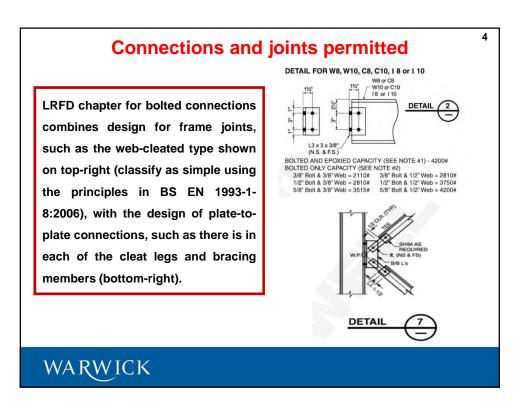
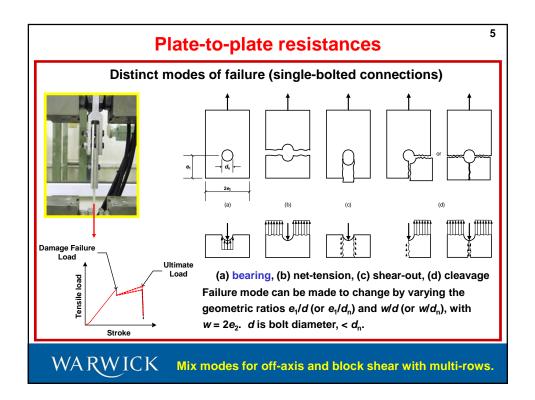
Determination of Pin-bearing Strength for the Design of Bolted Connections with Standard Pultruded Profiles

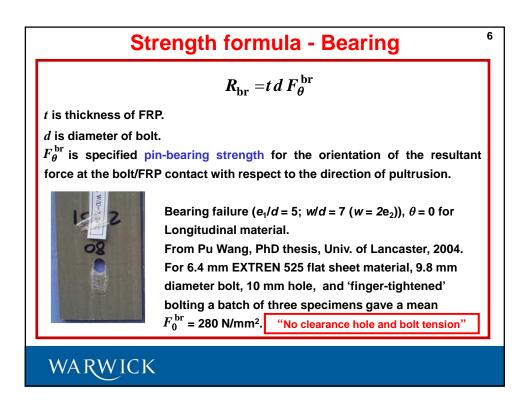
> J. Toby Mottram School of Engineering

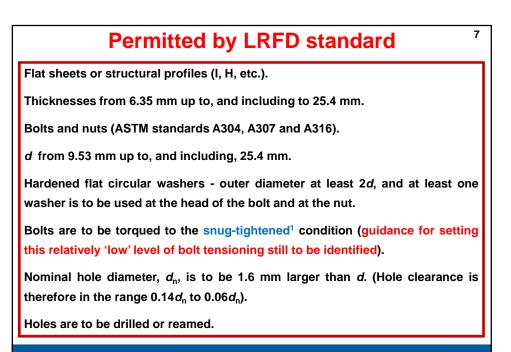
Advanced Composites In Construction Conference (ACIC 09), Edinburgh, 1-3 Sept. 2009

Why study?

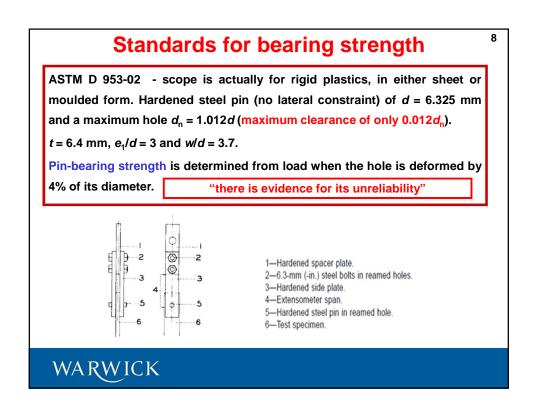

3

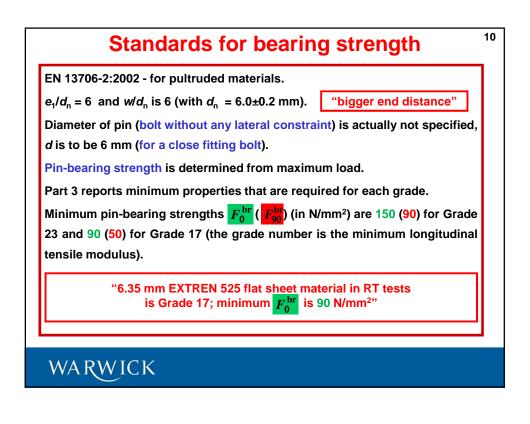

"Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber-Reinforced Polymer (FRP) Structures" (ASCE and ACMA).

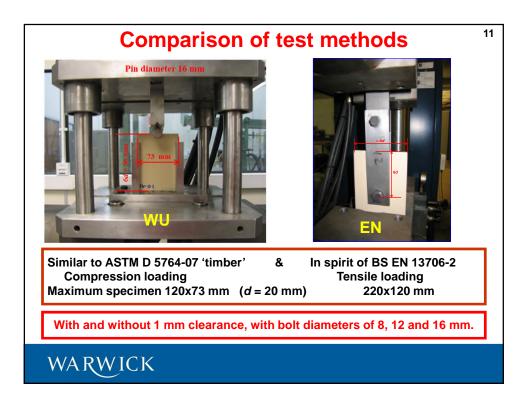

Eight chapters, we contribute for the "glory of it".

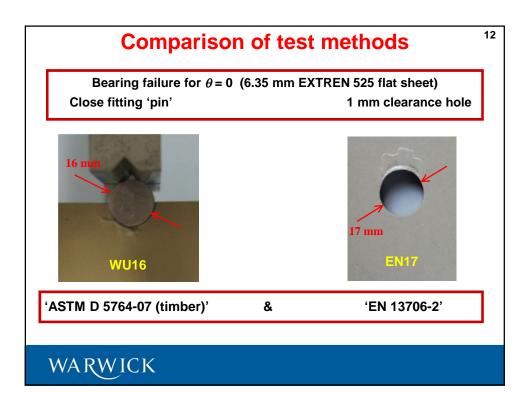

- 1. GENERAL PROVISIONS
- 2. DESIGN RESISTANCE
- 3. TENSION MEMBERS
- 4. DESIGN OF COMPRESSION MEMBERS
- 5. DESIGN FOR MEMBERS IN BENDING AND SHEAR
- 6. MEMBERS UNDER COMBINED FORCES AND TENSION
- 7. PLATES AND BUILT-UP MEMBERS
- 8. BOLTED CONNECTIONS.

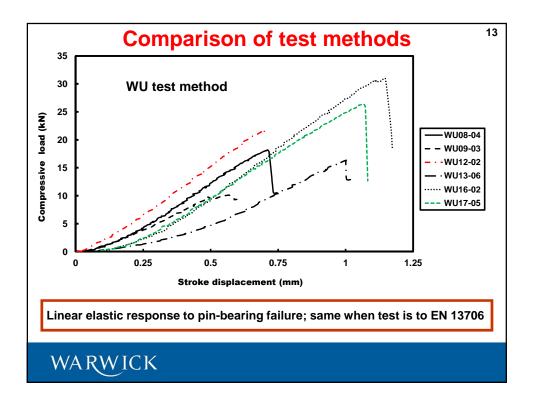
WARWICK



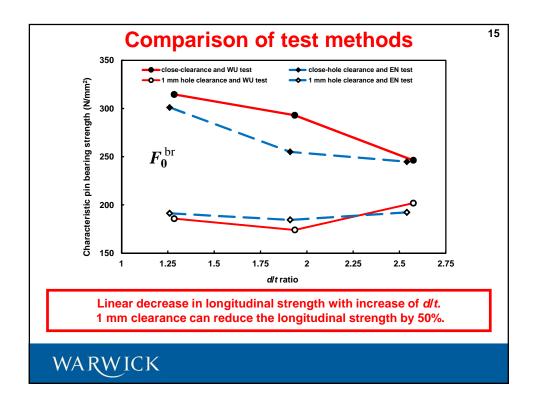


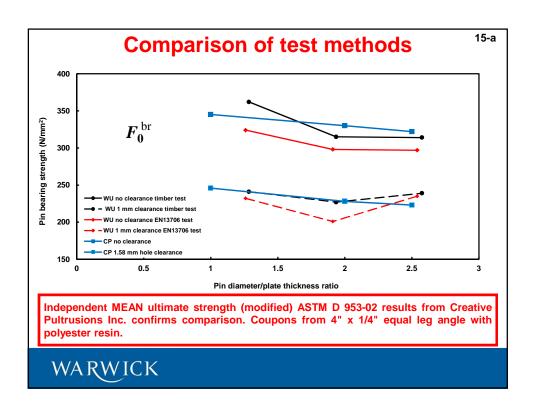



WARWICK 1. Now finger-tightened – changed after paper written



	Standards for bearing strength °									
ASTM D 5961-05 - scope is for with laminated composites (aerospace).										
	$t = 3$ to 5 mm, $e_1/d = 3$ and $w/d = 6$. "wider"									
	Metallic fastener (lightly torqued (2.2-3.4 N•m)) of $d = 6$ mm and a close-									
	tolerance hole.									
	Bearing strength is determined from maximum load.									
"this is desirable"										
	Because laminates are to be balanced and symmetric with respect to the									
	load direction the bearing mode is most likely to occur with $e_1 = 3d$.									
	"with pultrusion this end distance ratio needs to be larger"									
	WARWICK As recommended in MIL-HDBK-17									





	r br		Batches of six specimens					
	$F_0^{\rm br}$	WU08	WU09	WU12	WU13	WU16	WU17	
	Mean (N/mm ²)	362	241	315	227	314	239	
WU	SD (N/mm ²)	21.6	25.2	10.0	24.5	31.0	17.0	
	CoV (%)	6.0	10.5	3.2	10.8	9.9	7.1	
	Characteristic ¹ (N/mm ²)	314	186	293	174	246	202	
	Mean <i>d/t</i> ratio	1.25	1.27	1.92	1.91	2.55	2.54	
Blue font for 1+ mm clearance	Max. clearance (mm)	0.2	1.2	0.2	1.2	0.2	1.2	
	$F_0^{\rm br}$	Batches of six specimens - EN09 with five						
	10	EN08	EN09	EN12	EN13	EN16	EN17	
EN	Mean (N/mm ²)	324	232	298	201	297	235	
	SD (N/mm ²)	10.4	17.6	19.5	7.6	22.2	19.6	
	CoV (%)	3.2	7.6	6.6	3.8	7.5	8.4	
	Characteristic ¹ (N/mm ²)	301	191	255	185	245	192	
	Mean <i>d/t</i> ratio	1.23	1.25	1.92	1.88	2.51	2.49	

Concluding Remarks

16

- Because of creep relaxation the pin-bearing strength is to be used in structural calculations.
- Current test standards require a tensile specimen that is too big.
- Current test standards do not allow for bolt diameters, clearance holes, and material thicknesses found in practice (and for the LRFD design standard).
- Comparison of test results (batch size of six) from two methods show similarities; presence of shaft flexure lowers the strength in the EN tests.
- With a close-fit bolt the mean longitudinal pin-bearing strength of 6.35 mm flat sheet is > 300 N/mm² and decreases linearly with increase of *d*/*t* ratio.
- With a 1 mm clearance the mean strength reduces by 20, up to 50%.
- Minimum characteristic pin-bearing strength (at RT) is found to be 180 N/mm²; higher than 90 N/mm² (from Part 3 of EN 13706) and lower than 220 N/mm² (from pultruder's Design Manual). Reasons for this are obvious!

WARWICK

