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Stability of Shear-Flexible Frames

Objective: Anti-symmetrical mode

To determine the elastic
critical buckling load for
plane frame structures of

shear flexible members. Symmetrical mode

Pitched portal frame with rigid apex
and haunches, and pinned bases
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Classes of Shear-Flexible Structures

1. Structures with batten-braced members (antennae).

2. Double-layered grid-shell structures.

3. Structures of FRP materials:

Solid or Sandwich constructed members having “high”
E/G moduli ratio

» 2.6 for conventional isotropic materials (shear-rigid)

* 6to 200 for FRP materials (increasingly shear-flexible)

Shear-Flexible Beam-Column Element “==**

Beam-column modelling

A Structural relevant
V=-Mp+ Mg)IL N rotations; clockwise
L

Shear deformation modelling

A \ B
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A\BA(SM = - (M, + Mg)BIGA] Shear rotation due to constant
V; anticlockwise (Oash) = Og(shy)




Stablllty Functions CICE08-05

Shear-stiff stability functions

¢1 = acot a, where non-dimensional load parameters ais from
P, givin /1 z |[P
p=ﬁ=f giving a="/p=" 1"
- P 2 2\ P
Pe is the Euler critical buckling load for this member as a pin-ended
concentric loaded shear-stiff column.

No-sway equations
MA=%(SHA+SCHB) MB=%(SCGA+SBB)

Shear-stiff stability functions (For P +ve; that is compressive)

2 2
stiffness function g =%(1_¢1) carry-over function ¢ =%(1‘¢1)

(1-4,) a’+¢,(1-¢)

Stablllty Functions CICE08-06

Shear-flexible stability functions
Need to modify ¢, and a, and introduce the shear flexibility parameter

2
=& - Br°El Stability functions now depend on member properties
GA L%GA
No-sway equations My = %(gaA +5C6g) Mg = %(§60A +56;)
W= _ P -
== = = t
a="p =it f=acota

Shear-flexible stability functions (conventional — free 8, and 6,
(-upla® +4(1-(-up)p)  _ _(1-upla®-4(1-(1-up)p)
(1-(1-up)g,) a’+¢,(1-(1-up)p,)

Shear-flexible stability functions (Mottram and Aberle — for compatibility of

§=

rotation at joints where beam and beam-column members connect)

s - (-upla®+4(1-4)) e @’ -4(-4)
zero (1_¢1) zero (72 +¢1(1_¢1)




Warwick University Frame Analysis
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Matrix stiffness method:
Linear elastic
Modified slope—deflection equations with stability functions:
 shear-rigid
» two different shear-flexible formulations (slide cicE08-06)
Shear-deformable elements
Semi-rigid connections (by piecewise M-¢ curve)
Second-order P-A effects
Stability analysis.

No geometric imperfections modelled.

Pitched Portal Frame with udl

W.(u =0) Shear-stiff situation
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Parameters:

Slope angle @ is 10°.

L/h =4.28; r/L = 0.868 (10°); I /I, = 1.128.
Frame is adequately braced against all

other forms of instability.
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Pitched Portal Frame with udl

Joint forces due
to udl

Tt £ |

Analysis: Shear flexibility parameter u increases from 0 to 1.5.

Same value of u for both stanchions and rafters.
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normalised critical buckling load

Wer/Wer(u = 0)

Pitched Portal Frame with udl
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Conventional shear-flexibl
stability functions s and c¢

10 B = = = = o e e e e e e e = B e e e e e e e e o ]

Shear-stiff frame

(slide CICE08-06)
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' = = = Mottram and Aberle shear-flexible
stability functions s,.,and C,., (slide CICE08-06)

0.6 L L L L L L L

0.0 0.2 0.4 0.6 0.8 1.0 12 1.4

u shear flexibility parameter




CICEO08-11

Buckling Resistance and
Frame Shear Flexibility

Current wisdom says that shear-flexibility will reduce the

instability load of continuous frames.

Does the ACICO7 contribution indicate that a weakness in
the formulation of the conventional shear-flexible stability
functions is the reason for an INCREASE in buckling

resistance, or is it due to a coding problem?
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Majid’s Closed-form Expressions

Virtual energy method and relevant set of “fictitious” horizontal forces to
perturb either symmetrical of anti-symmetrical modes. Solutions given for
udl loading (as in ACIC 07) and for vertical point load at apex C. Modified so
that rafter and stanchion members have different second moment of areas
and “constant” elastic rafter compression force is calculated by a
Klienlogel formula.

Majid and udl and anti-symmetrical mode

o, ). 2cos@s (1—02)(1‘° )
0_2(1 ¢1,s) qss(l_csz).;-Z(:orSBSr(l_scrz)
ith = Wer -t -1
Wi ps_zp::s q_h k_h

P = sz[IIjJ(ZCOI;G h)z{8((lr20030qh()3/J(r|jS: i?floffp 1+ k)2)+ sing




normalised critical load
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Majid’s — UDL loading (see also ACICQ7)
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Same variations in resistance with the anti-symmetrical mode.

Choice of shear flexibility functions does not change buckling resistance with
the symmetrical mode (shear stiff critical load is 3.75 times higher than anti-
symmetrical)
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Majid’s — Apex Point Loading
Anti-symmetrical mode Symmetrical mode
1.25
3 7 100
S
g
{’\ E 0.75
-~ 2
\\\ g
L ~ 2 o050 |
— ~— —
N N N " 0.25
0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 14
u shear-flexibility parameter u shear-flexibility parameter

This example does not provide uncertainty on what is the ‘constant’ rafter
compression force.

Findings from uld loading example (slide CICE08-14) are supported.




Conclusions

Two different analytical methods to determine the elastic critical
buckling load of pitched portal frame problems have shown that the
incompatibility condition in the formulation of the conventional shear-
flexible stability functions s and ¢ might be a limitation to their
application when the mode of instability is anti-symmetrical.

By using the Mottram and Aberle stability functions s,,, and C,,,
formulated to give rotational compatibility, buckling resistance is found
to continuously reduce with increasing member shear-flexibility.

An increase in buckling resistance with member shear flexibility is not
to be expected from finite element simulations using ‘stick’ elements
formulated using Timoshenko beam theory.

Physical testing is required to further our understanding.

Thank you for your attention.
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Conferences for 2009, held in Edinburgh, Scotland.
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