Work Package 1 Batteries FUTURE/VESI Seminar 14th Jan 2015, London

Dr Gregory Offer*, Dr Edmund Noon, Billy Wu, Sam Cooper, Vladimir Yufit, Farid Tariq, Marie-Therese Srbik, Monica Marinescu, Ricardo Martinez-Botas, Nigel Brandon

* gregory.offer@imperial.ac.uk, Lecturer, Department Mechanical Engineering, Imperial College London

Aims

- To develop the knowledge & tools that industry needs:
 - To make better systems around electrochemical energy storage devices (i.e. batteries & supercapacitors)
- By
 - Creating degradation aware models
 - Designing new experiments
 - Pushing the boundaries of our knowledge

All cells are not always equal

- Parallel cells
 - Rarely in the same electrical environment
 - Even if in the same temperature environment
 - If T is not managed, things can go badly wrong
 - Even if T is managed cells can still be unequally stressed
- Series cells
 - Same problem as uneven current distribution in large form factor cells

Wu B, Yufit V, Marinescu M, et al., 2013, Coupled thermal–electrochemical modelling of uneven heat generation in lithium-ion battery packs, Journal of Power Sources, 43, 2013, 544–554

0+0.0

0.2

0.4

Ratio of interconnect to battery resistance

06

0.8

1.0

Dynamic rebalancing

Wu B, Yufit V, Marinescu M, et al., 2013, Coupled thermal–electrochemical modelling of uneven heat generation in lithium-ion battery packs, **Journal of Power Sources**, **43**, **2013**, **544–554**

The effect of thermal gradients

 Under thermal gradients, a cell behaves like one with a higher average temperature

Effect is due to nonlinear temperature dependence on charge transfer resistance

Troxler Y, Wu B, Marinescu M, Yufit V, Patel Y, Marquis AJ, Brandon NP, Offer GJ, The effect of thermal gradients on the performance of lithium-ion batteries, **Journal of Power Sources**, **247**, **2014**, **1018-1025**

3C discharge of 20Ah EIG NCM battery

There is a need to manage thermal boundary conditions properly during experiments

3C discharge of 20Ah EIG NCM battery

3C discharge of 9 cell x 20Ah EIG NCM battery

* All different in actual battery pack

Effect of cooling strategy

- In-between cells
 - <1mm total thickness</p>
- Slip between cells in a stack
- Design of cooling channels important.

Plate cooling

- Temperature difference is much smaller.
- Design of cooling channels could be optimised further.
- Will lead to temperature gradients in 'z' direction.

Degradation in lithium-ion batteries

- Lithium-ion batteries degrade
- Various irreversible losses over the lifetime of a cell lead to capacity fade and power fade
- Monitoring of degradation in batteries is of critical importance

Schematics of various degradation mechanisms at the anode-electrolyte interface and the cathode region

Aging mechanisms in lithium-ion batteries. Vetter et. al Journal of Power Sources doi:10.1016/j.jpowsour.2005.01.006.

Existing degradation diagnostics

- Electrochemical Impedance Spectroscopy (EIS)
- Slow-Rate Cyclic Voltammetry (SRCV)
- Incremental Capacity method (IC)

Experimental results of a 4.8 Ah Kokam lithium-polymer cell at different voltages/states of capacity fade. EIS (left), SRCV (middle), IC curve (right).

Differential Thermal Voltammetry

- New in-situ battery diagnosis method for tracking degradation
- Uses the temperature profile under constant current discharge to infer the same data as SRCV/IC but in a much reduced time
- $DTV = \frac{dT}{dt} / \frac{dV}{dt} = \frac{dT}{dV}$
- Plotted against cell voltage, it may be possible to give an indication of the entropy changes in carefully controlled conditions
- Peaks represent phase transformation

Advantages / Disadvantages

- Made for application in real world systems
 - Extract the same amount of information as a SRCV/IC
 - Takes only a few minutes
 - Simple computation : dT/dV
 - Only requires voltage and temperature measurements (useful in parallel packs)
 - Does not require iso-thermal condition

Requirements	Differential Thermal Voltammetry	Electrochemical Impedance Spectroscopy	Slow-rate Cyclic Voltammetry (SRCV)	Incremental Capacity (dQ/dV)
Measurements	Temp., Voltage	Impedance	Current, Voltage	Current, Voltage
Time	Minutes	Minutes	Hours	Hours
Computation	Simple	Complex	Simple	Simple
Temperature	Natural	Constant	Constant	Constant

Accelerated Degradation Experiment

- 4.8Ah Lithium polymer batteries made by Dow Kokam
- Carbon anode and Nickel-Manganese-Cobalt cathode
- 3 cells stored/operated at various conditions
- EIS, SRCV, IC and DTV carried out at every 50 cycles at room temperature to track degradation

Cell	Temperature	Loading
1	55°C	4.2V Hold
2	55°C	1C cycling
3	Room	1C cycling

SRCV vs. DTV

- Similar peak potentials and changes through capacity loss between the two methods
- 3 hours for SRCV and 30 minutes for DTV
- Cell held at 4.2V: significant change in both peaks, anode and cathode
- Cycled cell: small change in the anode peak but negligible for the cathode

Wu B, Yufit V, Merla Y, Martinez-Botas RF, Brandon NP, Offer GJ, Differential thermal voltammetry for tracking of degradation in lithium-ion batteries, Journal of Power Sources 2015, 273, Pages 495-501

Current Research Problem

- Modelling Lithium Iron Phosphate (LFP) cathodes
- Phase change material with flat voltage profile & large hysteresis effect
- Competing models, shrinking core vs. domino cascade, both work but the latter is more 'physically' correct

Zeng, Y. I., Bazant, Martin Z.

Delmas, C., Maccario, M., Croguennec, L., Le Cras, F., Weill, F

Thank You for your time!

Contact: gregory.offer@imperial.ac.uk

www.futurevehicles.ac.uk

