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Objective:

To determine the elastic

critical buckling load for

plane frame structures of

shear flexible members.

Stability of Shear-Flexible Frames

Pitched portal frame with rigid apex
and haunches, and pinned bases

PP slide show is available from Personal Web-page.

Anti-symmetrical mode

Symmetrical mode
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Classes of Shear-Flexible Structures

1. Structures with batten-braced members (antennae).

2. Double-layered grid-shell structures.

3. Structures of FRP materials:

Solid or Sandwich constructed members having “high”

E/G moduli ratio

• 2.6 for conventional isotropic materials (shear-rigid)

• 6 to 200 for FRP materials (increasingly shear-flexible)
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Beam-column modelling

Shear deformation modelling

qA

qB

Structural relevant
rotations; clockwise

Shear-Flexible Beam-Column Element

Shear rotation due to constant
V; anticlockwise (qA(sh) = qB(sh))

qA(sh) = - (MA + MB)b/GA
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Stability Functions
Shear-stiff stability functions

φ1 = αcot α, where non-dimensional load parameters α is from

, giving

PE is the Euler critical buckling load for this member as a pin-ended

concentric loaded shear-stiff column.

No-sway equations

Shear-stiff stability functions (For P +ve; that is compressive)
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Stability Functions
Shear-flexible stability functions

Need to modify f1 and a, and introduce the shear flexibility parameter

No-sway equations

Shear-flexible stability functions (conventional – free qA and qA(sh))

Shear-flexible stability functions (Mottram and Aberle – for compatibility of

rotation at joints where beam and beam-column members connect)
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szero andczero are of ‘same’ format as s and c!

Stability functions now depend on member properties
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Matrix stiffness method:

Linear elastic

Modified slope–deflection equations with stability functions:

• shear-rigid

• two different shear-flexible formulations (slide CICE08-06)

Shear-deformable elements

Semi-rigid connections (by piecewise M-φ curve)

Second-order P-D effects

Stability analysis.

No geometric imperfections modelled.

Warwick University Frame Analysis
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Pitched Portal Frame with udl
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Slope angle
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Parameters:

Slope angle q is 10o.

L/h = 4.28; r/L = 0.868 (10o); Is/Ir = 1.128.

Frame is adequately braced against all

other forms of instability.

pinned

rigid

Source: Mottram, J. T. 2007. Proc. 3rd Inter. Conf. on Advanced
Composites in Construction (ACIC07).
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Pitched Portal Frame with udl
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Joint forces due
to udl

Analysis: Shear flexibility parameter u increases from 0 to 1.5.

Same value of u for both stanchions and rafters.
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Pitched Portal Frame with udl

Conventional shear-flexible
stability functionss andc

(slide CICE08-06)

Mottram and Aberle shear-flexible
stability functionsszero andczero (slide CICE08-06)

10o

10o

Shear-stiff frame
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Buckling Resistance and
Frame Shear Flexibility

Current wisdom says that shear-flexibility will reduce the

instability load of continuous frames.

Does the ACIC07 contribution indicate that a weakness in

the formulation of the conventional shear-flexible stability

functions is the reason for an INCREASE in buckling

resistance, or is it due to a coding problem?
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Majid’s Closed-form Expressions

Source: Majid, K. I. Elastic Plastic Structural Analysis, PhD thesis,
University of Manchester, 1963.

Virtual energy method and relevant set of “fictitious” horizontal forces to

perturb either symmetrical of anti-symmetrical modes. Solutions given for

udl loading (as in ACIC 07) and for vertical point load at apex C. Modified so

that rafter and stanchion members have different second moment of areas

and “constant” elastic rafter compression force is calculated by a

Klienlogel formula.

Majid and udl and anti-symmetrical mode
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Majid’s – UDL loading (see also ACIC07)

Anti-symmetrical mode Symmetrical mode

Same variations in resistance with the anti-symmetrical mode.

Choice of shear flexibility functions does not change buckling resistance with
the symmetrical mode (shear stiff critical load is 3.75 times higher than anti-
symmetrical)

Conventional shear-
flexible stability
functionss andc

Mottram and Aberle
shear-flexible stability
functionsszero andczero
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Majid’s – Apex Point Loading

Anti-symmetrical mode Symmetrical mode

This example does not provide uncertainty on what is the ‘constant’ rafter
compression force.

Findings from uld loading example (slide CICE08-14) are supported.

Shear stiff critical load for symmetrical mode is 2.71 times higher than
for the anti-symmetrical mode.
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• Two different analytical methods to determine the elastic critical

buckling load of pitched portal frame problems have shown that the

incompatibility condition in the formulation of the conventional shear-

flexible stability functionss andc might be a limitation to their

application when the mode of instability is anti-symmetrical.

• By using the Mottram and Aberle stability functionsszero andczero,

formulated to give rotational compatibility, buckling resistance is found

to continuously reduce with increasing member shear-flexibility.

• An increase in buckling resistance with member shear flexibility is not

to be expected from finite element simulations using ‘stick’ elements

formulated using Timoshenko beam theory.

• Physical testing is required to further our understanding.

Conclusions
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This image cannot currently be displayed.

Email: J.T.Mottram@warwick.ac.uk 2008

Thank you for your attention.

Any questions?

Conferences for 2009, held in Edinburgh, Scotland.

17th Inter. Conf. on Composite Materials (ICCM17) 27-31 July.

Deadline for abstracts is 31st Oct. 2008 (Topic: Advanced

Composite Materials in Construction (Urs Meier, Toby Mottram,

Geoffrey Turvey))

4th Inter. Conf. on Advanced Composites in Construction

(ACIC 09) 1-3 September. (Abstracts to Claire Whysall at:

info@acic-conference.com Deadline is 3rd Nov. 2008)


