Designing robust electrical machines
FUTURE Vehicles WP2.2

FUTURE/VESI Seminar 14th Jan 2015, London

David Howey
Associate Professor, University of Oxford
david.howey@eng.ox.ac.uk
http://epg.eng.ox.ac.uk
WP2.2 Aims

- Investigate operating machines closer to limits
- Requires better understanding of failure mechanisms
- Focus: thermal and electrical stressing
- Aim to develop approaches for diagnosis and prognosis

Deliverables: detailed database of models including ageing and degradation, and identified gaps in knowledge

Thermal modelling

• Generally well understood, but..
 – Convection is challenging
 – Thermal contact resistance may be unknown
• We are investigating these thought this and other similar projects (e.g. ADEPT http://www.addept-itn.eu)

CFD Simulation of Taylor vortices in an electrical machine airgap:

Thermal contact resistance

On a microscopic level, flat surfaces are not flat

There is direct contact...

...but also air pockets

We represent the combined effect with a thermal contact resistance (TCR)
Modelling contact resistance

• Classic model is Cooper, Mikic and Yovanovich (CMY):

• Gaussian distribution for heights of peaks

\[\frac{h_c}{k} \frac{\sigma}{<|\tan \theta|>} = f \left(\frac{P_a}{H} \right) \]

conductance pressure

Relevance to electrical machines

- Stator-housing interface
- Copper-slot interface

Test setup for experiments

\[R_{th} = \frac{T_i - T_o}{Q} \]

Machine geometry usually concentric therefore contact pressure not constant!

= experimental investigation

Camilleri R, Howey DA, McCulloch MD, “Experimental investigation of the thermal contact resistance in shrink fit assemblies with relevance to electrical machines”, IET PEMD, 18-20 April 2014, Manchester UK.
Relevance to electrical machines

Camilleri R, Howey DA, McCulloch MD, “Experimental investigation of the thermal contact resistance in shrink fit assemblies with relevance to electrical machines”, IET PEMD, 18-20 April 2014, Manchester UK.
Lifetime modelling

- Initially we investigate impact of temperature on insulation, by measuring impedance, breakdown voltage, mass etc.
Ageing tests

• Long term ageing tests on insulation samples show loss of material, increase in roughness, decrease in breakdown strength, and impedance changes.

Coupled lifetime modelling

- Temperature and stress can both impact insulation lifetime.
- Zhurkov lifetime model similar to Arrenhnius, includes stress:
 \[
 \tau = \tau_0 \exp \frac{U_0 \gamma \delta}{kT}
 \]
- We constructed coupled thermal-mechanical simulations to predict likely failure point at slot exit:
• Many thanks to Dr Darren Kavanagh, Robert Camilleri, and to our industrial collaborators and sponsors
• I also work on batteries, see http://epg.eng.ox.ac.uk/content/energy-storage

email: david.howey@eng.ox.ac.uk
website: http://epg.eng.ox.ac.uk

group papers at:
http://epg.eng.ox.ac.uk/publications