Figure 3.9 presents the base model used to determine the size of temporal and

spatial properties. Compared to the final design, the base model uses a convolutional

autoencoder design with shallower hidden layers. In this study, the base architecture

is written as L140−L230−L320−L430−L540−L6x, where x will vary depending

on the intended number of output columns. For the temporal evaluation, x equals

4, which combines the target station with three neighbouring stations. L140 means

L5L2 L4L3Input

#40
#30

#20
#30

Te
m

p
o

ra
l v

ar
ia

ti
o

n
(8

,9
,1

0
,1

1
)

Spatial
variation

(3,4,5,6)

Output

Base Model

L1 L6

#40

Figure 3.9: The proposed base model for temporal and spatial characteristic evalu-
ations.

55

the first layer has 40 output filters and yields 40 columns placed in the second layer

(please refer to Figure 3.9). The sixth layer (i.e., L6x, where x = 4) has four output

filters and forms n × 4 output sets, where n depends on the input length, kernel

and filter size. This study uses the kernel size equals 2, while the stride equals 1.

Furthermore, no padding is applied to all layers.

This study uses 60% of the total observation as training sets, applied for

each station and pollutant. Besides training data, test data are determined based on

unbroken time-series segments with a minimum of 400 hours of consecutive observed

values. The target station is corrupted with a missing rate of 40%, whereas the

neighbouring data are lightly corrupted with a missing rate of 20%. A 5-fold cross-

validation in the dataset is performed to obtain less biased results. An example

of temporal data evaluation targeting NO2 as the target pollutant in the city of

London is presented in Table 3.6.

Indicated as emphasised texts in Table 3.6, the minimum RMSE values are

dominantly obtained when k = 7. The lag-7 hours means the model accepts eight

temporal data as the number of rows (input length). However, selecting k = 7 does

not significantly improve the RMSE values. For example, the obtained RMSE at

S5 equals 6.28 µg/m3 at k = 7, which slightly improves the RMSE to only about

4% from the highest RMSE (i.e., when k = 10). Since the temporal correlations

of measurement values are weaker over time, the performance of a model does not

generally improve as the number of temporal data increases. Weak temporal corre-

lations contribute fewer essential features for the autoencoder model. In summary,

a window size of 8-time steps is selected as the length of the input sets.

Table 3.6: Average of RMSE(µg/m3) and standard deviation values after 5-fold
cross-validation targeting NO2 for the London dataset.

Test Period Lag-k

Start End 7 8 9 10

S1 2020-12-02 2020-12-31 8.56(0.35) 8.93(0.43) 8.71(0.27) 8.87(0.28)

S2 2021-01-12 2021-01-31 14.98(0.25) 15.07(0.34) 14.25(0.43) 14.26(0.64)

S3 2020-12-07 2021-01-26 15.86(0.6) 16.92(0.88) 16.26(0.39) 16.43(0.88)

S4 2021-01-12 2021-01-31 12.96(0.57) 12.86(0.37) 13.17(0.4) 13.02(0.35)

S5 2021-01-12 2021-01-30 6.28(0.19) 6.42(0.39) 6.31(0.34) 6.56(0.11)

S6 2020-12-07 2021-01-06 9.31(0.15) 9.58(0.17) 9.19(0.24) 9.39(0.19)

S7 2021-01-11 2021-01-31 16.29(0.2) 16.32(0.72) 16.23(0.25) 16.11(0.31)

S8 2021-01-08 2021-01-25 8.81(0.46) 8.62(0.29) 9.02(0.51) 8.85(0.24)

S9 2020-12-30 2021-01-31 7.43(0.19) 7.70(0.17) 7.74(0.19) 7.45(0.23)

S10 2020-10-29 2021-01-31 7.38(0.14) 7.54(0.23) 7.39(0.07) 7.4(0.14)

56

3.8.2 Spatial Evaluation

The correlation coefficient between the two stations is calculated for each target

pollutant. For example, Table 3.7 and Table 3.8 report the obtained correlation

coefficients for NO2 and PM10 for London air quality data. The same procedure is

also implemented for Delhi and Beijing datasets, and the results are reported from

Table A.1 to Table A.4 of Appendix A.

The correlation coefficients reflect a linear relationship between station pairs

and can be calculated using Equation (3.3). As shown in Table 3.7, the correlation

coefficients among monitoring stations measuring NO2 fall between 0.49 and 1.00.

The paired stations such as S1 − S9, S4 − S6, S8 − S9, and S5 − S10 have strong

correlations for pollutant NO2. In contrast, the paired stations S3−S5, S3−S7, and

S3 − S10 have weaker correlations. The correlation coefficients between the paired

stations measuring PM10 as presented in Table 3.8 are more diverse, ranging between

0.27 and 1.00. Each station exhibits both strong and weak correlations with others.

Station S6 has more weak correlations with other stations. Each station exhibits

both strong and weak correlations with others. Station S6 appears to have weaker

correlations with other stations, ranging from 0.27 to 0.52. This condition indicates

that station S6 has the weakest strength of a linear association with other stations.

In other words, this station’s air pollution data series trend differs from that of most

London stations.

This thesis determines spatial correlation by the number of participating

neighbouring stations allowed to send data to the target station with missing data.

Varying the number of neighbouring stations affects the model input width (i.e., the

number of columns). As shown in Figure 3.9, the width of the input set is evaluated

Table 3.7: Coefficient of correlation targeting NO2 in London data.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.00

S2 0.77 1.00

S3 0.63 0.83 1.00

S4 0.73 0.78 0.82 1.00

S5 0.81 0.73 0.57 0.79 1.00

S6 0.78 0.79 0.79 0.84 0.71 1.00

S7 0.72 0.62 0.49 0.60 0.61 0.70 1.00

S8 0.84 0.67 0.50 0.68 0.84 0.74 0.75 1.00

S9 0.85 0.76 0.54 0.66 0.84 0.71 0.74 0.88 1.00

S10 0.80 0.68 0.49 0.69 0.88 0.66 0.66 0.85 0.85 1.00

57

Table 3.8: Coefficient of correlation targeting PM10 in London data.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.00

S2 0.47 1.00

S3 0.57 0.46 1.00

S4 0.76 0.53 0.69 1.00

S5 0.70 0.47 0.55 0.82 1.00

S6 0.35 0.27 0.52 0.45 0.31 1.00

S7 0.75 0.48 0.55 0.76 0.69 0.33 1.00

S8 0.81 0.50 0.60 0.86 0.78 0.34 0.81 1.00

S9 0.77 0.53 0.58 0.82 0.75 0.36 0.80 0.85 1.00

S10 0.77 0.64 0.57 0.83 0.76 0.35 0.77 0.85 0.83 1.00

from 3 to 6 monitoring stations. Based on this convention, the number of involved

neighbouring stations is calculated. A 5-fold cross-validation is implemented in this

step, and the 8-step time window is maintained. This thesis utilises the scikit-

learn library for cross-validation, employing the default number of folds (k) set

to five. Common choices for k include 3, 5, and 10. Given that this study may

involve short periods of series data, a value of k = 5 is selected. This decision is

based on experiments that revealed that k = 5 offers a favourable balance between

computational efficiency and low bias in estimating model performance.

As an example, the result of neighbourhood selection targeting PM10 in the

London dataset is shown in Table 3.9. The table shows that the best model perfor-

mances are mostly obtained when involving three neighbouring stations. The same

results are also observed from the Delhi and Beijing datasets. Thus, three neigh-

bouring stations and a target station are kept for the rest of the model evaluation.

For additional information, the WHO Global Air Quality guidelines stipulate that

the daily PM10 concentration should not exceed 45µg/m3. Additionally, interim

targets are provided to facilitate a gradual transition from high to lower concentra-

tions. These interim targets are set at 150, 100, 75, and 50 mµg/m3 for targets 1,

2, 3, and 4, respectively.

After evaluating spatial correlation among stations, three neighbouring sta-

tions with the strongest correlation coefficients to the target station are carefully

selected. The selected neighbouring stations for NO2 and PM10 in London are re-

ported in Table 3.10, sorted from largest to smallest coefficients. Table A.5 and

Table A.6 present the selected neighbouring stations for Beijing and Delhi, respec-

tively.

Figure 3.10 depicts the locations of two target stations (S1 and S2), along

58

Table 3.9: Average of RMSE (std. deviation) after 5-fold cross-validation for se-
lecting the number of involved neighbouring stations targeting PM10 in London
(measured in µg/m3).

Test Period Number of neighbouring stations

Start End 2 3 4 5

S1 2019-11-03 2019-11-19 59.05(1.23) 56.67(2.52) 59.38(1.09) 60.49(0.83)

S2 2020-03-28 2020-04-19 11.84(0.79) 11.45(0.24) 12.07(1.35) 12.51(1.52)

S3 2020-05-31 2020-06-29 15.19(0.17) 14.98(0.30) 14.87(0.39) 14.80(0.18)

S4 2020-03-07 2020-04-03 18.67(0.71) 18.50(1.01) 21.20(0.48) 20.68(0.36)

S5 2020-04-11 2020-04-29 19.13(0.36) 17.82(0.43) 18.43(0.75) 18.01(0.31)

S6 2020-03-23 2020-05-14 21.41(1.20) 21.74(1.05) 21.25(0.83) 21.09(0.71)

S7 2020-04-22 2020-05-28 21.78(0.57) 21.47(0.53) 21.51(0.58) 21.57(0.78)

S8 2019-03-16 2019-04-03 45.06(1.66) 42.80(0.82) 48.56(3.10) 50.32(2.03)

S9 2019-05-23 2019-06-13 25.49(2.57) 25.68(1.67) 26.23(3.07) 25.42(1.00)

S10 2020-03-29 2020-05-06 15.35(0.49) 15.24(0.83) 15.27(0.63) 14.60(0.46)

Table 3.10: Strongest correlation coefficient for neighbouring stations selection in
London data.

Strongest corr. coeff. (NO2) Strongest corr. coeff. (PM10)

Target station 1st 2nd 3rd 1st 2nd 3rd

S1 S9 S8 S5 S8 S9 S10

S2 S3 S6 S4 S10 S9 S4

S3 S2 S4 S6 S4 S8 S9

S4 S6 S3 S5 S8 S10 S5

S5 S10 S9 S8 S4 S8 S10

S6 S4 S3 S2 S3 S4 S9

S7 S8 S9 S1 S8 S9 S10

S8 S9 S10 S1 S4 S10 S9

S9 S8 S1 S10 S8 S10 S4

S10 S5 S9 S8 S8 S4 S9

with their selected neighbouring stations and respective distances in the London

dataset. Based on Pearson’s correlation coefficient evaluation (please refer to Ta-

ble 3.10), the neighbouring stations for S1 are S9, S8, and S5 (for NO2), and S10,

S9, and S4 (for PM10). However, it is important to note that these neighbouring

stations may not always be the closest to the target stations. The selection is based

on Pearson’s correlation, not on distance. For example, in Fig. 3.10, the neighbour-

ing stations for S2 include station S4 (or IS2) for both NO2 and PM10, even though

this station is geographically farther compared to some other stations.

59

Figure 3.10: Locations of two target stations (S1 and S2), along with their selected
neighbouring stations and respective distances in the London dataset.

3.9 Imputation Performance

3.9.1 Model Architecture Evaluation

The final model architecture proposed in this study is verified in this section. Several

alternative autoencoder architectures are derived from the base model, created by

expanding the base model’s layers and modifying the number of output filters. There

are countless possibilities for combining architecture and output filters in designing

autoencoders, or neural networks in general. There are no rigid rules governing this

design process. With such vast options available, it is crucial to establish limitations

in the design process. In this study, the number of output filter layers will be reduced

in the encoder part and expanded in the decoder part. As indicated in Table 3.11,

both increases and decreases in the number of output filters, such as 10, 15, 20, or

30, are explored. Additionally, there is a slight increase in the number of layers from

the base layer.

The proposed kernel and stride sizes are identical to preserve the base model’s

properties. Additionally, all proposed models are unpadded. As presented in Ta-

ble 3.11, six different autoencoder architectures, denoted as M1, M2, . . . , M6, are

presented. All models have a kernel size of 2, a stride of 1, and no padding is applied

60

Table 3.11: Proposed autoencoder architectures.

Assigned output filters

M1 L140− L230− L320− L430− L540− L64

M2 L150− L240− L330− L420− L530− L640− L750− L84

M3 L150− L240− L330− L420− L510− L620− L730− L840− L950− L104

M4 L180− L270− L350− L430− L510− L630− L750− L870− L980− L104

M5 L175− L260− L345− L430− L515− L630− L745− L860− L975− L104

M6 L180− L250− L330− L420− L510− L620− L730− L850− L980− L104

to any layer. The M1 is the base model for characterising the spatiotemporal fea-

tures. As an example, this section presents the outcomes obtained from air quality

data collected in Beijing, focusing on CO as the target pollutant. A 40% missing

rate is applied to the target station and a 20% missing rate to the neighbouring

stations for model evaluation. The experiment also involves 5-fold cross-validation.

Based on the spatiotemporal evaluation, a fixed input size of 8×4 is used for model

selection.

According to the final prediction results obtained from each model, M6

achieved the most precise imputation outcomes, as demonstrated in Table 3.12.

Among the ten monitoring stations, M6 outperformed other models by providing

the best prediction results for six stations. For instance, M6 predicted the missing

data for S8 with an RMSE value of 240.88 µg/m3, which is approximately 30%

Table 3.12: Average RMSE (µg/m3) for deep autoencoder architecture selection in
Beijing, focusing on CO pollutants.

Test Period Autoencoder model

Start End M1 M2 M3 M4 M5 M6

S1 2016-06-14 2016-07-26 207.27 210.33 189.25 191.37 189.56 183.95

S2 2016-09-13 2016-10-19 432.21 431.53 435.73 420.39 437.41 435.33

S3 2016-08-10 2016-09-06 204.86 205.77 191.46 201.56 202.59 199.66

S4 2016-10-18 2016-11-25 395.77 388.99 363.43 369.30 372.26 373.27

S5 2016-08-02 2016-08-29 312.01 305.28 311.99 309.76 298.78 279.61

S6 2016-06-14 2016-07-26 207.27 210.33 189.25 191.37 189.56 183.95

S7 2016-08-04 2016-08-25 216.54 213.53 204.10 199.69 203.75 189.93

S8 2016-10-15 2016-11-08 346.45 329.10 248.19 246.75 241.69 240.88

S9 2016-10-09 2016-10-26 349.76 338.14 287.25 315.04 312.94 302.92

S10 2016-06-25 2016-07-27 187.51 180.91 164.21 171.75 169.32 162.83

61

more accurate than the base model’s performance. This study shows that deeper

model architectures yield better predictions, with ten-layered models outperforming

six- and eight-layered models in most cases. However, excessively deep architectures

were avoided to prevent the latent space from becoming too small. The deeper the

architecture of the autoencoder from the first layer, with a certain number of output

filters, the smaller the latent space will be. If the latent space is too small, then the

autoencoder will not be very effective, because with such a small size, this latent

space will be expanded in the decoder part. A latent space that is too small does

not carry effective information when expanded in the decoder part, so the process

of reconstructing input sets from the first layer to the last layer will also not be

effective.

3.9.2 Short Interval Imputation

The term short interval refers to a missing period created by eliminating specific

values from the actual data with a designated missing rate. The initial random

state determines the values removed from the original data. This setting can be

specified during programming. For this study, some values from the actual data

are deliberately removed with four different missing rates (i.e., 20%, 40%, 60%, and

80%). An example of a test set missing pattern variation at station S3 in the London

dataset is illustrated in Figure 3.11. The figure shows 648 hourly samples of NO2,

collected from 20-Feb-2020 13:00:00 to 20-Mar-2020 00:00:00. The white stripes

20% 40% 60% 80%

Neighbouring sites (fixed) = 20%

Target site
(varied)

1

648

Figure 3.11: Short-interval missing patterns in the test set obtained from station S3

of London dataset.

62

signify the missing values. As depicted in the figure, more missing values result in

more prominent white strips. These values are then imputed with zeros. While the

missing rate at the target station changes, the missing rate at neighbouring stations

remains fixed at 20%.

Representative monitoring stations for short-interval imputation are shown

in Table 3.13. The table lists two monitoring stations for each city, encompassing all

pollutants in the respective dataset. Therefore, there are a total of 12 experiments

reported. Table 3.14 demonstrates the imputation results for each experiment, which

numbers detailed in Table 3.13. The imputation performances are evaluated using

three different error metrics, i.e., RMSE, MAE and R2.

The proposed method in this study is less effective in imputing missing val-

ues of NO2 pollutants in Delhi compared to other monitoring stations. To provide

more detailed information, model performance for NO2 pollutants in Delhi will be

discussed separately in Section 3.9.4. Generally, lower missingness levels result in

lower RMSE/MAE values and higher R2 scores. Due to variations in the physical

nature of each pollutant, the RMSE/MAE values may differ significantly. For in-

stance, RMSE/MAE values for some pollutants are considerably higher than PM10.

Hence, the R2 score is introduced to provide a more intuitive performance measure.

As shown in Table 3.14, the proposed method yields satisfactory results with an R2

score greater than 0.8 for all target stations at a 20% missing rate, ranging between

0.80 and 0.95. At 40% and 60% missing levels, our proposed model maintains its

performance, providing R2 scores between 0.72 and 0.94. However, as the missing

Table 3.13: Properties of short-interval imputation experiment.

Train Period Test Period

No. City station Pollutant Start End Start End

1 London S3 NO2 2018-01-01 2019-10-21 2020-02-20 2020-03-20

2 London S3 PM10 2018-01-01 2019-11-18 2020-03-23 2020-04-20

3 London S7 NO2 2018-01-01 2019-09-29 2020-09-23 2020-10-13

4 London S7 PM10 2018-01-01 2019-11-23 2020-11-03 2020-12-01

5 Delhi S2 NO2 2018-02-05 2019-07-25 2020-05-31 2020-07-01

6 Delhi S2 PM2.5 2018-02-03 2019-07-17 2019-08-28 2019-10-27

7 Delhi S7 NO2 2018-02-05 2019-07-10 2019-11-21 2019-12-14

8 Delhi S7 PM2.5 2018-02-05 2019-07-16 2020-02-10 2020-04-22

9 Beijing S1 CO 2013-03-03 2015-08-28 2016-11-11 2016-12-27

10 Beijing S1 O3 2013-03-03 2015-08-04 2016-12-10 2016-12-27

11 Beijing S6 CO 2013-01-03 2015-09-13 2016-06-14 2016-07-26

12 Beijing S6 O3 2013-01-03 2015-08-16 2016-06-14 2016-07-26

63

Table 3.14: Performance metrics of short-interval imputation for all experiments
described in Table 3.13.

Experiment no.

Rate Metrics 1 2 3 4 5 6 7 8 9 10 11 12

20% RMSE 7.83 5.92 5.24 5.57 7.32 15.49 38.72 16.71 471.88 8.91 92.25 15.17

MAE 5.99 3.97 3.87 3.90 4.07 9.14 22.94 10.81 296.36 3.93 71.97 10.78

R2 0.85 0.81 0.89 0.83 0.44 0.95 0.80 0.85 0.93 0.81 0.89 0.95

40% RMSE 8.51 6.09 5.33 8.63 6.49 16.53 50.26 17.75 559.37 7.56 98.87 18.06

MAE 6.62 4.08 4.05 4.69 4.11 9.36 28.63 11.10 354.90 3.85 77.51 13.13

R2 0.81 0.79 0.88 0.79 0.52 0.94 0.72 0.83 0.91 0.86 0.88 0.93

60% RMSE 10.24 6.93 6.37 8.64 8.14 16.29 69.85 17.85 663.89 7.61 124.59 22.18

MAE 7.74 4.67 4.99 5.17 4.68 9.55 40.04 11.42 421.72 4.19 93.15 16.66

R2 0.74 0.73 0.83 0.80 0.39 0.94 0.49 0.84 0.88 0.85 0.81 0.90

80% RMSE 12.05 7.85 8.19 10.89 8.20 16.42 76.93 18.84 778.34 7.95 149.01 26.59

MAE 9.21 5.53 6.47 5.77 4.78 9.98 45.75 12.31 514.88 4.76 111.02 20.43

R2 0.64 0.65 0.72 0.75 0.39 0.93 0.31 0.83 0.83 0.84 0.73 0.86

rate increases to 80%, more imputation errors occur, leading to a decline in R2

scores. In experiment 1, for example, the R2 value decreases from 0.85 at a missing

rate of 20% to only 0.64 at 80%. Among the selected test period, the imputation

of missing values of PM2.5 at station S2 in Delhi (i.e., experiment no. 6) delivers

the most satisfactory results, achieving R2 scores greater than 0.9 at all levels of

missingness.

The proposed autoencoder utilises the data from neighbouring stations to

effectively fill in missing values while accounting for prediction errors. Even in the

case of severely corrupted data at the target station, our model and method have

demonstrated the ability to achieve desirable results, as evidenced by satisfying

performance metrics in most stations (please refer to Table 3.14). In conclusion,

the proposed method can provide satisfactory accuracy for imputing missing values

over a short interval.

3.9.3 Long Interval Imputation

In contrast to the short-interval method, which generates missing values based on

a specific random state, the long-interval consecutive process involves removing all

data at the target station for a specific period. In this regard, a minimum missing

period of 400 hours is set. Figure 3.12 illustrates a long-interval missing values test

set pattern applied to S8 (Nongzhanguan station) of the Beijing dataset, consisting

of 514 hourly samples from 23-Sep-2016 05:00:00 to 14-Oct-2016 14:00:00. As seen

64

Neighbouring sites (fixed) = 20%

Lo
n

g-
in

te
rv

al
 c

o
n

se
cu

ti
ve

m

is
si

n
g

va
lu

es

Target site

Figure 3.12: Long-interval missing patterns in the test set obtained from station S8

of Beijing dataset.

in the figure, the values at the target set are entirely missing and replaced then

will be replaced with zeros. Since no data from the target station is available, the

autoencoder predicts the missing values based entirely on the adjacent available

data.

Table 3.15 presents the results of six experiments conducted to represent long-

interval consecutive imputation scenarios. One station is selected in each dataset,

and all pollutants are considered. Station S5, S6, and S8 represent London, Delhi,

and Beijing datasets, respectively. The error metrics obtained from the long-interval

imputation for specific missing periods are also presented in Table 3.15. The pro-

posed model effectively imputes missing values for a minimum of 400 hours (about

17 days), with some experiments yielding R2 scores of 0.90 and higher. However,

the Delhi dataset’s S6 station measuring NO2 produces the lowest R2 score, consis-

tent in the case of short-interval imputation. It is observed that stations with low

correlation coefficients could affect imputation performance, and this issue will be

discussed separately in section 3.9.4.

Figure 3.13 compares actual and imputed values for the experiments de-

tailed in Table 3.15. The plots also exhibit a 95% confidence interval following the

Table 3.15: Results of long-interval consecutive imputation.

No. City Station Pollutant Start End RMSE MAE R2

1 London S5 NO2 2021-01-12 2021-01-30 5.840 4.371 0.845

2 London S5 PM10 2020-11-10 2020-12-27 3.57 2.29 0.79

3 Delhi S6 NO2 2020-05-14 2020-06-12 12.16 8.56 0.47

4 Delhi S6 PM2.5 2019-09-29 2019-11-20 49.99 31.44 0.90

5 Beijing S8 CO 2016-03-25 2016-04-20 132.91 96.81 0.95

6 Beijing S8 O3 2016-09-23 2016-10-14 13.91 8.29 0.92

65

Delhi

Delhi

Figure 3.13: Plot of long-interval missing imputation between actual and imputed
values along with 95% confidence intervals.

methodology proposed by [194, 195]. This study determines the confidence interval

by adding and subtracting RMSE two times from the imputed values. Utilising

the RMSE value to form the confidence interval provides a better summary than

standard deviation and enables a direct assessment of the imputed values’ uncer-

66

tainty [147]. Figure 3.13 indicates that the imputed values can capture the actual

values’ dynamics, and the autoencoder model can effectively recognise the missing

values. Based on the shaded interval areas, only 5% of imputed values fall outside

the confidence interval.

3.9.4 Effect of Correlation Levels

The correlation levels of coefficients between paired stations can affect the proposed

method’s performance. For example, in the case of short- and long-interval imputa-

Table 3.16: Coefficient of correlation among stations measuring NO2 in Delhi data.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.00

S2 0.41 1.00

S3 0.04 0.07 1.00

S4 0.14 0.32 -0.03 1.00

S5 0.24 0.35 0.13 0.16 1.00

S6 0.35 0.65 0.01 0.27 0.30 1.00

S7 0.12 0.26 0.05 0.29 0.38 0.24 1.00

S8 0.50 0.58 0.06 0.33 0.37 0.55 0.26 1.00

S9 0.32 0.21 0.09 0.00 0.02 0.22 0.07 0.29 1.00

S10 0.33 0.49 -0.24 0.34 0.27 0.55 0.30 0.48 0.12 1.00

Table 3.17: Coefficient of correlation among stations measuring PM2.5 in Delhi data.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.00

S2 0.90 1.00

S3 0.71 0.72 1.00

S4 0.86 0.84 0.72 1.00

S5 0.86 0.90 0.69 0.81 1.00

S6 0.81 0.84 0.71 0.81 0.84 1.00

S7 0.82 0.84 0.76 0.82 0.83 0.87 1.00

S8 0.83 0.82 0.67 0.75 0.76 0.71 0.74 1.00

S9 0.85 0.85 0.73 0.82 0.81 0.79 0.80 0.79 1.00

S10 0.85 0.89 0.67 0.81 0.88 0.82 0.78 0.76 0.80 1.00

67

tions, the NO2 measurements in Delhi have led to poor estimations. The correlation

coefficients of NO2 and PM10 in the Delhi dataset are presented in Table 3.16 and

Table 3.17, respectively. The pair of S3− S6 shows the minimum coefficient of 0.01

for NO2, and the correlation between S3 and S10 is even negative. The maximum

coefficient correlation for NO2 is only 0.65, obtained from S2 − S6. In contrast, the

monitoring stations measuring PM10 in the same city yield much stronger correla-

tion coefficients. The minimum coefficient of PM10 is 0.67, calculated from the pairs

of S3 − S8 and S3 − S10, while the maximum coefficient of 0.90 is observed in the

S1 − S2 pair.

R²=0.57 R²=0.50

R²=0.92 R²=0.91

Figure 3.14: Scatter plot of short-interval imputation at Delhi station S5, with 20%
and 40% of missingness levels.

68

Autoencoder
Model for NO2

Scaled Input with
missing values

Scaled Output with
imputed values

Reconstructed InputActual Input

Scaling +
perturbation

Invers
Scaling

Evaluation
(less accurate)

Autoencoder
Model for PM2.5

Scaled Input with
missing values

Scaled Output with
imputed values

Reconstructed InputActual Input

Scaling +
perturbation

Invers
Scaling

Evaluation
(more accurate)

(a) (b)

Figure 3.15: Example of input and output sets retrieval before and after denoising
process in Delhi station S5: (a) retrieval of NO2, and (b) retrieval of PM2.5.

When stations have a very low coefficient correlation, the imputation values

tend to be highly biased. Various experiments have been conducted to study this

phenomenon, and some of the results are presented in Figure 3.14. The figure shows

the scatter plots between the actual and imputed NO2 and PM2.5 at S5 of the Delhi

dataset, where the experiments are designed for a short-interval missing scenario

with 20% and 40% missing rates. For NO2, the test period spans from 06-Apr-2020

at 04:00:00 to 29-Apr-2020 at 23:00:00, while the PM2.5 period runs from 22-Feb-

2020 at 19:00:00 to 11-Mar-2020 at 14:00:00. Despite being conducted at the same

monitoring station, the imputation results for the two pollutants differ significantly.

While the PM2.5 imputation values are relatively close to the diagonal line, the

missing estimations for NO2 are more scattered.

The input set for NO2 pollutants consists of Station S5 and three neighbour-

ing stations (S7, S8, and S2). The correlation coefficients for S5−S7, S5−S8, and

S5 − S7 pairs are 0.38, 0.37, and 0.35, respectively, indicating low correlations. In

contrast, the input set for PM2.5 pollutants, which includes joint stations S5, S2,

S10, and S1, yields much stronger correlation coefficients. Specifically, the computed

correlation coefficients for S5 − S2, S5 − S10, and S5 − S1 are 0.90, 0.88, and 0.86,

respectively. Weak correlations can lead to input sets that appear more randomised,

resulting in neighbouring station data that contributes insufficient knowledge to the

model. Figure 3.15 provides a more intuitive explanation of this issue. The figure

displays the first input set fed to the model with a 40% missing rate for NO2 and

PM25. The figure shows that the reconstructed input for NO2 is less accurate than

the reconstructed input for PM2.5. The weak correlation significantly affects the

values in each input set column, making it challenging for the model to estimate the

missing parts.

69

3.9.5 Comparison with Other Methods

This section aims to validate the proposed model’s effectiveness compared to ex-

isting methods. The results from univariate and multivariate imputation methods

are also presented. For imputing the missing values, the univariate method for im-

puting utilises the existing values in that feature dimension, while the multivariate

method attempts to leverage the non-missing data across all feature dimensions.

The univariate imputations selected for this study include the most frequent, me-

dian, and mean methods. As for the multivariate imputation, this study employs

four estimators: Bayesian ridge, decision tree, extra-trees, and k-nearest neighbours.

The effectiveness of the proposed model against other methods for all mon-

itoring stations is demonstrated through 60 experiments covering different cities,

stations, and pollutants in the datasets. For the London dataset, the training data

for NO2 and PM10 spans from January 2018 to around October 2019, while the

test sets are taken from several unbroken segments around November 2019 to Jan-

uary 2021. Short and long-interval perturbation procedures are combined for the

training and test sets, with the perturbation step removing approximately 45% of

the target training set and 50% of the test set. To obtain less biased results, 5-fold

cross-validation is implemented in the dataset. This section examines the effective-

ness of the proposed method compared to commonly used methods. As mentioned

earlier in Section 3.7.5, the typical probability of missing data is around 20% [193].

Therefore, in this section, the missing data rate is increased to approximately 50%,

which is higher than the typical rate. The autoencoder model is trained with higher

levels of missing values for both the training and test sets in this section.

The training period for NO2 and PM2.5 pollutants in the Delhi dataset is

from February 2018 to mid-July 2019, while the test period spans from July 2019

to July 2020. Similar to the London dataset, perturbation procedures are applied,

resulting in missing rates of approximately 45% and 50% for the training and test

sets in the target station. In Beijing monitoring stations, CO and O3 pollutants are

also treated similarly, with the training data selected from March 2013 to around

September 2015 and the testing data chosen from September 2015 to February 2017.

The missing values in the target station for training and test steps are kept at a

rate of 45% and 50%, respectively. Figure 3.16 displays bar charts illustrating the

proportion of the RMSE scores obtained from each method.

In Figure 3.16, the performance of our proposed autoencoder model and

seven commonly used imputation methods are shown. The abbreviations used for

other methods are as follows: Most (most frequent imputation), Med (median im-

putation), Mean (mean imputation), DecT (decision tree regressor), ExT (extra-

70

Figure 3.16: Performance comparison of the proposed model and commonly used
methods.

tress regressor), KNN (k-nearest neighbours regressor), BaR (Bayesian ridge regres-

sor) and Aut (proposed autoencoder). Distinct colours are used to represent each

71

Most Mean Med DecT ExT kNN BaR Aut*
0

20

40

60

80

RI
R

(%
)

London: NO2

S1
S2
S3
S4
S5

S6
S7
S8
S9
S10

Most Mean Med DecT ExT kNN BaR Aut*
0

20

40

60

80

RI
R

(%
)

London: NO2

Most Mean Med DecT ExT kNN BaR Aut*
20

0

20

40

60

RI
R

(%
)

Delhi: NO2

Most Mean Med DecT ExT kNN BaR Aut*
0

20

40

60

80

RI
R

(%
)

Delhi: PM2.5

Most Mean Med DecT ExT kNN BaR Aut*
0

20

40

60

80

RI
R

(%
)

Beijing: CO

Most Mean Med DecT ExT kNN BaR Aut*
0

20

40

60

80

RI
R

(%
)

Beijing: O3

Figure 3.17: Performance comparison of the proposed model against commonly used
methods.

method, and the black-filled areas in the chart represent the results of our proposed

autoencoder method (Aut).

The figure shows that univariate imputation using statistic properties such as

most frequent, median and mean leads to highly inaccurate imputation results. In

contrast, multivariate imputation techniques produce significantly lower imputation

errors. Except for NO2 measurements at Delhi monitoring stations, our proposed

method outperforms all other methods for all stations and pollutants. However,

other methods yield marginally better results in three monitoring stations (S3, S5,

and S9). As discussed in the previous section, weak correlations among stations

are responsible for the lower performance of the proposed method. It is worth

noting that the commonly used imputation methods (decision tree regressor, extra

trees regressor, k-nearest neighbours regressor, and Bayesian ridge regressor) are

implemented using their default parameters provided by the Python scikit-learn

library. Therefore, the comparison results depicted in this figure are based on these

default settings. The training and test sets are allocated in proportions identical to

those employed in the proposed method.

In Figure 3.17, the rate of improvement on RMSE (RIR) is presented. A pos-

72

Table 3.18: Average of RIR values calculated from all stations.

Method Average of RIR(existing,proposed)

Most frequent 65.21%

Mean 55.14%

Median 54.33%

Decision tree 41.69%

Extra-trees 30.66%

k-nearest neighbours 25.45%

Bayesian ridge 20.82%

Proposed Autoencoder 0.00%

itive RIR value indicates that the proposed model outperforms other methods, while

a negative RIR value implies that other models perform better than the proposed

model. Our autoencoder model shows a significant improvement in RMSE values

ranging from 50% to 80% compared to the most frequent, median, and mean im-

putations in most cases. Additionally, our proposed method produces positive RIR

values compared to multivariate imputation techniques (Bayesian ridge, decision

tree, extra-trees, and k-nearest neighbour imputation methods), with improvement

between 10% and 50%.

However, for Delhi’s NO2 measurements, the proposed method results in six

negative RIR values, with half of them occurring in station S5. Here, mean, me-

dian, and kNN imputations perform better than the proposed model, with marginal

improvements of 6.46% , 0.87% , and 1.15% in RIR values, respectively. Median

imputation is responsible for half of the six negative RIR values, contributing the

lowest RMSE for monitoring station S9, which is approximately 17% better than

our proposed model.

To obtain a comprehensive understanding of the performance of each im-

putation method across all stations and pollutants, the average RIR values are

computed, as presented in Table 3.18. The proposed model outperforms univariate

imputations, resulting in an average RIR improvement of around 50% to 65%. In

the case of multivariate imputation, the proposed method results in an average RIR

improvement ranging from about 20% to 40%.

73

3.10 Summary

Missing values are a common occurrence when collecting real-world data. Due to

various factors, measurement systems may experience missing values, some of which

could be critical. The presence of missing data can impact the interpretation of

studies and affect the functioning of public services related to air quality. An impu-

tation method must be proposed to overcome the missing data issue. Furthermore,

understanding the spatiotemporal characteristics of air pollutant data can enhance

the robustness of air quality missing data imputation.

This study addresses the challenges of implementing a suitable method for

imputing missing air quality data. Inspired by the denoising autoencoder’s ability

to reconstruct corrupted data, an imputation method that utilises both temporal

and spatial data to improve imputation accuracy is proposed. An optimal temporal

window size of 8-time steps and a spatial combination of 3 neighbouring stations

is determined, resulting in an 8 × 4 input set for the model. The input sets are

aggregated to obtain a single prediction at a specific time. This study conducted

two imputation scenarios: short-interval imputation and long-interval consecutive

imputation. For short-interval imputation, various levels of missingness were intro-

duced (i.e., 20%, 40%, 60%, and 80%). In contrast, long-interval imputation steps

removed all data in a specific period.

The performance of our proposed autoencoder model is compared with seven

commonly used imputation methods, including most frequent imputation, median

imputation, mean imputation, decision tree regressor, extra-trees regressor, k-nearest

neighbours regressor, Bayesian ridge regressor. The results demonstrate that the

proposed method and model yield satisfactory imputation outcomes, with R2 ≥ 0.6,

even when all data in the target station are missing. However, degraded imputation

performance occurs when stations are weakly correlated. Low correlation coeffi-

cients result in more irregular input values, which the proposed autoencoder model

cannot recover effectively. The proposed model performs significantly better than

univariate imputation techniques, improving up to 65% of the average RIR and 20%

- 40% compared to multivariate imputation techniques.

Currently, the study utilises Pearson’s correlation coefficient to evaluate the

linear correlation between pollutant data from two stations. An alternative approach

could involve implementing non-linear correlation methods, such as Spearman’s rank

correlation coefficient or Kendall’s rank correlation coefficient, to identify more ro-

bust neighbouring stations for inclusion in the analysis. Another potential step is

to address missing data in the deep learning model development process. Instead of

74

replacing missing values with zeros, alternative strategies could be explored, such as

imputing the most frequent values or employing interpolation techniques. Adopt-

ing different strategies for handling missing data has the potential to impact the

patterns within the input dataset substantially.

75

Chapter 4

Optimising Deep Learning at

the Edge

The work in this chapter has been published in:

• I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, ”Optimising Deep Learn-

ing at the Edge for Accurate Hourly Air Quality Prediction,” Sensors, vol. 21,

no. 4, p. 1064, Feb. 2021 [1].

4.1 Introduction

When implemented on embedded devices, deep learning (DL) models must be op-

timised for efficient design. As shown in Fig. 4.1, the optimisation can be per-

formed at algorithmic and hardware levels [103]. Two common ways to optimise

models at the algorithmic level are by conducting model design and model compres-

sion [107]. Model design optimisation seeks fewer parameters while designing the

model. This strategy lowers memory size and reduces latency while maintaining the

model’s accuracy compared to the more complex models. The designers adapted

the trained models to fit edge deployment in the model compression strategy. Some

common techniques implemented in model compression include parameter quantisa-

tion, model pruning, and knowledge distillation. Parameter quantisation converts the

original model parameters into a lower precision number with minimal degradation

in model accuracy. While quantisation works on reducing the number representing

weights, biases and activation functions of the original model, parameter pruning

eliminates the less essential units comprising the original model. This method is

associated with the dropout technique [196]. Dropout is a common technique in

training deep neural networks due to its effectiveness in mitigating overfitting and

76

Optimisation of DL Models

Algorithmic Hardware

Model Design Model Compression

• Parameter Quantisation

•Model Pruning

•Knowledge Distillation

• Fewer Parameters

• Simpler Architectures

• Server-class CPUs

•GPUs

• TPUs

• ASICs

• FPGAs

Figure 4.1: Optimisation options for deep learning models on embedded devices.

reducing the model’s size. This method combats overfitting by randomly disabling

a certain percentage of neurons in the network during the training process. Finally,

knowledge distillation transfers knowledge from a larger model to a smaller model.

The larger model can be a deep neural network or an ensemble model. The knowl-

edge distillation strategy creates a smaller model by mimicking the behaviour of the

larger model and trains the smaller model using outputs obtained from the larger

one.

In addition to algorithmic level improvement, model optimisation can be

performed at the hardware level. At this level, deep learning model training and

inferencing phases can be accelerated by leveraging the computation power of server-

class central processing units (CPUs), graphics processing units (GPUs), tensor pro-

cessing units (TPUs), neural processing units (NPUs), application-specific circuits

(ASICs) and field-programmable gate arrays (FPGAs). Custom low-density FP-

GAs can be utilised to construct deep learning accelerators with varied layers and

kernels, enabling high-speed computation while preserving the reconfiguring abil-

ity [197]. Moreover, ASICs and FPGAs typically exhibit greater energy efficiency

compared to traditional CPUs and GPUs [107].

The CPU is a standard component in almost all types of computers, making it

an easily accessible solution for deep learning. However, CPUs are generally slower

than TPUs or GPUs for tasks requiring high parallelism, such as deep learning.

TPUs are specifically designed for deep learning operations, particularly those in-

volving matrix operations [198]. However, TPUs are less flexible than CPUs because

they are designed for specific tasks. GPUs are a powerful choice for deep learning

optimisation, particularly for tasks requiring intensive and parallel processing [199].

77

However, their cost and complexity are important factors to consider. ASICs are

specifically designed for particular tasks, enabling them to perform deep learning

operations faster and more efficiently than general-purpose solutions. Meanwhile,

FPGAs can be reconfigured to adapt to specific needs, offering both flexibility and

high performance [200]. However, developing ASICs requires significant investment

in time and resources and is less flexible than FPGAs. Although FPGAs are more

flexible than ASICs, they may not always be as efficient as ASICs in performance

and energy efficiency for certain tasks.

Many published works have shown the successful implementation of machine

learning (including deep learning) in air quality research. Nonetheless, prior research

on air pollution prediction has mainly focused on assessing deep learning model

accuracy by comparing predicted values to the original dataset. This chapter aims

to expand on this body of work by examining the deployment of deep learning models

for air quality monitoring on edge devices. The post-training quantisation method,

which falls under algorithmic-level optimisation, is adopted to achieve this goal.

This technique compresses model parameters by converting floating points to lower

precision numbers, reducing latency and model size without sacrificing accuracy.

The quantisation technique can potentially enhance CPU and hardware accelerator

latencies, leading to more efficient and effective deep learning models.

In recent years, various works have explored applying deep learning tech-

niques in predicting air quality. This includes developing new data preprocessing

techniques and proposing novel deep learning architectures. For example, Navares et

al. [201] utilised Long Short-Term Memory (LSTM) to forecast PM10 and other

air pollutants. The authors demonstrated that Recurrent Neural Networks (RNNs),

which incorporate past context into their internal state, are well-suited for time-

series problems. However, when dealing with longer time series, RNNs may fail

to connect relevant information that occurred further in the past. Additionally,

RNNs can suffer from the vanishing gradient problem due to cyclic loops. LSTMs

are a type of recurrent neural network capable of learning and processing long-term

dependencies in sequential data. LSTMs are commonly implemented to solve var-

ious problems related to sequence prediction. Additionally, LSTMs can effectively

address the issue of vanishing gradients that happen during the training of neural

networks.

Li et al. [202] implemented an LSTM neural network to predict hourly

PM2.5 concentration using combined historical air pollutant, meteorological, and

time stamp data. The LSTM model proposed for one-hour predictions exhibited

better performance compared to other models, including the spatiotemporal deep

78

learning (STDL), time-delay neural network (TDNN), autoregressive moving aver-

age (ARMA), and support vector regression (SVR). Another work by Xayasouk et

al. [203] utilised LSTM and Deep Autoencoder (DAE) models to forecast PM2.5 and

PM10 concentrations for ten days. By varying the input batch size and measuring

the overall average performance of both models, the proposed LSTM model yielded

higher accuracy than the DAE model. In their study, Seng et al. [204] utilised an

LSTM model to make predictions of air pollutant levels, including PM2.5, CO, NO2,

O3, and SO2, at 35 monitoring stations located in Beijing. A new comprehensive

model, Multi-Output and Multi-Index Supervised Learning (MMSL) has been pro-

posed. This model leverages spatiotemporal data from present and surrounding

stations to improve accuracy. To evaluate the effectiveness of the proposed model,

a comparison was made with the existing time series model (Linear Regression,

SVR, Random Forest and ARMA) and baseline models (CNN-LSTM and CNN-

Bidirectional RNN). Xu et al. introduced a framework named HighAir in their

work [205]. The framework utilised a hierarchical graph neural network based on

an encoder-decoder architecture and consisted of LSTM networks.

Other researchers have proposed several hybrid deep learning models. For

instance, Zhao et al. [206] conducted a study to compare the performance of ANN,

LSTM, and LSTM-Fully Connected (LSTM-FC) models in predicting PM2.5 levels.

The authors concluded that the LSTM-FC model outperformed the other models.

The proposed model has two components: an LSTM for modelling the local PM2.5

concentrations and a fully connected network to capture the spatial dependencies

between central and neighbouring stations.

Combining Convolutional Neural Network (CNN) and LSTM models has

also been investigated [85, 207, 208]. According to Li et al. [209], utilising CNN-

LSTM can improve the accuracy of PM2.5 prediction. The authors used 1D CNN

models to extract features from sequence data and LSTM units to predict future

values. In real-world scenarios, input data can originate from multiple sources,

creating spatiotemporal dependencies, as discussed by Qi et al. [192]. Besides using

CNNs and LSTMs, Gated Recurrent Units (GRUs) in predicting PM2.5 levels have

also been investigated. Tao et al. [210] employed a bi-directional GRU with a one-

dimensional CNN to forecast PM2.5 concentration. The authors analysed the dataset

attributes to determine the optimal input features for the proposed model.

Various deep learning optimisation techniques have been proposed recently

in various application scenarios. Quantising weights and activation functions can

reduce post-trained model size without retraining the model. This method is called

the post-training quantisation [211]. Banner et al. [211] proposed 4-bit post-training

79

quantisation for CNNs. They designed an efficient quantisation method by minimis-

ing mean-squared quantisation error at the tensor level and avoiding retraining the

model. Moreover, a mathematical background review for integer quantisation and

its implementation on many existing pre-trained neural network models was pre-

sented by Wu et al. [212]. With 8-bit integer quantisation, the obtained accuracy

matches or is within 1% of the floating-point model. Intended for mobile edge de-

vices, Peng et al. [213] proposed a fully-integer-based quantisation method tested

on an ARMv8 CPU. The proposed method achieved comparable accuracy to other

state-of-the-art methods. Li and Alvarez [214] specifically proposed the integer-only

quantisation method for the LSTM neural network. The result obtained is accurate,

efficient, and fast to execute. Moreover, the proposed method has been deployed to

various target hardware.

The previous works on air quality prediction have not specifically explored

the optimisation of models for resource-constrained edge devices. Our work aims to

extend this body of work around deep learning models for air quality monitoring

by analysing the deployment of these models to edge devices. The post-training

quantisation techniques are implemented to the baseline model using tools provided

by TensorFlow framework [114], and the optimised model performance running on

Raspberry Pi boards is evaluated.

4.2 Contributions

The chapter contributions are listed as follows:

• Designing a novel hybrid deep learning model for accurately predicting PM2.5

pollutant level leveraging spatiotemporal aspects.

• Optimising the obtained models to lightweight versions suitable for edge de-

vices.

• Examining model performances when running on edge devices.

4.3 Air Quality Data

4.3.1 Dataset and Preprocessing

This chapter uses the Beijing air quality dataset. There are 12 air quality monitoring

stations, namely Aotizhongxin, Changping, Dingling, Dongsi, Guanyuan, Gucheng,

Huairou, Nongzhanguan, Shunyi, Tiantan, Wanliu and Wanshouxigong. Regardless

80

0

200

400

600

800

1000

0 5000 10000 15000 20000 25000 30000 35000

P
M

2
.5

C
o

n
c
e

n
tr

a
ti
o

n
 (

µ
g

/m
3
)

Hourly Samples (01/03/2013 - 28/02/2017)

Figure 4.2: PM2.5 concentration at Node 1 (Aotizhongxin monitoring site) from 1
March 2013 to 28 February 2017.

of the actual geographical location and each monitoring site’s ability to gather pol-

lutant and meteorological data, in this chapter, every monitoring site is considered

merely as a node. Therefore, the complex monitoring site is modelled as a simple

node. The term node is commonly linked to the end device where edge computing

is typically performed. This chapter focuses solely on the data collected from each

node and its relationship with other nodes. To provide a clear identification, node

numbers are assigned to the mentioned 12 monitoring sites as follows: Aotizhongxin

is Node 1, Changping is Node 2, Dingling is Node 3, Dongsi is Node 4, and so on.

To facilitate analysis, the dataset is divided into training and test sets. The

training data encompasses the period from 1 March 2013 to 20 March 2016, while

the test data covers 21 March 2016 to 28 February 2017. This division resulted in

a total of 26,784 training samples and 8,280 test samples. This chapter focuses on

predicting PM2.5 concentrations. This chapter identifies the best model for short-

term predictions of one-hour PM2.5 concentrations. Figure 4.2 illustrates the PM2.5

concentrations recorded at Node 1 (Aotizhongxin monitoring site).

Feature scaling is conducted to the input features during the training and

testing. Feature scaling is a technique used to normalise the range of independent

variables or features in data. It is commonly performed during the data preprocess-

ing step called data normalisation. In this chapter, a min-max scaler is selected to

normalise all input features within the range of 0 and 1. The general formula for

achieving a min-max range of [0, 1] is as follows:

x
′
=

x−min(x)

max(x)−min(x)
(4.1)

81

Table 4.1: Correlation coefficients (r) among attributes at Node 1.

PM2.5 PM10 SO2 NO2 CO O3 Temp Pres Dewp Rain Wd Wspd

PM2.5 1

PM10 0.87 1

SO2 0.49 0.47 1

NO2 0.67 0.65 0.44 1

CO 0.76 0.65 0.57 0.66 1

O3 −0.15 −0.12 −0.22 −0.46 −0.32 1

Temp −0.09 −0.07 −0.36 −0.17 −0.37 0.58 1

Pres −0.02 −0.05 0.23 0.04 0.24 −0.42 −0.83 1

Dewp 0.15 0.09 −0.29 0.12 −0.12 0.30 0.83 −0.78 1

Rain −0.01 −0.02 −0.04 −0.03 −0.01 0.03 0.04 −0.06 0.08 1

Wd −0.19 −0.12 −0.12 −0.24 −0.22 0.21 0.05 −0.02 −0.13 −0.01 1

Wspd −0.27 −0.17 −0.11 −0.48 −0.25 0.33 0.01 0.09 −0.33 0.00 0.31 1

4.3.2 Feature Selection

This chapter focuses on predicting PM2.5 concentrations. As depicted in Table 4.1,

PM2.5 exhibits strong positive correlations with PM2.5, NO2, and CO (with correla-

tion coefficients r > 0.6). It shows a moderate positive correlation with SO2 (with a

correlation coefficient of r = 0.49) and a weak negative correlation with O3 (with a

correlation coefficient of r = −0.15). Elevated levels of O3 can facilitate the creation

of secondary particles in conditions of intense atmospheric oxidation, leading to an

increase in PM2.5 concentrations. Conversely, a high concentration of PM2.5 can

reduce solar radiation and hinder the generation of O3 [215].

Rain, air pressure, and temperature demonstrate the weakest correlations

with PM2.5. Then, only Rain, Pres, and Temp features are varied to determine the

optimal number of input features. This resulted in four different combinations, and

the recorded values of RMSE and MAE are presented in Table 4.2. It is important

to note that the feature selection process was conducted specifically for Node 1.

However, the results obtained from this step can be extrapolated to all other nodes.

Based on the results presented in Table 4.2, the best performance is achieved

by excluding the rain attribute during training, resulting in a model with 11 input

features. Consequently, the following attributes are selected as input features for

our model: PM2.5, PM10, SO2, CO, NO2, O3, temperature, air pressure, dew point,

wind direction, and wind speed. The same input features are used for all monitoring

sites.

82

Table 4.2: Model performance based on different input attributes for Node 1.

Input Features Total Inputs RMSE MAE

PM2.5, PM10, SO2, NO2, CO, O3

Temp, Pres, Dewp, Rain, Wd, Wspd 12 17.704 10.017

PM2.5, PM10, SO2, NO2, CO, O3

Temp, Pres, Dewp, Wd, Wspd 11 17.363 9.807

PM2.5, PM10, SO2, NO2, CO, O3

Temp, Dewp, Wd, Wspd 10 18.168 10.268

PM2.5, PM10, SO2, NO2, CO, O3

Dewp, Wd, Wspd 9 17.638 9.937

To calculate the RMSE and MAE values presented in Table 4.2, a simple

LSTM network is initially employed as a baseline model before implementing the

proposed hybrid CNN-LSTM model (refer to Section 4.4.1). The baseline model

consisted of a one-layer LSTM with 15 neurons, which was selected as the predictor

for our model. The autocorrelation coefficient among the lagged time series of PM2.5

data is calculated to determine the appropriate lookback length for the input. A

minimum requirement of 0.7 is set to ensure a high level of temporal correlation

among the lagged data. As depicted in Figure 4.3, eight samples (including time lag

= 0) are selected for the input model. At this time lag, all autocorrelation coefficients

for all monitoring sites exceeded 0.7. Therefore, the current sample (time lag = 0)

and the previous seven samples are utilised to predict a single sample in the future.

4.4 Deep Learning Model Architecture

4.4.1 Hybrid CNN-LSTM

In Section 4.3.2, an experiment using a simple LSTM model consisting of a single

layer with 15 neurons is conducted. The purpose is to evaluate the model’s per-

formance based on input attributes and determine which ones should be included.

Building upon this analysis, a hybrid model that combines one-dimensional convo-

lutional neural networks (1D CNNs) is proposed as feature extractors, feeding the

extracted features into an LSTM network. The architecture of the proposed hybrid

CNN-LSTM model is illustrated in Figure 4.4. In this hybrid architecture, the CNN

is employed to extract features from the input set, and the LSTM is utilised to make

83

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Time Lag (hour)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Au
to

co
rre

la
tio

n
C

oe
ffi

ci
en

t

selected

S1
S2
S3

S4
S5
S6

S7
S8
S9

S10
S11
S12

Figure 4.3: Autocorrelation coefficients for PM2.5 concentration with different time
lags.

predictions on the features extracted by the CNN. The CNN is adept at capturing

the complexity of the input set, and the LSTM excels in forecasting time-series data.

The proposed model consists of two parallel inputs. The first input, denoted

as INPUT-1, collects data solely from the local node for PM2.5 prediction. The

second input, denoted as INPUT-2, incorporates PM2.5 data from both the local

node and surrounding nodes. In this context, a local node refers to the node where

PM2.5 is being predicted. INPUT-1 comprises 11 features, including PM2.5, PM10,

1
D

 C
o

n
v

1
D

 C
o

n
v

1
D

 C
o

n
v

1
D

 C
o

n
v

1
D

 C
o

n
v

P
o

o
lin

g

1
D

 C
o

n
v

1
D

 C
o

n
v

1
D

 C
o

n
v

1
D

 C
o

n
v

1
D

 C
o

n
v

P
o

o
lin

g

CNN-1

CNN-2

C
o

n
ca

te
n

a
te

R
e

sh
a

p
e

L
S

T
M

LSTM

Dense

PM2.5

OUTPUT

Local Data

INPUT-1

INPUT-2

Ÿ PM2.5

Ÿ PM10

Ÿ SO2

Ÿ CO
Ÿ NO2

Ÿ O3

Ÿ TEMP
Ÿ PRES
Ÿ DEWP
Ÿ WD
Ÿ WSPD

Spatiotemporal
Data

Ÿ PM2.5 from local dan
surrounding nodes

...

T0

T1

T7

...

T0

T1

T7

Time-lag

Time-lag

Figure 4.4: Proposed hybrid CNN-LSTM model.

84

Table 4.3: Hybrid CNN-LSTM network properties of the proposed model.

Layer Properties

1st Convolutional filter = 50, kernel size = 3, activation = ReLU

2nd Convolutional filter = 30, kernel size = 3, activation = ReLU

3rd Convolutional filter = 15, kernel size = 2, activation = ReLU

4th Convolutional filter = 10, kernel size = 2, activation = ReLU

5th Convolutional filter = 5, kernel size = 2, activation = ReLU

Pooling global average pooling

Reshape reshape ((1,15))

LSTM units = 15, activation = ReLU

Dense units = 1

SO2, CO, NO2, O3, temperature, air pressure, dew point, wind direction, and wind

speed. To forecast PM2.5 for one hour into the future, eight timesteps (lookback) of

these inputs are utilised. The batch of inputs is fed into the CNN network, which

serves as a feature extractor before passing the information to the LSTM network.

Extensive experimentation led to the determination of the CNN network

properties. Both CNN networks (block CNN-1 and CNN-2 in Figure 4.4) consist

of five convolutional layers and a single average pooling layer. The reshape layer is

employed to configure the outputs from the CNN layers before they are inputted into

the LSTM network. The number of neurons remains consistent with the previous

experiment (15 neurons) and employs the rectified linear unit (ReLU) activation

function. The final prediction is achieved through a dense layer with one neuron.

During the training process, the Adam optimiser is employed. A summary of each

layer’s properties can be found in Table 4.3.

To effectively extract features from a relatively short data length (in this case,

eight samples), it is advisable to utilise smaller kernel sizes for deeper convolutional

layers. The length of the subsequent convolutional layer can be calculated using

Equation (2.2). Larger output sizes (o) can be obtained by employing small kernel

sizes (k), which creates more opportunities for subsequent convolutional layers to

operate. In this study, the kernel size of 3 is set for the first and second convolutional

layers and the kernel size of 2 for the remaining three convolutional layers. These

choices are determined through various experiments, and the selected kernel sizes

and filters can be found in Table 4.3.

85

2

2x10 matrix

8x11 matrix

PM2.5 PM10 WSPD...

3

3x15 matrix

2

4x30 matrix

2

6x50 matrix

3

8x11 matrix

PM2.5(1) ... PM2.5(12)

1x5 matrix

st1 Conv Layer nd2 Conv Layer

S
p
a
tia

l P
M

2
.5

 D
a
ta

L
o
ca

l N
o
d
e
 D

a
ta

rd3 Conv Layer th4 Conv Layer th5 Conv Layer Pooling Layer

Ÿ filter = 50
Ÿ kernel size = 3
Ÿ activation = ReLu

Ÿ filter = 30
Ÿ kernel size = 3
Ÿ activation = ReLu

Ÿ filter = 15
Ÿ kernel size = 2
Ÿ activation = ReLu

Ÿ filter = 10
Ÿ kernel size = 2
Ÿ activation =

ReLu

Ÿ filter = 5
Ÿ kernel size = 2
Ÿ activation =

ReLu

Concat LSTM

LSTM
cell

LSTM
cell

LSTM
cell

LSTM
cell

..
.

Output

Ÿ Dense
layer

Ÿ Unit = 1

PM2.5
Prediction

Ÿ Unit = 15
Ÿ Activation
 = ReLu

Ÿ Global Average
Pooling

2x10 matrix

8x12 matrix

3x15 matrix
4x30 matrix

6x50 matrix

1x5 matrix
23 22

3

Ÿ Concat-
enate

Ÿ Reshape

Figure 4.5: Details of data processing in the proposed deep learning model.

Opting for smaller filter sizes in each layer results in a smaller overall model

size, which is beneficial for edge devices. Through experimentation, the filter sizes

of 50, 30, 15, 10, and 5 for each convolutional layer are determined in our model,

producing the best results. Maintaining the same properties for both CNN-1 and

CNN-2 yielded optimal solutions as feature extractors, ensuring a balanced workload

for each input during the training and inference stages.

In CNN-1, the eight timesteps of the 11 input features form an 8×11 matrix.

These 11 features consist of pollutant and meteorological data, including PM2.5,

PM10, SO2, CO, NO2, O3, temperature, air pressure, dew point, wind direction,

and wind speed. In CNN-2, the eight timesteps of the 12 input features form an

8 × 12 matrix, with these 12 features representing the PM2.5 concentrations at 12

different nodes.

By utilising Equation (2.2) with a kernel (or feature detector) size of 3 and

a stride step of 1, the kernel slides through the input matrix in CNN-1 for a total

of six steps ((8− 3)/1+ 1 = 6). With a filter size of 50, the first convolutional layer

generates a 6× 50 matrix. The input for the second convolutional layer is a 6× 50

matrix. Similarly, with a kernel size of 3, the kernel slides along the window for four

steps ((6 − 3)/1 + 1 = 4) in the second layer, resulting in a 4 × 30 matrix (given

the filter size of 30). The same process is applied to all subsequent convolutional

layers. Consequently, the fifth convolutional layer produces a 1×5 matrix. A global

average pooling layer is then employed to flatten the matrix. After concatenating

the outputs of both CNN layers, the tensor is ready to enter the LSTM network.

The LSTM network comprises 15 cells (or units), and a single dense layer generates

the final prediction, i.e., our PM2.5 prediction. The overall process is summarised

in Figure 4.5.

86

Table 4.4: PM2.5 coefficient correlation (r) for all nodes.

Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9 Node10 Node11 Node12

Node1 1

Node2 0.84 1

Node3 0.83 0.90 1

Node4 0.95 0.81 0.80 1

Node5 0.96 0.83 0.83 0.97 1

Node6 0.89 0.84 0.84 0.89 0.92 1

Node7 0.83 0.84 0.85 0.82 0.84 0.85 1

Node8 0.94 0.80 0.79 0.95 0.94 0.87 0.80 1

Node9 0.88 0.80 0.81 0.88 0.88 0.85 0.89 0.87 1

Node10 0.93 0.80 0.79 0.96 0.95 0.89 0.81 0.94 0.87 1

Node11 0.93 0.86 0.85 0.93 0.95 0.93 0.84 0.91 0.87 0.92 1

Node12 0.91 0.78 0.77 0.93 0.94 0.88 0.79 0.92 0.86 0.95 0.90 1

4.4.2 Spatiotemporal Model Inputs

This chapter examines both spatial and temporal aspects. The temporal factor

is considered by incorporating time-lag data into the model. A time lag of zero

corresponds to the current sample, while time lags less than 8 exhibit autocorrelation

coefficients exceeding 0.7 for all nodes. These high autocorrelation values indicate

strong temporal correlations. Therefore, eight values are utilised as the input length,

involving the current measured and seven preceding values.

As discussed in Section 4.4.1, the model’s first input (INPUT-1) focuses

on capturing the temporal dependency of the local node data. It includes eight

timesteps of attributes such as PM2.5, PM10, SO2, CO, NO2, O3, temperature, air

pressure, dew point, wind direction, and wind speed. INPUT-1 primarily covers

temporal data. On the other hand, the model’s second input (INPUT-2) incorpo-

rates both temporal and spatial information by including data from the local node

and the surrounding nodes. For INPUT-2, only eight timesteps of PM2.5 from all

nodes are considered, while other environmental and meteorological data are ne-

glected. The spatial dependency can be assessed by analysing the PM2.5 samples

from all 12 nodes and calculating the PM2.5 correlation coefficients between nodes.

Table 4.4 demonstrates that PM2.5 concentrations exhibit strong correlations

(r > 0.7) across nodes, indicating a significant spatial dependency. Therefore, the

feature extraction process for the PM2.5 concentrations from all neighbouring nodes

(INPUT-2) is involved in this experiment. Feature extraction requires transforming

raw data into a format optimised for the deep learning model. This not only sim-

plifies the data by reducing the number of features to a manageable size but also

87

Node1 local data

PM2.5(12)

Node2 local data

Node3 local data

Node12 local data
NODE 1

. . .

PM2.5(2)

P
M

2.
5(

3)

P
M

2
.5

(4
)

P
M

2.5(11)

NODE 2

NODE 3

NODE 4

NODE 11

NODE 12

PM2.5
(from all Nodes)

PM2.5
(from all Nodes)

PM2.5
(from all Nodes)

PM2.5
(from all Nodes)

PM2.5
(from all Nodes)

Node4 local data

Node11 local data

Figure 4.6: Illustration of spatiotemporal consideration for predicting the value of
PM2.5 concentration at Node 1.

preserves the most important aspects of the data. A key aspect of this process is

pinpointing the data attributes that are most influential in achieving the desired

results. Concentrating on these related features will improve the efficiency and pre-

cision of machine learning models, ensuring that the model is trained on data that

offers the best insight into the current problem.

Figure 4.6 illustrates the types of input data required for predicting the PM2.5

concentration at a specific node. To forecast the PM2.5 concentration for the next

1 hour at Node 1, this works utilises the following data:

• The current pollutant and meteorological samples from Node 1.

• Seven previous pollutant and meteorological samples collected by Node 1

(forming the first input of the proposed model).

• PM2.5 values from all other nodes (forming the second input of the proposed

model).

This scenario applies not only to Node 1 but also to all other nodes, where the

model’s inputs are structured similarly to incorporate both temporal and spatial

information for accurate PM2.5 predictions.

4.5 Model Architecture Benchmark

The evaluation process in this section involves the following steps:

1. Twenty different deep learning models were developed and categorised into

three groups.

88

2. The performance of all models was evaluated using RMSE and MAE values

at all nodes.

3. The best-performing model was selected as the proposed model.

4. The TensorFlow file of the proposed model was converted into a TensorFlow

Lite model, ensuring compatibility for edge devices.

5. TensorFlow version 2.2 was used for this work, and further optimisation was

achieved by implementing post-training quantisation of the original Tensor-

Flow model.

6. The performance of each TensorFlow Lite model was evaluated, considering

factors such as model file size, execution time, and prediction accuracy.

Through these steps, the most efficient and accurate TensorFlow Lite model is iden-

tified for deployment on edge devices. The outcomes, including model file size,

execution time, and prediction performance, are thoroughly reported for analysis

and comparison.

Based on the pollutant and meteorological data from the current and the

previous seven hours, a predictive model to forecast the short-term PM2.5 concen-

tration for the next one hour is developed. The models’ performances are assessed

using RMSE and MAE values, which are evaluated for all monitoring nodes. Ta-

ble 4.5 summarises the RMSE and MAE scores obtained for all models, with Node

1 serving as a representative. The complete results for all nodes are provided in

Tables B.1 and B.2.

The proposed model is compared against several other deep learning archi-

tectures, and the results demonstrated that our model outperformed the others.

The comparison in Table 4.5 can be interpreted as follows:

• Simple models with local data only (Group I) utilise the input samples without

involving any CNN layers. These models directly feed the inputs into RNN,

LSTM, GRU, or Bidirectional layers, bypassing the convolutional, pooling,

concatenation, and reshaping layers. The inputs used in this architecture

consist of PM2.5, PM10, SO2, CO, NO2, O3, as well as meteorological data in-

cluding temperature, air pressure, dew point, wind direction, and wind speed.

• Hybrid models with local data only (Group II) incorporate CNN layers to pro-

cess the input samples before passing them to the ANN, RNN, LSTM, GRU,

or Bidirectional layers. These models are hybrid architectures that combine

89

CNN and other layer types. In this group, only INPUT-1 and CNN-1 layers

are utilised, while INPUT-2 and CNN-2 layers are excluded. The properties

of the CNN layers are specified in Table 4.3. For these models, the inputs

consist of PM2.5, PM10, SO2, CO, NO2, O3, temperature, air pressure, dew

point, wind direction, and wind speed. The neighbouring PM2.5 samples are

not considered in this configuration.

• Hybrid models with spatiotemporal dependency (Group III) utilise two inputs,

namely INPUT-1 and INPUT-2, which are processed by CNN layers (CNN-1

and CNN-2) respectively. The first input captures the pollutant and mete-

orological data specific to the target node, while the second input consists

of PM2.5 samples from neighbouring nodes. Models in Group III follow the

structure depicted in Figure 4.4, but the LSTM layer is varied with alternative

layers such as ANN, RNN, GRU, or Bidirectional layers.

• The performance of the artificial neural network (ANN), recurrent neural

network (RNN), long short-term memory (LSTM), and gated recurrent unit

(GRU) models in all groups is evaluated and compared. To ensure fairness,

all models in each group are configured with one hidden layer containing 15

neurons (units). The output layer consists of a dense layer with one neuron,

responsible for producing the final prediction.

• Bidirectional layers extend conventional RNN, LSTM, and GRU models by

processing the input sequence in two different directions. First, the input

sequence is treated in the usual forward direction. Second, the input sequence

is processed in the reverse direction. This approach provides additional context

to the model and can lead to faster and more effective learning from the input

sequence.

Table 4.5 presents a comparison of 20 different models, and the best models

are shown in bold. It is observed that involving a deeper model with CNN layers

as a feature extractor before the predictor (ANN, RNN, LSTM, or GRU) leads to

slight improvements in model performance. In general, Group II outperforms Group

I in performing prediction tasks. The overall accuracy can be further enhanced by

including spatiotemporal considerations along with pollutant and meteorological

data as inputs to the models. Notably, significant improvements can be achieved at

certain nodes. At some nodes, the results can be improved significantly.

As previously stated, the training dataset spans from March 1, 2013, to

March 20, 2016, whereas the testing dataset extends from March 21, 2016, to Febru-

90

Table 4.5: Comparison of RMSE and MAE values (in µg/m3) for PM2.5 prediction
using different model architectures calculated for Node 1.

No. Model Type RMSE MAE

Simple models with local data only (Group I)

1 RNN 18.485 10.636

2 LSTM 17.786 10.230

3 GRU 18.367 10.664

4 Bidirectional RNN 19.377 12.257

5 Bidirectional LSTM 18.016 10.427

6 Bidirectional GRU 18.603 10.944

Hybrid models with local data only (Group II)

7 CNN-ANN 17.757 10.321

8 CNN-RNN 18.227 10.906

9 CNN-LSTM 17.652 10.203

10 CNN-GRU 17.244 9.552

11 CNN-Bidirectional RNN 17.334 10.001

12 CNN-Bidirectional LSTM 17.344 10.054

13 CNN-Bidirectional GRU 17.462 10.486

Hybrid models with spatiotemporal dependency (Group III)

14 CNN-ANN 17.160 10.307

15 CNN-RNN 15.672 9.162

16 CNN-LSTM (Proposed Model) 15.268 8.778

17 CNN-GRU 17.169 9.665

18 CNN-Bidirectional RNN 17.365 10.443

19 CNN-Bidirectional LSTM 15.643 8.853

20 CNN-Bidirectional GRU 16.089 9.512

ary 28, 2017. This segmentation yields 26,784 samples for training and 8,280 samples

for testing. According to the model evaluations, significant improvements are ob-

served at certain nodes. For example, at Node 1, Groups I and II achieve RMSE

values ranging from 17 µg/m3 to 19 µg/m3, while Group III yield RMSE values

between 15 µg/m3 and 17 µg/m3. The proposed model, identified as model num-

ber 16 in Table 4.5, achieves the best RMSE value of 15.322 µg/m3. The RMSE

value of the proposed model surpasses that of all other investigated models. For

instance, the Bidirectional RNN model in Group I resulted in an RMSE value of

19.377 µg/m3, the CNN-LSTM model in Group II produced 17.652 µg/m3, and the

91

CNN-ANN model in Group III returned an RMSE value of 17.160 µg/m3.

As shown in Table 4.5, MAE is usually smaller than RMSE. MAE calculates

the average absolute difference between predicted values and actual values. In con-

trast, Root Mean Square Error (RMSE) calculates the square root of the average

of the squared differences. In RMSE, squaring errors amplify more significant er-

rors, resulting in higher values than MAE. RMSE is more responsive to large errors

because of this squaring process. Therefore, datasets with some large errors may

have increased RMSE compared to MAE. Conversely, MAE treats all errors equally,

offering a more consistent measure of error magnitude.

Further examination of other nodes in Tables B.1 and B.2 reveals that the

PM2.5 concentration at Node 11 can be more accurately forecasted not only by our

proposed model but also by other investigated models. In contrast, predicting the

PM2.5 concentration at Node 12 proved to be the most challenging, as indicated by

the higher RMSE and MAE values. Across all nodes, the proposed model consis-

tently demonstrated superior performance, achieving error values between 14 and

18 for RMSE and between 7 and 9 for MAE.

Figure 4.7 illustrates the boxplot of prediction deviations for all models.

These deviations are calculated by subtracting the actual values from the predicted

values of the models on the test data. The boxplot provides valuable information

about the variability of the data and is particularly useful for comparing distribu-

tions among multiple models. In Figure 4.7, the solid line in the middle of each box

Figure 4.7: Boxplot of the prediction deviations at Node 1.

92

Figure 4.8: Line plot of real and predicted PM2.5 data at Node 1.

represents the median value. Since this graph represents the prediction deviations

between the predicted and actual data, a line close to zero is preferable. A shorter

box and whisker plot indicate more centralised data, suggesting that the model accu-

rately predicts the PM2.5 data. To enhance readability, outlier values are excluded

from the graph. As depicted in Figure 4.7, the proposed model outperforms the

others, generating more centralised data with a median value closest to zero.

To describe model performance more intuitively, Figure 4.8 shows a line plot

between the real and predicted values on the test data at Node 1. The solid and

dashed lines indicate the real and predicted values, respectively. There are 8280

samples collected from 21 March 2016 to 28 February 2017. Overall, the model can

capture the fluctuations of future PM2.5 values effectively, as shown in Figure 4.8.

The larger errors usually happen when there are spikes in the actual data, whereas

our model forecasts successfully for smoother PM2.5 data variations.

Figure 4.9 displays scatter plots from all nodes, illustrating the relationship

between real and predicted values. The ideal scenario would align all points per-

fectly along the solid diagonal line. However, the points deviate from this diagonal

line due to prediction errors. Points below the ideal line indicate predictions lower

than the actual values, while points above the line indicate overestimations. For in-

stance, at Node 3, a higher frequency of deviations below the ideal line is observed.

The model predicted a value of 103.92 µg/m3, while the actual value is 414 µg/m3.

Similar deviations occur at Node 7, where the model predicted 162.36 µg/m3 instead

of the actual value of 556 µg/m3. Some of these mispredictions may be attributed to

measurement errors, characterised by sudden changes in the sequence of measured

samples that are not technically feasible. Figure 4.9 highlights a significant predic-

tion error for PM2.5 data at Node 12. The model predicted a value of 554.24 µg/m3,

whereas the actual measured value is only 3 µg/m3 for the corresponding labeled

point. Upon closer examination of the dataset for Node 12, it reveals a sharp drop

93

in the measured value from 621 µg/m3 to 3 µg/m3, followed by a sudden jump to

144 µg/m3. The LSTM network failed to identify these abrupt changes, leading to

a significant prediction error at this particular point.

A sudden spike in measurements might indicate a glitch. In practical sce-

narios, such as in the UK, the Department for Environment, Food and Rural Af-

fairs (Defra) oversees the data integrity for the UK Automatic Urban and Rural

Monitoring Network (AURN) through a comprehensive system of data reviews and

updates [216]. This includes both automatic and manual processes. AURN’s hourly

mean monitoring data is uploaded every hour as provisional information. This data

is initially screened to eliminate any obviously incorrect data as much as possible.

The process involves two key stages: Data Validation and Data Ratification. Data

Validation is an ongoing activity, essentially refining the initial provisional data.

This stage includes additional manual data review to remove any results from in-

strument malfunctions or incorrect calibrations, including any data initially missing

due to communication issues with monitoring stations, and updates to data scaling

based on the latest calibration factors. Data Ratification, or verification, involves

Figure 4.9: Scatter plots of real and model predicted values of PM2.5 at all nodes.

94

a thorough manual examination of the dataset conducted quarterly for the AURN.

This stage takes a longer-term view of the dataset, incorporating findings from inde-

pendent QA/QC audits of the monitoring stations, ensuring the long-term accuracy

and reliability of the data.

4.6 Model Optimisation for the Edge

4.6.1 Edge Devices

After evaluating the proposed deep learning model, the next step is to optimise and

deploy it to edge devices. For this purpose, Raspberry Pi boards are selected. The

Raspberry Pi board is a popular, credit card-sized single-board computer devel-

oped by the Raspberry Pi Foundation. Over the years, Raspberry Pi boards have

seen numerous applications [217], making them a suitable choice for our project.

Two different Raspberry Pi boards are selected for comparison: the Raspberry Pi 3

Model B+ (RPi3B+) and the Raspberry Pi 4 Model B (RPi4B), to observe varia-

tions in model performance. The RPi4B possesses higher computational capabilities

compared to the RPi3B+, which adds an interesting dimension to our analysis.

The selection of Raspberry Pis is driven by their compatibility with Tensor-

Flow and TensorFlow Lite frameworks. This allows the users to leverage a wide

range of functionalities, including post-training quantisation offered by TensorFlow.

Through this, the performance of both the original and quantised models is demon-

strated by calculating model accuracy, file sizes, and execution times directly at the

edge. Another significant advantage of using Raspberry Pi boards is their popular-

ity within the research and hobbyist communities. This popularity has given rise to

numerous online forums and communities dedicated to Raspberry Pi development,

providing a wealth of resources and support for the experiments.

4.6.2 Lite Models

After the final model has been trained, the next step involves deploying it to the

edge after optimisation. This optimisation process brings benefits in terms of file

size and computation latency. The initial model created is the TensorFlow model

(TF model). The TF model can be converted into TensorFlow Lite (TFLite) model.

TFLite is a lightweight model designed specifically for edge devices. The TFLite

model can be deployed with or without optimisation, allowing the users to explore

and compare both possibilities.

Table 4.6 summarises the file size comparison between the TF and TFLite

95

Table 4.6: TensorFlow and TensorFlow Lite file size comparison.

Properties TF Model TFLite Model

File size (kB) 318 77

models. At this stage, the TFLite model has not yet been optimised. The original

file size is 318 kilobytes, while the lite version is 77 kilobytes, making it four times

smaller. This reduction in file size proves to be crucial for resource-constrained edge

devices, particularly those with limited storage capabilities.

4.6.3 Post-training Optimisations

Post-training quantisation techniques are explored to achieve further reductions in

size and speed. Figure 4.10 presents four optimisation techniques in the Tensor-

Flow framework version 2.2. These techniques include dynamic range quantisation,

full integer quantisation with float fallback, integer-only quantisation, and float16

quantisation. The impact of these techniques are demonstrated in Figure 4.10 and

Figure 4.11.

Without any optimisation/quantisation, the TFLite model has a size of 77

kilobytes, serving as the reference. By applying dynamic range quantisation, a

77

50

41 42 42

0

10

20

30

40

50

60

70

80

90

100

Without
quantisation

Float16
quantisation

Dynamic range
quantisation

Full integer
quantisation -

Integer with float
fallback

Full integer
quantisation -
Integer only

F
ile

 S
iz

e
 (

k
B

y
te

s
)

Figure 4.10: TensorFlow Lite model size comparison.

96

8.49 8.49

7.03

4.73 4.73

3.73 3.82
3.14

2.19 2.19

0

2

4

6

8

10

Without
quantisation

Float16
quantisation

Dynamic range
quantisation

Full integer
quantisation -

Integer with float
fallback

Full integer
quantisation -
Integer only

E
x
e

c
u
ti
o

n
 T

im
e

 (
S

e
c
o
n

d
s
)

Raspberry Pi3 Raspberry Pi4

Figure 4.11: Comparison of TensorFlow Lite execution time for test data.

reduction of approximately 47% in size can be achieved. Full integer quantisation

offers a reduction of about 45%, while float16 quantisation provides a reduction of

around 35%. Among these techniques, dynamic range quantisation outperforms the

others, although it only marginally surpasses full-integer quantisation in terms of

size reduction.

The time required for edge devices to predict the available test data is mea-

sured in this study. The experiment involved the continuous execution of a total

of 8272 hourly samples (data from 21 March 2016 to 28 February 2017) directly at

the edge. The experiment results are presented in Figure 4.11. As depicted in the

figure, the RPi4B board demonstrates a considerable advantage over the RPi3B+

board in all quantisation modes, being two times faster. This performance difference

highlights the superior computational capabilities of the RPi4B, making it a more

efficient choice for executing the prediction tasks at the edge.

The introduction of Float16 quantisation does not lead to an improvement

in execution time as the latency remains unchanged, possibly due to the fixed 32-

bit floating-point datapath on these devices. Specifically, for the RPi3B+ board, it

takes 8.49 seconds to execute the complete test, while the RPi4B board exhibits a

minimal difference of 0.07 seconds (3.75 and 3.82 seconds, respectively).

Although dynamic range quantisation enables a size reduction of approxi-

mately 47%, it offers minimal improvement in execution time. In this mode, the

97

execution time is 7.03 seconds for the RPi3B+ and 3.14 seconds for the RPi4B. On

the other hand, full integer quantisation demonstrates the most effective improve-

ment in execution time, with latencies of 4.73 seconds for the RPi3B+ and 2.19

seconds for the RPi4B.

In addition to considering the model size and execution time, it is crucial

to evaluate model accuracy after applying quantisation. The details of the RMSE

and MAE scores for the initial TensorFlow and TensorFlow Lite models can be

found in Table C.1 in Appendix C. Despite the minimal deviation in results between

the optimised models, this section presents the model performance more intuitively

through a boxplot, as depicted in Figure 4.12. This figure provides insights into the

prediction deviation between the TFModel and TFLite Model results.

The boxplot shows that TFLite without quantisation and TFLite with float16

quantisation exhibit similar accuracies, with very slight deviations from the origi-

nal TF model. TFLite with dynamic range quantisation displays a slightly wider

deviation range. On the other hand, both TFLite integer quantisations exhibit the

widest box and whisker ranges, indicating that these quantisation methods are less

effective in prediction accuracy compared to other post-quantisation techniques.

TFLite without quantisation proves to be a suitable technique when prioritis-

Figure 4.12: Boxplot of prediction deviation resulted from each TFLite model.

98

ing model accuracy. However, it may not be optimal for size reduction and execution

time improvement. Both dynamic range and float16 quantisations effectively main-

tain model accuracy while offering different benefits. Dynamic range quantisation

performs better in terms of model size reduction and execution time compared to

float16 quantisation. Full integer quantisations outperform other TFLite models

concerning model size and latency improvements. However, these methods do ex-

hibit a slight reduction in model accuracy. Therefore, the choice of quantisation

technique depends on the specific priorities and trade-offs the users aim to make

between model accuracy, size reduction, and execution time improvement.

To visually explore the relationship between TensorFlow Lite models and

their initial TensorFlow counterpart, scatter plots can be used for comparison, as

illustrated in Figure 4.13. While the figure shows results for Node 1, it is impor-

tant to note that the same behaviour is observed for all nodes. The scatter plots

demonstrate that the results obtained by TFLite without quantisation, dynamic

range quantisation, and float16 quantisation closely align with those predicted by

the initial TensorFlow model, as indicated by the smooth straight-line pattern. The

same effect can be observed in Figure 4.13. However, larger deviations are notice-

able for integer quantisation models, both integers with fallback and full integer

Figure 4.13: Scatter plot of the prediction data obtained by TensorFlow and Ten-
sorFlow Lite models.

99

quantisations. The straight-line pattern appears more scattered, concluding that

full integer quantisation slightly impacts model accuracy.

4.7 Summary

Edge computing addresses latency, privacy, and scalability issues by bringing com-

putation closer to data sources. It also enables embedding intelligence at the edge,

which can be achieved by utilising Machine Learning (ML) algorithms. Specifi-

cally, Deep Learning, a subset of ML, can be effectively implemented at the edge.

This study proposes a hybrid deep learning model consisting of 1D Convolutional

and Long Short-Term Memory (CNN-LSTM). The model aims to predict short-

term hourly PM2.5 concentration at 12 different nodes. The results of our proposed

model outperform those of other deep learning models in terms of performance, as

demonstrated by the calculation of RMSE and MAE errors at each node.

Implementing a parallel structure in CNN layers effectively enhances the

performance of deep learning models. One layer can focus on processing local data,

while another is dedicated to incorporating spatiotemporal data from neighbouring

sites. In the top layers, LSTM layers are effectively utilised to predict future time-

series data. To deploy the selected model on edge devices, single-board computers

are chosen. In this chapter, Raspberry Pi boards have successfully executed both

the original TF models and TF models with post-training quantisation.

This chapter evaluated four different post-training quantisation techniques

provided by the TensorFlow Lite framework to implement an efficient model for edge

devices. These techniques include dynamic range quantisation, float16 quantisation,

integer with float fallback quantisation, and full integer-only quantisation. While

the dynamic range and float16 quantisation techniques maintain model accuracy,

these approaches did not significantly improve latency. On the other hand, the

full integer quantisation technique outperformed other TensorFlow Lite models in

terms of model size and latency, even with a slight reduction in model accuracy.

This chapter focuses on the Raspberry Pi 3 Model B+ and Raspberry Pi 4 Model B

boards as the targeted edge devices. Technically, the Raspberry Pi 4 demonstrated

lower latency due to its more capable processor.

When employing quantisation, a trade-off exists among accuracy, file size,

and execution time. Based on the conducted experiments, implementing dynamic

range quantisation proves to be a win-win solution. By dynamic range quantisation,

the file size of the TFLite model can be reduced compared to the original model while

maintaining almost the same level of accuracy. Moreover, although the execution

100

time is slightly reduced compared to the original model, this negligible difference is

not considered significant.

101

Chapter 5

Collaborative Edge Learning

This chapter is based on the following submitted manuscript:

• I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, ”Collaborative Learning at

the Edge for Air Pollution Prediction,” IEEE Transactions on Instrumentation

& Measurement, vol. 34, pp.1-12, Dec. 2023 [3].

5.1 Introduction

The exponential growth of data generation in recent years has spurred signifi-

cant interest in collaborative learning to address large-scale machine learning prob-

lems [218]. Numerous studies have explored this topic from diverse perspectives,

contributing valuable insights to the field. For instance, Henna et al. [219] leveraged

graph neural networks (GNN) to exploit topological dependencies among mobile

edges, facilitating efficient inference. Their collaborative GNN-edge approach par-

titions the GNN based on latency requirements, resulting in improved prediction

performance compared to cloud-based methods. The proposed techniques enhance

spectrum utilisation, throughput, and response times. Published work by Song and

Chai [220] presents a collaborative learning framework tailored for multi-class clas-

sification problems. The framework comprises three key components: generating

the training graph, defining the learning objective, and optimizing the classifiers.

Through collaborative learning of deep neural networks, their method effectively re-

duces generalisation errors and enhances robustness against incorrect labels or data

augmentation.

The conventional approach to implementing collaborative learning involves

utilising a model averaging method, commonly employed in the federated learning

(FL) paradigm [221]. This method enables collaborative learning across multiple

102

end devices. Unlike centralised learning, FL is a distributed learning technique

that allows training a global model by collaborating edge devices without sharing

sensitive training data [222]. With FL, edge devices can train a shared global model

locally, leveraging their own data resources. However, to overcome challenges such

as poor convergence on heterogeneous data and the limited generalisation ability of

the global model with respect to local distributions, personalised federated learning

(PFL) has emerged as a viable solution [223]. PFL aims to tailor the training

process to individual devices, ensuring improved performance and adaptation to

local variations.

Gholizadeh and Musilek proposed a novel approach called federated learning

with hyperparameter-based clustering [224]. The authors applied this method to

predict individual and aggregate electrical loads. In their work, the central server

adapts a specific neural network model based on the hyperparameters obtained

for each cluster, considering factors such as accuracy, computational cost, or the

trade-off between the two. The results demonstrated that the proposed clustering

method can significantly reduce the convergence time of federated learning. An-

other approach for implementing distributed learning through model averaging was

introduced by Mi et al. [225]. They achieved effective distributed learning by in-

corporating a cyclical learning rate and increasing the local training epochs. The

proposed method was validated across various classification tasks involving images,

text, and audio. The federated learning approach has also found applications in

diverse domains such as cybersecurity for IoT [226], healthcare [227], and manufac-

turing [228]. In the context of air quality studies, federated learning can be leveraged

to facilitate knowledge sharing among multiple monitoring stations.

While many existing studies predominantly rely on computer simulations for

predicting PM2.5, this chapter takes a different approach by directly implementing

collaborative learning strategies at the edge. This involves offloading computation

tasks closer to the data source. Additionally, the current body of collaborative

learning research has not specifically addressed the domain of air quality prediction.

This study aims to bridge this gap by introducing a collaborative learning framework

tailored for air pollution prediction.

The primary advantage of employing collaborative learning lies in its abil-

ity to enhance prediction accuracy compared to individual learning methods. This

approach closely mimics real-life scenarios where numerous monitoring devices are

deployed across multiple locations, eliminating the dependency on cloud-assisted

services. This approach considers the availability of air pollution data from multiple

observation stations, the spatial and temporal correlations between these stations

103

that influence air quality status, and the potential for improving air quality predic-

tion through collaborative learning. This chapter aims to achieve more accurate and

robust air quality predictions by leveraging the collective knowledge from diverse

monitoring stations.

5.2 Rapid Expansion of Sensing Devices

A novel approach has recently been suggested to monitor air quality status using

an extensive network of low-cost sensor nodes [229, 230, 231, 232]. This innovative

paradigm aims to gather spatiotemporal air pollution data by employing numerous

sensing devices, complementing traditional methods that rely on more expensive and

less accurate instrumentation [53]. Moreover, the data collected from these sensing

nodes are often transmitted over the Internet, enabling remote air quality moni-

toring. Consequently, due to the rapid growth of these sensing devices, there has

been a substantial increase in the volume of data generated, stored, and transmit-

ted [55]. The concern arises as the number of Internet-connected devices increases

in the future. Furthermore, it is not just air quality monitoring devices that are

linked to the internet; a myriad of other devices, including personal mobile phones,

gadgets, personal and office computers, and countless other IoT devices, will join

the network.

Due to the extensive data collection, Machine Learning (ML) methods have

gained significant positions across various domains, including the prediction of air

quality tasks [56]. Deep Learning (DL), a subset of ML, presents a compelling

approach to forecasting air quality status by effectively capturing spatial and tem-

poral features. In deep learning models, many layers with many neurons collaborate

synergistically to process vast input data. Each layer performs specific operations

on the input data, gradually extracting increasingly abstract and meaningful pat-

terns. This hierarchical representation allows the model to distinguish complex

features and relationships in the data, ultimately enabling accurate inference and

prediction. As information flows through the network, each layer refines the data

representation, capturing both low-level details and high-level concepts.

The standard method of centralised learning involves gathering all data from

end devices and storing them in a data centre, often implementing a cloud-centric

approach to train and evaluate deep learning models. However, the rise in con-

nected devices is causing network congestion, which forces edge devices to handle

more data [233]. Optimising a resource at the edge of a network is known as edge

computing [234]. Edge computing involves processing data close to its source [224].

104

The edge computing environment allows computing tasks to be offloaded from the

centralised cloud to near-sensing devices, reducing the amount of data transferred by

performing preprocessing operations at the edge [235]. For a wide range of big data

applications, edge computing excels in terms of memory cost, energy consumption,

and latency.

Spatial and temporal correlations exist between air quality data collected

from different air monitoring stations [178]. This implies that the air pollution level

at a given station is influenced by air pollution concentrations at nearby stations

(spatial relation) and its own historical data (temporal relation). While air quality

may appear stable during certain periods, it is subject to fluctuations. It requires

continuous monitoring to assess its variability accurately. Adjacent areas also of-

ten exhibit a similar variation in spatial domains [236]. Understanding spatial and

temporal dependencies is essential [237], and by comprehending these dependencies,

we can make more informed decisions regarding air quality status. Understanding

spatial and temporal dependencies helps us understand air pollution dynamics bet-

ter. This knowledge helps us find pollution hotspots, predict trends, and create

better strategies to reduce pollution and protect public health. Policymakers, plan-

ners, institutions and communities can benefit from this understanding to make

decisions and take action to improve air quality. Comprehending spatiotemporal

factors is critical to developing an effective air quality management system that

supports environmental sustainability and community welfare. Moreover, during

the development of machine learning models, collaborative learning can be used

to incorporate spatiotemporal data. Collaborative learning among sensing devices

using spatiotemporal data may improve deep learning model performance [236].

This chapter investigates the practical application of collaborative learning

for air quality prediction on edge devices. By utilising multiple air quality moni-

toring stations and considering the spatiotemporal features of air pollutant data,

this chapter introduces methodologies for collaborative deep learning model sharing

and collaborative measurement data sharing. Additionally, a commonly used model

averaging technique is incorporated into the framework. Some aspects, including

training losses, method accuracies, and communication costs associated with each

approach, are discussed to assess the effectiveness of the proposed collaborative

learning methods.

105

5.3 Chapter Contributions

This chapter considers the availability of air pollution data from multiple obser-

vation stations, the spatial and temporal correlation between stations that affects

air quality status, and the possibility of improving air quality prediction through

collaborative learning. This work investigates three collaborative learning strate-

gies and applies them directly to edge devices by performing on-device training and

inferencing. Specifically, our contributions are as follows:

• Introducing novel approaches leveraging spatiotemporal data (called SpaTemp),

deep learning model sharing (called ClustME), and the widely adopted col-

laborative learning method (i.e., federated learning or FedAvg) to enhance air

quality prediction.

• Designing algorithms to enable collaborative learning on edge devices, utilising

the MQTT communication protocol for seamless operation.

• Examining key aspects of the proposed collaborative learning strategies, in-

cluding training losses, learning accuracy, learning period, and communication

costs.

• Expanding the scope of this work by providing valuable insights into the po-

tential expansion of edge device networks.

5.4 Proposed Framework

The research framework is illustrated in Fig. 5.1, presenting an overview of the key

components and workflow of the study. Initially, a subset of air quality monitoring

stations is selected from the available dataset, considering the availability of de-

vices. Next, the dataset is divided into three partitions: 70% for training, 20% for

validation, and 10% for testing purposes.

Before proceeding with the subsequent steps, a feature selection process is

performed to identify the optimal number of input variables. The preprocessed

datasets are then utilised in collaborative learning techniques implemented directly

at the edge using the MQTT protocol. In this study, three collaborative learning

methods are proposed: FedAvg, ClustME, and SpaTemp. These methods are ap-

plied to facilitate collaborative learning and enhance the prediction accuracy of the

air quality model.

106

In addition to the collaborative learning approach, the performance of the

locally-trained model is also evaluated. To assess the effectiveness of both ap-

proaches, several evaluation metrics, including Root Mean Square Error (RMSE),

Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), coefficient

of determination (R2), and rate of improvement on RMSE (RIR) are employed.

These metrics provided a comprehensive evaluation of the model’s predictive accu-

racy.

Apart from evaluating the overall performance on the test data, this chap-

ter specifically assesses the edge performance. This evaluation focuses on the time

required for each device to complete the training session. By considering the compu-

tational efficiency of the edge devices, this chapter gains insights into the practicality

and effectiveness of implementing the collaborative learning approach directly at the

edge. Finally, this chapter explores the potential for scaling edge device networks.

Initial
Dataset

Stations

Selection

Training Set Validation Set Test Set

Input Feature

Selection

Pre-processed
Training Set

Pre-processed
Validation Set

Pre-processed
Test Set

Model Evaluation

• RMSE

Dataset

Preprocessing

SpaTemp

ClustME

FedAvg

Collaborative

Learning Methods

Evaluation Metrics

• RMSE

• MAE

• MAPE

• R2

• %RIR

Communication

Cost

Edge Performance

Network Scaling

Performance Evaluation

and Expansion

Edge Learnings via MQTT

SpaTemp

ClustME

FedAvg

Trained Model

Local Training Local Training

Local Training

Figure 5.1: Proposed framework for collaborative learning at the edge.

107

5.5 Data Preprocessing

The dataset used in this chapter is similar to the one utilised in Chapter 4. However,

considering the device availability during experimentation, this work specifically fo-

cuses on eight monitoring stations. Regardless of the actual geographical locations

and the correlations among the stations, the stations were organised alphabetically

based on their names. The first eight stations were selected for this study. The cho-

sen stations are Aotizhongxin, Changping, Dingling, Dongsi, Guanyuan, Gucheng,

Huairou, and Nongzhanguan. In this chapter, these selected stations were labelled

as Station-01, Station-02, Station-03, and so forth, up to Station-08. This naming

procedure for the stations aims to simplify further analysis, such as labelling table

components and figures. This naming convention is unrelated to the geographical

locations of the stations. Additionally, eight edge devices were employed to repre-

sent each monitoring station. The locations of all air quality monitoring sites can

be shown in Fig.5.2.

Each monitoring station’s data consists of 12 columns and 36,064 rows, span-

ning from 1 March 2013 to 28 February 2017. The recorded data is hourly, encom-

passing various pollutant measurements (such as PM2.5, PM10, SO2, CO, NO2, and

O3) as well as meteorological data (temperature, air pressure, dew point, rain, wind

direction, and wind speed). Missing values in the dataset were handled by filling

them with the most recently available data at the corresponding timestamp. This

approach ensured that the dataset remained complete for further analysis. Addi-

tionally, to facilitate model training, all attributes were normalised using a min-max

Figure 5.2: Map of air quality monitoring stations in Beijing and its surroundings.

108

scaler. This scaling technique transformed the attribute values to a standardised

range between 0 and 1, preserving the relative relationships between the data points

while accommodating different scales across attributes.

The dataset was divided into three subsets for training, validation, and test-

ing purposes. The training data consisted of records from 1 March 2013 to 18

December 2015, accounting for approximately 70% of the dataset. The validation

data spanned from 19 December 2015 to 5 October 2016, constituting around 20% of

the dataset. Finally, the test data encompassed the period from 6 October 2016 to

28 February 2017, comprising approximately 10% of the dataset. In this study, the

focus was specifically on predicting PM2.5 concentrations. The primary objective

was to evaluate the best model for short-term prediction, specifically forecasting the

PM2.5 concentration for the next one hour.

5.6 Collaborative Strategies

This work implements MQTT for communication protocol and federated learning

(FL) for collaborative edge device learning. The terms client and server are com-

monly used in both MQTT protocol and federated learning (FL) algorithm. To avoid

confusion, this chapter refers MQTT server as broker and FL server as coordinator.

Both MQTT and FL clients are referred to as edge devices or stations.

5.6.1 Learning Overview

Three collaborative learning strategies are implemented, as depicted in Fig. 5.3.

These methods are:

1. FedAvg : Federated learning with a federated averaging method.

2. ClustME : Learning with clustered cyclic peer-to-peer model exchanges, incor-

porating personalised learning through station clustering before local training

and model exchanges.

3. SpaTemp: Learning with spatiotemporal data exchanges, where the trans-

ferred data among edge devices includes measurement data such as pollutant

data, temperature, humidity, etc.

Each strategy offers a distinct approach to performing air quality predic-

tion. In FedAvg and ClustME, the transferred data among edge devices are the

deep learning models. As a result, no measurement data, such as pollutant data,

109

Subscribe data to

neighbouring stations

Publish data to

neighbouring stations

Train data

locally

S
ta

ti
o

n
-0

1
S

ta
ti

o
n

-0
2

S
ta

ti
o

n
-0

8

…

(c) Learning with spatiotemporal data

exchanges (SpaTemp)

(b) Clustered peer-to-peer model exchanges (ClustME)

Stations (Clients)

FL Server

Local Learning

Model Exchange

Air Quality Data Exchange

Σ Model Aggregation

Process Flow

Σ

Train with local

data at the edge

Aggregate the

local updates
Send local updates

to coordinator

Distribute global

model to edge

process repeats until training complete

(a) Federated Learning (FedAvg)

Train with

local data
Shift trained

model

Train with

local data

Shift trained

model

Figure 5.3: Implemented collaborated learning strategies.

temperature, humidity, etc., are exposed to other devices. These methods focus on

exchanging and aggregating model parameters to improve overall learning accuracy.

In contrast, SpaTemp incorporates the exchange of measurement data. This

strategy facilitates the exchange of spatiotemporal information among edge devices

to enhance the learning process. Unlike FedAvg and ClustME, SpaTemp involves

sharing measurement data between devices. Furthermore, ClustME incorporates

personalised learning by leveraging station clustering. Before local training and

model exchanges, stations are grouped into clusters. This personalised learning

approach allows each cluster to tailor its training based on local characteristics and

subsequently exchange models within the cluster.

The FedAvg collaborative learning strategy consists of four steps, as depicted

in Fig.5.3(a). These steps are:

1. Model initialisation: Each edge device (station) initialises its model directly

on the device.

2. Local model updates: Each station performs model updates by training

its model using its local data. The training is conducted independently on

each device. After completing the local training, each station sends its locally

updated model to the coordinator.

110

3. Model aggregation: The coordinator collects all the updated models from

the stations. The coordinator performs server aggregation by aggregating the

received models from the stations.

4. Global model distribution: Once the aggregation is done, the coordinator

transmits the aggregated model back to all stations.

The process described above is repeated for the desired number of training rounds,

allowing the models to collectively learn from the distributed data across the sta-

tions.

The ClustME collaborative learning strategy workflow is illustrated in Fig.5.3(b).

This strategy incorporates a time-series clustering step prior to local updates and

model exchanges. In this chapter, the K -means clustering method is employed to

create two clusters of air monitoring stations based on the similarity of their time-

series data. Each formed cluster follows a similar process path. Within each cluster,

the stations proceed as follows:

1. Local model training: Each station trains its model using its local data,

taking into account the time-series characteristics specific to that station.

2. Model sending: After local training, each station transfers its trained model

to another monitoring station within the same cluster.

3. Model receiving: Each station also receives a trained model from another

station within the same cluster. This process creates a circular shift pattern

among the stations. The exchanged models contribute to the collective learn-

ing of each station.

The process described above is repeated until all stations in the cluster obtain the

trained models from other stations. This iterative exchange and shifting of models

enable the stations to benefit from the collective knowledge and experiences of the

other stations within the same cluster.

The SpaTemp collaborative learning strategy implemented in this chapter

follows the proposed strategy described in our previous work [1]. For each station,

three nearby sites that exhibited the highest correlation based on the stations’ pollu-

tant data are selected based, implementing Pearson’s correlation coefficient between

stations. The workflow of SpaTemp, as depicted in Fig.5.3(c), can be summarised

as follows:

111

1. Data request: Each station requests data from the three most correlated

nearby stations. This step allows the station to acquire additional information

from stations with high correlation, enhancing the learning process.

2. Data serving: The station, after receiving its requested data, serves its local

data to other stations that request it. This data exchange enables the sharing

of information between stations, contributing to collective learning.

3. Local training: Once the data exchange process is completed, each station

trains the shared data locally. This localised training allows stations to adapt

and learn from the collective knowledge acquired through data sharing.

By incorporating the correlation-based data selection and data sharing among sta-

tions, SpaTemp promotes collaborative learning and takes advantage of the spatial

and temporal relationships within the dataset to improve prediction performance.

5.6.2 Federated Learning (FedAvg)

This chapter adopts the Federated Average (FedAvg) algorithm proposed by McMa-

han et al. as the basis for our collaborative learning approach [221]. Typically,

federated learning can be described as follows. First, the main model starts on a

central server. This model is the same for all devices involved in federated learning.

Then, the global model is sent to the participating local devices. Each device uses

this model to learn from its own data. Local devices repeat this process without

sharing their data with a central server to keep it confidential. Once local learning

is complete, the device sends updates or learned patterns to a central server. The

server combines these updates to improve the main model, using techniques such

as averaging. After updating, the server checks the performance of the main model

with validation data. Then, the corrected global model is saved for the next round

of learning. This process continues, with local devices contributing to major model

improvements while maintaining user data privacy.

FedAvg is widely used as a standard federated learning (FL) setting. Al-

gorithm 5.1 presents the modified version of FedAvg used in this study. The total

number of K edge devices representing air quality monitoring stations are used in

this work, where K = 8. Each station possesses its local air quality data and trains

its model locally, eliminating the need to send raw data to a centralised coordina-

tor. The local dataset is divided into batches of size B and utilised to train the

local model during the local epochs E. At round t, each station k locally trains

its model. For each local epoch and batch, the station updates its model parame-

ters as θkt ← θkt − η∇Lk(θkt), where θkt represents the model parameters, η denotes

112

Algorithm 5.1 Modified FederatedAveraging implemented in this work (FedAvg).

Coordinator executes:
for each global round t = 1, 2, . . . , R do
for each station k ∈ K in parallel do

θkt+1 ← StationUpdate(θt)
end for
θkt+1 ←

∑K
k=1

1
K θkt+1

end for

StationUpdate(θ) :
B ← (split local dataset into batches of size B)
for each local epoch i from 1 to E do
for each batch b ∈ B do

θ ← θ − η∇L(θ; b)
end for

end for
return θ to coordinator

the learning rate, and Lk(θkt) represents the loss function specific to each station

k. Subsequently, each device transmits its parameter update, and the coordinator

receives these updates from all participating stations denoted as θkt+1. The coordi-

nator aggregates the received parameters from all stations, computing the weighted

average as θkt+1 ←
∑K

k=1
1
K θkt+1. The aggregated results are then sent back to the

stations, and the process repeats for a total of R rounds. This iterative procedure

ensures that the models collectively learn from the distributed data across the sta-

tions, potentially improving the overall performance of the collaborative learning

process.

It is important to highlight that in this approach, all edge devices partici-

pated in each round of federated learning. As a result, there was no need for the

coordinator to perform sample fractioning in each round. The air quality datasets

were uniformly trained across all stations with the same dataset size. Additionally,

during the aggregation step, the updated parameters received from each station

were equally weighted. To minimise the communication cost in the first round, this

approach implemented a strategy where the model’s weights were initialised directly

at the edge devices instead of transmitting the initial weights from the coordinator

to the edge devices. This approach helped reduce the amount of data that needed

to be exchanged during the initial stage, improving the overall efficiency of the

collaborative learning process.

Managing MQTT publish/subscribe topics enables the direct implementation

113

of the federated learning (FL) workflow on edge devices. This approach involves

determining the necessary topics at each step of the FL process and deciding which

device should publish/subscribe to a particular topic.

5.6.3 Clustered peer-to-peer model exchanges (ClustME)

This learning strategy shares the locally trained models among the stations through

a cyclic peer-to-peer model-shifting process. Each station trains its own model and

then passes it on to another station, creating a circular pattern of model trans-

fers. To optimise the efficiency of this process, this approach employs a clustering

technique.

Given that this chapter’s objective is to predict the value of PM2.5, this

approach utilised K-means clustering algorithm based on the series of PM2.5 data.

This clustering method becomes particularly beneficial when numerous edge devices

are involved in collaborative learning. With many participating devices, it becomes

challenging to circulate the trained models among all participants. By applying

clusters, the participating stations can be grouped, and the model transfers within

each cluster can be limited, reducing the overall number of model transfers required.

Moreover, the clustering method helps in optimising the total learning time. By

limiting the model transfers to within clusters, the communication overhead can be

minimised, and the process of exchanging the trained models among the stations

can be streamlined.

ClustME uses the dynamic time warping metric for assignment and barycen-

tre computations to cluster stations based on the history of PM2.5 data. The tslearn

Python package was employed for this purpose [238]. The stations are divided into

two clusters using the clustering method, and the clustering results are summarised

in Table 5.1. It is observed that Station-01, Station-02, Station-03, and Station-07

belonged to the same cluster, while the remaining stations formed the other clus-

ter. Each cluster consisted of four stations. Considering that each cluster contains

four stations, a total of three model shifts were required after the local updates

to complete one learning workflow, as depicted in Fig. 5.3(b). This cyclic peer-to-

peer model-shifting process facilitated the dissemination of locally trained models

Table 5.1: Cluster of stations based on time-series of PM2.5 data.

Cluster-1 Cluster-2

Station-01,-02,-03, and -07 Station-04,-05,-06, and -08

114

across the stations within each cluster, enabling collaboration and knowledge sharing

among the devices.

Algorithm 5.2 presents the general workflow of the ClustME method within

a station cluster. Instead of sending local updates to a central coordinator, the

locally trained model is transmitted to a specific target station within the cluster.

To illustrate this process, let’s consider Cluster-1. Station-01 sends its updated

model to Station-02, Station-02 sends its updated model to Station-03, Station-03

sends its updated model to Station-07, and Station-07 sends its updated model back

to Station-01. This cyclic peer-to-peer model exchange is established, enabling the

circulation of trained models among the stations within the cluster. It is important

to note that this method has no aggregation step. Each station receives a model

Algorithm 5.2 Clustered peer-to-peer model exchanges (ClustME).

for each cluster c = 1, 2, . . . do
for each global round t = 1, 2, . . . , R do
for each station k = 1, 2 . . . ,K in parallel do

θkt ← StationUpdate(θt)
end for
for each station k = 1, 2 . . . ,K do

θkt+1 ←ModelSharing(θkt)
end for

end for
end for

StationUpdate(θ) :
B ← (split local dataset into batches of size B)
for each local epoch i from 1 to E do
for each batch b ∈ B do

θ ← θ − η∇L(θ; b)
end for

end for
return θ

ModelSharing(θk) :
// if k = K, then send to k = 1
Send θk to k + 1
// if k = 1, then receive from k = K
Receive θk−1 from k − 1
// update model
θk ← θk−1

return θk

115

from a neighbouring station, updates the received model with its local data, and

subsequently sends the updated model to the designated target station. This process

ensures that the knowledge and insights gained from local training are shared across

the cluster, fostering collaborative learning among the edge devices.

In this work, a coordinator device is assigned to facilitate and manage the

collaborative learning process among the stations. The stations involved in the

learning process may have varying speeds in completing the training rounds. There-

fore, the coordinator device plays a crucial role in coordinating data transmission

between the stations, ensuring a smooth and synchronised workflow throughout the

training process.

5.6.4 Spatiotemporal data exchanges (SpaTemp)

In the SpaTemp approach, instead of transmitting deep learning models, the stations

exchange pollutant data with each other. Each station combines its local data with

the pollutant data received from nearby stations to train its local model. Unlike

FedAvg and ClustME, in SpaTemp, the updated model is not transmitted to other

stations. Instead, each station collects data from the three most correlated nearby

stations based on their PM2.5 values. By incorporating this additional data, each

station can train its model locally and improve its prediction capabilities.

In addition to collecting data from the three most correlated nearby stations,

each station shares its pollutant data with other stations upon request. In the

context of the MQTT protocol, these request and transfer processes are referred

to as subscribing and publishing, respectively. Subscribing and publishing are the

fundamental actions driving MQTT’s communication flow. As an illustration, if

Station-01 wants to collect data from Station-04, Station-01 needs to subscribe to

a specific topic related to Station-04, and Station-04 needs to publish data on that

topic to Station-01. This way, the data will be transmitted from Station-04 to

Station-01. The workflow of the SpaTemp process is presented in Algorithm 5.3.

After calculating the Pearson correlation coefficient for all stations, the sub-

scribing and publishing pairs were obtained, as illustrated in Fig. 5.4(a). As shown

in the figure, each station subscribes to the three most correlated nearby stations

and publishes its data to one or more stations. For example, Station-01 subscribes

to data from Station-05, Station-04, and Station-08. Additionally, Station-01 pub-

lishes its data to Station-04, Station-05, Station-06, and Station-08, as shown in

Fig. 5.4(b). Similarly, Station-02 subscribes to data from Station-03, Station-06,

and Station-07, and it publishes its local data to Station-03 and Station-07. When

implementing this method directly on edge devices, one of the main challenges is

116

Algorithm 5.3 Learning with spatiotemporal data exchanges (SpaTemp).

Station Data Collection:
M← (Collect PM2.5 data from participating stations)
C ← (Perform Pearson’s correlation onM)
for station k ∈ K do
// create a list of nearby stations
S ← (Select three significant C relative to k)
D ← (Collect PM2.5 from all members of S)
H ← (Combine D with station’s local dataset)

end for

for each global round t = 1, 2, . . . , R do
for each station k = 1, 2 . . . ,K in parallel do

θkt+1 ← StationUpdate(θt)
end for

end for

StationUpdate(k, θ) :
B ← (split local dataset into batches of size B)
for each local epoch i from 1 to E do
for each batch b ∈ B do

θ ← θ − η∇L(θ; b)
end for

end for
return θ

orchestrating the transfer of pollutant data among stations.

5.7 Deep Learning Models

Fig. 5.5 illustrates the deep learning models proposed in this chapter, which were

implemented using the TensorFlow 2.4 framework [114]. These models primarily

consist of three different types of layers: one-dimensional convolutional (Conv1D)

layers, long short-term memory (LSTM) layers, and fully connected (Dense) layers.

The key properties of each layer, such as the number of filters, kernel size, and

unit size, are indicated in Fig. 5.5. Except for the last layer, each layer utilises

the rectified linear unit (ReLU) activation function. The output (Dense) layer does

not apply any activation function, and the other layer parameters follow the default

settings provided by the framework.

FedAvg and ClustME employ the same model architectures, as shown in Fig.

5.5(a). On the other hand, SpaTemp utilises a slightly different design, as depicted

117

Station-01

Station-02

Station-03

Station-04

Station-05

Station-06

Station-07

Station-08

S
ta

ti
o

n
-0

1

S
ta

ti
o

n
-0

2

S
ta

ti
o

n
-0

3

S
ta

ti
o

n
-0

4

S
ta

ti
o

n
-0

5

S
ta

ti
o

n
-0

6

S
ta

ti
o

n
-0

7

S
ta

ti
o

n
-0

8

Subscribe

P
u
b

lis
h

Station-06

Station-01

Station-08

Station-05

Station-04

(a) (b)

Figure 5.4: (a) Subscribing and publishing data pairs performed in SpaTemp, and
(b) An example of publishing and subscribing implemented at Station-01.

in Fig. 5.5(b). SpaTemp features a parallel structure of convolutional layers, with

both paths sharing the same layer properties. In this architecture, the first path is

responsible for extracting features from the local data, while the second path cap-

tures the characteristics of the shared spatiotemporal data. These spatiotemporal

data are obtained from three nearby air quality stations with the highest Pearson’s

correlation coefficients to the target station. Since our task involves time-series data

for regression purposes, it is crucial to preserve the sequential order of the air qual-

ity data to extract accurate information. Furthermore, SpaTemp collects data from

multiple stations, necessitating a parallel structure to fulfil these requirements.

All models in this work are designed to process current and past seven hours

of data, creating input sets of eight hours in length. Given that the dataset consists

of 11 columns (PM2.5, PM10, SO2, CO, NO2, O3, temperature, air pressure, dew

point, wind direction, and wind speed), the size of the input sets becomes 8 × 11.

These input sets are then utilised for training the models for predicting hourly values

of PM2.5. In SpaTemp, the deep learning model not only accepts the local air quality

data (representing the first path of the input model) but also incorporates PM2.5

data collected from itself and the other three stations (representing the second path

of the input model). Consequently, the second path of the input model takes a

matrix with the size of 8 × 4 to account for the additional data from neighbouring

118

Conv1D (filters = 15,

kernel_size = 3)

Conv1D (filters = 12,

kernel_size = 3)

Conv1D (filters = 10,

kernel_size = 2)

Conv1D (filters = 8,

kernel_size = 2)

Conv1D (filters = 5,

kernel_size = 2)

LSTM (units = 15)

Dense (units = 1)

Input
(Local Air Quality Data)

Output
(Predicted PM2.5 Value)

Concatenate, Reshape

Dense (units = 1)

LSTM (units = 15)

Conv1D (filters = 15,

kernel_size = 3)

Conv1D (filters = 12,

kernel_size = 3)

Conv1D (filters = 10,

kernel_size = 2)

Conv1D (filters = 8,

kernel_size = 2)

Conv1D (filters = 5,

kernel_size = 2)

Input
(Shared Spatiotemporal Data)

Conv1D (filters = 15,

kernel_size = 3)

Conv1D (filters = 12,

kernel_size = 3)

Conv1D (filters = 10,

kernel_size = 2)

Conv1D (filters = 8,

kernel_size = 2)

Conv1D (filters = 5,

kernel_size = 2)

Input
(Local Air Quality Data)

Output
(Predicted PM2.5 Value)

(a) Deep Learning Model for

FedAvg and ClustME

(b) Deep Learning Model for

SpaTemp

Global_Average_Pooling Global_Average_Pooling

Figure 5.5: Proposed deep learning architectures.

stations.

5.8 Collaborative Learning Evaluation

The evaluation of the proposed collaborative learning approach involves several as-

pects. First, the selection of input features was conducted to determine the optimal

performance, considering different numbers of features from the original dataset.

The losses during training were visualised to assess the learning capability of the

model with respect to the training data. Subsequently, the model’s performance

119

was evaluated on unseen test data for each round of training. Furthermore, the

time required by each learning technique to complete the training task was mea-

sured, and the performance of each edge device was assessed. The communication

costs associated with the execution of the learning strategies were also evaluated.

Additionally, the expansion of edge device networks was discussed, considering the

scalability and potential growth of the system.

For evaluating the model’s performance on the test data, several metrics were

employed, including root mean squared error (RMSE), mean average error (MAE),

mean absolute percentage error (MAPE), and coefficient of determination (R2).

These metrics provide insights into the models’ accuracy, precision, and predictive

capability.

5.9 Application Scenario

The experimental setup involves eight air quality monitoring stations, each repre-

sented by a different edge device. Station-01 to Station-07 are equipped with three

Raspberry Pi (RPi) board variants, while Station-08 utilises an NVIDIA Jetson

Nano 2GB Developer Kit. Notably, Station-08 serves a dual role as both the eighth

station and the server. This configuration is made possible by the MQTT configu-

ration, which allows a device to function as both a client and a server within a single

network. The application scenario of the edge devices is depicted in Figure 5.6.

The communication network between the edge devices operates using the

MQTT (Message Queuing Telemetry Transport) protocol. MQTT is a client-server

protocol that facilitates message transmission through topic subscribing and pub-

lishing mechanisms. It operates on top of the TCP/IP protocol, ensuring reliable

communication [239]. The publish/subscribe architecture of MQTT enables scal-

able and efficient connectivity between resource-constrained edge devices, whether

over the Internet or within a local area network (LAN). MQTT is known for its

simplicity and lightweight nature, making it ideal for transmitting information over

networks with limited bandwidth, high latency, or unreliability [240].

Each station in the network can function as both a message publisher and

receiver. The messages exchanged can include air quality measurement data and

deep learning models relevant to this study. To receive messages from other stations,

each station subscribes to specific topics of interest to the MQTT broker(server).

The communication between the devices and the MQTT broker occurs within a local

area network established using a wireless router. The MQTT protocol facilitates the

seamless transmission of messages within this network, enabling efficient and reliable

120

MQTT Broker

Station-01

Station-02

Station-03

Station-04

Wireless Router

Station-08

Station-06

Station-07

Station-05

Figure 5.6: Edge devices application scenario.

station communication.

Based on the official websites, the Raspberry Pi (RPi) boards require a 5-

volt power supply. The recommended power supply unit (PSU) current capacities

for the RPi 4B, RPi 3B+, and RPi Zero W are 3.0A, 2.5A, and 1.2A, respectively.

The Jetson Nano 2GB Developer Kit also requires a 5V/3A, the same as the RPi

4B board. Additionally, each board is equipped with a specific operating system

(OS). The RPi boards utilise Raspberry Pi OS Lite version 10 (Debian Buster),

while the Jetson Nano uses NVIDIA JetPack 4.6 with Ubuntu 18.04. In this work,

all boards operate in headless mode, meaning all boards are operated without a

display attached.

5.10 Results and Discussion

5.10.1 Feature Selection

To determine the correlation among the features, Pearson’s correlation coefficients

were calculated. The overall correlation was obtained by averaging the coefficients

across all monitoring stations. The averaged correlation coefficients are presented

121

PM2.5 PM10 SO2 NO2 CO O3 TEMP PRES DEWP RAIN WD WSPD

PM
2.

5
PM

10
SO

2
N

O
2

C
O

O
3

TE
M

P
PR

ES
D

EW
P

R
AI

N
W

D
W

SP
D

1 0.87 0.47 0.67 0.77 -0.13 -0.12 0.0041 0.12 -0.014 -0.13 -0.27

0.87 1 0.45 0.65 0.68 -0.085 -0.086 -0.037 0.069 -0.025 -0.1 -0.17

0.47 0.45 1 0.49 0.51 -0.17 -0.33 0.22 -0.27 -0.04 -0.094 -0.12

0.67 0.65 0.49 1 0.7 -0.44 -0.29 0.15 -0.04 -0.043 -0.15 -0.4

0.77 0.68 0.51 0.7 1 -0.3 -0.33 0.19 -0.069 -0.013 -0.13 -0.28

-0.13 -0.085 -0.17 -0.44 -0.3 1 0.59 -0.45 0.32 0.024 0.036 0.28

-0.12 -0.086 -0.33 -0.29 -0.33 0.59 1 -0.83 0.82 0.037 -0.047 0.026

0.0041 -0.037 0.22 0.15 0.19 -0.45 -0.83 1 -0.77 -0.062 0.036 0.065

0.12 0.069 -0.27 -0.04 -0.069 0.32 0.82 -0.77 1 0.087 -0.14 -0.3

-0.014 -0.025 -0.04 -0.043 -0.013 0.024 0.037 -0.062 0.087 1 -0.018 0.02

-0.13 -0.1 -0.094 -0.15 -0.13 0.036 -0.047 0.036 -0.14 -0.018 1 0.21

-0.27 -0.17 -0.12 -0.4 -0.28 0.28 0.026 0.065 -0.3 0.02 0.21 1

Figure 5.7: The average correlation coefficients among features.

in Fig. 5.7. As depicted in Fig. 5.7, PM2.5 levels exhibit strong positive correlations

with PM10, NO2, and CO (r > 0.6). There is a moderate positive correlation with

SO2 (r = 0.47), and a weak negative correlation with O3 (r = −0.13). Additionally,
rainfall (RAIN), dew point (DEWP), air pressure (PRES), and air temperature

(TEMP) display the weakest correlations with PM2.5. Only these four features were

varied to determine the optimal input set for the deep learning model. The feature

selection process involved training the model locally without utilising collaborative

learning. The model architecture used for training is illustrated in Fig. 5.5(a).

Table 5.2 displays the outcomes of the input feature selection process. The

models were locally trained for 40 epochs, and their performance was evaluated

for each combination. The average root mean square error (RMSE) values across

all stations were computed and reported in the table. The experimental results

indicate that the best performance is obtained by excluding the rain feature during

training, resulting in the selection of 11 attributes: PM2.5, PM10, SO2, CO, NO2,

O3, temperature, air pressure, dew point, wind direction, and wind speed as the

input features for the subsequent evaluation stages

122

Table 5.2: Feature selection results.

Input Feature Number of Inputs Avg. RMSE

All 12 23.126

Without PRES 11 23.370

Without RAIN 11 23.018

Without PRESS and RAIN 10 23.316

Without PRESS, RAIN, and DEWP 9 23.424

Without PRESS, RAIN, and TEMP 9 23.270

Without PRESS, RAIN, DEWP, and TEMP 8 23.526

5.10.2 Losses During Training

Losses measure how accurately a predictor can capture the relationship between in-

puts and the provided targets. A lower loss indicates a better-performing predictor.

During the training process, training losses are computed to assess the model’s fit

to the training data. On the other hand, validation losses are evaluated at the end

of each epoch using validation data. Training loss reflects the model’s performance

on the training data, while validation loss evaluates unseen validation data. In this

work, mean squared error (MSE) is employed as the metric for both training and

validation losses. Figure 5.8 illustrates examples of training and validation losses

for Station-06, as depicted in Figure 5.8(a) and 5.8(b), respectively.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40

T
ra

in
in

g
 L

o
s
s
 (

M
S

E
)

Total Epoch

FedAvg

ClustME

SpaTemp

Round 1 Round 2 Round 3 Round 4

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40

V
a
lid

a
ti
o
n
 L

o
s
s
 (

M
S

E
)

Total Epoch

FedAvg

ClustME

SpaTemp

Round 1 Round 2 Round 3 Round 4

(a) (b)

Figure 5.8: Examples of losses for Station-06: (a) Training loss and (b) validation
loss.

123

To ensure reproducibility and reduce bias in the results, the proposed deep

learning models were initialised with the same random seeds for all methods. In

programming, a random seed is the starting point for generating random numbers.

This initialises the pseudorandom number generator algorithm, determining the se-

quence of generated random values. By providing an initial value, the resulting

sequence of random numbers (weights and biases) can be reproduced. The training

performance was then evaluated, and it was observed that FedAvg and ClustME

produced identical training and validation losses during the first round. This out-

come is expected since both methods perform local training and utilise the same

model architecture and training/validation data in the initial round.

However, after the first round, variations in losses between FedAvg and

ClustME became apparent due to their distinct learning approaches. All collab-

orative learning methods demonstrated a rapid reduction in training losses, par-

ticularly within the first three epochs, as depicted in Fig. 5.8(a). Though these

dynamic changes in training losses are challenging to observe from Fig. 5.8(a), a

more explicit illustration of how training losses vary after the first round is provided

in Fig. 5.9 to enhance clarity.

Fig. 5.9 clearly demonstrates that the SpaTemp method surpasses other ap-

proaches in minimising loss functions during the training process at all participating

stations. The utilisation of spatiotemporal data and the collaborative sharing of pol-

lutant data among stations effectively improve the performance of the models. It

is worth noting that SpaTemp achieves this improvement without relying on model

sharing or aggregation processes. Instead, it incorporates raw measurement data as

320

340

360

380

400

420

440

0 10 20 30 40

T
ra

in
in

g
 L

o
s
s
 (

M
S

E
)

Total Epoch

Station-01

FedAvg

ClustME

SpaTemp

340

360

380

400

420

440

460

0 10 20 30 40

T
ra

in
in

g
 L

o
s
s
 (

M
S

E
)

Total Epoch

Station-02

FedAvg
ClustME
SpaTemp

230

240

250

260

270

280

290

300

310

320

330

0 10 20 30 40

T
ra

in
in

g
 L

o
s
s
 (

M
S

E
)

Total Epoch

Station-03

FedAvg

ClustME

SpaTemp

290

310

330

350

370

390

0 10 20 30 40

T
ra

in
in

g
 L

o
s
s
 (

M
S

E
)

Total Epoch

Station-04

FedAvg
ClustME
SpaTemp

230

250

270

290

310

330

350

0 10 20 30 40

T
ra

in
in

g
 L

o
s
s
 (

M
S

E
)

Total Epoch

Station-05

FedAvg

ClustME

SpaTemp

320

340

360

380

400

420

440

460

0 10 20 30 40

T
ra

in
in

g
 L

o
s
s
 (

M
S

E
)

Total Epoch

Station-06

FedAvg
ClustME
SpaTemp

220

230

240

250

260

270

280

290

300

310

320

0 10 20 30 40

T
ra

in
in

g
 L

o
s
s
 (

M
S

E
)

Total Epoch

Station-07

FedAvg
ClustME
SpaTemp

310

330

350

370

390

410

430

450

0 10 20 30 40

T
ra

in
in

g
 L

o
s
s
 (

M
S

E
)

Total Epoch

Station-08

FedAvg
ClustME
SpaTemp

Figure 5.9: Better presentation of training losses at all stations after the first round.

124

additional inputs to gain knowledge.

5.10.3 Model performance on testing data.

In this study, approximately 10% of the data is reserved for testing purposes. The

model performances on the test data are evaluated using various metrics, including

root mean square error (RMSE), mean absolute error (MAE), mean absolute per-

centage error (MAPE), coefficient of determination (R2), and rate of improvement

(RIR). Table 5.3 presents these performance metrics for the proposed collaborative

learning methods and the locally learned models. It is worth noting that the locally

learned models do not involve any collaborative strategies, such as aggregation or

model-sharing procedures, as seen in FedAvg and ClustME. Additionally, the lo-

cally learned models gain knowledge solely from their local data without collecting

pollutant data from other stations, as implemented in SpaTemp. Therefore, it can

be concluded that no data is leaving the station during the training process.

The effectiveness of SpaTemp during training is evident in its superior per-

formance on the test data. SpaTemp consistently outperforms other methods in

predicting unseen data for all monitoring stations, as indicated by the values high-

lighted in bold in Table 5.3. Furthermore, by considering the RMSE group row in

Table 5.3, the Rate of Improvement (RIR) can be calculated, and the results are

reported in the RIR group row. A positive RIR value signifies an improvement of

the proposed collaborative learning method compared to the locally learned method

used as the benchmark.

SpaTemp performs better than other collaborative learning methods, with

RIR values ranging from 0.525% to 8.934%. The most notable improvement is

observed at Station-01. The RIR is derived from the RMSE. Since the SpaTemp

method exhibits superior performance compared to other methods, the RIR val-

ues are positive. At Station-06, the RMSE for SpaTemp is only marginally lower

than that of other methods, with values of 24.166 µg/m3 and 24.293 µg/m3, re-

spectively. This yields an RIR value of 0.524%, as per Equation 2.15. In contrast,

SpaTemp significantly outperformed other methods at other stations, evidenced by

lower RMSE values. For instance, at Station-01, the RMSE values for SpaTemp and

the local method are 19.917 µg/m3 and 21.871 µg/m3, respectively, resulting in an

RIR value of 8.934%, notably higher than those obtained at Station-06. However,

it is important to note that not all collaborative learning strategies outperform the

locally-learned method. ClustME shows slight degradations in model performance

at Station-01, Station-05, and Station-08, as indicated by the negative RIR values.

These degradations range from 0.092% to 0.488%. Similarly, the federated learning

125

Table 5.3: Model performance in predicting PM2.5 on test data.

Sta-01 Sta-02 Sta-03 Sta-04 Sta-05 Sta-06 Sta-07 Sta-08

RMSE(µg/m3)

FedAvg 21.743 23.135 21.097 25.118 24.344 24.258 21.483 23.988

ClustME 21.978 23.345 20.772 25.021 24.213 24.249 21.619 24.169

SpaTemp 19.917 22.140 20.738 24.299 22.470 24.166 20.177 23.104

Local 21.871 23.744 20.890 25.170 24.191 24.293 21.648 24.058

MAE(µg/m3)

FedAvg 12.008 13.182 10.981 12.916 13.651 12.538 9.867 13.594

ClustME 12.028 13.263 10.910 12.863 13.411 12.554 9.816 13.877

SpaTemp 10.729 12.173 10.741 12.395 12.031 12.394 9.255 13.328

Local 11.967 13.708 10.967 12.965 13.485 12.691 9.937 13.702

MAPE(%)

FedAvg 26.881 28.441 30.090 37.727 37.913 24.286 32.865 37.239

ClustME 27.351 28.411 31.288 37.299 37.848 24.360 31.715 38.160

SpaTemp 26.239 27.594 28.645 38.230 36.177 22.603 29.144 31.391

Local 26.347 28.747 30.768 37.996 37.107 24.156 32.150 38.753

R2

FedAvg 0.958 0.935 0.950 0.953 0.949 0.954 0.938 0.954

ClustME 0.957 0.934 0.951 0.953 0.950 0.954 0.937 0.953

SpaTemp 0.964 0.941 0.952 0.956 0.957 0.955 0.945 0.957

Local 0.957 0.932 0.951 0.952 0.950 0.954 0.937 0.954

RIR(%)

FedAvg 0.588 2.564 -0.995 0.208 -0.636 0.145 0.762 0.292

ClustME -0.488 1.681 0.565 0.593 -0.092 0.181 0.134 -0.463

SpaTemp 8.934 6.756 0.725 3.461 7.115 0.524 6.794 3.967

Local (baseline) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

approach exhibits degradations of 0.995% and 0.636% at Station-03 and Station-05,

respectively.

Figure 5.10 provides a visual representation of the model performances,

specifically at Station-02, offering a more intuitive understanding. The upper plots

present the predicted and observed values plotted together. Moreover, the lower

plots facilitate a quick assessment of the proximity between the predicted and ob-

served values using diagonal lines as references. Among the methods evaluated, the

SpaTemp model demonstrates superior performance in capturing extreme PM2.5

126

0 1000 2000 3000
Samples

0

200

400

600
Le

ve
ls

(
g/

m
3)

FedAvg
Observed
Predicted

0 1000 2000 3000
Samples

0

200

400

600

ClustME
Observed
Predicted

0 1000 2000 3000
Samples

0

200

400

600

SpaTemp
Observed
Predicted

0 1000 2000 3000
Samples

0

200

400

600

Local
Observed
Predicted

0 200 400 600
Observed

0

200

400

600

Pr
ed

ic
te

d R2 = 0.935

0 200 400 600
Observed

0

200

400

600
R2 = 0.934

0 200 400 600
Observed

0

200

400

600
R2 = 0.941

0 200 400 600
Observed

0

200

400

600
R2 = 0.932

Figure 5.10: Comparison between the observed and predicted values at Station-02.

levels, resulting in a higher R2 score of 0.941. The figure clearly illustrates the

close alignment between the predicted values (depicted by the grey line) and the

observed values (depicted by the red line), particularly in accurately capturing very

high concentrations of PM2.5 compared to the other methods.

As shown in Figure 5.10, the models tend to underestimate certain spikes in

PM2.5 values. Several factors can contribute to inaccurate predictions of pollutant

data spikes by models. If sudden spikes are rare or infrequent in the training data,

the model may not have learned to capture and generalise these patterns effectively.

Additionally, deep learning models, particularly those based on recurrent neural

networks (RNNs) or long short-term memory (LSTM) networks, can be sensitive

to noise in the data. Sudden spikes may introduce noise that the model struggles

to filter out. Furthermore, deep learning models may overfit the training data,

meaning they memorise specific patterns in the training set that do not generalise

well to unseen data. As a result, sudden spikes may be perceived as outliers or

anomalies by the model, leading to inaccurate predictions.

The estimation of longer time periods can be conducted using the same

methodology employed for acquiring subsequent 1-hour predictions and adjusting

the target sets accordingly. In this section, the prediction results of PM2.5 levels for

the upcoming 3-hour, 6-hour, 9-hour, and 12-hour periods are presented. Figure 5.11

presents the prediction outcomes obtained from Station-05. The figure reveals a

decline in model performance as the prediction period extends. Evaluation based

on R2 scores indicates that the model’s accuracy ranges from approximately 0.8 for

3-hour predictions to about 0.4 for 12-hour predictions. Furthermore, the SpaTemp

127

0 200 400 600
0

200

400

600
Pr

ed
ic

te
d

SpaTemp
R2 = 0.823

3-hour

0 200 400 600
0

200

400

600 SpaTemp
R2 = 0.640

6-hour

0 200 400 600
0

200

400

600 SpaTemp
R2 = 0.523

9-hour

0 200 400 600
0

200

400

600 SpaTemp
R2 = 0.469

12-hour

0 200 400 600

Observed

0

200

400

600

Pr
ed

ic
te

d

Local
R2 = 0.804

0 200 400 600

Observed

0

200

400

600 Local
R2 = 0.634

0 200 400 600

Observed

0

200

400

600 Local
R2 = 0.520

0 200 400 600

Observed

0

200

400

600 Local
R2 = 0.430

Figure 5.11: Longer prediction hours evaluated at Station-05.

approach demonstrates better performance compared to the locally-trained model.

5.10.4 Learning Execution Period

In this section, the average time required to complete the training process for the col-

laborative learning strategies is reported. The collaborative learning strategies were

executed four times, and the time to complete the training was averaged. Among the

methods considered, Federated Learning (FedAvg) exhibited the shortest training

time (approximately 49 minutes). On the other hand, as expected, SpaTemp had

the longest training sessions, taking approximately 61 minutes to complete. This is

because SpaTemp utilised a larger deep learning model and input data, resulting in

slower epoch completion than other methods. The values reported in Table 5.4 are

based on the training time of the slowest edge device.

In the ClustME approach, two different clusters were formed for training.

The first cluster (consisting of Station-01, -02, -03, and -07) comprised slower edge

devices, specifically the Raspberry Pi Zeros. The second cluster (consisting of

Station-04, -05, -06, and -08) primarily consisted of faster devices, including Rasp-

berry Pi 3B+, Raspberry Pi 4B, and Jetson Nano. The completion times for the

second cluster were approximately 240 seconds faster than the first. This difference

Table 5.4: Average time to complete the collaborative training.

FedAvg ClustME (Cluster-1) ClustME (Cluster-2) SpaTemp

Time(Sec) 2954.40 3220.62 2979.62 3682.09

128

649.69

139.03

82.49 76.35

843.24

179.03

105.15 90.03

0

100

200

300

400

500

600

700

800

900

RPi Zeros RPi 3B+ RPi 4B Jetson Nano

T
im

e
 (

S
e
c
o
n
d
s
)

Edge Devices

FedAvg & ClustME

SpaTemp

Figure 5.12: The average time of edge devices to complete the training sessions.

in completion times can be attributed to the varying processing capabilities of the

devices within each cluster.

The average time required for each edge device to complete the training steps

is also reported in this study. The average completion time was calculated after

performing 40 rounds using different learning strategies. The results are presented

in Fig 5.12. Since multiple Raspberry Pi (RPi) 4 and Zero devices were used, the

execution times of the same device types were averaged. The figure demonstrates

that the Jetson Nano 2GB developer kit outperforms other devices, with completion

times up to approximately nine times faster than Raspberry Pi Zeros when executing

the SpaTemp method. The slower devices, such as Raspberry Pi Zeros, contribute

to longer completion times in collaborative learning strategies. The faster processing

capabilities of the Jetson Nano contribute to its superior performance in terms of

training speed.

5.10.5 Communication Cost Estimations

In this study, communication costs are measured based on the transferred payload

in specific MQTT topics, considering both incoming and outgoing payloads. The

payloads can either be deep learning models or pollutant data. The MQTT payloads

for FedAvg and ClustME during the learning process consist of deep learning models.

129

However, for SpaTemp, the payloads are pollutant data (specifically PM2.5 data)

collected during data collection and not during the learning phase.

Since collaborative learning involves multiple devices operating at different

speeds, certain governing MQTT topics were utilised in addition to those contain-

ing the actual payloads. These governing topics serve various purposes, such as

initiating local updates or instructing a participating device to send its local model

to another device. For these governing topics, zero-length payloads are published,

meaning they do not contain any actual data. Although these governing topics re-

quire the transmission of bytes of data, they are excluded from the communication

cost measurement since they do not contain payload data.

In this study, the initial model size for FedAvg and ClustME is approximately

44 kB, while for SpaTemp is around 77 kB. As previously mentioned in Section

5.7, FedAvg and ClustME employ the same network architectures. All models are

compiled with the Adam optimiser before the training processes begin. As one

round of training is completed, the model file sizes increase since the Adam optimiser

maintains the gradient states during training. Consequently, the trained model sizes

become approximately 91 kB for FedAvg and ClustME, and 149 kB for SpaTemp.

In collaborative learning strategies, maintaining the gradient states after each round

is crucial to ensure that the model progressively learns throughout the collaborative

training rounds.

The deep learning models for FedAvg and ClustME are transmitted as bytear-

ray objects, while SpaTemp demonstrates a simpler payload transfer method. In

SpaTemp, pollutant data is collaboratively sent among stations primarily as text

strings. In this work, the size of a single pollutant datum payload is approximately

5 bytes when encoded as UTF-8 strings. The UTF-8 encoding represents characters

of pollutant data in one-byte (8-bit) units [241]. Table 5.5 provides an overview of

the data transferred for both incoming and outgoing payloads at all participating

stations, including the coordinator’s side for FedAvg. In FedAvg, the coordinator re-

ceived models from participating stations, aggregated these models, and transferred

them back to the participating stations. In contrast, the coordinators in ClustME

and SpaTemp functioned solely as governing devices. Consequently, ClustME re-

duced communication costs by half compared to FedAvg, despite having the same

number of participants.

The file size of the transmitted models was 91 kB for both FedAvg and

ClustME. On the other hand, SpaTemp transferred a significantly smaller amount of

data, with only about 5 bytes being transmitted in each round. However, SpaTemp

performed data transfer much more frequently, with up to 35,064 rounds during data

130

Table 5.5: Collaborative learnings communication costs.

FedAvg ClustME SpaTemp

Comm. cost (MB) 11.648 5.824 8.415

collection. Based on our experimental results, the communication costs for FedAvg,

ClustME, and SpaTemp are 11.648 MBytes, 5.824 MBytes, and 8.415 MBytes, re-

spectively.

5.10.6 Network Scaling

This section explores insights into the scalability of edge device networks, which is

crucial considering the potential expansion of devices used in collaborative learning.

As the number of devices increases, the amount of data transmitted during the

learning process also grows. For FedAvg and ClustME, the data transmission volume

increases as the number of rounds progresses. In contrast, SpaTemp experiences an

increase in data transmission size due to the hourly pollutant data, regardless of the

number of learning rounds.

In the case of federated learning (FedAvg), the coordinator initially sends

the θ0 (initialisation weights or model) to all participating stations. Each station

k trains its local data and sends the result of its training to the coordinator. The

coordinator then aggregates all the collected θkt and returns the updated global

parameters θkt+1 to all stations. The number of data exchanges can be expressed as

follows:

Dsta = Nθ(0) +
T∑
i=1

CiKθi(tx) +
T∑
i=1

CiKθi(rx) (5.1)

where Dsta is the number of data exchanges on the station’s side, K is the total

number of stations, N is the number of participating stations, C is the fraction of

stations participated in each round, T is the number of FL rounds and θi is the

amount of information exchanged during FL (also called payload in MQTT).

The amount of data transmitted to the coordinator (θi(tx)) is the same as

the amount of received data by the station (θi(rx)). In our work, all stations must

be involved in FL rounds (N = K and C = 1). Therefore, the number of data

exchanges becomes:

Dsta = K

(
θ0 +

T∑
i=1

2θi

)
(5.2)

131

On the coordinator’s side, the amount of data exchanged will be the same as

the amount of data exchanged on the station’s side. Also, in this work, the initial

model is generated on the station side (θ0 = 0), and every round consists of the

same number of epochs (i.e., the model size is the same at every round). Thus, the

total communication cost between stations and the coordinator in this work can be

expressed as follows:

DFedAvg = 4KTθ (5.3)

ClustME does not require the stations to transmit data to the coordinator,

as the coordinator is only responsible for orchestrating the process workflow. Thus,

the payloads are transferred among stations, as shown in Fig. 5.13.

A station receives and transmits the same amount of data. Despite having

the same number of participants, the communication cost in ClustME is half that

of FedAvg. In ClustME, there is no coordinator to facilitate communication. Equa-

tion 5.4 expresses the communication cost for ClustME. The equation focuses on

the total number of participating stations without explicitly mentioning the com-

munication cost in each cluster.

DClustME = 2KTθ (5.4)

In the learning approach using spatiotemporal data (SpaTemp), the infor-

mation transferred to a target station is measurement data, specifically pollutant

data such as PM2.5. The communication in SpaTemp involves sending hourly data

from nearby stations to the target station. The communication cost in SpaTemp

depends on the number of nearby stations sending their data to the target station

and the total amount of hourly data required.

In this work, three nearby stations were selected to exchange data with the

𝜃𝑡

𝜃𝑡

𝜃𝑡

𝜃𝑡

𝜃𝑡

𝜃𝑡+1

FedAvg ClustME

Coordinator

Client

Figure 5.13: The comparison of model exchanges between FedAvg and ClustME
with the same number of participating stations.

132

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

(M
B

)

Number of Round

FedAvg

ClustME

SpaTemp

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

(M
B

)

Number of Stations

FedAvg

ClustME

SpaTemp

(a) (b)

Figure 5.14: The amount of communication cost calculated by changing (a) the
number of rounds, and (b) the number of stations.

target station. The data exchange between stations can be visualised as the coloured

squares in Figure 5.3(a), representing the pairs of subscribing and publishing sta-

tions. Based on this setup, the communication cost in SpaTemp can be expressed

as follows:

DSpaTemp = 2KNneighHφ (5.5)

where K The total number of stations, Nneigh the number of participating nearby

stations, H is the number of hourly data, and φ the amount of information ex-

changed during learning (also called payload in MQTT).

As shown in Fig. 5.14, the number of learning rounds and stations are

increased to 50 and the other parameters are kept unchanged. As a result, the

communication costs for FedAvg and ClustME increase linearly (Fig. 5.14(a)),

following Equations 5.3 and 5.4, respectively. However, the communication cost

for SpaTemp remains constant, regardless of the number of rounds. In addition,

increasing the number of participating stations affects the communication cost for

all methods, as shown in Fig. 5.14(b).

5.11 Summary

This work explores three collaborative learning methods: federated learning (Fe-

dAvg), learning with model sharing (ClustME), and learning with spatiotemporal

133

data exchanges (SpaTemp). Among these methods, SpaTemp outperforms others

in minimising loss functions during training at all participating stations. This effec-

tiveness during training leads to better performance on test data.

Regarding the time required to complete the training period, FedAvg and

ClustME exhibit similar performance. However, due to its larger model size, SpaTemp

exhibits slower training times than FedAvg and ClustME. The communication cost

in collaborative learning can vary based on factors such as the number of partici-

pating stations, learning rounds, and the dataset size. This work investigates the

impact of these factors and demonstrates the potential for expanding the number

of edge devices.

This chapter demonstrates that collaborative learning can enhance air pol-

lution prediction compared to relying solely on local learning methods. However,

there is a trade-off involved when implementing collaborative learning approaches.

Based on the experiments conducted, collaborative learning with spatiotemporal

data (SpaTemp) outperforms local learning and other collaborative learning meth-

ods, as measured by metrics such as RMSE, MAE, MAPE, R2, and RIR. One

significant advantage of SpaTemp is that its performance is not affected by the

number of learning rounds. Additionally, if the number of participating stations ex-

pands, the total communication cost is lower than federated learning. However, it is

important to note that SpaTemp requires transmitting measurement data to other

monitoring stations, unlike FedAvg and ClustME, where only model exchanges are

involved. Finally, regarding edge device performance, the Jetson Nano development

kit demonstrates the fastest completion time for on-device training.

134

Chapter 6

Tiny Machine Learning for

Microcontroller Applications

This chapter is based on the following works:

• Subchapter 6.3:

I. N. K. Wardana, S. A. Fahmy, and J. W. Gardner, “TinyML Models for a

Low-cost Air Quality Monitoring Device,” IEEE Sensors Letters, vol. 7, no.

11, pp. 1-4, Sep. 2023 [4].

• Subchapter 6.4:

I. N. K. Wardana, S. A. Fahmy, and J. W. Gardner, ”Optimising Tiny Machine

Learning with Binary Weight Network for a Low-cost Air Quality Monitoring

Device,” The 3rd Imperial Workshop on Intelligent Communications, Imperial

College London, 19 - 20 June 2023 [6].

I. N. K. Wardana, S. A. Fahmy, and J. W. Gardner, ”Optimising TinyML

Using Binary Weight Network and Meta-Learning for a Low-cost Air Quality

Monitoring Device,”Warwick Secure and Intelligent Communications (WSIC)

Workshop, University of Warwick, 31 July 2023 [7].

• Subchapter 6.5:

I. N. K. Wardana, S. A. Fahmy, and J. W. Gardner, ”TinyML with Meta-

Learning on Microcontrollers for Air Pollution Prediction,” Eurosensors 2023

Conference, Lecce, Italy, Sep. 2023 [5].

135

6.1 Introduction

Recent research has demonstrated the feasibility of low-cost sensor nodes for air

quality monitoring systems [76, 81]. This emerging sensor-based air quality moni-

toring field can provide high-density spatiotemporal pollution data, supplementing

the established methodology with more precise and expensive devices [53]. The im-

mense volume of collected spatiotemporal data has provided a better opportunity to

apply machine learning (ML) techniques in air quality areas, such as air contaminant

prediction [1, 97], missing data imputation [2, 98], and classification tasks [99].

Numerous studies have been conducted on low-cost air quality sensor nodes,

focusing on the calibration procedure against reference instruments [81, 242, 243].

Hashmy et al. extended this research line by introducing calibration and forecasting

functionalities [244]. The trained machine learning calibration agent is stored in the

microcontroller’s EEPROM, while the forecasting function is executed on the cloud

integration server. Becnel et al. studied a distributed low-cost pollution monitoring

platform [245]. The study involved deploying 50 microcontroller-powered nodes

across a metropolitan area, which measured various air quality parameters such

as particulate matter, CO, NO, air temperature, air humidity, and light density.

The results demonstrated that the proposed platform aligned well with the readings

from standard instruments (R2 = 0.88). However, the study does not include any

air quality prediction capabilities.

The use of mobile sensor networks for measuring air quality parameters has

gained popularity, particularly in the context of smart city implementation. Castello

et al. developed a data concentrator platform that collected data from low-cost

sensors attached to city buses [246]. Their approach involved processing all the

collected measurements and leveraging information from reliable fixed stations to

enhance the accuracy of the low-cost mobile sensors. DeSouza et al. designed low-

cost mobile sensors mounted on trash trucks to study the spatial and temporal

characteristics of pollutant sources [247].

This chapter addresses a significant gap in using low-cost air quality nodes,

specifically the absence of missing data imputation and forecasting capabilities di-

rectly at the node, without relying on cloud services. The presence of missing data

poses a common challenge in air pollutant measurement, impacting the interpre-

tation and conclusions of studies and the functionality of air quality-related public

services. The concept of edge computing, which involves processing data close to

its source, offers potential benefits. By leveraging node computing, tasks can be of-

floaded from the centralized cloud to the nearby sensing devices, improving security

136

and reducing latency issues cloud-based systems face.

This chapter presents an implementation of the tiny machine learning (tinyML)

paradigm, enabling machine learning models to be executed directly at the node.

TinyML is a cutting-edge field of artificial intelligence. It brings machine learn-

ing (ML) models to resource-constrained devices, such as microcontrollers [125]. A

microcontroller is typically limited to its memory and computational capabilities.

Thus, effective deployment of tinyML models requires a thorough understanding of

hardware, software, algorithms, and applications. Regardless of their limited per-

formance, microcontrollers can gather physical environment data through sensors

and perform decisions based on ML algorithms.

The key motivation of this chapter is to empower a low-cost air quality device

with intelligence. Two different tinyML models were deployed to a single microcon-

troller. One model is used to predict air status and electrical power parameters,

whereas another is employed to impute missing air pollution data. To the best

of our knowledge, previous works on air quality prediction using tinyML have not

specifically explored prediction and imputation tasks on a single microcontroller.

Furthermore, this chapter explores model size reduction by implementing binary

weights and suggests enhancing performance by applying meta-learning techniques.

The deep learning models discussed in Chapters 3, 4, and 5 are designed for

execution on laptop/desktop computers or single board computers (SBCs). How-

ever, deploying these models to smaller devices, such as microcontrollers, requires

additional steps to be conducted. This chapter explores the additional steps re-

quired to deploy deep learning models on smaller devices, such as microcontrollers,

and delves into tiny machine learning (tinyML) implementations.

Figure 6.1 illustrates the tinyML development workflow, which includes cre-

ating the TensorFlow model and its final deployment on a microcontroller. Step 1

involves building the deep learning model using a laptop/desktop computer. During

this process, it is crucial to consider the model’s complexity and ensure it is com-

patible with the microcontroller’s supported operations. For instance, at the time of

writing, TensorFlow does not support 1D CNN operations on microcontrollers. To

overcome this limitation, it is necessary to use 2D CNN operations instead. There-

fore, in Step 1, 1D CNN should be avoided when designing the deep learning model.

Once the model is trained and tested, it can be directly deployed to Single-Board

Computers (SBCs).

In Step 2, the model obtained from Step 1 can undergo quantisation. This

step, known as post-training quantisation, has been discussed in detail in Sec-

tion 2.3.3. During Step 2, the quantised (optimised) model(s) is evaluated against

137

Create TensorFlow

Model

• Trained on laptop computer

• Consider: Size, accuracy

• Use: supported operations

Convert to

TensorFlow Lite

• Perform quantisation

• Evaluate accuracy

Convert to C byte array

• Read-only program memory

• C formats

Integrate to C++ Library

(TFLM)

• Use TFLM library

• Write necessary codes

Deploy to

microcontroller

• Upload to microcontroller

• Verify final accuracy

Deploy Deploy

Deploy

SBC SBC

Microcontroller

Figure 6.1: TensorFlow lite development workflow.

the original (unoptimised) model, considering the trade-off between model size,

speed, and accuracy. The output of Step 2 is the TensorFlow Lite version of the

model. These lightweight versions can also be deployed to SBCs.

Step 3 marks the beginning of preparation to deploy the selected model to

the microcontroller. In this step, the model is converted to C-byte arrays. The

process involves using the xxd command, which facilitates the creation of a hex

dump from a file. The resulting C-byte array from Step 3 can be integrated into

the microcontroller using the TensorFlow Lite for Microcontrollers (TFLM) library.

In Step 4, additional codes are necessary to tailor the application to meet specific

requirements. Finally, Step 5 involves verifying and uploading the codes to the mi-

crocontroller. It is crucial to perform an evaluation to compare the results obtained

from the simulation with those obtained by inferring deep learning on the device.

6.2 Contributions

This chapter presents three applications of tinyML on microcontrollers. The first

implementation focuses on predicting future values and imputing missing data using

direct measurement data (Subchapter 6.3). The second application involves using a

binary weight network to reduce the size of the TensorFlow Lite model (Subchap-

ter 6.4). A low-cost air quality monitoring device is also developed to support these

two implementations, utilising inexpensive sensors to measure air quality. Lastly, the

third implementation explores an approach to enhance model predictions through

meta-learning (Subchapter 6.5). The contributions of this chapter are as follows:

138

1. Creation of a low-cost air quality monitoring device capable of directly collect-

ing air quality status. This device is powered by a solar panel and can gather

electrical-related parameters.

2. Development of a dataset comprising air and electrical parameters, utilised

for training and evaluating tinyML models, specifically for Subchapter 6.3

and Subchapter 6.4 implementations.

3. Introduction of novel tinyML models that run on microcontrollers, enabling

prediction of future and missing values (Subchapter 6.3), reduction of model

size using binary weights (Subchapter 6.4), and performance improvement

through meta-learning techniques (Subchapter 6.5).

6.3 TinyML Low-cost Air Quality Monitoring Device

6.3.1 Motivation

The primary motivation of this study is to enhance a low-cost air quality device by

incorporating intelligent capabilities. To achieve this, two distinct tinyML models

were implemented on a single microcontroller. One model was designed to predict

air quality and electrical power parameters, while the other focused on imputing

missing air pollution data. Previous research on air quality prediction using tinyML

has not explicitly investigated both prediction and imputation tasks on a single

microcontroller, making this work a novel contribution to the field.

6.3.2 Data Collection and Preprocessing

This subchapter used a dataset derived from direct measurements to train and

evaluate the tinyML models. The air quality monitoring device gathered data over

approximately three months, from 21 July 2022 to 20 October 2022. The device was

installed in a suburban area of Coventry, CV4 7BZ, UK, situated in front of the au-

thor’s residence. During measurements, eight features are recorded, namely CO2, air

temperature (T air), air humidity (RH air), solar panel output current (I solar), solar

panel output voltage (V solar), battery voltage (V batt), battery temperature (T batt),

and battery capacity (C batt). Table 6.1 shows the descriptive statistic of the features

collected by the device from 21 July 2022 to 20 October 2022

The device collected air quality and power parameter data at 10-minute

intervals, resulting in 13,080 rows of data by the end of the measurement period.

To facilitate air quality and power parameter estimations, hourly averages were

139

Table 6.1: Descriptive statistics of direct measurement dataset.

CO2 Tair RHair Isolar Vsolar Vbatt Tbatt Cbatt

count 4,402 4,402 4,402 4,402 4,402 4,402 4,402 4,402

mean 814.77 24.35 50.67 26.36 11.01 4.09 88.79 22.44

std 59.45 6.26 16.31 46.76 8.85 0.10 10.01 5.75

min 642.00 10.41 14.45 -0.60 0.42 3.67 5.70 9.30

25% 775.00 19.67 37.50 -0.10 0.46 4.03 83.30 18.00

50% 818.00 23.29 51.32 1.90 10.18 4.10 91.30 21.50

75% 854.00 28.20 64.90 39.30 21.37 4.16 97.30 26.40

max 1017.00 45.25 80.20 440.50 23.93 4.60 99.90 39.70

computed by aggregating every six measurements, generating a new dataset of 2,180

rows. However, for the purpose of missing data imputation, data gathered at 10-

minute intervals were used.

Data is divided by allocating 70% of the dataset to the training set and

the remaining 30% to the test set. To facilitate future parameter estimations, the

features are standardised, resulting in a mean of zero and a standard deviation of

one. On the other hand, for missing data imputation, the features are scaled to a

range of [0, 1].

6.3.3 Device Design

Fig.6.2 illustrates the hardware interfaces of the low-cost air quality device. In

this project, a Raspberry Pi (RPi) Pico W is employed as the primary controller

board. The board utilises the RP2040 chip as its microcontroller. With a dual-core

Cortex-M0+ processor, the board has 264kB of SRAM and 2MB of flash mem-

ory. The RP2040 chip provides versatile I/O, I2C, SPI, UART, and GPIO options.

Additionally, the board is equipped with a single-band 2.4GHz wireless interface

(802.11n) integrated onboard.

The air quality monitoring device is powered by two sources: a solar panel

and a 18650 Li-Ion rechargeable battery. The solar panel, manufactured by Hisunage

in China, has a nominal voltage of 12V and a power output of 20 Watts. It is used

to recharge the 18650 Li-Ion battery, which has a nominal voltage of 3.6V and a

capacity of 3500mAh. The Li-Ion battery utilised in this device is sourced from

Samsung SDI.

A solar manager product from Waveshare Electronics in China is employed

140

to manage solar power. This solar manager is compatible with solar panels ranging

from 6V to 24V and can recharge the 18650 Li-Ion battery. It also provides a

regulated output of 5V/3A, suitable for supplying power to the RPi Pico board.

This study uses three sensor modules: INA219, LC709203F, and SCD41.

A DS3231 real-time clock (RTC) module is also incorporated to ensure accurate

timekeeping. The INA219 sensor module measures the solar output current and

voltage. It allows for monitoring the current generated by the solar panel, which di-

rectly influences the battery’s state of charge. The LC709203F module is employed

to determine the battery cell capacity and cell voltage. It is also combined with

a 10kΩ thermistor to measure the battery pack temperature. The SCD41 sensor

module is responsible for detecting the carbon dioxide (CO2) concentration in parts

per million (ppm). Additionally, it measured temperature and relative humidity.

The SCD4x series comprises miniature CO2 sensors that leverage the photoacoustic

NDIR sensing principle and Sensirion’s proprietary technology. The following ac-

curacy specifications characterise this sensor [248]: 400-1,000 ppm is ±(50 ppm +

2.5% of reading), 1,001-2,000 ppm is ±(50 ppm + 3% of reading), and 1,001-2,000

ppm is ±(50 ppm + 3% of reading). All the collected data are stored on a microSD

memory card for further analysis and processing.

5V/3A Regulated Output

POWER MANAGER

INA219 Sensor
- Solar Current
- Solar Voltage

Solar panel
(12V, 20W)

18650 Battery
(3.7V, 3500 mAh)

LC709203F Sensor
- Cell capacity
- Cell voltage
- Cell temperature

POWER SOURCE

MICROCONTROLLER

Raspberry Pi Pico W

SCD41 Sensor
- CO2

- Temperature
- Humidity

AIR STATUS SENSOR

REAL TIME CLOCK

DS3231

Measurement Data

+

+ SD Card

+

Main Power

Figure 6.2: Module interfaces of the proposed device.

141

6.3.4 TinyML Framework

Two deep learning models, namely the model predictor and model imputer, are

deployed on a single microcontroller. The model predictor performs the prediction

task, while the model imputer is utilised for imputing missing sensor data. When

a sensor fails to collect data in real-life applications, the microcontroller identifies

this event as missing and initiates the data imputation process before executing the

prediction task. During the data collection phase, no missing values are encountered,

allowing the model predictor to be trained using the complete dataset. On the

other hand, for the model imputer, measurement values with deliberately introduced

missing values are removed at different levels. Finally, the prediction results obtained

from the complete dataset and the dataset with missing values are compared to

evaluate the effectiveness of the imputation process and its impact on the prediction

performance.

The deep learning models in this work are constructed using TensorFlow

(TF) 2.4.0, an open-source framework developed by Google specifically designed for

deep learning applications [114]. The models are developed, trained, and evaluated

using TF CPU, which runs on a desktop computer. Once the TF models are trained,

they are converted to the TensorFlow Lite (TFLite) format using the TF Lite con-

verter. Post-training quantisation techniques are applied to quantise the TFLite

models to optimise the deployed model without compromising their accuracies. The

quantised TFLite models are then converted into C-byte arrays and stored in the

read-only program memory on the microcontroller. Inference on the microcontroller

is performed using the TFLite for microcontrollers (TFLM) libraries. This process

ensures that the deep learning models, originally built using TensorFlow, are ef-

ficiently deployed on the microcontroller for inference using the optimised TFLite

format and TFLM libraries.

Inference on the testing data is conducted directly on the device. Since

the testing data comprises numerous rows and multiple features, a microSD card

is employed to store this data. The tinyML models are fed with input sets by

reading the contents of the SD card, processing the data row-by-row, and performing

on-device inference. This approach allows efficient and accurate evaluation of the

tinyML models using the testing data.

6.3.5 Model Predictor and Model Imputer

The model predictor is designed to handle input sets consisting of eight features:

CO2, air temperature, air humidity, solar panel output current, solar panel output

142

Reshape

Layer

Conv. Layer

(3x3x25)

ReLU Layer

Conv. Layer

(3x3x15)

ReLU Layer

Conv. Layer

(2x2x8)

ReLU Layer

Conn. Layer

ReLU Layer

Flatten

Layer

8

3

1

24

48

15 4
8

6

1

3

3

6

4

25

3

3

4

2
15

2

2

Figure 6.3: Model predictor architecture.

voltage, battery voltage, battery temperature, and battery capacity. It is specifically

built to predict three air status features (CO2, air temperature, and air humidity)

and one electrical power feature (battery capacity). The prediction task focuses on

short-term forecasting, specifically one hour into the future. The architecture of the

deployed model for the prediction task can be seen in Figure 6.3.

The model predictor operates on input sets comprising eight features and six

hours of historical measurements. To process this input, the data is flattened, result-

ing in an input size of 48. The input sets are then reshaped into three-dimensional

data using 2D convolution layers for feature extraction. A fully connected layer with

15 units is employed as the prediction layer. This study uses rectified linear unit

(ReLU) layers as the activation function throughout the model. However, for the

last layer, no activation function is applied.

The model imputer utilised in this study is based on an autoencoder archi-

tecture, drawing inspiration from image denoising techniques [164]. The input sets

with missing values are considered noisy inputs, and the autoencoder framework is

employed to address this issue. This concept is also applied in Chapter 3.

In Chapter 3, a more complex implementation of this concept involved util-

ising spatiotemporal data from neighbouring air quality monitoring stations to pre-

dict missing values in the target station. However, this work develops a simpler

lightweight model specifically tailored for a resource-constrained device. Local data

is used to train the model, avoiding the need for incorporating spatiotemporal data

from other air quality monitoring stations. The denoising autoencoder concept,

which forms the basis of the model imputer, is illustrated in Fig. 6.4.

In this work, the proposed denoising autoencoder consists of several dense

layers, as shown in Fig 6.5. All layers are fully connected, and rectified linear unit

(ReLu) layers are used as the activation functions. Similar to the model predictor,

143

the model imputer also accepts input sets consisting of 8 features and 6 hours of

measurement. Flattening this input, we get 48 as the input size.

6.3.6 Perturbation Method

To train and test the missing data estimation, certain measurement values are de-

liberately removed from the input sets, with each deleted value being replaced with

zero. Following the approach of Hadeed et al. [68], four different missing rates

(20%, 40%, 60%, and 80%) are selected for this study. As mentioned earlier, data

was collected by the device every 10 minutes, but the model predictor operated on

hourly average data. Therefore, it is assumed that missing data could occur at the

10-minute measurement level.

A single sensor can measure multiple parameters. For example, the LC709203F

sensor measures three parameters: battery capacity, battery voltage, and battery

temperature. It is assumed that if this sensor fails to perform a measurement, all

these parameters will be unavailable. Consequently, during model training and test-

ing, all parameters measured by the same sensor exhibit the same missing patterns.

This assumption helps ensure consistency in handling missing data across multiple

parameters measured by a single sensor.

Encoder Decoder

Calculate the reconstruction input loss

against the actual input

Actual input

Input with

missing values
Reconstructed

input

𝑥

𝑟෤𝑥

Code

ℎ𝒇𝜽 ∙ 𝒈𝝓 ∙

Figure 6.4: A denoising convolutional autoencoder workflow.

144

⋮
⋮

⋮
⋮

⋮
⋮

⋮

48 Units 48 Units

20 Units

15 Units

8 Units

15 Units
20 Units

Encoder DecoderCode

Figure 6.5: Model imputer architecture.

6.3.7 Device Realisation

The prototype of a low-cost air quality monitoring device, as depicted in Figure

6.6, was developed for this study. The figure illustrates the device along with the

sensors and electronic modules used. The device was installed in a suburban area

of Coventry city, UK, in front of the author’s house.

6.3.8 Model Performance

A comprehensive evaluation was conducted on 648 test sets to predict the average

1-hour values of four features: CO2, air temperature, air humidity, and battery

capacity. The performance of the model predictor on testing data is presented in

Solar Panel

SD Card Module

SCD41

RPi Pico

DS3231

3.3 VDC Power

Regulator

Batt. 18650

LC709203F
INA219 Solar Power

Manager

Thermistor

Figure 6.6: The low-cost air quality monitoring device.

145

Figure 6.7. It is important to note that this evaluation was performed using testing

data containing no missing values.

The results indicate that the proposed model predictor can estimate each

feature in the dataset with a coefficient of determination (R2) above 0.70. Among

the four features, the model exhibits the highest accuracy in predicting air humid-

ity, achieving an impressive R2 score of nearly 0.9. However, the model appears

less sensitive in accurately predicting sharp declines in battery capacity. This ob-

servation suggests that further improvements could be made to enhance the model’s

performance in capturing abrupt changes in battery capacity. The model predictor

operates at the hourly level, while the model imputer operates at the 10-minute

measurement level. The air quality monitoring device collects data every 10 min-

utes, and the model imputer fills in any missing values at this level. By averaging

every six measurements, hourly data without missing values is obtained.

To evaluate the effectiveness of the proposed imputation method, hourly-

based assessments were conducted. Figure 6.8 illustrates the R2 scores, which indi-

cate how closely the recovered hourly data aligns with the hourly clean data. The

model imputer was trained using training data containing 60% missing values, while

the missing rates in the testing data ranged from 20% to 80%. Ten experiments were

performed using different random seeds to account for various missing patterns.

The results depicted in Figure 6.8 demonstrate that the model effectively

800

1000

C
O

2
(p

pm
) RMSE = 23.081, R2 = 0.807 Actual Prediction

10

20

30

T a
ir
 (

C
) RMSE = 2.131, R2 = 0.786

25

50

75

RH
ai

r (
%

)

RMSE = 4.267, R2 = 0.897

2022-09-25 2022-09-29 2022-10-03 2022-10-07 2022-10-11 2022-10-15 2022-10-19

50

100

C b
at

t (
%

)

RMSE = 7.355, R2 = 0.702

Figure 6.7: Performance of model predictor on testing data.

146

estimates the testing data with missing rates below 80%. Notably, air temperature,

humidity, solar panel voltage, and battery temperature achieve exceptional accuracy,

with R2 scores surpassing 0.9, particularly at a missing rate of 40%. These findings

highlight the model’s proficiency in accurately estimating the target features, even

in the presence of missing data.

6.3.9 Post-training Quantisation

The models’ size is significantly reduced by converting the trained TensorFlow (TF)

models to the TF Lite format. In this work, the model predictor size is reduced by

85.4 kilobytes, while the model imputer size is reduced by 102.6 kilobytes. These

reductions are crucial for optimising the models for deployment on a tiny, resource-

constrained device.

To achieve these size reductions, this work takes advantage of the post-

training options offered by the TensorFlow framework. Considering factors such

as the deep learning architecture, framework version, and microcontroller type, only

the integer with float fallback quantisation technique is successfully implemented.

This technique attempts to quantise the model into integers totally. However, float

operators are still used when the model does not support integer applications. This

quantisation technique further reduces the model size by 10.6 kilobytes for the model

predictor and 13.6 kilobytes for the model imputer. This size reduction is crucial for

efficiently utilising the device’s limited resources. Table 6.2 comprehensively com-

pares the model sizes before and after the conversion and quantisation processes.

Table 6.3 presents the Root Mean Square Error (RMSE) values obtained

from different TF model formats. When the TF models are converted to TF Lite

models (TFL), the model accuracies are preserved. However, some degradation in

accuracy is observed after applying quantisation (TFL Q.). Among the features, the

CO2 Tair RHair Isolar Vsolar Vbatt Tbatt Cbatt
0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
2

Missing rate = 0.2 Missing rate = 0.4 Missing rate = 0.6 Missing rate = 0.8

Figure 6.8: R2 scores yielded from different missing rates.

147

Table 6.2: Comparison of different tinyML model sizes.

TinyML Model Model Predictor (bytes) Model Imputer (bytes)

TF 107,708 126,536

TF Lite 22,280 23,948

TF Lite Quantised 11,648 10,384

Table 6.3: RMSE values of different TF model formats.

Model Predictor Model Imputer

Feature TF TFL TFL Q. TF TFL TFL Q.

CO2(ppm) 23.081 23.081 23.392 26.591 26.591 33.743

T air(
◦C) 2.131 2.131 2.458 1.176 1.176 1.338

RH air(%) 4.267 4.267 4.927 3.447 3.447 4.524

I solar(mA) - - - 29.349 29.349 30.167

V solar(V) - - - 3.203 3.203 3.361

V batt(V) - - - 0.099 0.099 0.101

T batt(
◦C) - - - 1.02 1.02 1.237

C batt(%) 7.355 7.355 7.909 12.393 12.393 12.803

CO2 imputation shows the most significant degradation, with the RMSE increasing

from 26.591 ppm to 33.743 ppm. The RMSE degradations for the other features are

relatively less significant.

6.3.10 Summary

This work focused on developing a low-cost air quality monitoring device with tiny

machine learning (tinyML) models to enhance its capabilities. The device utilised

multiple tinyML models deployed on a single microcontroller. These models em-

ployed 2D CNN layers and a denoising autoencoder architecture to facilitate param-

eter prediction and missing feature imputation tasks. The proposed model predictor

exhibited a coefficient of determination above 0.70 for estimating testing data, while

the model imputer performed well when missing rates below 80%. The quantised

versions of the models showed a decrease in size compared to their original lite mod-

els, with reductions of 47.7% and 56.6% for the model predictor and model imputer,

respectively, while maintaining relatively high accuracies.

148

6.4 Optimising TinyML with Binary Weight Network

6.4.1 Introduction

In Subchapter 6.3, the workflow for implementing tinyML is depicted in Fig. 6.1.

However, an extra step is introduced in this section. This section generates an

additional binary version of the TF Model’s weights, denoted as Step 1b in Fig. 6.9.

This binary version is called Binary Weight Network (BWN).

In Step 1a, a deep learning model is developed using standard TensorFlow

procedures. This model is trained and tested to achieve optimal performance in

its full-precision formats. In Step 1b, the quantised version of the model is created

using the Larq library and TensorFlow framework. Both the model from Step 1a

and the quantised model from Step 1b undergo the same subsequent processes.

6.4.2 Objectives

The primary objectives of this study encompass the following:

• To enhance the capabilities of a low-cost air quality monitoring device by

integrating a tiny machine learning model.

• To optimise the proposed tiny machine learning model implemented on a mi-

crocontroller, employing techniques such as binary weight network (BWN).

Create TensorFlow

Model

• Trained on laptop computer

• Consider: Size, accuracy

• Use: supported operations

Convert to

TensorFlow Lite

• Perform quantisation

• Evaluate accuracy

Convert to C byte array

• Read-only program memory

• C formats

Integrate to C++ Library

(TFLM)

• Use TFLM library

• Write necessary codes

Deploy to

microcontroller

• Upload to microcontroller

• Verify final accuracy

Deploy Deploy

Deploy

SBC SBC

Microcontroller

Convert Weights to

Binary Units

1b

1a

Figure 6.9: BWN development workflow.

149

• To compare the performance of different versions of tiny machine learning

models.

6.4.3 Binary Neural Network

Courbariaux et al. [249] developed the Binary Neural Network (BNN) methodology,

serving as a foundational framework for developing numerous subsequent network

binarisation techniques [250]. BNNs are a particular type of Quantised Neural

Networks (QNNs) in which the quantisation output is binary. The quantisation

output xq is binary:

xq = q(x), where xq ∈ {−1,+1}, x ∈ R (6.1)

The forward pass uses the sign quantisation function to convert the acti-

vations and latent full-precision weights into binary values. However, this process

results in nearly zero gradients across most regions, making it challenging for the

model to learn effectively. Consequently, the model faces difficulties updating its

weights during training, limiting its overall learning capabilities.

q(x) =

1, if x ≥ 0,

−1, otherwise.
(6.2)

The Straight-Through Estimator (STE) technique is utilised during model

training to estimate the gradient [251]. This technique replaces the binarisation

process with a clipped identity operation during the backward propagation. This

approach enables efficient gradient computation with binarised weights, ensuring

smooth model training.

dq(x)

dx
=

1, if |x| ≤ 1,

0, if |x| > 1.
(6.3)

6.4.4 Layer Quantisation

Figure 6.10 depicts the computational graph of a quantised layer, where the kernels

and inputs can be independently quantised. The output y can be written as [252]:

y = f(σ(qinput(x), qkernel(w)) + b) (6.4)

As kernels and inputs can be independently quantised, three terms can be described

as follows [252]:

150

• Binary Weight Network (BWN): in the case where only the kernels are

quantised.

• Binary Activation Network (BAN): only the inputs are quantised.

• Binary Neural Network (BNN): both inputs and kernels are binarised in

a network.

Following extensive experimentation, it was observed that both Binary Neu-

ral Networks (BNNs) and Binary Activation Networks (BANs) yielded inaccurate

prediction results. Consequently, for the specific case of air pollution prediction in

this study, only the Binary Weight Network (BWN) was applicable. Hence, BWN

has been chosen for this work.

6.4.5 Proposed Model

This study binarises the weights while the bias and activation are maintained in full

precision. The first and last layers are retained in their original full precisions, as

shown in Fig.6.11. TensorFlow 2.12 was used to construct the deep learning model,

and the Larq library [251] was employed to train neural networks with exceptionally

low precision weights.

x

Input

w

Kernel

qinput qkernel

σ ∙

b
Bias

𝒇 ∙

Kernel

quantisation

Activation

Layer

operation
+

y

Input

quantisation

Output

Figure 6.10: Computational graph of layer quantisation.

151

Reshape

Layer

Conv. Layer

(3x3x15)

Conv. Layer

(2x2x8)

Conn. LayerFlatten

Layer

8

5

1

40

48

12 4
8

4

1

3

3

6

2

15

3

3

Binary Weight Network

X

+1/-1

X

+1/-1

X

+1/-1

෍

⋮

bias

in0

in1

inN

a0

activation

function

binary weights

Figure 6.11: Proposed model with binary weight section.

6.4.6 Research Workflow

The research framework is shown in Fig. 6.12. Data from the air quality monitoring

device were divided into training and testing sets. The target labels included CO2

levels, air temperature, humidity, and battery capacity. Two models were developed:

a full precision model and a BWN model. Both models underwent the same steps

in the process. Once trained, the models were evaluated and optimised using TF

Lite. Additionally, the models can be quantised to 8-bit (with fallback) precision.

Finally, the chosen model was deployed to the microcontroller.

6.4.7 Data Collection

This section employs the same device used in Subchapter 6.3. However, in this

section, the training and testing sizes are larger. The training data consists of

information collected between 21 July 2022 and 20 October 2022, while the testing

data was obtained from 15 March 2023 to 5 June 2023. The measurements recorded

eight features, just like in the previous section. These features include CO2 levels,

air temperature, air humidity, solar panel output current, solar panel output voltage,

152

Preprocessing

Measurement Data

Data Splitting

Model training

Model Evaluation

Model Quantisation

Model Evaluation

Full-precision Model

Model training

Model Evaluation

Model Quantisation

Model Evaluation

Binary Weight Model

Model Selection

Model Deployment

Figure 6.12: BWN implementation workflow.

battery voltage, battery temperature, and battery capacity. Moreover, the sampling

period remained the same, i.e., every 10 minutes. The data were then averaged every

six measurements to derive hourly data. All features were standardised by removing

the mean and scaling to unit variance.

6.4.8 Quantisation Results

Converting a trained TensorFlow model to the TensorFlow Lite format offers the

benefit of reducing the model size. This conversion applies to both the full precision

and BWN models, as shown in Fig. 6.12. In this work, performed the integer with

float fallback quantisation is conducted.

59,488

8,692 6,616

59,488

8,444 6,312

 -

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

TF TFLite TFLite quantised

M
o

d
e
l
S

iz
e
 (

B
y
te

s
)

Model Version

Full precision BWN

Figure 6.13: Model size comparisons.

153

Table 6.4: RMSE predictions obtained from different model versions.

Full Precision BWN

Feature TF TFL TFL Quant’d. TF TFL TFL Quant’d.

CO2(ppm) 30.113 30.113 29.911 28.851 28.851 28.980

Tair(
◦C) 1.665 1.665 2.213 2.637 2.637 2.922

%H 4.302 4.302 5.514 4.471 4.471 5.430

%Batt 10.352 10.352 12.631 8.755 8.755 10.486

The conversion of TF models to TF Lite models preserves the accuracy of

the models. As depicted in Figure 6.13, both model formats initially have the

same sizes since they utilise 32-bit floating-point precision. However, some memory

space can be saved by converting the binary weights to C-byte arrays. Specifically,

in the TFLite version, converting the original model to Binary Weight Networks

(BWN) can result in memory savings of approximately 248 Bytes. Similarly, for

TFLite quantised models, Binary Weight Masks (BWM) can save around 304 bytes.

Although these reductions may seem small, they hold significant value for devices

with limited resources.

Table 6.4 presents the RMSE values obtained from various TensorFlow model

formats. The trained model was designed to predict multiple targets. It is important

to note that certain targets in the Binary Weight Networks (BWN) format may

exhibit slightly lower accuracy compared to the original version. However, in the

case of predicting CO2 levels and battery capacity, the BWN format performs better

than the original version for both TFLite and TF Lite quantised models.

Fig. 6.14 illustrates the performance of the selected tinyML model, which is

a Binary Weight Network (BWN) model without any applied quantisation. Sub-

sequently, the selected model was deployed to the microcontroller. For this study,

we used the Raspberry Pi Pico W as the target device for tinyML deployment.

Fig. 6.14 demonstrates that larger distortions are observed in the predictions of bat-

tery capacity. Specifically, the estimated values are higher than the observed values,

particularly for low battery capacities.

6.4.9 Summary

This work proposes an optimisation technique for deep learning models in conjunc-

tion with the standard TensorFlow Lite method. By preserving the first and last

layers and applying binary quantisation to the weights of all intermediate layers, an

additional reduction in size can be achieved compared to the TFLite model alone.

154

0 500 1000 1500 2000
Samples

500

600

700

800

900

1000
Le

ve
ls

CO2(ppm)
Observed Predicted

0 500 1000 1500 2000
Samples

0

5

10

15

20

25

30

35

40

Le
ve

ls

Temperature(C)
Observed Predicted

0 500 1000 1500 2000
Samples

20

30

40

50

60

70

80

90

100

Le
ve

ls

Humidity(%)
Observed Predicted

0 500 1000 1500 2000
Samples

20

40

60

80

100

120

Le
ve

ls

Battery Capacity(%)
Observed Predicted

600 700 800 900 1000
Observed

550

600

650

700

750

800

850

900

950

1000

Pr
ed

ic
te

d

0 10 20 30 40
Observed

0

5

10

15

20

25

30

35

40

Pr
ed

ic
te

d

20 40 60 80
Observed

20

30

40

50

60

70

80

90

Pr
ed

ic
te

d

40 60 80 100
Observed

40

50

60

70

80

90

100

110

Pr
ed

ic
te

d

Figure 6.14: Deployed BWN performance.

This approach, known as Binary Weight Network (BWN), potentially reduces the

file size of the final model intended for deployment on a microcontroller. The im-

pact on model accuracy depends on the architecture, as BWN has the potential

to improve accuracy. However, it is important to note that there may be a slight

degradation in performance for certain target features after the binarisation process.

6.5 TinyML with Meta-Learning

6.5.1 Introduction

Meta-learning involves consolidating knowledge gained from multiple learning episodes

and leveraging this knowledge to enhance future learning performance [253]. This

thesis adopts the approach depicted in Fig. 6.15 to implement tinyML using a meta-

learning approach. The meta-learning concept introduced in this section offers an

alternative approach to enhancing conventional model performance with minimal

effort and requiring only a small amount of device memory. In this chapter, we in-

troduce a simple linear regression. By incorporating additional constant values after

the model output, it is possible to potentially enhance performance. The process

consists of several steps. In Step 1a, multiple individual deep learning models are

created and assessed. These individual models serve as the base models, which can

vary in their architectural designs. Although it is possible to employ multiple base

models, this thesis focuses on using only two base models to minimise the memory

requirements of the final device, i.e., the microcontroller.

155

In Step 1b, the meta-learner is introduced, and its performance is evaluated.

This thesis uses a straightforward meta-learner known as Ordinary Least Squares

(OLS) Linear Regression (LR). It is important to note that the LR is distinct from

the TensorFlow process path. Consequently, the LR’s coefficients obtained through

the simulation process are subsequently embedded in the microcontroller program-

ming stage, denoted as Step 5a in Fig. 6.15.

6.5.2 Objectives

This research aims to enhance tinyML models deployed on microcontrollers by ap-

plying a meta-learning approach for predicting hourly air pollutants. Using a stack-

ing ensemble architecture, the meta-learner assimilates knowledge from individual

base models to enhance the final prediction. This study demonstrates that a sim-

ple step can be implemented to enhance the performance of individual TensorFlow

models. Performance improvements can be achieved by appending linear regression

coefficients at the end of each base model.

6.5.3 Air Quality Dataset

In contrast to Subchapter 6.3 and Subchapter 6.4, the data used in this section

is sourced from a publicly available dataset. Air quality data from five monitor-

ing sites in the Greater London area between 1 July 2019 and 13 December 2021

Create TensorFlow

Model

• Trained on laptop computer

• Consider: Size, accuracy

• Use: supported operations

Convert to

TensorFlow Lite

• Perform quantisation

• Evaluate accuracy

Convert to C byte array

• Read-only program memory

• C formats

Integrate to C++ Library

(TFLM)

• Use TFLM library

• Write necessary codes

Deploy to

microcontroller

• Upload to microcontroller

• Verify final accuracy

Deploy Deploy

Deploy

SBC SBC

Microcontroller

Add meta-learning

algorithm

5b 5a

• Stacking ensemble

 meta-learning method

Simulate TensorFlow

Model + Meta-learning

1a

1b

Figure 6.15: Meta development workflow.

156

were collected using the Openair framework [186]. These sites are London Bex-

ley (BEX), London Westminster (HORS), London N. Kensington (KC1), London

Eltham (LON6), and London Marylebone Road (MY1). Seven features were se-

lected as inputs (NOx, NO2, NO, PM2.5, modelled wind speed, wind direction, and

air temperature) to predict two hourly pollutants (NO2 and PM2.5).

This work uses 80% of the data for the training set and 20% for the test set.

All features in the dataset are normalised to the range of [0,1], and missing values are

filled using a multivariate imputer function provided by scikit-learn. In this strategy,

the library uses a method to fill in missing values that involves modelling each feature

that has missing data based on other features in a round-robin manner [254].

6.5.4 Stacking Ensemble Process

Figure 6.16 shows the stacking ensemble concept. The stacking architecture consists

of two base models in Level-0 and a least squares linear regression as the meta-learner

in Level-1. A detailed process outlining the steps to develop a stacking ensemble

model is illustrated in Fig. 6.17

The individual base model was trained separately to obtain the best perfor-

mance, and all trained models were then saved. Subsequently, the layers of each

selected base model were frozen, preventing further training. A meta-learner was

then added on top of the base models. During the stacked model’s training, the base

models’ weights and biases remained unchanged, ensuring that the learned features

were preserved. The only parameter adjusted was the linear regression coefficients,

optimised to minimise the residual sum of squares between the input and target

sets, resulting in a linear approximation.

Base-1

Base-2

Meta-
learner

Output
Input Data

D

D

D

Level-0 Level-1

Stacked Model

linear

regression

Figure 6.16: Stacking ensemble architecture.

157

Start

Finish

Design Base
Model

Train Base
Model

Dataset
Preparation

Evaluate Base
Model

Is the performance
as expected?

Is the number of
base models enough?

YesNo

YesNo

Freeze all base
models' layers

Stack a meta-learner

Train the stacked
model

Model quantisation

Model deployment

Figure 6.17: Flowchart of deploying stacking ensemble meta-learning model.

Once the meta-learner is trained, the base models undergo quantisation us-

ing standard TensorFlow procedures. Subsequently, the final LR coefficients are

manually incorporated during the programming of the microcontroller.

6.5.5 Proposed Stacking Ensemble Model

Figure 6.18 illustrates the proposed base models, which include dense layers as

Base-1 and a combination of 2-D CNN and dense layers as Base-2. These distinct

architectures were intentionally chosen to examine the capabilities of each as a base

model. The rectified linear activation function (ReLU) is applied to all layers ex-

cept for the output layers. This study uses the TensorFlow framework version 2.12

to develop the ML models and deploy the lite versions on a Raspberry Pi Pico

microcontroller.

158

Reshape

Layer

Conv. Layer

(3x3x8)

ReLU Layer

Conv. Layer

(2x2x5)

ReLU Layer

Dense Layer

ReLU Layer
Flatten

Layer

5

1

4

20

28

6
2

4

7

1

3

3

2

5

8

2

2

28

10
6

2

Dense Layer (10)

ReLU Layer

Dense Layer (6)

ReLU Layer

Dense Layer (2)

In
p
u
t
M

o
d
e
l

In
p
u
t
M

o
d
e
l

Base-1

Base-2

Figure 6.18: Proposed base models.

6.5.6 Results and Discussion

The meta-learner receives inputs from the base models, which consist of two base

models. Each base model generates two predictions (NO2 and PM2.5). As a result,

the meta-learner receives four values from the base models. The linear model has

the following form:

y = β0 + β1x1 + β2x2 + β3x3 + . . .+ βnxn (6.5)

where y is the meta-learner output, β0 is intercept, β1, β2, β3 . . . βn are the linear

regression coefficients, and x1, x2, x3 . . . xn is the base model outputs. The values

of β0, β1, β2, . . . βn vary between NO2 and PM2.5. Fig. 6.19 depicts the process of

acquiring the meta-learner output.

As depicted in Fig. 6.19, each base model generates two outputs: one for

predicting NO2 (x1 and x3) and another for PM2.5 (x2 and x4). During training,

the meta-learner calculates intercepts and linear regression coefficients for each pol-

lutant. Since the total input for the meta-learner is four, there are also four linear

regression coefficients (β1, β2, β2, and β4), in addition to one intercept β0. Further-

159

Base-1

Base-2

β0(1), β1(1), β2(1), β3(1), β4(1)

β0(2), β1(2), β2(2), β3(2), β4(2)

Outputs

Input Data
D

D

D

Level-0 Level-1

Stacked Model

linear regression

y(1) = β0(1) + β1(1)x1 + β2(1)x2 + β3(1)x3 + β4(1)x4

y(2) = β0(2) + β1(2)x1 + β2(2)x2 + β3(2)x3 + β4(2)x4

Figure 6.19: Process of acquiring the meta-learner output.

more, since there are two different target pollutants, the values of β0, β1, β2, β3, and

β4 also differ for each pollutant. As shown in Fig. 6.19, the coefficients β0(1), β1(1),

β2(1), β3(1), and β4(1) are specific to NO2, while coefficients β0(2), β1(2), β2(2), β3(2),

and β4(2) are dedicated to PM2.5.

Based on the training results, the meta-learner outputs can be represented

by the following equations:

NO2 = 0.00470543 + 0.18501297x1 + 0.08231181x2

+0.80033445x3 − 0.08300869x4
(6.6)

PM2.5 = 0.11539364− 0.06124004x1 + 0.67543256x2

+0.06094074x3 + 0.31981403x4
(6.7)

The values β0(1) . . . β4(1) and β0(2) . . . β4(2) are manually incorporated during

the microcontroller programming. This process is straightforward and requires a

small amount of memory space.

Table 6.5 presents the model performance. The table shows that the stacked

model can reduce RMSE values obtained by individual base models. The linear

approximation by the meta-learner finds the best way to combine the Level-0 mem-

bers’ outputs by minimising the residual sum of squares between the input and

target sets.

In this work, converting ML models to lite versions can reduce the model size

by about 83% and 77% for Base-1 and Base-2, respectively. The deployed tinyML

model sizes are 3,012 bytes for Base-1 and 5,076 bytes for Base-2, considered light

enough even without performing any quantisation techniques. The lite version’s

accuracy is not degraded compared to the original model’s.

160

Table 6.5: RMSE values of base and stacked models.

NO2 (µg/m3) PM2.5 (µg/m3)

Station Base-1 Base-2 Stacked Base-1 Base-2 Stacked

BEX 5.460 5.451 5.374 2.702 2.847 2.597

HORS 5.435 5.416 5.401 3.431 3.679 3.234

KC1 5.136 5.073 4.962 1.656 1.662 1.609

LON6 4.530 4.447 4.308 2.147 2.185 1.873

MY1 8.826 8.979 8.759 2.556 2.583 2.526

6.5.7 Summary

In this implementation, a stacked ensemble model architecture based on meta-

learning is proposed to enhance the accuracy of tinyML predictions. The meta-

learning approach, on average, improves the predictions of the base models across

all stations and pollutants by approximately 4.4%. Implementing meta-learning is

straightforward and requires minimal memory usage by employing linear regression

on top of the base models. However, it is important to note that memory con-

sumption is influenced by the number of base models involved in the meta-learning

process. Therefore, keeping the number of base models small is recommended to

minimise memory usage.

161

Chapter 7

Conclusions and Further Work

7.1 Overview

Chapter 1 discussed that air pollution has emerged as a significant global threat

to public health. In the pursuit of environmental sustainability, numerous stake-

holders have developed air pollution monitoring systems to measure, analyse, and

predict the concentration levels of air pollutants. Recent research has demonstrated

the feasibility of employing low-cost sensor nodes in air quality monitoring systems.

These sensor-based monitoring systems provide high-density spatiotemporal pol-

lution data. The rapid deployment of these sensors has resulted in a substantial

increase in data volume. Machine learning techniques have great potential in lever-

aging this wealth of data in air quality research. The future of machine learning

is shifting towards edge computing, which addresses challenges related to latency,

privacy, and scalability commonly encountered in cloud-based systems. In the field

of air quality research, there is a growing demand for denser spatiotemporal data on

pollutant levels from communities. Traditional industrial-grade instruments, while

reliable, are often expensive and challenging to install due to their size. As a viable

alternative, low-cost sensor instruments are gaining traction. Furthermore, machine

learning is becoming increasingly ubiquitous, even at the edge. We anticipate that

more communities will adopt intelligent sensing and prediction techniques using low-

cost air quality devices. Finally, this chapter encompassed the research objectives

and the organisation of the thesis.

Chapter 2 delved into the research background by highlighting the evolu-

tion of air pollution monitoring systems. Many stakeholders have started developing

these systems to measure air pollutants effectively and enhance environmental sus-

tainability. This evolution has seen a shift away from the traditional reliance on

162

standard, government-managed networks towards the incorporation of reference-

level monitors and emerging sensor technologies. Later, this chapter introduced

the concept of edge computing, which emphasised applying computational capabil-

ities near the data source, including the possibility of running machine learning at

the edge to improve efficiency and real-time processing. In addition, this chapter

extensively explored machine learning platforms and edge devices used in this thesis.

One area where machine learning finds application in air quality research is

missing data imputation, which was discussed in Chapter 3 of the thesis. Using

a denoising autoencoder model, a novel imputation method is proposed to enhance

temporal and spatial data accuracy. The model has the capability to predict missing

air quality data for both short and long-consecutive time intervals. The proposed

method has been tested on air quality data from Delhi, London, and Beijing. The

model demonstrates satisfactory performance across these diverse datasets. Specific

values were intentionally omitted from the data to evaluate short interval prediction,

encompassing four distinct missing rates (20%, 40%, 60%, and 80%). For instance,

at a 20% missing rate, the R2 scores exceed 0.8 for all target stations. Generally, a

decrease in missingness levels correlates with lower RMSE/MAE values and higher

R2 scores. The procedure involves the removal of all data at the target station for

a designated timeframe to predict missing values over longer consecutive intervals.

The results indicate that the imputed values successfully capture the underlying dy-

namics of the actual values. The proposed autoencoder model exhibits adeptness in

recognising and filling the gaps left by missing data. However, it is important to note

that the level of correlation coefficients between paired stations can influence the

performance of the proposed method. The imputed values are notably biased when

stations exhibit extremely low correlation coefficients. Currently, the study employs

Pearson’s correlation coefficient, which assesses the linear correlation between pollu-

tant data from two stations. An alternative approach could involve implementing a

non-linear correlation method to identify more robust neighbouring stations for in-

clusion in the analysis, such as Spearman’s rank correlation coefficient and Kendall’s

rank correlation coefficient. Another potential step is to address missing data by

using values other than zero when developing the deep learning model. Instead of

replacing missing values with zeros, alternative strategies could be explored, such

as using the most frequent values or employing interpolation techniques. Adopting

different strategies for filling in missing data could significantly alter the patterns

within the input dataset. Moreover, the proposed autoencoder model outperforms

commonly used univariate imputations in handling missing data, resulting in root

mean square error improvement rates of approximately 50% to 65%, and about 20%

163

to 40% for multivariate imputation.

Optimising efficient design becomes crucial when deploying deep learning

models on edge devices. This topic is specifically discussed in Chapter 4. This

chapter is devoted to the design of a novel hybrid CNN-LSTM model for accurately

predicting PM2.5 pollutant levels using spatiotemporal features. The chapter dis-

cussed prior works in deep learning for air quality predictions. Subsequently, the

chapter delved into the dataset and preprocessing techniques employed in this study.

The feature selection was explained, and the proposed model was discussed. This

model comprises two parallel inputs: the first aggregates data exclusively from the

local node, while the second collects PM2.5 data from the local and its neighbouring

nodes. The evaluation phase encompasses a comprehensive exploration of 20 distinct

deep learning models. Notably, integrating a deeper model with CNN layers as a fea-

ture extractor preceding the predictor (ANN, RNN, LSTM, or GRU) yields marginal

enhancements in model performance. The subsequent endeavour involves optimising

and deploying the proposed deep learning model onto edge devices. To this end, two

Raspberry Pi boards are selected: the RPi4B and RPi3B+. Raspberry Pi boards

enjoy widespread popularity, but they are not the exclusive option for low-cost air

quality monitoring stations. A plethora of other single-board computers (SBCs)

exist in the market. Additionally, many edge devices opt for microcontrollers as

an alternative to SBCs. Despite their comparatively modest computing power, mi-

crocontrollers provide robust sensor interfacing capabilities, boasting features like

built-in analog-to-digital converters (ADCs) within their chips. Moreover, modern

microcontrollers support various communication protocols and offer additional stor-

age peripherals, all at generally more budget-friendly prices compared to SBCs. In

this study, the RPi4B showcases significant advantages, proving to be twice as fast

in all experiments compared to the RPi3B+. Post-training quantisation techniques

are explored in pursuit of further reductions in both size and speed. Four distinct

post-training optimisation approaches are examined: dynamic range quantisation,

float16 quantisation, integer quantisation with float fallback, and full integer-only

quantisation. While dynamic range quantisation leads to an approximate size reduc-

tion of 47%, its impact on execution time improvement is minimal. The selection of

the quantisation technique should be based on the specific priorities and trade-offs

users intend to strike between model accuracy, size reduction, and execution time

improvement.

Chapter 5 investigated the practical implementation of collaborative learn-

ing techniques for air quality prediction on edge devices. The fundamental premise of

this chapter is to take advantage of the spatial and temporal correlations embedded

164

in air quality data collected at various monitoring stations. By leveraging these spa-

tiotemporal dynamics through collaborative learning between sensing devices, the

performance of machine learning models can be significantly improved. Contribu-

tions to this chapter include an introduction to innovative methodologies that lever-

age spatiotemporal data (SpaTemp), shared deep learning models (ClustME), and

widely used collaborative learning techniques (FedAvg). The experimental frame-

work is conducted by a comprehensive setup involving eight air quality monitoring

stations, each represented by three different Raspberry Pi (RPi) board variants,

along with a 2GB NVIDIA Jetson Nano Developer Kit. The results show that the

SpaTemp method surpasses other approaches in minimising the loss function during

the training process at all participating stations and performs better than other

collaborative learning methods, with RIR values ranging from 0.525% to 8.934%.

Regarding the Learning execution timeframe, the Jetson Nano 2GB developer kit

outperforms other devices, with turnaround times up to approximately nine times

faster than Raspberry Pi Zeros when executing the SpaTemp method. ClustME re-

duces communication costs by up to half compared to FedAvg. Finally, this chapter

broadens the scope of the research by providing valuable insights into the potential

of extending edge device networks for a wider range of applications.

Chapter 6 was dedicated to tinyML experiments. Deploying models into

resource-constrained devices, such as microcontrollers, is challenging. This neces-

sitates the development of tiny machine learning (tinyML) models that are both

compact and efficient. This chapter explored the implementation of a low-cost air

quality monitoring device designed to acquire air quality information directly. This

device uses a solar panel to gather air quality and electrical parameters. Further-

more, the chapter delved into creating a dedicated dataset involving direct mea-

surements. This dataset is a valuable resource for training and assessing tinyML

models. In this chapter, three experiments around the implementation of tinyML

were discussed. The first experiment leverages tinyML models for predicting the

future and imputing the current missing values. The second experiment was about

the reduction of model size using binary weights. Finally. the last experiment was

about performance improvement through meta-learning techniques.

7.2 Objectives and Achievements

Chapter 1.2 outlined four main objectives of this thesis. In this section, these

objectives are presented along with the corresponding achievements accomplished

in this thesis.

165

• Objective 1: To develop a method for imputing missing values on measure-

ment data, considering spatiotemporal behaviour of air quality status.

Achievement: A convolutional denoising autoencoder architecture was em-

ployed to develop a method for imputing missing data in air quality datasets.

Three distinct air quality datasets were used, with varying pollutants targeted

to assess the performance of the proposed method. The method utilised spa-

tiotemporal data from neighbouring stations to assist in filling in the missing

data at the target stations. Both short-term and long-term consecutive miss-

ing data were selected to evaluate the effectiveness of the proposed model.

The results demonstrate that the proposed method outperforms commonly

used imputation methods, including univariate and multivariate approaches.

• Objective 2: To develop a deep learning model to predict air pollution levels

accurately with model optimisations for edge devices.

Achievement: To predict air pollutant data, a hybrid deep learning model

called the 1D Convolutional and Long Short-Term Memory (CNN-LSTM) was

developed. This model uses a parallel structure of CNN layers, enabling it to

effectively capture local and neighbouring spatiotemporal data. The perfor-

mance of the proposed model was compared to various other deep learning

architectures. Additionally, different post-training model quantisation meth-

ods were evaluated directly on Raspberry Pi boards to optimise the model for

edge devices. When implementing quantisation, there is a trade-off between

accuracy, file size, and execution time, which should be carefully considered.

Based on the conducted experiments, dynamic range quantisation was found

to be a beneficial solution. This approach significantly reduces the file size of

the TFLite model compared to the original model while maintaining a similar

accuracy level.

• Objective 3: To develop collaborative learning strategies among edge de-

vices and evaluate the proposed strategies regarding model accuracy, device

performance, and communication cost.

Achievement: Collaborative learning methods were directly implemented

on various edge devices using the MQTT protocol. The study tested several

devices, including Raspberry Pi boards and a Jetson Nano board. Three col-

laborative strategies were explored: FedAvg, ClustME, and SpaTemp. Each

strategy employs a different approach to predict pollutant data. Among

166

the collaborative learning methods, SpaTemp demonstrated superior perfor-

mance compared to others, exhibiting a range of improvement rates on RMSE

(RIR) values from 0.525% to 8.934%. However, it should be noted that this

method generally requires more time for model training compared to FedAvg,

ClustME, and local approaches. Additionally, the work was extended by mod-

elling network expansion, providing insights into scaling up the collaborative

learning system.

• Objective 4: To deploy tiny machine learning models on resource-constrained

microcontrollers as target devices to address air quality issues.

Achievement: Three distinct implementations of tinyML on microcontrollers

were conducted and discussed in this study. The first implementation involved

deploying tinyML using the standard TensorFlow procedure. Air pollutant

data was directly measured using a low-cost air quality monitoring device.

The proposed method encompassed both prediction and missing data func-

tionalities, and the quantised versions of the models exhibited a size reduction

compared to their original lite models. The model predictor and model imputer

experienced size reductions of 47.7% and 56.6%, respectively, while maintain-

ing relatively high accuracies. In the second implementation, a binary weight

network was employed to reduce further the size of the standard tinyML model

obtained from the TensorFlow framework. By preserving the first and last lay-

ers and applying binary quantisation to the weights of the intermediate layers,

additional size reductions were achieved compared to the standard lite model.

Finally, a meta-learning approach was employed to enhance the performance

of the tinyML model. The meta-learner utilised ordinary least squares linear

regression on top of the proposed base models. The conversion of ML models

to lite versions resulted in size reductions of approximately 83% for Base-1

and 77% for Base-2. The deployed tinyML models for Base-1 and Base-2 had

sizes of 3,012 bytes and 5,076 bytes, respectively, which were considered light

enough even without applying additional quantisation techniques.

7.3 Conclusions

A paradigm shift has occurred within the air pollution monitoring field, moving

from reliance on standard, government-operated networks to a hybrid approach that

combines reference-level monitors and new sensor technologies that employ low-cost

sensing devices. The emergence of new sensor technologies that utilise low-cost

167

sensing devices does not mean a complete replacement of reference-level monitors.

Rather, this technology complements existing monitoring frameworks, offering an

additional layer of data collection and analysis. While traditional reference level

monitors remain essential to ensure accuracy and reliability in air quality assess-

ments, integrating low-cost sensing devices introduces a new dimension, expanding

the scope and granularity of data acquisition. Therefore, both reference level mon-

itors and low-cost sensing devices coexist, synergistically contributing to a more

comprehensive understanding of air quality dynamics.

This transition has led to a major surge in the volume of data generated

through these sensing devices, paving the way for applying machine learning tech-

niques in air quality research. Machine learning is heading towards the edge, and a

recent study also demonstrates how developers significantly contribute to tiny ma-

chine learning. This thesis explores various aspects of air quality research, linking

machine learning advances to practical environmental challenges.

The presented results demonstrate the effectiveness of our proposed ap-

proach, showing R2 scores exceeding 0.8 for all target stations when confronted

with a 20% missing data rate in short-term imputation. The hybrid CNN-LSTM

model, utilising spatiotemporal inputs, outperforms the other 19 deep learning mod-

els, yielding an RMSE of 15.286 µg/m3. Employing dynamic range quantisation

proves advantageous for edge optimisation, as it significantly reduces file sizes while

preserving near-original accuracy levels. In collaborative learning experiments, the

SpaTemp method surpasses FedAvg and ClustME, exhibiting RIR scores rang-

ing from 0.525% to 8.934%. It achieves this while transmitting notably smaller

data quantities during the learning process. Nevertheless, it is worth noting that

SpaTemp transmits actual measurement data and employs a larger model size. A

low-cost sensing device has been developed for tinyML experiments. For tinyML

with BWN applications, maintaining the first and last layers while applying binary

quantisation to intermediate layer weights achieves further size reduction compared

to full-precision models. Incorporating meta-learning with a stacked model presents

another viable approach. Through this experiment, the utilisation of meta-learning

effectively decreases the RMSE values achieved by individual base models. Addi-

tionally, converting machine learning models into lightweight versions reduces model

size by around 83% and 77% for Base-1 and Base-2, respectively.

Edge computing represents an evolving frontier, with machine learning in-

creasingly migrating to the edge, encompassing even low-cost air quality monitoring

devices. This study introduces the notion of collaborative learning among edge

devices to address challenges in air quality research, such as missing data and air

168

pollutant predictions. While collaborative learning among air quality stations is cur-

rently in its nascent stages, the potential for expansion exists, albeit at a laboratory

scale for now. Traditionally, air quality data have been sourced solely from fixed

monitoring sites and utilised accordingly. However, the practical implementation

of federated learning, a form of collaborative learning, by Google demonstrates its

viability [255], paving the way for its potential adaptation to air pollution research

in the future.

7.4 Further Work

7.4.1 Broader Perspectives of AI-based Smart Sensing and Ap-

proaches to Driving Change

Research efforts could explore implementing AI-based smart networks designed

specifically for devices with limited resources [256]. These networks would be highly

valuable tools for local governments, community organisations, and environmental

agencies tasked with monitoring air quality. By focusing on this demographic, re-

searchers can address critical needs in regions where resources may be limited, but

air quality issues remain pressing. Potential avenues for research include develop-

ing frameworks that offer detailed insights into the deployment and management

of AI-based smart networks. This requires elucidating best practices for data col-

lection, analysis, and interpretation in the context of limited resources, including

the use of edge devices. Additionally, investigating strategies to optimise network

performance and scalability in resource-constrained devices presents an intriguing

area for exploration [257]. Furthermore, research efforts could explore the develop-

ment of user-friendly interfaces and decision support systems tailored to the needs

of stakeholders in resource-constrained environments. These tools would empower

local authorities and community organisations to make informed decisions regarding

air quality management and intervention strategies.

The potential of machine learning extends to addressing further challenges

associated with deploying low-cost air quality monitors. Machine learning offers a

promising avenue for enhancing sensor and sensor network quality control, thereby

ensuring the reliability and accuracy of the data collected. Through sophisticated

machine learning models, anomalies and inconsistencies in sensor readings can be

swiftly identified and rectified, thereby ensuring the integrity of air quality mea-

surements. Additionally, machine learning techniques can streamline the calibra-

tion process by automating adjustments based on real-time data feedback. This

automation reduces reliance on manual intervention, minimises human error, and

169

enhances the overall efficiency of air quality monitoring systems. These systems can

dynamically adapt to changing environmental conditions by integrating AI-based

calibration mechanisms, ensuring accuracy and consistency over time.

It is crucial to ensure that a diverse range of stakeholders can utilise the infor-

mation provided to make decisions and drive change across various layers of society.

For example, at the individual level, residents can benefit from accessing real-time

air quality information, enabling them to take proactive measures to safeguard their

health. This could involve actions such as adjusting outdoor activities or using per-

sonal protective equipment when air quality levels are poor. On a broader scale,

local authorities can utilise the data to pinpoint pollution hotspots and implement

targeted interventions. These interventions might include implementing traffic man-

agement strategies, establishing green spaces or vegetation buffers, or introducing

emission reduction measures for industrial facilities located in the affected areas. At

the community level, collaborative efforts can be developed to address broader en-

vironmental challenges, leveraging insights gained from AI-driven data analysis and

machine learning approaches. This could involve partnerships between local govern-

ments, non-profit organisations, businesses, and community groups to develop and

implement comprehensive air quality improvement initiatives. Furthermore, at the

council level, policymakers can utilise the information to formulate evidence-based

policies and regulations to enhance overall air quality [258]. These policies might

encompass measures to reduce emissions from transportation and industry, promote

the use of clean energy technologies, or incentivise sustainable urban planning prac-

tices.

7.4.2 Collaborative Learning and Air Quality Monitoring Network

Collaborative learning at the edge involves two main aspects: local learning on de-

vices and data (or model) transmission between the server and participating devices.

One viable exploration approach involves leveraging the LoRa (Long-Range) proto-

col to facilitate communication between the server and the involved devices. LoRa

is a wireless platform known for its long-range capabilities and low-power consump-

tion, making it an ideal choice for Internet of Things (IoT) applications. It allows

for long-range communication between devices, making it suitable for deployments

in remote areas without an internet connection. However, the protocol is limited

by its small payload capability, which poses challenges when transferring data or

models during device-to-server or device-to-device communication. To overcome

these limitations, designing lightweight models and exploring collaborative learning

among microcontrollers are still worthwhile areas of investigation. This can ensure

170

efficient communication and collaboration while considering the constraints of the

LoRa protocol. Giménez et al. [259] have led the way in this field by pioneering the

implementation of federated learning over LoRa, utilising an open dataset compris-

ing 480 samples across three distinct spoken keywords. Their study involved the

integration of two microcontrollers: an Arduino Portenta H7 for model training and

a TTGO LORA32 board for LoRa communication. The Arduino Portenta H7 is a

high-end, dual-core microcontroller designed for industrial applications. Its default

configuration includes 8MB of SDRAM and 16MB of flash memory. Future endeav-

ours could be directed towards air quality research. There is potential for simplifying

the approach by utilising a single microcontroller with lower specifications, thereby

reducing costs.

The exploration of implementing approaches like SpaTemp and ClustME re-

mains open, along with the prospect of designing a lightweight yet highly accurate

machine learning model. Realising a smart, low-cost air quality network requires

a combination of theoretical knowledge, methodological approaches, programming

skills, prototyping, and hardware expertise. Integrating intelligence into a single

device is challenging, but extending that intelligence to a network of interconnected

devices poses even greater difficulties. However, a smart network of low-cost air qual-

ity monitors can be achieved with individual devices equipped with intelligence. In

such a network, devices facing issues like missing data can be compensated by neigh-

bouring devices, ensuring comprehensive coverage. Additionally, devices unable to

participate directly in collaborative learning can still benefit from neighbouring de-

vices by leveraging their updated data and knowledge. Despite the advancements

made, there are still numerous challenges to address in realising smart, low-cost net-

works for air quality monitoring. These challenges continue to drive further research

and development in the field.

This thesis focuses on outdoor air quality research. Collaborative learning

between outdoor sensor nodes requires consideration of the communication proto-

cols used to establish connections between nodes, especially when large distances

separate them from other nodes. It should be noted that collaborative learning can

also include indoor air monitoring. For example, sensor nodes in multiple rooms in a

building can collaboratively learn using local area networks or short-range commu-

nication protocols such as Bluetooth, BLE, ZigBee, Wi-Fi, SigFox, LoRa, Ingenu,

NB-IoT, and Wi-Fi HaLow. In indoor air quality, machine learning models can be

enhanced by leveraging air-related parameters and other factors, commonly referred

to as data fusion. Multisensor data fusion involves leveraging insights from multi-

ple sources to increase the comprehensive understanding of a phenomenon and to

171

consolidate evidence or decisions. For example, combining data from motion, sound

levels, light intensity sensors, and air quality parameters can potentially improve

the performance of deep learning models.

172

References

[1] I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, “Optimising Deep Learn-

ing at the Edge for Accurate Hourly Air Quality Prediction,” Sensors, vol. 21,

p. 1064, Feb. 2021.

[2] I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, “Estimation of Missing Air

Pollutant Data Using a Spatiotemporal Convolutional Autoencoder,” Neural

Computing and Applications, vol. 34, pp. 16129–16154, May 2022.

[3] I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, “Collaborative Learning at

the Edge for Air Pollution Prediction,” IEEE Transactions on Instrumentation

and Measurement, vol. 73, pp. 1–12, 2024.

[4] I. N. K. Wardana, S. A. Fahmy, and J. W. Gardner, “Tinyml models for a

low-cost air quality monitoring device,” IEEE Sensors Letters, vol. 7, no. 11,

pp. 1–4, 2023.

[5] I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, “TinyML with Meta-

Learning on Microcontrollers for Air Pollution Prediction.” XXXV Eurosen-

sors Conference, Sep. 2023.

[6] I. N. K. Wardana, S. A. Fahmy, and J. W. Gardner, “Optimising Tiny Machine

Learning With Binary Weight Network for a Low-Cost Air Quality Monitoring

Device.” The 3rd Imperial Workshop on Intelligent Communications, June

2023.

[7] I. N. K. Wardana, S. A. Fahmy, and J. W. Gardner, “Optimising TinyML

Using Binary Weight Network and Meta-Learning for a Low-Cost Air Quality

Monitoring Device.” Warwick Secure and Intelligent Communications (WSIC)

Workshop, July 2023.

[8] H. E. Institute, “State of Global Air 2019,” tech. rep., Health Effects Institute,

Boston, MA, 2019.

173

[9] A. Elessa Etuman and I. Coll, “Integrated Air Quality Modeling for Urban Pol-

icy: A Novel Approach with Olympus-chimere,” Atmospheric Environment,

vol. 315, p. 120134, Dec. 2023.

[10] W. H. Organization, “Ambient (Outdoor) Air Pollution.” https:

//www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)

-air-quality-and-health. Accessed: 2023-12-25.

[11] F. Perera, “Pollution from Fossil-Fuel Combustion is the Leading Environmen-

tal Threat to Global Pediatric Health and Equity: Solutions Exist,” Interna-

tional Journal of Environmental Research and Public Health, vol. 15, p. 16,

Dec. 2017.

[12] S. Ameer, M. A. Shah, A. Khan, H. Song, C. Maple, S. U. Islam, and M. N.

Asghar, “Comparative Analysis of Machine Learning Techniques for Predict-

ing Air Quality in Smart Cities,” IEEE Access, vol. 7, pp. 128325–128338,

2019.

[13] United Nations, World Population Prospects 2022: Summary of Results. Sta-

tistical Papers - United Nations (Ser. A), Population and Vital Statistics Re-

port, United Nations, Aug. 2022.

[14] W. H. Organization et al., WHO global air quality guidelines: particulate mat-

ter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon

monoxide. World Health Organization, 2021.

[15] Y. Guo, H. Zeng, R. Zheng, S. Li, A. G. Barnett, S. Zhang, X. Zou, R. Huxley,

W. Chen, and G. Williams, “The Association Between Lung Cancer Incidence

and Ambient Air Pollution in China: A Spatiotemporal Analysis,” Environ-

mental Research, vol. 144, pp. 60–65, 2016.

[16] G. B. Hamra, N. Guha, A. Cohen, F. Laden, O. Raaschou-Nielsen, J. M.

Samet, P. Vineis, F. Forastiere, P. Saldiva, T. Yorifuji, and D. Loomis,

“Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Re-

view and Meta-Analysis,” Environmental Health Perspectives, vol. 122, no. 9,

pp. 906–911, 2014.

[17] Q. Chen, Q. Wang, B. Xu, Y. Xu, Z. Ding, and H. Sun, “Air Pollution and

Cardiovascular Mortality in Nanjing, China: Evidence Highlighting the Roles

of Cumulative Exposure and Mortality Displacement,” Chemosphere, vol. 265,

p. 129035, 2021.

174

https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

[18] H. Saygin, Y. Mercan, and F. Yorulmaz, “The Association Between Air Pollu-

tion Parameters and Emergency Department Visits and Hospitalizations Due

to Cardiovascular and Respiratory Diseases: A Time-Series Analysis,” Inter-

national Archives of Occupational and Environmental Health, Oct 2021.

[19] Y. Ma, H. Zhang, Y. Zhao, J. Zhou, S. Yang, X. Zheng, and S. Wang, “Short-

Term Effects of Air Pollution on Daily Hospital Admissions for Cardiovascular

Diseases in Western China,” Environmental Science and Pollution Research,

vol. 24, pp. 14071–14079, Jun 2017.

[20] J. M. Delgado-Saborit, V. Guercio, A. M. Gowers, G. Shaddick, N. C. Fox,

and S. Love, “A Critical Review of the Epidemiological Evidence of Effects

of Air Pollution on Dementia, Cognitive Function and Cognitive Decline in

Adult Population,” Science of The Total Environment, vol. 757, p. 143734,

2021.

[21] C. Li and S. Managi, “Spatial Variability of the Relationship Between Air

Pollution and Well-Being,” Sustainable Cities and Society, vol. 76, p. 103447,

2022.

[22] J. Ma, Z. Li, J. C. Cheng, Y. Ding, C. Lin, and Z. Xu, “Air Quality Prediction

at New Stations Using Spatially Transferred Bi-directional Long Short-Term

Memory Network,” Science of The Total Environment, vol. 705, p. 135771,

Feb. 2020.

[23] Z. Zhang, G. Zhang, and B. Su, “The Spatial Impacts of Air Pollution and

Socio-Economic Status on Public Health: Empirical Evidence From China,”

Socio-Economic Planning Sciences, p. 101167, 2021.

[24] M. Tainio, Z. Jovanovic Andersen, M. J. Nieuwenhuijsen, L. Hu, A. de Nazelle,

R. An, L. M. Garcia, S. Goenka, B. Zapata-Diomedi, F. Bull, and T. H. d.

Sá, “Air Pollution, Physical Activity and Health: A Mapping Review of the

Evidence,” Environment International, vol. 147, p. 105954, Feb. 2021.

[25] R. Sivarethinamohan, S. Sujatha, S. Priya, Sankaran, A. Gafoor, and Z. Rah-

man, “Impact of Air Pollution in Health and Socio-Economic Aspects: Review

on Future Approach,” Materials Today: Proceedings, vol. 37, pp. 2725–2729,

2021. International Conference on Newer Trends and Innovation in Mechanical

Engineering: Materials Science.

[26] J. Rentschler and N. Leonova, “Global Air Pollution Exposure and Poverty,”

Nature Communications, vol. 14, July 2023.

175

[27] G. Shaddick, M. L. Thomas, P. Mudu, G. Ruggeri, and S. Gumy, “Half the

World’s Population are Exposed to Increasing Air Pollution,” npj Climate and

Atmospheric Science, vol. 3, June 2020.

[28] S. Abdul Jabbar, L. Tul Qadar, S. Ghafoor, L. Rasheed, Z. Sarfraz, A. Sarfraz,

M. Sarfraz, M. Felix, and I. Cherrez-Ojeda, “Air Quality, Pollution and Sus-

tainability Trends in South Asia: A Population-Based Study,” International

Journal of Environmental Research and Public Health, vol. 19, p. 7534, June

2022.

[29] M. J. Moya, “These countries have the most polluted air

in the world, new report says.” https://phys.org/news/

2022-03-countries-polluted-air-world.html. Accessed: 2023-12-25.

[30] W. Liu, Z. Xu, and T. Yang, “Health Effects of Air Pollution in China,”

International Journal of Environmental Research and Public Health, vol. 15,

p. 1471, July 2018.

[31] X. Lu, S. Zhang, J. Xing, Y. Wang, W. Chen, D. Ding, Y. Wu, S. Wang,

L. Duan, and J. Hao, “Progress of Air Pollution Control in China and Its

Challenges and Opportunities in the Ecological Civilization Era,” Engineering,

vol. 6, p. 1423–1431, Dec. 2020.

[32] T. Hassan Bhat, G. Jiawen, and H. Farzaneh, “Air Pollution Health Risk

Assessment (AP-HRA), Principles and Applications,” International Journal

of Environmental Research and Public Health, vol. 18, p. 1935, Feb. 2021.

[33] J. Burns, H. Boogaard, S. Polus, L. M. Pfadenhauer, A. C. Rohwer, A. M. van

Erp, R. Turley, and E. Rehfuess, “Interventions to Reduce Ambient Particu-

late Matter Air Pollution and Their Effect on Health,” Cochrane Database of

Systematic Reviews, vol. 2019, May 2019.

[34] H. Orru, K. L. Ebi, and B. Forsberg, “The Interplay of Climate Change

and Air Pollution on Health,” Current Environmental Health Reports, vol. 4,

p. 504–513, Oct. 2017.

[35] A.-C. Pinho-Gomes, E. Roaf, G. Fuller, D. Fowler, A. Lewis, H. ApSimon,

C. Noakes, P. Johnstone, and S. Holgate, “Air Pollution and Climate Change,”

The Lancet Planetary Health, vol. 7, p. e727–e728, Sept. 2023.

176

https://phys.org/news/2022-03-countries-polluted-air-world.html
https://phys.org/news/2022-03-countries-polluted-air-world.html

[36] R. M. Doherty, M. R. Heal, and F. M. O’Connor, “Climate Change Impacts

on Human Health Over Europe Through Its Effect on Air Quality,” Environ-

mental Health, vol. 16, Nov. 2017.

[37] A. Jonidi Jafari, E. Charkhloo, and H. Pasalari, “Urban Air Pollution Con-

trol Policies and Strategies: a Systematic Review,” Journal of Environmental

Health Science and Engineering, vol. 19, p. 1911–1940, Oct. 2021.

[38] K.-J. Liao, X. Hou, and M. J. Strickland, “Resource Allocation for Mitigat-

ing Regional Air Pollution-Related Mortality: A Summertime Case Study for

Five Cities in the United States,” Journal of the Air & Waste Management

Association, vol. 66, p. 748–757, July 2016.

[39] L. Fu, J. Li, and Y. Chen, “An Innovative Decision Making Method for Air

Quality Monitoring Based on Big Data-Assisted Artificial Intelligence Tech-

nique,” Journal of Innovation & Knowledge, vol. 8, p. 100294, Apr. 2023.

[40] F. Chen, M. Wang, and Z. Pu, “The Impact of Technological Innovation on

Air Pollution: Firm-level Evidence from China,” Technological Forecasting

and Social Change, vol. 177, p. 121521, Apr. 2022.

[41] R. D. Brook, D. E. Newby, and S. Rajagopalan, “The Global Threat of Out-

door Ambient Air Pollution to Cardiovascular Health: Time for Intervention,”

JAMA Cardiology, vol. 2, pp. 353–354, 04 2017.

[42] Y. Zhang, J. J. West, R. Mathur, J. Xing, C. Hogrefe, S. J. Roselle, J. O. Bash,

J. E. Pleim, C.-M. Gan, and D. C. Wong, “Long-term Trends in the Ambient

PM2.5- and O3-related Mortality Burdens in the United States Under Emission

Reductions from 1990 to 2010,” Atmospheric Chemistry and Physics, vol. 18,

no. 20, pp. 15003–15016, 2018.

[43] UNDP, “What are the Sustainable Development Goals?.” https://www.undp.

org/sustainable-development-goals. Accessed: 2023-12-29.

[44] Editorial, “Clean air for a sustainable world,” Nature Communications, vol. 12,

p. 5824, Oct. 2021.

[45] W. H. Organization, “What are the WHO Air Quality Guide-

lines?.” https://www.who.int/news-room/feature-stories/detail/

what-are-the-who-air-quality-guidelines. Accessed: 2023-12-28.

177

https://www.undp.org/sustainable-development-goals
https://www.undp.org/sustainable-development-goals
https://www.who.int/news-room/feature-stories/detail/what-are-the-who-air-quality-guidelines
https://www.who.int/news-room/feature-stories/detail/what-are-the-who-air-quality-guidelines

[46] UNCC, “COP28 Agreement Signals “Beginning of the

End” of the Fossil Fuel Era.” https://unfccc.int/news/

cop28-agreement-signals-beginning-of-the-end-of-the-fossil-fuel-era.

Accessed: 2023-12-29.

[47] Y. Zhao and B. Kim, “Environmental regulation and chronic conditions: Evi-

dence from china’s air pollution prevention and control action plan,” Interna-

tional Journal of Environmental Research and Public Health, vol. 19, p. 12584,

Oct. 2022.

[48] C. Chen, J.-L. Fang, W.-Y. Shi, T.-T. Li, and X.-M. Shi, “Clean Air Actions

and Health Plans in China,” Chinese Medical Journal, vol. 133, p. 1609–1611,

June 2020.

[49] P. Wang, “China’s Air Pollution Policies: Progress and Challenges,” Current

Opinion in Environmental Science & Health, vol. 19, p. 100227, Feb. 2021.

[50] T. Ganguly, K. L. Selvaraj, and S. K. Guttikunda, “National Clean Air Pro-

gramme (NCAP) for Indian Cities: Review and Outlook of Clean Air Action

Plans,” Atmospheric Environment: X, vol. 8, p. 100096, Dec. 2020.

[51] A. Kansal, S. P. Subuddhi, P. Pandey, D. Gupta, T. Rawat, A. S. Gautam,

and S. Gautam, “Investigating the impression of national clean air programme

in enhancement of air quality characteristics for non-attainment cities of ut-

tarakhand,” Aerosol Science and Engineering, vol. 7, p. 415–425, Apr. 2023.

[52] M. A. Fekih, W. Bechkit, H. Rivano, M. Dahan, F. Renard, L. Alonso, and

F. Pineau, “Participatory Air Quality and Urban Heat Islands Monitoring

System,” IEEE Transactions on Instrumentation and Measurement, vol. 70,

pp. 1–14, 2021.

[53] A. C. Rai, P. Kumar, F. Pilla, A. N. Skouloudis, S. D. Sabatino, C. Ratti,

A. Yasar, and D. Rickerby, “End-User Perspective of Low-Cost Sensors

for Outdoor Air Pollution Monitoring,” Science of The Total Environment,

vol. 607-608, pp. 691–705, Dec 2017.

[54] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella, “IoT:

Internet of Threats? A Survey of Practical Security Vulnerabilities in Real

IoT Devices,” IEEE Internet of Things Journal, vol. 6, pp. 8182–8201, Oct.

2019.

178

https://unfccc.int/news/cop28-agreement-signals-beginning-of-the-end-of-the-fossil-fuel-era
https://unfccc.int/news/cop28-agreement-signals-beginning-of-the-end-of-the-fossil-fuel-era

[55] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated Machine Learn-

ing: Survey, Multi-Level Classification, Desirable Criteria and Future Direc-

tions in Communication and Networking Systems,” IEEE Communications

Surveys & Tutorials, vol. 23, no. 2, pp. 1342–1397, 2021.

[56] X. Dai, B. Zhang, X. Jiang, L. Liu, D. Fang, and Z. Long, “Has the Three-Year

Action Plan Improved the Air Quality in the Fenwei Plain of China? Assess-

ment Based on a Machine Learning Technique,” Atmospheric Environment,

vol. 286, p. 119204, Oct 2022.

[57] Arm, “The Future of ML Shifts to the Edge.” https://www.arm.com/

markets/artificial-intelligence, 2023. Accessed: 2023-10-11.

[58] J. Bier, “AI and Vision at the Edge.” https://www.eetimes.com/

ai-and-vision-at-the-edge/, 2023. Accessed: 2023-10-11.

[59] E. Impulse, “What Is Embedded ML, Anyway?.” https://docs.

edgeimpulse.com/docs/what-is-embedded-machine-learning-anyway,

2023. Accessed: 2023-10-11.

[60] M. Buchecker and J. Frick, “The Implications of Urbanization for Inhabi-

tants’ Relationship to Their Residential Environment,” Sustainability, vol. 12,

p. 1624, Feb. 2020.

[61] E. X. Neo, K. Hasikin, K. W. Lai, M. I. Mokhtar, M. M. Azizan, H. F.

Hizaddin, S. A. Razak, and Yanto, “Artificial Intelligence-Assisted Air Quality

Monitoring for Smart City Management,” PeerJ Computer Science, vol. 9,

p. e1306, May 2023.

[62] United Nations, Department of Economic and Social Affairs, Pop-

ulation Division, World Urbanization Prospects: The 2018 Revision

(ST/ESA/SER.A/420). New York: United Nations, 2019. https://

population.un.org/wup/publications/Files/WUP2018-Report.pdf.

[63] United Nations, Department of Economic and Social Affairs, “68% of

the World Population Projected to Live in Urban Areas by 2050, Says

UN.” https://www.un.org/development/desa/en/news/population/

2018-revision-of-world-urbanization-prospects.html. Accessed:

2023-12-31.

179

https://www.arm.com/markets/artificial-intelligence
https://www.arm.com/markets/artificial-intelligence
https://www.eetimes.com/ai-and-vision-at-the-edge/
https://www.eetimes.com/ai-and-vision-at-the-edge/
https://docs.edgeimpulse.com/docs/what-is-embedded-machine-learning-anyway
https://docs.edgeimpulse.com/docs/what-is-embedded-machine-learning-anyway
https://population.un.org/wup/publications/Files/WUP2018-Report.pdf
https://population.un.org/wup/publications/Files/WUP2018-Report.pdf
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html

[64] H. Dong, M. Xue, Y. Xiao, and Y. Liu, “Do Carbon Emissions Impact the

Health of Residents? Considering China’s Industrialization and Urbaniza-

tion,” Science of The Total Environment, vol. 758, p. 143688, Mar. 2021.

[65] T.-B. Jiang, Z.-W. Deng, Y.-P. Zhi, H. Cheng, and Q. Gao, “The Effect

of Urbanization on Population Health: Evidence From China,” Frontiers in

Public Health, vol. 9, June 2021.

[66] A. Bekkar, B. Hssina, S. Douzi, and K. Douzi, “Air-Pollution Prediction in

Smart City, Deep Learning Approach,” Journal of Big Data, vol. 8, Dec. 2021.

[67] S. R. Garzon, S. Walther, S. Pang, B. Deva, and A. Küpper, “Urban Air Pol-

lution Alert Service for Smart Cities,” in Proceedings of the 8th International

Conference on the Internet of Things, IOT ’18, ACM, Oct. 2018.

[68] S. J. Hadeed, M. K. O'Rourke, J. L. Burgess, R. B. Harris, and R. A. Canales,

“Imputation Methods for Addressing Missing Data in Short-Term Monitoring

of Air Pollutants,” Science of The Total Environment, vol. 730, p. 139140,

Aug. 2020.

[69] N. Shahid, M. A. Shah, A. Khan, C. Maple, and G. Jeon, “Towards Greener

Smart Cities and Road Traffic Forecasting Using Air Pollution Data,” Sus-

tainable Cities and Society, vol. 72, p. 103062, 2021.

[70] H. Zhang, J. Li, B. Wen, Y. Xun, and J. Liu, “Connecting Intelligent Things

in Smart Hospitals Using NB-IoT,” IEEE Internet of Things Journal, vol. 5,

no. 3, pp. 1550–1560, 2018.

[71] O. Postolache, J. Pereira, and P. Girao, “Smart Sensors Network for Air Qual-

ity Monitoring Applications,” IEEE Transactions on Instrumentation and

Measurement, vol. 58, p. 3253–3262, Sept. 2009.

[72] H. Chojer, P. Branco, F. Martins, M. Alvim-Ferraz, and S. Sousa, “Source

Identification and Mitigation of Indoor Air Pollution Using Monitoring Data –

Current Trends,” Environmental Technology & Innovation, vol. 33, p. 103534,

Feb. 2024.

[73] J. Wang, W. Du, Y. Lei, Y. Chen, Z. Wang, K. Mao, S. Tao, and B. Pan,

“Quantifying the Dynamic Characteristics of Indoor Air Pollution Using Real-

time Sensors: Current Status and Future Implication,” Environment Interna-

tional, vol. 175, p. 107934, May 2023.

180

[74] S. Taheri and A. Razban, “Learning-based CO2 Concentration Prediction:

Application to Indoor Air Quality Control Using Demand-controlled Ventila-

tion,” Building and Environment, vol. 205, p. 108164, Nov. 2021.

[75] Z. Chu, M. Cheng, and N. N. Yu, “A Smart City Is a Less Polluted City,”

Technological Forecasting and Social Change, vol. 172, p. 121037, 2021.

[76] N. Castell, F. R. Dauge, P. Schneider, M. Vogt, U. Lerner, B. Fishbain, D. Bro-

day, and A. Bartonova, “Can Commercial Low-Cost Sensor Platforms Con-

tribute to Air Quality Monitoring and Exposure Estimates?,” Environment

International, vol. 99, pp. 293–302, Feb. 2017.

[77] L. Morawska, P. K. Thai, X. Liu, A. Asumadu-Sakyi, G. Ayoko, A. Bartonova,

A. Bedini, F. Chai, B. Christensen, M. Dunbabin, J. Gao, G. S. Hagler,

R. Jayaratne, P. Kumar, A. K. Lau, P. K. Louie, M. Mazaheri, Z. Ning,

N. Motta, B. Mullins, M. M. Rahman, Z. Ristovski, M. Shafiei, D. Tjondrone-

goro, D. Westerdahl, and R. Williams, “Applications of Low-Cost Sensing

Technologies for Air Quality Monitoring and Exposure Assessment: How Far

Have They Gone?,” Environment International, vol. 116, pp. 286–299, July

2018.

[78] E. G. Snyder, T. H. Watkins, P. A. Solomon, E. D. Thoma, R. W. Williams,

G. S. W. Hagler, D. Shelow, D. A. Hindin, V. J. Kilaru, and P. W. Preuss, “The

Changing Paradigm of Air Pollution Monitoring,” Environmental Science &

Technology, vol. 47, pp. 11369–11377, Oct. 2013.

[79] K. Kelly, J. Whitaker, A. Petty, C. Widmer, A. Dybwad, D. Sleeth, R. Mar-

tin, and A. Butterfield, “Ambient and Laboratory Evaluation of a Low-Cost

Particulate Matter Sensor,” Environmental Pollution, vol. 221, pp. 491–500,

Feb. 2017.

[80] S. Esfahani, P. Rollins, J. P. Specht, M. Cole, and J. W. Gardner, “Smart

City Battery Operated IoT Based Indoor Air Quality Monitoring System,” in

2020 IEEE SENSORS, IEEE, Oct. 2020.

[81] K. Yadav, V. Arora, M. Kumar, S. N. Tripathi, V. M. Motghare, and K. A.

Rajput, “Few-Shot Calibration of Low-Cost Air Pollution (PM2.5) Sensors

Using Meta Learning,” IEEE Sensors Letters, vol. 6, pp. 1–4, May 2022.

[82] E. Instruments, “AQMesh: The Proven Small Sensor Air Quality Monitoring

System.” https://www.aqmesh.com. Accessed: 2023-07-04.

181

https://www.aqmesh.com

[83] G. Zhou, J. Xu, Y. Xie, L. Chang, W. Gao, Y. Gu, and J. Zhou, “Numerical

Air Quality Forecasting Over Eastern China: An Operational Application of

WRF-Chem,” Atmospheric Environment, vol. 153, pp. 94–108, Mar. 2017.

[84] J. Liu, K. Luo, Z. Zhou, and X. Chen, “ERP: Edge Resource Pooling for

Data Stream Mobile Computing,” IEEE Internet of Things Journal, vol. 6,

pp. 4355–4368, June 2019.

[85] H. Liu, H. Wu, X. Lv, Z. Ren, M. Liu, Y. Li, and H. Shi, “An Intelligent

Hybrid Model for Air Pollutant Concentrations Forecasting: Case of Beijing

in China,” Sustainable Cities and Society, vol. 47, p. 101471, 2019.

[86] R. Zhao, X. Gu, B. Xue, J. Zhang, and W. Ren, “Short Period PM2.5 Predic-

tion Based on Multivariate Linear Regression Model,” PLOS ONE, vol. 13,

pp. 1–15, July 2018.

[87] P. Gupta and S. A. Christopher, “Particulate Matter Air Quality Assessment

Using Integrated Surface, Satellite, and Meteorological Products: Multiple

Regression Approach,” Journal of Geophysical Research, vol. 114, July 2009.

[88] C. Li, N. C. Hsu, and S.-C. Tsay, “A Study on the Potential Applications

of Satellite Data in Air Quality Monitoring and Forecasting,” Atmospheric

Environment, vol. 45, pp. 3663–3675, July 2011.

[89] U. Kumar and V. K. Jain, “ARIMA Forecasting of Ambient Air Pollutants

(O3, NO, NO2 and CO),” Stochastic Environmental Research and Risk As-

sessment, vol. 24, pp. 751–760, Dec. 2009.

[90] P. G. Nieto, F. S. Lasheras, E. Garćıa-Gonzalo, and F. de Cos Juez, “PM10

Concentration Forecasting in the Metropolitan Area of Oviedo (Northern

Spain) Using Models Based on SVM, MLP, VARMA and ARIMA: A Case

Study,” Science of The Total Environment, vol. 621, pp. 753–761, Apr. 2018.

[91] E. Chianese, F. Camastra, A. Ciaramella, T. Landi, A. Staiano, and A. Riccio,

“Spatio-Temporal Learning in Predicting Ambient Particulate Matter Concen-

tration by Multi-Layer Perceptron,” Ecological Informatics, vol. 49, pp. 54–61,

Jan. 2019.

[92] Y. Huang, Y. Xiang, R. Zhao, and Z. Cheng, “Air Quality Prediction Using

Improved PSO-BP Neural Network,” IEEE Access, vol. 8, pp. 99346–99353,

2020.

182

[93] V. Yadav and S. Nath, “Daily Prediction of PM10 Using Radial Basis Function

and Generalized Regression Neural Network,” in 2018 Recent Advances on

Engineering, Technology and Computational Sciences (RAETCS), IEEE, Feb.

2018.

[94] P. G. Nieto, E. Combarro, J. del Coz Dı́az, and E. Montañés, “A SVM-Based

Regression Model to Study the Air Quality at Local Scale in Oviedo Urban

Area (Northern Spain): A Case Study,” Applied Mathematics and Computa-

tion, vol. 219, pp. 8923–8937, May 2013.

[95] J. C. Patni and H. K. Sharma, “Air Quality Prediction Using Artificial Neural

Networks,” in 2019 International Conference on Automation, Computational

and Technology Management (ICACTM), IEEE, Apr. 2019.

[96] D. Mishra and P. Goyal, “Neuro-Fuzzy Approach to Forecast NO2 Pollutants

Addressed to Air Quality Dispersion Model over Delhi, India,” Aerosol and

Air Quality Research, vol. 16, no. 1, pp. 166–174, 2017.

[97] Y. Yang, G. Mei, and S. Izzo, “Revealing Influence of Meteorological Con-

ditions on Air Quality Prediction Using Explainable Deep Learning,” IEEE

Access, vol. 10, pp. 50755–50773, 2022.

[98] J. Ma, Z. Li, J. C. Cheng, Y. Ding, C. Lin, and Z. Xu, “Air Quality Prediction

at New Stations Using Spatially Transferred Bi-directional Long Short-Term

Memory Network,” Science of The Total Environment, vol. 705, p. 135771,

2020.

[99] M. M. Samsami, N. Shojaee, S. Savar, and M. Yazdi, “Classification of the

Air Quality Level based on Analysis of the Sky Images,” in 2019 27th Iranian

Conference on Electrical Engineering (ICEE), IEEE, Apr. 2019.

[100] H.-J. Oh and J. Kim, “Monitoring Air Quality and Estimation of Personal

Exposure to Particulate Matter Using an Indoor Model and Artificial Neural

Network,” Sustainability, vol. 12, p. 3794, May 2020.

[101] J. A. Stingone, O. P. Pandey, L. Claudio, and G. Pandey, “Using Machine

Learning to Identify Air Pollution Exposure Profiles Associated with Early

Cognitive Skills Among U.S. Children,” Environmental Pollution, vol. 230,

p. 730–740, Nov. 2017.

[102] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” Neural

Networks, vol. 61, pp. 85–117, Jan. 2015.

183

[103] M. Verhelst and B. Moons, “Embedded Deep Neural Network Processing:

Algorithmic and Processor Techniques Bring Deep Learning to IoT and Edge

Devices,” IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 55–65, 2017.

[104] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A

Survey on the Edge Computing for the Internet of Things,” IEEE Access,

vol. 6, pp. 6900–6919, 2018.

[105] A. H. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and M. Z. Sheng, “IoT

Middleware: A Survey on Issues and Enabling technologies,” IEEE Internet

of Things Journal, pp. 1–20, 2016.

[106] M. Frustaci, P. Pace, G. Aloi, and G. Fortino, “Evaluating Critical Security

Issues of the IoT World: Present and Future Challenges,” IEEE Internet of

Things Journal, vol. 5, no. 4, pp. 2483–2495, 2018.

[107] J. Chen and X. Ran, “Deep Learning With Edge Computing: A Review,” Pro-

ceedings of the Institute of Electrical and Electronics Engineers IEEE, vol. 107,

no. 8, pp. 1655–1674, 2019.

[108] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and

Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,

2016.

[109] F. Samie, L. Bauer, and J. Henkel, “From Cloud Down to Things: An

Overview of Machine Learning in Internet of Things,” IEEE Internet of Things

Journal, vol. 6, no. 3, pp. 4921–4934, 2019.

[110] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen, “Con-

vergence of Edge Computing and Deep Learning: A Comprehensive Survey,”

IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 869–904, 2020.

[111] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[112] T. S. Ajani, A. L. Imoize, and A. A. Atayero, “An Overview of Machine Learn-

ing within Embedded and Mobile Devices–Optimizations and Applications,”

Sensors, vol. 21, p. 4412, June 2021.

[113] A. Biglari and W. Tang, “A Review of Embedded Machine Learning Based on

Hardware, Application, and Sensing Scheme,” Sensors, vol. 23, p. 2131, Feb.

2023.

184

[114] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,

D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke,

Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale machine learn-

ing,” arXiv, 2016. eprint 1605.08695.

[115] TensorFlow, “TensorFlow.” https://www.tensorflow.org/. Accessed: 2023-

07-08.

[116] T. L. Foundation, “PyTorch.” https://pytorch.org/. Accessed: 2023-08-23.

[117] Keras, “Keras.” https://keras.io/. Accessed: 2023-08-23.

[118] BAIR, “Caffe.” https://caffe.berkeleyvision.org/. Accessed: 2023-08-

23.

[119] MathWorks, “MATLAB.” https://mathworks.com/. Accessed: 2023-08-23.

[120] V. Kurama, “PyTorch vs. TensorFlow: Key Differences to Know for Deep

Learning.” https://builtin.com/data-science/pytorch-vs-tensorflow.

Accessed: 2024-01-31.

[121] J. Terra, “Keras vs Tensorflow vs Pytorch: Key Differ-

ences Among Deep Learning.” https://www.simplilearn.com/

keras-vs-tensorflow-vs-pytorch-article. Accessed: 2024-01-31.

[122] Tensorflow, “Deploy Machine Learning Models on Mobile and Edge Devices.”

https://www.tensorflow.org/lite. Accessed: 2024-01-31.

[123] Y. S. Lee, Y.-H. Gong, and S. W. Chung, “Scale-CIM: Precision-Scalable

Computing-in-Memory for Energy-Efficient Quantized Neural Networks,”

Journal of Systems Architecture, vol. 134, p. 102787, Jan. 2023.

[124] “Post-training Quantization.” Available online: https://www.tensorflow.

org/lite/performance/post_training_quantization. (Last accessed on

30-Mar-2023).

[125] M. Z. M. Shamim, “TinyML Model for Classifying Hazardous Volatile Organic

Compounds Using Low-Power Embedded Edge Sensors: Perfecting Factory

5.0 Using Edge AI,” IEEE Sensors Letters, vol. 6, pp. 1–4, Sept. 2022.

[126] G. M. Iodice, TinyML Cookbook: Combine Artificial Intelligence and Ultra-

Low-Power Embedded Devices to Make the World Smarter. Birmingham:

185

https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://caffe.berkeleyvision.org/
https://mathworks.com/
https://builtin.com/data-science/pytorch-vs-tensorflow
https://www.simplilearn.com/keras-vs-tensorflow-vs-pytorch-article
https://www.simplilearn.com/keras-vs-tensorflow-vs-pytorch-article
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization

Packt, 2022. https://www.packtpub.com/product/tinyml-cookbook/

9781801814973.

[127] J. Botero-Valencia, C. Barrantes-Toro, D. Marquez-Viloria, and J. M. Pearce,

“Low-cost Air, Noise, and Light Pollution Measuring Station with Wireless

Communication and TinyML,” HardwareX, vol. 16, p. e00477, Dec. 2023.

[128] F. Sakr, F. Bellotti, R. Berta, and A. De Gloria, “Machine Learning on Main-

stream Microcontrollers,” Sensors, vol. 20, p. 2638, May 2020.

[129] L. Ioannou, Exploring the Capabilities of FPGA DSP Blocks in Neural Network

Accelerators. PhD thesis, University of Warwick, 2021.

[130] U. A. Shah, S. Yousaf, I. Ahmad, S. U. Rehman, and M. O. Ahmad, “Ac-

celerating Revised Simplex Method Using GPU-Based Basis Update,” IEEE

Access, vol. 8, pp. 52121–52138, 2020.

[131] Arm, “What Is ASIC?.” https://www.arm.com/glossary/asic, 2023. Ac-

cessed: 2023-08-24.

[132] J. Xu, Y. Huan, B. Huang, H. Chu, Y. Jin, L.-R. Zheng, and Z. Zou, “A

Memory-Efficient CNN Accelerator Using Segmented Logarithmic Quantiza-

tion and Multi-Cluster Architecture,” IEEE Transactions on Circuits and Sys-

tems II: Express Briefs, vol. 68, pp. 2142–2146, June 2021.

[133] Intel, “FPGA Architecture Overview.” https://www.intel.

com/content/www/us/en/docs/programmable/683152/23-2/

fpga-architecture-overview.html, 2023. Accessed: 2023-08-25.

[134] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel programming for fpgas,”

arXiv, 2018. eprint 1805.03648.

[135] J. A. Ramı́rez-Montañez, J. d. J. Rangel-Magdaleno, M. A. Aceves-Fernández,

and J. M. Ramos-Arregúın, “Modeling of Particulate Pollutants Using a

Memory-Based Recurrent Neural Network Implemented on an FPGA,” Mi-

cromachines, vol. 14, p. 1804, Sept. 2023.

[136] S. Abbasi, S. Gignac, and H. Koc, “An FPGA Based Multi-Sensor Atmo-

spheric Testing Device for Confined Spaces,” in 2021 IEEE 12th Annual Ubiq-

uitous Computing, Electronics & Mobile Communication Conference (UEM-

CON), IEEE, Dec. 2021.

186

https://www.packtpub.com/product/tinyml-cookbook/9781801814973
https://www.packtpub.com/product/tinyml-cookbook/9781801814973
https://www.arm.com/glossary/asic
https://www.intel.com/content/www/us/en/docs/programmable/683152/23-2/fpga-architecture-overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683152/23-2/fpga-architecture-overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683152/23-2/fpga-architecture-overview.html

[137] Arm, “Arm Ethos-U NPU Application development overview Version 5.0.”

https://developer.arm.com/documentation/101888/0500/?lang=en,

2023. Accessed: 2023-08-24.

[138] Nvidia, “Jetson Nano Developer Kit.” https://developer.nvidia.com/

embedded/jetson-nano-developer-kit. Accessed: 2023-07-03.

[139] R. Pi, “Raspberry Pi.” https://www.raspberrypi.com/. Accessed: 2023-07-

03.

[140] P. Warden and D. Situnayake, TinyML: Machine learning with tensoflow lite

on Arduino and ultra-low-power Microcontrollers. Sebastopol: O’Reilly Media,

Inc., 2020.

[141] S. F. Barrett and D. J. Pack, “Introduction to Microcontroller Technology,”

in Synthesis Lectures on Digital Circuits & Systems, pp. 1–19, Springer Inter-

national Publishing, 2019.

[142] E. Upton, “A New Path From Hobbyist to Embedded and IoT Develop-

ment: Raspberry Pi Pico W.” https://www.arm.com/blogs/blueprint/

raspberry-pi-pico-w. Accessed: 2023-07-04.

[143] STMicroelectronics, “Arm®Cortex®-M in a Nutshell.” https://www.st.

com/content/st_com/en/arm-32-bit-microcontrollers.html. Accessed:

2023-07-04.

[144] R. Pi, “Raspberry Pi Pico.” https://www.raspberrypi.com/products/

raspberry-pi-pico/. Accessed: 2023-07-04.

[145] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[146] D. Chicco, M. J. Warrens, and G. Jurman, “The Coefficient of Determination

R-squared Is More Informative Than SMAPE, MAE, MAPE, MSE and RMSE

in Regression Analysis Evaluation,” PeerJ Computer Science, vol. 7, p. e623,

July 2021.

[147] N. R. Council, Improving Information for Social Policy Decisions – The Uses

of Microsimulation Modeling. Washington, D.C.: National Academies Press,

Jan. 1991.

187

https://developer.arm.com/documentation/101888/0500/?lang=en
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.raspberrypi.com/
https://www.arm.com/blogs/blueprint/raspberry-pi-pico-w
https://www.arm.com/blogs/blueprint/raspberry-pi-pico-w
https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers.html
https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers.html
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/

[148] J. Ma, J. C. Cheng, Y. Ding, C. Lin, F. Jiang, M. Wang, and C. Zhai, “Trans-

fer Learning for Long-Interval Consecutive Missing Values Imputation With-

out External Features in Air Pollution Time Series,” Advanced Engineering

Informatics, vol. 44, p. 101092, Apr. 2020.

[149] X.-H. Zhou, “Challenges and Strategies in Analysis of Missing Data,” Bio-

statistics & Epidemiology, vol. 4, no. 1, pp. 15–23, 2020.

[150] Y. Yu, J. J. Q. Yu, V. O. K. Li, and J. C. K. Lam, “A Novel Interpolation-SVT

Approach for Recovering Missing Low-Rank Air Quality Data,” IEEE Access,

vol. 8, pp. 74291–74305, 2020.

[151] P. C. Austin, I. R. White, D. S. Lee, and S. van Buuren, “Missing Data in

Clinical Research: A Tutorial on Multiple Imputation,” Canadian Journal of

Cardiology, vol. 37, pp. 1322–1331, Sept. 2021.

[152] J. Ma, J. C. Cheng, F. Jiang, W. Chen, M. Wang, and C. Zhai, “A Bi-

directional Missing Data Imputation Scheme Based on LSTM and Transfer

Learning for Building Energy Data,” Energy and Buildings, vol. 216, p. 109941,

June 2020.

[153] I. Laña, I. I. Olabarrieta, M. Vélez, and J. D. Ser, “On the Imputation of Miss-

ing Data for Road Traffic Forecasting: New Insights and Novel Techniques,”

Transportation Research Part C: Emerging Technologies, vol. 90, pp. 18–33,

May 2018.

[154] M. Pena, P. Ortega, and M. Orellana, “A Novel Imputation Method for Miss-

ing Values in Air Pollutant Time Series Data,” Nov. 2019.

[155] S. Moshenberg, U. Lerner, and B. Fishbain, “Spectral Methods for Imputation

of Missing Air Quality Data,” Environmental Systems Research, vol. 4, p. 26,

Dec 2015.

[156] D. B. Rubin, “Inference and Missing Data,” Biometrika, vol. 63, pp. 581–592,

Dec 1976.

[157] M. Gómez-Carracedo, J. Andrade, P. López-Mah́ıa, S. Muniategui, and

D. Prada, “A Practical Comparison of Single and Multiple Imputation Meth-

ods to Handle Complex Missing Data in Air Quality Datasets,” Chemometrics

and Intelligent Laboratory Systems, vol. 134, pp. 23–33, 2014.

[158] W. Junger and A. Ponce de Leon, “Imputation of Missing Data in Time Series

for Air Pollutants,” Atmospheric Environment, vol. 102, pp. 96–104, 2015.

188

[159] A. R. T. Donders, G. J. van der Heijden, T. Stijnen, and K. G. Moons, “Re-

view: A Gentle Introduction to Imputation of Missing Values,” Journal of

Clinical Epidemiology, vol. 59, pp. 1087–1091, Oct 2006.

[160] J. W. Graham, “Missing Data Analysis: Making It Work in the Real World,”

Annual Review of Psychology, vol. 60, no. 1, pp. 549–576, 2009.

[161] A. Plaia and A. Bond̀ı, “Single Imputation Method of Missing Values in En-

vironmental Pollution Data Sets,” Atmospheric Environment, vol. 40, no. 38,

pp. 7316–7330, 2006.

[162] X. Zhou, X. Liu, G. Lan, and J. Wu, “Federated Conditional Generative Ad-

versarial Nets Imputation Method for Air Quality Missing Data,” Knowledge-

Based Systems, vol. 228, p. 107261, Sept. 2021.

[163] Y.-F. Zhang, P. J. Thorburn, W. Xiang, and P. Fitch, “SSIM—A Deep Learn-

ing Approach for Recovering Missing Time Series Sensor Data,” IEEE Internet

of Things Journal, vol. 6, no. 4, pp. 6618–6628, 2019.

[164] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and

Composing Robust Features With Denoising Autoencoders,” in Proceedings

of the 25th international conference on Machine learning - ICML '08, ACM
Press, 2008.

[165] A. Saleh Ahmed, W. H. El-Behaidy, and A. A. Youssif, “Medical Image De-

noising System Based on Stacked Convolutional Autoencoder for Enhancing

2-Dimensional Gel Electrophoresis Noise Reduction,” Biomedical Signal Pro-

cessing and Control, vol. 69, p. 102842, 2021.

[166] M. Juneja, S. Kaur Saini, S. Kaul, R. Acharjee, N. Thakur, and P. Jindal,

“Denoising of Magnetic Resonance Imaging Using Bayes Shrinkage Based

Fused Wavelet Transform and Autoencoder Based Deep Learning Approach,”

Biomedical Signal Processing and Control, vol. 69, p. 102844, 2021.

[167] Z. Fang, T. Jia, Q. Chen, M. Xu, X. Yuan, and C. Wu, “Laser Stripe Im-

age Denoising Using Convolutional Autoencoder,” Results in Physics, vol. 11,

pp. 96–104, 2018.

[168] K. Bajaj, D. K. Singh, and M. A. Ansari, “Autoencoders Based Deep Learner

for Image Denoising,” Procedia Computer Science, vol. 171, pp. 1535–1541,

2020. Third International Conference on Computing and Network Communi-

cations (CoCoNet’19).

189

[169] E. Dasan and I. Panneerselvam, “A Novel Dimensionality Reduction Approach

for ECG Signal via Convolutional Denoising Autoencoder With LSTM,”

Biomedical Signal Processing and Control, vol. 63, p. 102225, 2021.

[170] S. Nagar, A. Kumar, and M. Swamy, “Orthogonal Features-Based EEG Signal

Denoising Using Fractionally Compressed Autoencoder,” Signal Processing,

vol. 188, p. 108225, 2021.

[171] H. Zhu, J. Cheng, C. Zhang, J. Wu, and X. Shao, “Stacked Pruning Sparse

Denoising Autoencoder Based Intelligent Fault Diagnosis of Rolling Bearings,”

Applied Soft Computing, vol. 88, p. 106060, 2020.

[172] Z. Meng, X. Zhan, J. Li, and Z. Pan, “An Enhancement Denoising Autoen-

coder for Rolling Bearing Fault Diagnosis,” Measurement, vol. 130, pp. 448–

454, 2018.

[173] L. Gondara and K. Wang, Advances in Knowledge Discovery and Data Mining,

ch. MIDA: Multiple Imputation Using Denoising Autoencoders, pp. 260–272.

Cham: Springer International Publishing, 2018.

[174] N. Abiri, B. Linse, P. Edén, and M. Ohlsson, “Establishing Strong Imputation

Performance of a Denoising Autoencoder in a Wide Range of Missing Data

Problems,” Neurocomputing, vol. 365, pp. 137–146, 2019.

[175] B. Jiang, M. D. Siddiqi, R. Asadi, and A. Regan, “Imputation of Missing

Traffic Flow Data Using Denoising Autoencoders,” Procedia Computer Sci-

ence, vol. 184, pp. 84–91, 2021.

[176] A. Alamoodi, B. Zaidan, A. Zaidan, O. Albahri, J. Chen, M. Chyad, S. Gar-

fan, and A. Aleesa, “Machine Learning-Based Imputation Soft Computing Ap-

proach for Large Missing Scale and Non-reference Data Imputation,” Chaos,

Solitons & Fractals, vol. 151, p. 111236, 2021.

[177] K. K. R. Samal, K. S. Babu, and S. K. Das, “Temporal Convolutional Denois-

ing Autoencoder Network for Air Pollution Prediction with Missing Values,”

Urban Climate, vol. 38, p. 100872, July 2021.

[178] S. Abirami and P. Chitra, “Regional Air Quality Forecasting Using Spatiotem-

poral Deep Learning,” Journal of Cleaner Production, vol. 283, p. 125341, Feb

2021.

190

[179] M. Chen, H. Zhu, Y. Chen, and Y. Wang, “A Novel Missing Data Imputation

Approach for Time Series Air Quality Data Based on Logistic Regression,”

Atmosphere, vol. 13, p. 1044, June 2022.

[180] A. R. Alsaber, J. Pan, and A. Al-Hurban, “Handling Complex Missing Data

Using Random Forest Approach for an Air Quality Monitoring Dataset: A

Case Study of Kuwait Environmental Data (2012 to 2018),” International

Journal of Environmental Research and Public Health, vol. 18, p. 1333, Feb.

2021.

[181] I. Belachsen and D. M. Broday, “Imputation of Missing PM2.5 Observations

in a Network of Air Quality Monitoring Stations by a New kNN Method,”

Atmosphere, vol. 13, p. 1934, Nov. 2022.

[182] S. V. Mahadevkar, B. Khemani, S. Patil, K. Kotecha, D. R. Vora, A. Abraham,

and L. A. Gabralla, “A Review on Machine Learning Styles in Computer

Vision—Techniques and Future Directions,” IEEE Access, vol. 10, pp. 107293–

107329, 2022.

[183] S. Zhang, B. Guo, A. Dong, J. He, Z. Xu, and S. X. Chen, “Cautionary

Tales on Air-Quality Improvement in Beijing,” Proceedings of the Royal Soci-

ety A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2205,

p. 20170457, 2017.

[184] S. Chen, “Beijing Multi-Site Air-Quality Data.” UCI Machine Learning Repos-

itory, 2019. DOI: https://doi.org/10.24432/C5RK5G.

[185] R. Rao, “Air Quality Data in India (2015 - 2020).” https://www.kaggle.

com/rohanrao/air-quality-data-in-india, 2021. Accessed: 2022-02-04.

[186] D. C. Carslaw and K. Ropkins, “Openair — An R Package for Air Quality

Data Analysis,” Environmental Modelling & Software, vol. 27-28, pp. 52–61,

Jan. 2012.

[187] D. Carslaw, “Openair: Open Source Tools for Air Quality Data Analysis.”

https://davidcarslaw.github.io/openair/index.html, 2023. Accessed:

2023-10-07.

[188] D. Carslaw, “The Openair Book.” https://bookdown.org/david_carslaw/

openair/, 2023. Accessed: 2023-10-07.

[189] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA:

MIT Press, 2016. http://www.deeplearningbook.org.

191

https://www.kaggle.com/rohanrao/air-quality-data-in-india
https://www.kaggle.com/rohanrao/air-quality-data-in-india
https://davidcarslaw.github.io/openair/index.html
https://bookdown.org/david_carslaw/openair/
https://bookdown.org/david_carslaw/openair/
http://www.deeplearningbook.org

[190] N. Carter, ed., Data Science for Mathematicians. Boca Raton, FL: Chapman

and Hall/CRC, Sept. 2020.

[191] I. Jebli, F.-Z. Belouadha, M. I. Kabbaj, and A. Tilioua, “Prediction of Solar

Energy Guided by Pearson Correlation Using Machine Learning,” Energy,

vol. 224, p. 120109, June 2021.

[192] Y. Qi, Q. Li, H. Karimian, and D. Liu, “A Hybrid Model for Spatiotemporal

Forecasting of PM2.5 Based on Graph Convolutional Neural Network and Long

Short-Term Memory,” Science of The Total Environment, vol. 664, pp. 1–10,

May 2019.

[193] E.-L. Silva-Ramı́rez and J.-F. Cabrera-Sánchez, “Co-active Neuro-Fuzzy Infer-

ence System Model as Single Imputation Approach for Non-monotone Pattern

of Missing Data,” Neural Computing and Applications, vol. 33, pp. 8981–9004,

Feb. 2021.

[194] R. Noori, G. Hoshyaripour, K. Ashrafi, and B. N. Araabi, “Uncertainty Anal-

ysis of Developed ANN and ANFIS Models in Prediction of Carbon Monoxide

Daily Concentration,” Atmospheric Environment, vol. 44, pp. 476–482, Feb.

2010.

[195] S. Moazami, R. Noori, B. J. Amiri, B. Yeganeh, S. Partani, and S. Safavi,

“Reliable Prediction of Carbon Monoxide Using Developed Support Vector

Machine,” Atmospheric Pollution Research, vol. 7, pp. 412–418, May 2016.

[196] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” J.

Mach. Learn. Res., vol. 15, no. 1, p. 1929–1958, 2014.

[197] M. P. Véstias, R. P. Duarte, J. T. de Sousa, and H. C. Neto, “A Fast and

Scalable Architecture to Run Convolutional Neural Networks in Low Density

FPGAs,” Microprocessors and Microsystems, vol. 77, p. 103136, 2020.

[198] A. A. Asyraaf Jainuddin, Y. C. Hou, M. Z. Baharuddin, and S. Yussof, “Per-

formance Analysis of Deep Neural Networks for Object Classification with

Edge TPU,” in 2020 8th International Conference on Information Technology

and Multimedia (ICIMU), IEEE, Aug. 2020.

[199] E. BUBER and B. DIRI, “Performance Analysis and CPU vs GPU Com-

parison for Deep Learning,” in 2018 6th International Conference on Control

Engineering & Information Technology (CEIT), IEEE, Oct. 2018.

192

[200] Z. Li, F. Ge, F. Zhou, and N. Wu, “An a3c deep reinforcement learning fpga

accelerator based on heterogeneous compute units,” in 2022 IEEE 22nd In-

ternational Conference on Communication Technology (ICCT), IEEE, Nov.

2022.

[201] R. Navares and J. L. Aznarte, “Predicting Air Quality With Deep Learn-

ing LSTM: Towards Comprehensive Models,” Ecological Informatics, vol. 55,

p. 101019, 2020.

[202] X. Li, L. Peng, X. Yao, S. Cui, Y. Hu, C. You, and T. Chi, “Long Short-

Term Memory Neural Network for Air Pollutant Concentration Predictions:

Method Development and Evaluation,” Environmental Pollution, vol. 231,

pp. 997–1004, 2017.

[203] T. Xayasouk, H. Lee, and G. Lee, “Air Pollution Prediction Using Long Short-

TermMemory (LSTM) and Deep Autoencoder (DAE) Models,” Sustainability,

vol. 12, no. 6, p. 2570, 2020.

[204] D. Seng, Q. Zhang, X. Zhang, G. Chen, and X. Chen, “Spatiotemporal Predic-

tion of Air Quality Based on LSTM Neural Network,” Alexandria Engineering

Journal, vol. 60, no. 2, pp. 2021–2032, 2021.

[205] J. Xu, L. Chen, M. Lv, C. Zhan, S. Chen, and J. Chang, “HighAir: A Hierar-

chical Graph Neural Network-Based Air Quality Forecasting Method,” arXiv,

2021. eprint 2101.04264.

[206] J. Zhao, F. Deng, Y. Cai, and J. Chen, “Long Short-Term Memory – Fully

Connected (LSTM-FC) Neural Network for PM2.5 Concentration Prediction,”

Chemosphere, vol. 220, pp. 486–492, 2019.

[207] Q. Zhang, J. C. Lam, V. O. Li, and Y. Han, “Deep-AIR: A Hybrid CNN-LSTM

Framework for Fine-Grained Air Pollution Forecast,” arXiv, 2020. eprint

2001.11957.

[208] D. Qin, J. Yu, G. Zou, R. Yong, Q. Zhao, and B. Zhang, “A Novel Combined

Prediction Scheme Based on CNN and LSTM for Urban PM2.5 Concentra-

tion,” IEEE Access, vol. 7, pp. 20050–20059, 2019.

[209] T. Li, M. Hua, and X. Wu, “A Hybrid CNN-LSTM Model for Forecasting

Particulate Matter (PM2.5,” IEEE Access, vol. 8, pp. 26933–26940, 2020.

193

[210] Q. Tao, F. Liu, Y. Li, and D. Sidorov, “Air Pollution Forecasting Using a

Deep Learning Model Based on 1D Convnets and Bidirectional GRU,” IEEE

Access, vol. 7, pp. 76690–76698, 2019.

[211] R. Banner, Y. Nahshan, and D. Soudry, “Post Training 4-Bit Quantization

of Convolutional Networks for Rapid-Deployment,” in Advances in Neural

Information Processing Systems, vol. 32, pp. 7950–7958, Curran Associates,

Inc., 2019.

[212] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer Quan-

tization for Deep Learning Inference: Principles and Empirical Evaluation,”

arXiv, 2020. eprint 2004.09602.

[213] P. Peng, M. You, W. Xu, and J. Li, “Fully Integer-Based Quantization for

Mobile Convolutional Neural Network Inference,” Neurocomputing, vol. 432,

pp. 194–205, 2021.

[214] J. Li and R. Alvarez, “On the Quantization of Recurrent Neural Networks,”

arXiv, 2021. eprint 2101.05453.

[215] H. Fu, Y. Zhang, C. Liao, L. Mao, Z. Wang, and N. Hong, “Investigating

PM2.5 Responses to Other Air Pollutants and Meteorological Factors Across

Multiple Temporal Scales,” Scientific Reports, vol. 10, Sept. 2020.

[216] Defra, “The Air Quality Data Validation and Ratification Process.”

https://uk-air.defra.gov.uk/assets/documents/Data_Validation_

and_Ratification_Process_Apr_2017.pdf. Accessed: 2024-02-11.

[217] M. Sajjad, M. Nasir, K. Muhammad, S. Khan, Z. Jan, A. K. Sangaiah, M. El-

hoseny, and S. W. Baik, “Raspberry Pi Assisted Face Recognition Framework

for Enhanced Law-Enforcement Services in Smart Cities,” Future Generation

Computer Systems, vol. 108, pp. 995–1007, 2017.

[218] X. Deng, T. Sun, F. Liu, and D. Li, “SignGD With Error Feedback Meets

Lazily Aggregated Technique: Communication-Efficient Algorithms for Dis-

tributed Learning,” Tsinghua Science and Technology, vol. 27, pp. 174–185,

Feb. 2022.

[219] S. Henna and A. Davy, “Distributed and Collaborative High-Speed Inference

Deep Learning for Mobile Edge with Topological Dependencies,” IEEE Trans-

actions on Cloud Computing, vol. 10, pp. 821–834, Apr. 2022.

194

https://uk-air.defra.gov.uk/assets/documents/Data_Validation_and_Ratification_Process_Apr_2017.pdf
https://uk-air.defra.gov.uk/assets/documents/Data_Validation_and_Ratification_Process_Apr_2017.pdf

[220] G. Song and W. Chai, “Collaborative Learning for Deep Neural Networks,”

arXiv, 2018. eprint 1805.11761.

[221] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Ar-

cas, “Communication-Efficient Learning of Deep Networks from Decentralized

Data,” arXiv, 2016. eprint 1602.05629.

[222] J. Mills, J. Hu, and G. Min, “Multi-Task Federated Learning for Personalised

Deep Neural Networks in Edge Computing,” IEEE Transactions on Parallel

and Distributed Systems, vol. 33, pp. 630–641, Mar. 2022.

[223] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards Personalized Federated

Learning,” IEEE Transactions on Neural Networks and Learning Systems,

pp. 1–17, 2022.

[224] P. Velentzas, M. Vassilakopoulos, and A. Corral, “GPU-Aided Edge Comput-

ing for Processing the K Nearest-Neighbor Query on SSD-Resident Data,”

Internet of Things, vol. 15, p. 100428, Sep 2021.

[225] H. Mi, K. Xu, D. Feng, H. Wang, Y. Zhang, Z. Zheng, C. Chen, and X. Lan,

“Collaborative Deep Learning Across Multiple Data Centers,” Science China

Information Sciences, vol. 63, July 2020.

[226] B. Ghimire and D. B. Rawat, “Recent Advances on Federated Learning for Cy-

bersecurity and Cybersecurity for Federated Learning for Internet of Things,”

IEEE Internet of Things Journal, vol. 9, pp. 8229–8249, June 2022.

[227] R. Kumar, A. A. Khan, J. Kumar, Zakria, N. A. Golilarz, S. Zhang, Y. Ting,

C. Zheng, and W. Wang, “Blockchain-Federated-Learning and Deep Learning

Models for COVID-19 Detection Using CT Imaging,” IEEE Sensors Journal,

vol. 21, pp. 16301–16314, July 2021.

[228] K. I.-K. Wang, X. Zhou, W. Liang, Z. Yan, and J. She, “Federated Transfer

Learning Based Cross-Domain Prediction for Smart Manufacturing,” IEEE

Transactions on Industrial Informatics, vol. 18, pp. 4088–4096, June 2022.

[229] D. Bousiotis, G. Allison, D. C. S. Beddows, R. M. Harrison, and F. D. Pope,

“Towards Comprehensive Air Quality Management Using Low-cost Sensors

for Pollution Source Apportionment,” npj Climate and Atmospheric Science,

vol. 6, Aug. 2023.

195

[230] H. Khreis, J. Johnson, K. Jack, B. Dadashova, and E. S. Park, “Evaluating

the Performance of Low-Cost Air Quality Monitors in Dallas, Texas,” Interna-

tional Journal of Environmental Research and Public Health, vol. 19, p. 1647,

Jan. 2022.

[231] Z. Nieckarz, K. Pawlak, and J. A. Zoladz, “Health Risks for Children Ex-

ercising in an Air-polluted Environment can be Reduced by Monitoring Air

Quality with Low-cost Particle Sensors,” Scientific Reports, vol. 13, Oct. 2023.

[232] P. F. C. de Marinho, G. M. Santana, M. L. Felix, R. de Medeiros Morais,

A. A. Santos, and R. M. de Jesus, “Intelligent, Low-cost, High-performance

System for Environmental Air Quality Monitoring through Integrated Gas,

Temperature, and Humidity Analysis,” International Journal of Environmen-

tal Science and Technology, vol. 21, p. 4881–4898, Dec. 2023.

[233] S. Douch, M. R. Abid, K. Zine-Dine, D. Bouzidi, and D. Benhaddou, “Edge

Computing Technology Enablers: A Systematic Lecture Study,” IEEE Access,

vol. 10, pp. 69264–69302, 2022.

[234] M. Ashouri, P. Davidsson, and R. Spalazzese, “Quality Attributes in Edge

Computing for the Internet of Things: A Systematic Mapping Study,” Internet

of Things, vol. 13, p. 100346, Mar 2021.

[235] H. Li, K. Ota, and M. Dong, “Learning IoT in Edge: Deep Learning for the

Internet of Things With Edge Computing,” IEEE Network, vol. 32, pp. 96–

101, Jan 2018.

[236] G. Zhao, G. Huang, H. He, H. He, and J. Ren, “Regional Spatiotemporal Col-

laborative Prediction Model for Air Quality,” IEEE Access, vol. 7, pp. 134903–

134919, 2019.

[237] F. Amato, F. Guignard, S. Robert, and M. Kanevski, “A Novel Framework

for Spatio-Temporal Prediction of Environmental Data Using Deep Learning,”

Scientific Reports, vol. 10, Dec 2020.

[238] R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz,

M. Payne, R. Yurchak, M. RuÃŸwurm, K. Kolar, and E. Woods, “Tslearn, A

Machine Learning Toolkit for Time Series Data,” Journal of Machine Learning

Research, vol. 21, no. 118, pp. 1–6, 2020.

196

[239] X. Liu, T. Zhang, N. Hu, P. Zhang, and Y. Zhang, “The Method of Internet

of Things Access and Network Communication Based on MQTT,” Computer

Communications, vol. 153, pp. 169–176, Mar. 2020.

[240] A. Velinov, A. Mileva, S. Wendzel, and W. Mazurczyk, “Covert Channels

in the MQTT-Based Internet of Things,” IEEE Access, vol. 7, pp. 161899–

161915, 2019.

[241] T. A. Hilal and H. A. Hilal, “Turkish Text Compression via Characters En-

coding,” Procedia Computer Science, vol. 175, pp. 286–291, 2020.

[242] H. Yu, Q. Li, R. Wang, Z. Chen, Y. Zhang, Y.-a. Geng, L. Zhang, H. Cui, and

K. Zhang, “A Deep Calibration Method for Low-Cost Air Monitoring Sensors

With Multilevel Sequence Modeling,” IEEE Transactions on Instrumentation

and Measurement, vol. 69, p. 7167–7179, Sept. 2020.

[243] M. A. Zaidan, N. H. Motlagh, P. L. Fung, A. S. Khalaf, Y. Matsumi, A. Ding,

S. Tarkoma, T. Petaja, M. Kulmala, and T. Hussein, “Intelligent Air Pollu-

tion Sensors Calibration for Extreme Events and Drifts Monitoring,” IEEE

Transactions on Industrial Informatics, vol. 19, p. 1366–1379, Feb. 2023.

[244] Y. Hashmy, Z. U. Khan, F. Ilyas, R. Hafiz, U. Younis, and T. Tauqeer, “Mod-

ular Air Quality Calibration and Forecasting Method for Low-Cost Sensor

Nodes,” IEEE Sensors Journal, vol. 23, p. 4193–4203, Feb. 2023.

[245] T. Becnel, K. Tingey, J. Whitaker, T. Sayahi, K. Le, P. Goffin, A. Butterfield,

K. Kelly, and P.-E. Gaillardon, “A Distributed Low-Cost Pollution Monitoring

Platform,” IEEE Internet of Things Journal, vol. 6, p. 10738–10748, Dec.

2019.

[246] P. Castello, C. Muscas, P. A. Pegoraro, and S. Sulis, “Improved Fine Particles

Monitoring in Smart Cities by Means of Advanced Data Concentrator,” IEEE

Transactions on Instrumentation and Measurement, vol. 70, p. 1–9, 2021.

[247] P. deSouza, A. Anjomshoaa, F. Duarte, R. Kahn, P. Kumar, and C. Ratti,

“Air Quality Monitoring Using Mobile Low-Cost Sensors Mounted on Trash-

Trucks: Methods Development and Lessons Learned,” Sustainable Cities and

Society, vol. 60, p. 102239, Sept. 2020.

[248] Sensirion, “SCD41.” https://sensirion.com/products/catalog/SCD41/.

Accessed: 2024-02-20.

197

https://sensirion.com/products/catalog/SCD41/

[249] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bina-

rized Neural Networks: Training Deep Neural Networks With Weights and

Activations Constrained to +1 or -1,” arXiv, 2016. eprint 1602.02830.

[250] T. Simons and D.-J. Lee, “A Review of Binarized Neural Networks,” Electron-

ics, vol. 8, p. 661, June 2019.

[251] L. Geiger and P. Team, “Larq: An Open-Source Library for Training Binarized

Neural Networks,” Journal of Open Source Software, vol. 5, p. 1746, Jan. 2020.

[252] Larq, “Key Concepts.” https://docs.larq.dev/larq/guides/

key-concepts/. Accessed: 2023-07-05.

[253] T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey, “Meta-Learning

in Neural Networks: A Survey,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, pp. 1–1, 2021.

[254] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-

chine Learning in Python,” Journal of Machine Learning Research, vol. 12,

pp. 2825–2830, 2011.

[255] B. McMahan and D. Ramage, “Federated Learning: Collaborative Machine

Learning without Centralized Training Data.” https://blog.research.

google/2017/04/federated-learning-collaborative.html. Accessed:

2024-02-24.

[256] A. Garcia-Perez, R. Miñón, A. I. Torre-Bastida, and E. Zulueta-Guerrero,

“Analysing edge computing devices for the deployment of embedded ai,” Sen-

sors, vol. 23, p. 9495, Nov. 2023.

[257] M. Merenda, C. Porcaro, and D. Iero, “Edge machine learning for ai-enabled

iot devices: A review,” Sensors, vol. 20, p. 2533, Apr. 2020.

[258] T. Feng, Y. Sun, Y. Shi, J. Ma, C. Feng, and Z. Chen, “Air Pollution Control

Policies and Impacts: A Review,” Renewable and Sustainable Energy Reviews,

vol. 191, p. 114071, 2024.

[259] N. L. Giménez, J. M. Solé, and F. Freitag, “Embedded Federated Learn-

ing Over a LoRa Mesh Network,” Pervasive and Mobile Computing, vol. 93,

p. 101819, June 2023.

198

https://docs.larq.dev/larq/guides/key-concepts/
https://docs.larq.dev/larq/guides/key-concepts/
https://blog.research.google/2017/04/federated-learning-collaborative.html
https://blog.research.google/2017/04/federated-learning-collaborative.html

Appendix A

Additional Evaluation of

Correlation Coefficients

This section reports the Pearson’s correlation coefficients obtained from Beijing and

Delhi datasets, supplementing the explanation of Section 3.8.2.

A.1 Pearson’s Correlation for Beijing Air Quality Data

Table A.1: Coefficient of correlation targeting CO in Beijing air quality data.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.00

S2 0.78 1.00

S3 0.78 0.82 1.00

S4 0.89 0.75 0.73 1.00

S5 0.93 0.78 0.77 0.92 1.00

S6 0.86 0.80 0.77 0.83 0.88 1.00

S7 0.78 0.76 0.79 0.75 0.78 0.78 1.00

S8 0.92 0.75 0.73 0.92 0.92 0.84 0.76 1.00

S9 0.82 0.72 0.74 0.79 0.80 0.78 0.84 0.81 1.00

S10 0.89 0.75 0.73 0.92 0.93 0.85 0.76 0.93 0.80 1.00

199

Table A.2: Coefficient of correlation targeting O3 in Beijing air quality data.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.00

S2 0.87 1.00

S3 0.85 0.93 1.00

S4 0.87 0.82 0.79 1.00

S5 0.95 0.89 0.86 0.88 1.00

S6 0.92 0.88 0.85 0.84 0.92 1.00

S7 0.84 0.89 0.88 0.78 0.85 0.85 1.00

S8 0.96 0.89 0.86 0.89 0.96 0.92 0.86 1.00

S9 0.89 0.88 0.85 0.83 0.89 0.88 0.89 0.91 1.00

S10 0.94 0.88 0.85 0.89 0.95 0.92 0.85 0.96 0.90 1.00

A.2 Pearson’s Correlation for Delhi Air Quality Data

Table A.3: Coefficient of correlation targeting PM2.5 in Delhi air quality data.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.00

S2 0.90 1.00

S3 0.71 0.72 1.00

S4 0.86 0.84 0.72 1.00

S5 0.86 0.90 0.69 0.81 1.00

S6 0.81 0.84 0.71 0.81 0.84 1.00

S7 0.82 0.84 0.76 0.82 0.83 0.87 1.00

S8 0.83 0.81 0.67 0.75 0.76 0.71 0.74 1.00

S9 0.85 0.85 0.73 0.82 0.81 0.79 0.80 0.79 1.00

S10 0.85 0.89 0.67 0.81 0.88 0.82 0.78 0.75 0.80 1.00

200

Table A.4: Coefficient of correlation targeting NO2 in Delhi air quality data.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.00

S2 0.41 1.00

S3 0.04 0.07 1.00

S4 0.13 0.32 -0.03 1.00

S5 0.24 0.35 0.13 0.16 1.00

S6 0.35 0.65 0.01 0.27 0.30 1.00

S7 0.12 0.25 0.05 0.29 0.38 0.23 1.00

S8 0.50 0.58 0.05 0.33 0.37 0.55 0.26 1.00

S9 0.32 0.21 0.09 0.00 0.02 0.22 0.07 0.29 1.00

S10 0.33 0.49 -0.24 0.34 0.27 0.54 0.30 0.48 0.12 1.00

A.3 Neighbouring Stations Selection for Beijing Air Qual-

ity Data

Table A.5: Strongest correlation coefficient for neighbouring stations selection in
Beijing air quality data.

Strongest corr. coeff. (O3) Strongest corr. coeff. (CO)

Target station 1st 2nd 3rd 1st 2nd 3rd

S1 S8 S5 S10 S5 S8 S10

S2 S3 S8 S7 S3 S6 S5

S3 S2 S7 S8 S2 S7 S1

S4 S8 S10 S5 S8 S5 S10

S5 S8 S1 S10 S10 S1 S8

S6 S8 S5 S1 S5 S1 S10

S7 S2 S9 S3 S9 S3 S5

S8 S10 S1 S5 S10 S1 S5

S9 S8 S10 S1 S7 S1 S8

S10 S8 S5 S1 S5 S8 S4

201

A.4 Neighbouring Stations Selection for Delhi Air Qual-

ity Data

Table A.6: Strongest correlation coefficient for neighbouring stations selection in
Delhi air quality data.

Strongest corr. coeff. (NO2) Strongest corr. coeff. (PM2.5)

Target station 1st 2nd 3rd 1st 2nd 3rd

S1 S8 S2 S6 S2 S4 S5

S2 S6 S8 S10 S1 S5 S10

S3 S5 S9 S2 S7 S9 S4

S4 S10 S8 S2 S1 S2 S9

S5 S7 S8 S2 S2 S10 S1

S6 S2 S8 S10 S7 S2 S5

S7 S5 S10 S4 S6 S2 S7

S8 S2 S6 S1 S1 S2 S9

S9 S1 S8 S6 S1 S2 S4

S10 S6 S2 S8 S2 S5 S1

202

Appendix B

Additional Model Evaluation

Metrics

This section reports the RMSE and MAE for all nodes as discussed in Subchap-

ter 4.5. Tables B.1 and B.2 show the RMSE and MAE values, respectively. Table

B.1 shows the effect of quantisation techniques on the RMSE and MAE values.

203

T
ab

le
B
.1
:
C
o
m
p
a
ri
so
n
of

R
M
S
E

va
lu
es

fo
r
P
M

2
.5
p
re
d
ic
ti
on

u
si
n
g
d
iff
er
en
t
m
o
d
el

ar
ch
it
ec
tu
re
s
fo
r
al
l
n
o
d
es
.

N
o
.
A
rc
h
it
e
c
tu

re
s

N
o
d
e
1

N
o
d
e
2

N
o
d
e
3

N
o
d
e
4

N
o
d
e
5

N
o
d
e
6

N
o
d
e
7

N
o
d
e
8

N
o
d
e
9

N
o
d
e
1
0

N
o
d
e
1
1

N
o
d
e
1
2

S
im

p
le

M
od
el
s
G
ro
u
p
I

1
R
N
N

1
8
.4
8
5

1
7
.9
6
1

1
9
.3
5
6

2
0
.6
5
5

1
9
.3
3
2

2
1
.0
8
8

1
7
.1
8
6

1
9
.5
6
0

2
1
.0
4
6

1
7
.8
9
2

2
0
.9
2
0

2
3
.1
4
9

2
L
S
T
M

1
7
.7
8
6

1
8
.2
0
3

1
9
.8
0
2

1
9
.7
7
5

1
9
.1
8
6

1
9
.4
3
4

1
7
.6
2
0

1
8
.2
0
8

2
1
.1
4
3

1
7
.5
8
6

1
7
.9
4
6

2
1
.1
8
0

3
G
R
U

1
8
.3
6
7

1
8
.3
5
3

1
8
.4
7
5

2
2
.1
4
3

2
0
.5
7
8

2
0
.4
5
9

1
7
.4
4
9

1
9
.4
7
1

2
0
.9
1
4

1
8
.4
3
5

1
9
.2
6
7

2
2
.2
5
7

4
B
id
ir
ec
ti
o
n
a
l
R
N
N

1
9
.3
7
7

1
7
.3
8
3

1
7
.7
9
9

2
0
.7
0
3

1
8
.8
6
4

2
0
.7
3
7

1
7
.5
2
2

1
8
.7
4
0

2
0
.1
2
5

1
7
.4
5
0

1
8
.4
4
2

2
1
.9
9
6

5
B
id
ir
ec
ti
o
n
a
l
L
S
T
M

1
8
.0
1
6

1
7
.0
8
4

1
8
.9
6
7

2
0
.8
0
6

1
8
.8
2
9

1
9
.5
6
3

1
7
.5
4
7

1
9
.0
4
1

1
9
.2
9
9

1
7
.1
4
4

1
7
.3
3
5

2
2
.5
2
0

6
B
id
ir
ec
ti
o
n
a
l
G
R
U

1
8
.6
0
3

1
7
.6
0
6

1
7
.6
5
0

2
1
.2
9
0

1
9
.2
7
5

1
9
.3
3
9

1
6
.8
9
9

1
8
.4
4
3

1
8
.7
6
4

1
7
.0
5
2

1
7
.1
3
8

2
1
.4
8
9

H
yb
ri
d
M
od
el
s
G
ro
u
p
II

7
C
N
N
-A

N
N

1
7
.7
5
7

1
6
.8
3
8

1
7
.8
4
1

1
9
.7
5
2

1
9
.2
0
7

1
9
.7
9
3

1
7
.1
7
4

1
8
.7
7
7

2
0
.3
6
4

1
7
.6
3
5

1
7
.0
4
1

2
1
.5
3
7

8
C
N
N
-R

N
N

1
8
.2
2
7

1
6
.8
1
3

1
7
.4
4
5

2
0
.0
2
1

1
8
.4
2
0

1
9
.3
0
3

1
6
.9
5
2

1
8
.4
1
8

1
8
.6
8
6

1
6
.7
1
3

1
7
.0
1
8

2
1
.4
9
2

9
C
N
N
-L
S
T
M

1
7
.6
5
2

1
6
.8
0
1

1
8
.3
8
7

1
9
.7
4
3

1
9
.1
8
4

1
9
.2
2
8

1
7
.2
6
1

1
8
.2
4
2

1
8
.6
6
3

1
7
.0
4
0

1
7
.2
0
9

2
1
.1
6
0

1
0

C
N
N
-G

R
U

1
7
.2
4
4

1
6
.7
4
2

1
7
.7
3
3

1
9
.6
6
7

1
9
.7
5
9

2
0
.8
9
7

1
7
.0
0
1

1
8
.3
9
1

1
9
.6
5
2

1
6
.6
1
1

1
7
.0
8
1

2
1
.8
1
8

1
1

C
N
N
-B

id
ir
ec
ti
o
n
a
l
R
N
N

1
7
.3
3
4

1
6
.8
0
4

1
7
.5
7
1

1
9
.5
1
4

1
8
.5
2
0

1
9
.0
8
3

1
8
.0
6
2

1
8
.1
0
9

2
0
.6
9
7

1
6
.9
0
8

1
6
.9
6
2

2
1
.4
2
1

1
2

C
N
N
-B

id
ir
ec
ti
o
n
a
l
L
S
T
M

1
7
.3
4
4

1
7
.9
8
1

2
0
.1
1
8

2
0
.2
6
7

1
9
.6
4
0

1
9
.0
7
1

1
6
.8
6
2

1
8
.0
5
8

1
8
.4
2
7

1
6
.6
7
6

1
7
.0
7
1

2
1
.6
6
7

1
3

C
N
N
-B

id
ir
ec
ti
o
n
a
l
G
R
U

1
7
.4
6
2

1
7
.5
1
8

2
0
.0
3
8

2
1
.2
1
4

1
8
.6
4
2

1
9
.0
9
8

1
6
.8
0
0

1
9
.1
3
1

1
8
.4
9
7

1
7
.2
3
0

1
6
.9
4
4

2
1
.2
6
8

H
yb
ri
d
M
od
el
s
G
ro
u
p
II
I

1
4

C
N
N
-A

N
N

1
7
.1
6
0

1
7
.6
6
1

1
8
.4
9
3

1
8
.0
7
4

1
7
.2
8
2

1
8
.5
9
8

1
9
.2
3
5

1
7
.9
6
9

1
8
.1
9
6

1
7
.0
1
8

1
7
.7
0
5

1
9
.1
3
4

1
5

C
N
N
-R

N
N

1
5
.6
7
2

1
7
.1
5
9

1
8
.3
7
7

1
8
.1
3
5

1
6
.9
3
3

1
8
.2
6
2

1
6
.1
3
5

1
8
.5
9
6

2
0
.2
1
5

1
6
.0
5
3

1
5
.9
8
1

1
9
.4
9
4

1
6

C
N
N
-L

S
T
M

(p
ro

p
o
se

d
m
o
d
e
l)

1
5
.2
6
8

1
5
.7
1
0

1
7
.0
8
2

1
7
.7
0
6

1
6
.5
5
7

1
7
.7
4
3

1
5
.4
9
3

1
6
.1
7
2

1
7
.9
2
0

1
4
.8
9
4

1
4
.9
5
1

1
8
.9
6
2

1
7

C
N
N
-G

R
U

1
7
.1
6
9

1
6
.1
3
6

2
0
.2
5
2

1
8
.9
0
0

1
7
.0
3
4

2
0
.6
9
2

1
8
.1
6
6

1
8
.3
2
7

1
8
.8
9
7

1
6
.2
5
0

1
7
.0
3
1

1
9
.0
9
8

1
8

C
N
N
-B

id
ir
ec
ti
o
n
a
l
R
N
N

1
7
.3
6
5

1
8
.1
8
2

1
8
.2
2
9

1
9
.6
5
8

1
7
.5
9
1

1
8
.3
0
1

1
6
.0
4
5

1
6
.8
1
8

1
8
.0
6
8

1
5
.5
1
3

1
5
.1
5
4

1
9
.4
2
6

1
9

C
N
N
-B

id
ir
ec
ti
o
n
a
l
L
S
T
M

1
5
.6
4
3

1
6
.6
4
7

1
8
.0
8
5

1
7
.9
4
1

1
7
.5
7
4

1
8
.5
4
4

1
5
.8
4
5

1
6
.5
8
4

1
9
.1
8
7

1
5
.5
3
0

1
6
.4
2
3

1
9
.0
3
8

2
0

C
N
N
-B

id
ir
ec
ti
o
n
a
l
G
R
U

1
6
.0
8
9

1
6
.8
5
5

1
9
.1
2
1

1
8
.1
9
3

1
7
.2
6
9

1
9
.3
5
0

1
5
.7
8
9

1
6
.5
4
5

1
8
.1
3
4

1
5
.8
7
4

1
5
.7
8
5

1
9
.2
6
7

204

T
ab

le
B
.2
:
C
o
m
p
a
ri
so
n
of

M
A
E

va
lu
es

fo
r
P
M

2
.5
p
re
d
ic
ti
on

u
si
n
g
d
iff
er
en
t
m
o
d
el

ar
ch
it
ec
tu
re
s
fo
r
al
l
n
o
d
es
.

N
o
.
A
rc
h
it
e
c
tu

re
s

N
o
d
e
1

N
o
d
e
2

N
o
d
e
3

N
o
d
e
4

N
o
d
e
5

N
o
d
e
6

N
o
d
e
7

N
o
d
e
8

N
o
d
e
9

N
o
d
e
1
0

N
o
d
e
1
1

N
o
d
e
1
2

S
im

p
le

M
od
el
s
G
ro
u
p
I

1
R
N
N

1
0
.6
3
6

1
0
.1
2
3

1
0
.2
0
6

1
1
.4
1
2

1
0
.9
0
4

1
2
.0
4
3

8
.6
3
6

1
1
.0
8
0

1
1
.5
7
1

1
0
.6
8
6

1
2
.4
0
3

1
2
.1
3
9

2
L
S
T
M

1
0
.2
3
0

1
0
.7
1
0

1
0
.3
7
6

1
0
.6
7
0

1
0
.9
0
6

1
1
.1
7
4

8
.7
8
6

1
0
.4
9
9

1
1
.8
2
9

1
0
.8
8
0

1
0
.5
2
3

1
1
.0
7
8

3
G
R
U

1
0
.6
6
4

1
0
.7
6
9

9
.8
8
1

1
2
.5
0
5

1
1
.6
3
5

1
1
.5
7

8
.8
8
0

1
1
.5
4
8

1
1
.9
7
7

1
1
.0
5
3

1
1
.1
8
3

1
1
.9
4
7

4
B
id
ir
ec
ti
o
n
a
l
R
N
N

1
2
.2
5
7

9
.8
9
8

9
.3
4
9

1
1
.8
7
1

1
0
.7
4
3

1
1
.8
8
7

9
.0
4
0

1
0
.5
7
1

1
1
.1
5
4

1
0
.5
8
7

1
1
.1
4
4

1
1
.5
6
0

5
B
id
ir
ec
ti
o
n
a
l
L
S
T
M

1
0
.4
2
7

9
.4
6
2

1
0
.3
3
5

1
1
.7
1
0

1
0
.5
8
4

1
1
.0
9
8

8
.7
6
4

1
0
.8
2
6

1
0
.4
6
1

1
0
.3
5
7

9
.7
6
5

1
1
.7
1
0

6
B
id
ir
ec
ti
o
n
a
l
G
R
U

1
0
.9
4
4

1
0
.3
4
5

9
.4
2
9

1
3
.0
5
1

1
0
.9
2
4

1
0
.6
6
5

8
.3
3
8

1
0
.1
7
1

1
0
.1
2
4

1
0
.4
0
4

9
.6
5
8

1
1
.3
4
8

H
yb
ri
d
M
od
el
s
G
ro
u
p
II

7
C
N
N
-A

N
N

1
0
.3
2
1

9
.3
8
7

9
.6
7
1

1
0
.6
7
9

1
1
.3
5
1

1
1
.3
3
3

8
.7
1
4

1
1
.2
6
7

1
1
.4
6
6

1
0
.7
5
7

9
.3
8
5

1
1
.5
5
8

8
C
N
N
-R

N
N

1
0
.9
0
6

9
.9
5
9

8
.8
8
8

1
1
.3
1
1

1
0
.3
0
3

1
0
.7
4
6

8
.3
0
6

1
0
.4
1
9

9
.9
6
1

1
0
.0
4
3

9
.6
1
5

1
1
.1
2
3

9
C
N
N
-L
S
T
M

1
0
.2
0
3

9
.3
6
5

9
.7
2
7

1
0
.5
8
2

1
1
.1
7
6

1
0
.5
7
1

8
.9
1
4

1
0
.0
2
7

1
0
.4
0
7

1
0
.0
8
4

9
.6
1
2

1
1
.2
1
6

1
0

C
N
N
-G

R
U

9
.5
5
2

9
.4
2
3

9
.2
1
3

1
0
.6
2
2

1
1
.7
7
1

1
2
.0
0
6

8
.4
2
0

1
0
.4
1
0

1
1
.3
1
3

1
0
.0
7
7

9
.4
9
2

1
1
.5
2

1
1

C
N
N
-B

id
ir
ec
ti
o
n
a
l
R
N
N

1
0
.0
0
1

9
.4
4
3

9
.3
8
3

1
0
.2
7
4

1
0
.5
6
2

1
0
.3
1
2

9
.7
5
0

1
0
.1
7
9

1
2
.4
1
7

1
0
.0
7
2

9
.6
8
3

1
0
.8
3
3

1
2

C
N
N
-B

id
ir
ec
ti
o
n
a
l
L
S
T
M

1
0
.0
5
4

1
0
.4
3
9

1
1
.5
7
6

1
1
.7
7
8

1
2
.5
4
2

1
0
.6
7
0

8
.3
1
3

1
0
.2
4
5

9
.8
5
8

9
.8
9
5

9
.7
0
0

1
1
.2
8
2

1
3

C
N
N
-B

id
ir
ec
ti
o
n
a
l
G
R
U

1
0
.4
8
6

9
.9
2
3

1
1
.6
3
8

1
2
.6
3
8

1
0
.5
9
0

1
0
.4
4
0

8
.2
7
3

1
1
.3
8
3

1
0
.2
9
0

1
0
.6
8
4

9
.4
6
6

1
1
.2
1
0

H
yb
ri
d
M
od
el
s
G
ro
u
p
II
I

1
4

C
N
N
-A

N
N

1
0
.3
0
7

1
0
.3
5
1

9
.2
2
1

9
.8
7
2

1
0
.1
6
8

1
0
.4
4
6

1
2
.9
0
6

1
0
.6
3
7

1
0
.2
4
5

1
0
.5
6
4

1
0
.1
9
1

9
.9
8
5

1
5

C
N
N
-R

N
N

9
.1
6
2

9
.6
0
2

8
.9
9
8

1
0
.1
0
6

9
.5
1
0

1
0
.0
6
9

8
.3
2
6

1
1
.0
6
8

1
2
.8
1
7

1
0
.0
5
5

9
.5
4
3

1
0
.2
9
5

1
6

C
N
N
-L

S
T
M

(p
ro

p
o
se

d
m
o
d
e
l)

8
.7
7
8

8
.8
7
3

8
.8
0
3

9
.6
5
3

9
.2
2
8

9
.5
9
0

7
.6
0
7

9
.1
1
6

9
.5
8
8

8
.9
9
3

8
.4
8
6

9
.6
4
1

1
7

C
N
N
-G

R
U

9
.6
6
5

8
.9
6
7

1
1
.4
3
1

1
1
.1
1
8

9
.9
8
1

1
1
.8
5
2

1
1
.0
2
3

1
0
.2
5
2

1
0
.8
3
8

1
0
.0
6
8

1
0
.2
7
4

9
.8
7
8

1
8

C
N
N
-B

id
ir
ec
ti
o
n
a
l
R
N
N

1
0
.4
4
3

1
0
.2
6
5

9
.0
5
4

1
1
.3
5
4

9
.9
7
8

1
0
.1
1
5

8
.2
8
6

9
.6
7
6

9
.7
0
9

9
.2
1
3

8
.5
2
7

1
0
.2
6
9

1
9

C
N
N
-B

id
ir
ec
ti
o
n
a
l
L
S
T
M

8
.8
5
3

9
.2
9
7

9
.6
5
7

9
.7
6
3

1
0
.1
7
7

9
.7
4
6

7
.9
8
0

1
0
.0
9
5

1
0
.1
6
7

9
.2
0
3

1
0
.1
4
9

9
.8
1
5

2
0

C
N
N
-B

id
ir
ec
ti
o
n
a
l
G
R
U

9
.5
1
2

9
.6
4
4

9
.8
3
8

1
0
.0
3
7

9
.3
3
1

1
0
.8
6
3

7
.9
7
7

9
.6
6
5

9
.7
8
0

9
.7
8
6

9
.1
4
3

1
0
.1
1
1

205

Appendix C

Post-Training Quantisations

Table C.1 shows the effect of quantisation techniques on the RMSE and MAE values

as discussed in Subchapter 4.5.

206

T
ab

le
C
.1
:
E
ff
ec
t
of

p
os
t-
tr
ai
n
in
g
q
u
an

ti
sa
ti
on

te
ch
n
iq
u
es

on
R
M
S
E

an
d
M
A
E

va
lu
es
.

N
o
d
e
1

N
o
d
e
2

N
o
d
e
3

N
o
d
e
4

N
o
d
e
5

N
o
d
e
6

N
o
d
e
7

N
o
d
e
8

N
o
d
e
9

N
o
d
e
1
0

N
o
d
e
1
1

N
o
d
e
1
2

In
it
ia
l
T
en

so
rF

L
o
w

m
od
el

R
M
S
E

1
5
.2
6
8

1
5
.7
1
0

1
7
.0
8
2

1
7
.7
0
6

1
6
.5
5
7

1
7
.7
4
3

1
5
.4
9
3

1
6
.1
7
2

1
7
.9
2
0

1
4
.8
9
4

1
4
.9
5
1

1
8
.9
6
2

M
A
E

8
.7
7
8

8
.8
7
3

8
.8
0
3

9
.6
5
3

9
.2
2
8

9
.5
9
0

7
.6
0
7

9
.1
1
6

9
.5
8
8

8
.9
3
5

8
.4
8
6

9
.6
4
1

T
F
L
it
e—

w
it
h
o
u
t
qu

a
n
ti
sa
ti
o
n

R
M
S
E

1
5
.2
6
8

1
5
.7
1
0

1
7
.0
8
2

1
7
.7
0
6

1
6
.5
5
7

1
7
.7
4
3

1
5
.4
9
3

1
6
.1
7
2

1
7
.9
2
0

1
4
.8
9
4

1
4
.9
5
1

1
8
.9
6
2

M
A
E

8
.7
7
8

8
.8
7
3

8
.8
0
3

9
.6
5
3

9
.2
2
8

9
.5
9
0

7
.6
0
7

9
.1
1
6

9
.5
8
8

8
.9
3
5

8
.4
8
6

9
.6
4
1

T
F
L
it
e—

d
yn

a
m
ic

ra
n
ge

qu
a
n
ti
sa
ti
o
n

R
M
S
E

1
5
.2
7
0

1
5
.7
1
0

1
7
.1
1
6

1
7
.6
7
9

1
6
.5
8
0

1
7
.7
4
1

1
5
.4
9
0

1
6
.1
8
9

1
7
.9
0
6

1
4
.9
0
5

1
4
.9
9
4

1
8
.9
7
4

M
A
E

8
.7
8
4

8
.8
7
2

8
.8
4
4

9
.6
3
9

9
.2
3
6

9
.5
9
2

7
.6
1
1

9
.1
2
9

9
.6
0
4

8
.9
4
3

8
.5
5
0

9
.6
7
8

T
F
L
it
e—

in
te
ge
r
w
it
h
fl
oa
t
fa
ll
ba
ck

R
M
S
E

1
5
.7
0
4

1
6
.1
0
2

1
7
.5
0
6

1
8
.1
0
8

1
7
.0
3
2

1
8
.1
6
7

1
5
.6
9
4

1
6
.5
3
6

1
8
.7
5
8

1
5
.4
6
7

1
5
.2
1
6

1
9
.6
9
0

M
A
E

9
.4
1
8

9
.4
2
0

9
.5
6
2

1
0
.4
2
5

1
0
.0
0
4

1
0
.3
9
4

8
.0
8
1

9
.6
7
4

1
0
.7
9
2

9
.6
9
4

9
.0
4
8

1
0
.7
8
5

T
F
L
it
e—

in
te
ge
r-
o
n
ly

qu
a
n
ti
sa
ti
o
n

R
M
S
E

1
5
.7
0
4

1
6
.1
0
2

1
7
.5
0
6

1
8
.1
0
8

1
7
.0
3
2

1
8
.1
6
7

1
5
.6
9
4

1
6
.5
3
6

1
8
.7
5
8

1
5
.4
6
7

1
5
.2
1
6

1
9
.6
9
0

M
A
E

9
.4
1
8

9
.4
2
0

9
.5
6
2

1
0
.4
2
5

1
0
.0
0
4

1
0
.3
9
4

8
.0
8
1

9
.6
7
4

1
0
.7
9
2

9
.6
9
4

9
.0
4
8

1
0
.7
8
5

T
F
L
it
e—

fl
oa
t1
6
qu

a
n
ti
sa
ti
o
n

R
M
S
E

1
5
.2
6
8

1
5
.7
0
8

1
7
.0
8
2

1
7
.7
0
7

1
6
.5
5
7

1
7
.7
4
2

1
5
.4
9
4

1
6
.1
7
1

1
7
.9
2
0

1
4
.8
9
6

1
4
.9
5
2

1
8
.9
6
2

M
A
E

8
.7
7
7

8
.8
7
1

8
.8
0
3

9
.6
5
4

9
.2
2
8

9
.5
8
9

7
.6
0
7

9
.1
1
5

9
.5
8
8

8
.9
3
6

8
.4
8
6

9
.6
4
2

207

	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgments
	Declarations
	Abstract
	Chapter Introduction
	Air Pollution as a Global Threat
	Air Pollution Assessment
	Initiatives to Reduce Air Pollution Impact
	Machine Learning for Air Quality Research
	Moving Machine Learning Towards the Edge
	Thesis Aims and Objectives
	Thesis Organisation

	Chapter Background and Literature Review
	Introduction
	Machine Learning for Air Pollution Prediction
	Machine Learning at the Edge
	Edge Computing
	Machine Learning Platform
	Quantised Neural Networks
	Tiny Machine Learning

	Edge Devices
	Software Programmable Platforms
	Application Specific Integrated Circuits
	Field-Programmable Gate Arrays
	Computing Platform Selection
	Single Board Computers
	Microcontrollers

	Neural Networks
	Artificial Neuron
	Convolutional Neural Network
	Long Short-Term Memory

	Evaluation Metrics
	Summary

	Chapter Deep Learning for Missing Data Imputation
	Introduction
	Approaches for Dealing with Missing Data
	Missing Data Imputation in Air Quality Research
	Contributions
	Air Quality Dataset
	Beijing Dataset
	Delhi Dataset
	London Dataset

	Spatiotemporal Convolutional Autoencoder
	Denoising Autoencoder
	Correlation of Pollutant Data
	Proposed Deep Learning Model

	Processing of Spatiotemporal Data
	Air Quality Monitoring Stations
	Data Preprocessing for Spatial Correlation
	Data Preprocessing for Temporal Correlation
	Missing Period Distribution
	Missing Data Generation and Perturbation Procedure
	Pre-training Model Input Construction
	Post-training Model Outputs

	Spatiotemporal Evaluation
	Temporal Evaluation
	Spatial Evaluation

	Imputation Performance
	Model Architecture Evaluation
	Short Interval Imputation
	Long Interval Imputation
	Effect of Correlation Levels
	Comparison with Other Methods

	Summary

	Chapter Optimising Deep Learning at the Edge
	Introduction
	Contributions
	Air Quality Data
	Dataset and Preprocessing
	Feature Selection

	Deep Learning Model Architecture
	Hybrid CNN-LSTM
	Spatiotemporal Model Inputs

	Model Architecture Benchmark
	Model Optimisation for the Edge
	Edge Devices
	Lite Models
	Post-training Optimisations

	Summary

	Chapter Collaborative Edge Learning
	Introduction
	Rapid Expansion of Sensing Devices
	Chapter Contributions
	Proposed Framework
	Data Preprocessing
	Collaborative Strategies
	Learning Overview
	Federated Learning (FedAvg)
	Clustered peer-to-peer model exchanges (ClustME)
	Spatiotemporal data exchanges (SpaTemp)

	Deep Learning Models
	Collaborative Learning Evaluation
	Application Scenario
	Results and Discussion
	Feature Selection
	Losses During Training
	Model performance on testing data.
	Learning Execution Period
	Communication Cost Estimations
	Network Scaling

	Summary

	Chapter Tiny Machine Learning for Microcontroller Applications
	Introduction
	Contributions
	TinyML Low-cost Air Quality Monitoring Device
	Motivation
	Data Collection and Preprocessing
	Device Design
	TinyML Framework
	Model Predictor and Model Imputer
	Perturbation Method
	Device Realisation
	Model Performance
	Post-training Quantisation
	Summary

	Optimising TinyML with Binary Weight Network
	Introduction
	Objectives
	Binary Neural Network
	Layer Quantisation
	Proposed Model
	Research Workflow
	Data Collection
	Quantisation Results
	Summary

	TinyML with Meta-Learning
	Introduction
	Objectives
	Air Quality Dataset
	Stacking Ensemble Process
	Proposed Stacking Ensemble Model
	Results and Discussion
	Summary

	Chapter Conclusions and Further Work
	Overview
	Objectives and Achievements
	Conclusions
	Further Work
	Broader Perspectives of AI-based Smart Sensing and Approaches to Driving Change
	Collaborative Learning and Air Quality Monitoring Network

	Reference
	Appendix Additional Evaluation of Correlation Coefficients
	Pearson's Correlation for Beijing Air Quality Data
	Pearson's Correlation for Delhi Air Quality Data
	Neighbouring Stations Selection for Beijing Air Quality Data
	Neighbouring Stations Selection for Delhi Air Quality Data

	Appendix Additional Model Evaluation Metrics
	Appendix Post-Training Quantisations

