WORK PACKAGE 3.1

Dr Małgorzata Sumisławska

14th JANUARY 2015

APPROACHES FOR DIAGNOSTICS AND PROGNOSTICS

CONTROL THEORY AND APPLICATIONS CENTRE COVENTRY UNIVERSITY

INTRODUCTION

• Aim – to reduce computational complexity of model yet retain sufficient accuracy for a specific purpose, i.e. control, diagnostics, prognostics

CONTENT

- Model based approach to diagnostics
- Case study: diagnosis of proton exchange membrane(PEM) fuel cell
- Fault diagnostics and prognostics data driven approach
- Case study: bearing data remaining useful life (RUL) estimation

MODEL-BASED APPROACH FOR DIAGNOSTICS

Faults and degradation represented as additional inputs to the system

- High Fidelity Model used as a surrogate of real-world system
- Reduced order model identified from input and output data
- Fault detection and diagnosis filter designed to detect and identify faults and degradation

HIGH ORDER PEM FUEL CELL MODEL

J. Pukrushpan, A. Stefanopoulou, and H. Peng, "Control of fuel cell breathing," IEEE Contr. Syst. Mag., vol. 24, no. 2, pp. 30–46, Apr. 2004.

FUEL CELL DIAGNOSTICS

- Multiple-input multiple-output model:
 - Inputs: stack current and compressor voltage
 - Outputs: net power, stack voltage, excess oxygen ratio (oxygen flow into cathode/oxygen reacted)
 - Induced faults:
 - Actuator fault variation in compressor voltage/efficiency simulating surge/choke affecting air flow to the supply manifold
 - Supply manifold fault variation of supply manifold pressure to represent air leakage
 - Fuel cell stack fault cathode exit flow rate blockage to simulate flooding
- Steady state feed-forward controller for compressor voltage to maintain oxygen excess ratio of 2

FUEL CELL DIAGNOSTICS

Response of reduced order model

FUEL CELL DIAGNOSTICS

Fault detection and isolation observer

FAULT DIAGNOSTICS AND PROGNOSTICS – DATA DRIVEN APPROACH

BEARING DATA CASE STUDY

- PRONOSTIA experimentation platform: FEMTO-ST Institute
- Run-to-failure experiments

P. Nectoux, R. Gouriveau, K. Medjaher, E. Ramasso, B. Morello, N. Zerhouni, C. Varnier. PRONOSTIA: An Experimental Platform for Bearings Accelerated Life Test. IEEE International Conference on Prognostics and Health Management, Denver, CO, USA, 2012

KURTOSIS

$$\boldsymbol{\beta} = \frac{\int_{-\infty}^{+\infty} (x - \overline{x})^4 P(x) dx}{\sigma^4}$$

• Undamaged bearing: $\beta = 3$

RUL MODELLING

RUL modelling

 Variance of principal components of displacement exhibits descending trend until failure

trend = $a \cdot time + b$

 Analysed dependency between parameters a, b and bearing life

RUL MODELLING

Estimated RUL

- 3 estimation data sets
- 1 validation set

SUMMARY

- Knowledge and understanding of elements required for a unified approach to condition based maintenance framework
- Initial investigation of various methods for fault diagnostics and remaining useful life prognostics
- Fuel cell and rolling element bearings case studies used to examine and validate algorithms

Further work –

- Develop generalised set of algorithms for diagnostics and prognostics
- Demonstrate algorithms on additional case studies
- Investigate applicability for online implementation of reduced order models for control, diagnostics and prognostics