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Aims

* To develop the knowledge & tools that
industry needs:

— To make better systems around electrochemical
energy storage devices (i.e. batteries &
supercapacitors)

° By
— Creating degradation aware models
— Designing new experiments
— Pushing the boundaries of our knowledge



All cells are not always equal

* Parallel cells VY oy °

— Rarely in the same savery 160 | B;:WZ‘BZ’tﬁl B;;W“Bﬂ%l Hovled
electrical environment AW W\ difference

— Even if in the same - - :
temperature environment Vipp = OCVy + 11 + Ric (211 + 1)

— If T is not managed, things Vapp = OCV2 + 112 + Ric (h + 205 + 13)
can go badly wrong Vipp = OCV3 + 113 + Ric (I + 213)

— Even if T is managed cells g [ Miieum
can still be unequally s ot ciocds
stressed

1 Equal loading

 Series cells

— Same problem as uneven
current distribution in
large form factor cells .
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Wu B, Yufit V, Marinescu M, et al., 2013, Coupled thermal—electrochemical modelling of uneven heat
generation in lithium-ion battery packs, Journal of Power Sources, 43, 2013, 544-554



Dynamic rebalancing

Current must be SOC converges to mid point
conserved between cells due to balancing
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The effect of thermal gradients
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Troxler Y, Wu B, Marinescu M, Yufit V, Patel Y, Marquis AJ, Brandon NP, Offer GJ, The effect of thermal
gradients on the performance of lithium-ion batteries, Journal of Power Sources, 247, 2014, 1018-1025



3C discharge of 20Ah EIG NCM battery

There is a need to manage thermal
boundary conditions properly during
experiments

6G20Ah ¢ * ‘.}o'_o]
B . .




3C discharge of 20Ah EIG NCM battery

Strong effect thermal boundaries

Opposite behaviour to normally
reported

Caused by bus bars
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3C discharge of 9 cell x 20Ah EIG NCM
battery

Prototype for testing

Thermally conducting base plate *
Insulated other boundaries

Air exposed cell tabs *

No thermal mgmt. system *
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* All different in actual battery pack



Effect of cooling strategy

In-between cells
— <1mm total thickness

Slip between cells in a
stack

Design of cooling
channels important.




Plate cooling
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* Temperature
difference is much
smaller.

* Design of cooling
channels could be
optimised further.

 Will lead to
temperature gradients
in ‘2’ direction.
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Degradation in lithium-ion batteries

e Lithium-ion batteries degrade

* Various irreversible losses over the lifetime of a cell lead to capacity fade
and power fade

* Monitoring of degradation in batteries is of critical importance
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Schematics of various degradation mechanisms at the anode-electrolyte interface and the cathode region

Aging mekhanisms in lithium-ion batteries.
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Existing degradation diagnostics

* Electrochemical Impedance Spectroscopy (EIS)
e Slow-Rate Cyclic Voltammetry (SRCV)
* |Incremental Capacity method (IC)
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Experimental results of a 4.8 Ah Kokam lithium-polymer cell at different voltages/states of capacity fade. EIS (left), SRCV (middle),
IC curve (right).

Wu B, Yufit V, Merla Y, Martinez-Botas RF, Brandon NP, Offer GJ, Differential thermal voltammetry for
tracking of degradation in lithium-ion batteries, Journal of Power Sources 2015, 273, Pages 495-501



Differential Thermal Voltammetry

* New in-situ battery diagnosis method for tracking degradation

 Uses the temperature profile under constant current discharge to infer the same data as
SRCV/IC but in a much reduced time

. pry = 4T/ _dr
dat/ dt  av
* Plotted against cell voltage, it may be possible to give an indication of the entropy
changes in carefully controlled conditions dVv dT
* Peaks represent phase transformation E ) W
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Wu B, Yufit V, Merla Y, Martinez-Botas RF, Brandon NP, Offer GJ, Differential thermal voltammetry for
tracking of degradation in lithium-ion batteries, Journal of Power Sources 2015, 273, Pages 495-501



Advantages / Disadvantages

 Made for application in real world systems
— Extract the same amount of information as a SRCV/IC
— Takes only a few minutes
— Simple computation : dT/dV

— Only requires voltage and temperature measurements (useful in
parallel packs)

— Does not require iso-thermal condition

Temp., Voltage Impedance Current, Voltage Current, Voltage
Minutes Minutes Hours Hours
Simple Complex Simple Simple
Natural Constant Constant Constant

Wu B, Yufit V, Merla Y, Martinez-Botas RF, Brandon NP, Offer GJ, Differential thermal voltammetry for
tracking of degradation in lithium-ion batteries, Journal of Power Sources 2015, 273, Pages 495-501



Accelerated Degradation Experiment
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Wu B, Yufit V, Merla Y, Martinez-Botas RF, Brandon NP, Offer GJ, Differential thermal voltammetry for
tracking of degradation in lithium-ion batteries, Journal of Power Sources 2015, 273, Pages 495-501

4.8Ah lithium polymer Kokam cell



/A

DTV /KN

SRCV vs. DTV

e Similar peak potentials and changes through capacity loss between the
two methods

e 3 hours for SRCV and 30 minutes for DTV
* Cell held at 4.2V: significant change in both peaks, anode and cathode
* Cycled cell: small change in the anode peak but negligible for the cathode
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Comparison of experimental SRCV and DTV results for a 4.8Ah lithium polymer Kokam cell at various stages of capacity fade

Wu B, Yufit V, Merla Y, Martinez-Botas RF, Brandon NP, Offer GJ, Differential thermal voltammetry for
tracking of degradation in lithium-ion batteries, Journal of Power Sources 2015, 273, Pages 495-501



Concentration

Concentration

Current Research Problem

Modelling Lithium Iron Phosphate (LFP) cathodes
Phase change material with flat voltage profile & large hysteresis

effect

Competing models, shrinking core vs. domino cascade, both work
but the latter is more ‘physically’ correct
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Thank You for your time!

Contact:
gregory.offer@imperial.ac.uk

www.futurevehicles.ac.uk
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