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Objective:

To determine the elastic

critical buckling load for

plane frame structures

possessing shear flexibility

and semi-rigid joints.

Stability of Shear-Flexible Frames

W W

Braced frame with rigid joints

Wcr WcrBuckling shape
(symmetrical

mode)

PP slide show is available from Personal Web-page.
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Classes of Shear-Flexible Structures

1. Structures with batten-braced members (antennae).

2. Double-layered grid-shell structures.

3. Structures of FRP materials:

Solid or Sandwich constructed members having “high”

moduli ratio (E/G)

• 2.6 for conventional isotropic materials (shear-rigid)

• 6 to 80 for FRP materials (increasingly shear-flexible)

Matrix stiffness method:

Linear elastic

Modified slope–deflection equations

with stability functions:

• shear-rigid

• two different shear-flexible

formulations

Shear-deformable elements

Semi-rigid connections (by piecewise

M-φ curve)

Second-order P-D effects

Stability analysis (for Wcr).

No geometric imperfections modelled.

Non-linear Frame Analysis

Semi-rigid
connection Rigid connection

Beam-column
member

Beam-member
(axial force = 0)
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P

V = -(MA + MB)/L
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V

EI, GA

Beam-column modelling

Shear deformation modelling

Shear-Flexible Beam-Column Element

qA

qB

Structural relevant
rotations; clockwise

A B

L

Shear rotation due to constant
V; anticlockwise (qA(sh) = qB(sh))

qA(sh) = - (MA + MB)b/GA

Stability Functions
Shear-stiff stability functions

φ1 = αcot α, where non-dimensional load parameters α is from

, giving

PE is the Euler critical buckling load for this member as a pin-ended

concentric loaded shear-stiff column.

No-sway equations

Shear-stiff stability functions (For P +ve; that is compressive)
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Stability Functions
Shear-flexible stability functions

Need to modify f1 and a, and introduce the shear flexibility parameter

No-sway equations

Shear-flexible stability functions (conventional – free qA and qA(sh))

Shear-flexible stability functions (Mottram and Aberle – for compatibility of

rotation at joints where beam and beam-column members connect)
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szero andczero are of ‘same’ format as s and c!

Stability functions now depend on member properties

 Global stiffness matrix [K] is function of load because

of geometric non-linearity.

 This is used as stability criterion.

 Positive determinant to [K] implies a stable state.

 Negative determinant implies unstable state.

 Zero determinant implies state of neutral equilibrium

and critical buckling load.

 Computational result given as a normalised load factor.

Analysis for Critical Buckling Load
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Example: Portal Frame with Sloping Rafters

B

A E

Slope angle

L

C

Stanchion

Ir

D

Rafter

Is

r

h

qo

Parameters:

Slope angle q is 10o, 20o and 30o.

L/h = 4.28; r/L = 0.868 (10o); Is/Ir = 1.128.

Frame is adequately braced against all

other forms of instability.

pinned

rigid

Example: Portal Frame with Sloping Rafters

B

A E

L

C
D

h

Joint forces due
to udl

Analysis: Shear flexibility parameter u increases from 0 to 1.5.

Same value of u for both stanchions and rafters.
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Example: Portal Frame with Sloping Rafters

Conventional shear-flexible
stability functionss andc

Mottram and Aberle shear-flexible
stability functionsszero andczero

10o
30o

20o

30o

20o
10o

Shear-stiff frame

Failure is Anti-symmetrical mode; mistake in paper to say
it is symmetrical

Example: Portal Frame with Sloping Rafters

Current wisdom says that shear-flexibility will reduce the instability

load of continuous frames.

Do the new results indicate that the weakness in the formulation of the

conventional shear-flexible stability functions is the reason for an

INCREASE in buckling resistance?

POSTSCRIPT (July 2007): The same characteristic shaped curves in the

plot in previous slide have now been obtained by the author solving the

portal frame problem using the stability function approach. (Theory for

this method is from the 1963 PhD thesis by K. I. Majid at University of

Manchester).
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Frame Analysis and Codes of Practice

Guidance on the choice between first and second-order global analysis is

given for STEEL structures in Clause 5.2.1 of BS EN 1993-1-1:2005. 1st-order

analysis may be used provided that the effects of deformations on internal

member forces and moments and on structural behaviour are negligible. This

may be assumed to be the case provided that Equ. (5.1) in 5.2.1(3) is satisfied

for elastic analysis (5.1)

•acr is the factor by which the design loading would have to be increased to

cause elastic instability in a global mode,

•FEd is the design loading on the structure,

•Fcr is the elastic critical buckling load for global instability mode based on

initial elastic stiffnesses.

10
Ed

cr
cr ≥=

F

F
α

c.f. W in portal frame example

c.f. Wcr(u) in portal frame example

Code of Practice for Pultruded FRP Structures

We can use shear-flexible frame analysis to establish acr for structures

when shear deformation cannot be neglected.

Pultruded FRP Structures (braced and no-sway)
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Code of Practice for Pultruded FRP Structures

New Project – assistance is required (we need test data for code calibration)

“Standard for Load Resistance Factor Design (LRFD) of Pultruded Fiber-

Reinforced Polymer (FRP) Structures”, sponsored by ASCE and ACMA.

Three years, starting June 07. Limited funds; none for new physical tests.

Eight chapter drafters contributing for the “glory of it”.

CHAPTERS:

1. GENERAL PROVISIONS; 2. DESIGN RESISTANCE;

3. TENSION MEMBERS; 4. COMPRESSION MEMBERS AND BEARING;

5. MEMBERS IN BENDING SHEAR;

6. MEMBERS UNDER COMBINED LOADS;

7. PLATES (Girders); 8. JOINTS AND CONNECTIONS.

• We have a code that successfully predicts the elastic critical buckling

load of plane frames having semi-rigid joints and shear-flexible

members.

• New results, using a portal frame example with inclined rafters,

suggests that the incompatibility condition in the formulation of the

conventional shear-flexible stability functionss andc might be a

limitation to their application.

• By using the Mottram and Aberle stability functionsszero andczero,

formulated to give rotational compatibility, the buckling resistance is

found to reduce with increasing shear-flexibility.

• Physical testing is required to further our understanding.

• Our analysis tool can be used to establish the limit to acr for 1st-order

analysis to be used in the design process of elastic frames of

Pultruded FRP sections (solid and batten-braced construction).

Conclusions
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This image cannot currently be displayed.

Email: J.T.Mottram@warwick.ac.uk 2007

Thank you for your attention.

Any questions?


