Analysis and Design of Non-Rare-Earth Traction Motor and Drive

14th January 2015

Prof. Patrick Luk, Dr Weizhong Fei, Cranfield University Prof. Pickert Volker, Dr. Chris Morton, Newcastle University Prof. Keith Pullen, Dr. Niall McGlashan, City University London

Objectives

- "The primary aim of this project is to showcase a high performance and low cost traction drive and has a **sustainable supply chain** that is critical for the uptake of the EV market". Specific objectives are:
- 1. Develop a high performance ferrite motor with full functional integration with its converter.
- 2. Develop a power converter for the ferrite motor.
- 3. Mechanical and thermal integration of the motor and the controller with the following targets.
- \$12/kW; 1.2 kW/kg; 3.5 kW/L,
- efficiency 93% (10%-100% speed at 20% rated torque)
- All data is based on 70°C inlet temperature at 8 l/min water/glycol 50/50 mix

Design Rationale

- Flux focusing to maximize PM torque --> high rotor pole number (>6)
- Saliency to boost reluctance torque--> multilayer interior magnets
- High power density --> high rotational speed
- Limited switching frequency --> low rotor pole number, low rotational speed
- Rotor integrity limitation -->low rotational speed, simple rotor structure

		Rotor
Estimated real power	20kW	mechanical PM air-gap integrity flux density
Rotational speed	10,000rpm (rated); 20,000rpm (maximum)	(stress (flux) limitation) focussing)
Efficiency	>93%	Aspect
Nominal Bar Bus Voltage	300V	Rotor pole ratio
Ambient temperature	60 degrees	inertia)
Pole Pairs	4	Efficiency of
Cooling	Water cooled	converter (PWM frequency)
Vési		

Magnet Layer Number(Initial)

Integrated optimisation and design

Rotor Axial Slot Optimization

Ten-slot configuration is chosen for the final design

Stator Slot Comparison

30 slots

ves

36 slots

48 slots

Stator Slot Comparison

Stator Slot Comparison

By considering the average torque output, torque ripple, and overload capability, 36 stator slots are chosen for the prototype machine.

Final Design Parameters

Stator Slot	Rotor pole	Turn	n per Coil	Coil pe	Phase	R (phase)	Ld	Lq	
36	8	2		12 (In s	eries)	8.7mΩ		0.21mH	0.55mH	
Stator outer	r diameter	Stator inner diamet		meter	Air gap	Air gap		Stator stack length		
144mm		96.4mm			0.5mm		86.5mm			
			Rotor stacks		Rotor a	Rotor axial slots		Magnet volume		
			6.5mm*1	.1	1.5mm*10			206.4cm ³		
		Act Deskty 2 Plat T 30002+00 3000200 3000200 30002000 3000200 30000000000	0.25 0.2 0.15 0.1 0.15 0.1 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 80 80 60 40 20 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		30 Botor Position (Degree)			
	3.0002 01 Rotor Position (Degree) 3.00055-01 3.0002-00							Rotor Position	(Degree)	
				Millio.		5		500		

Control Structure

Portunus with High fidelity model

Rotor Slice Design

- The principle design problem faced is to contain the magnets and stator lamination wedges against centrifugal action.
- Recap: Tried various geometries using a supporting peg which proved adequate when rotor diameters were low.

Rotor Slice Design -Cont

- Magnetic analysis showed that rotor diameter and number of poles needed to increase
- The result was unacceptable stress levels in the peg type arrangement even after optimisation.
- A pin supported design was suggested to reduce the stress in the lamination steel to an acceptable level

Rotor/Shaft Mechanical Features

Final Rotor Stress Analysis

Motor Cooling Design - Model

- A 1.5D, transient heat transfer model was developed to estimate radial temperature distribution in the motor.
- The model allows for heat generation in stator, rotor and the windage gap.
- The composite rotor design is modelled as two overlapping fins and the stator by considering winding and slot conduction in parallel.

$$\rho C p \frac{\delta T}{\delta t} = k_r \left(\frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial r^2} \right) + \dot{q}$$
$$q_{wall} = -k_r \frac{\partial T}{\partial r} \dots \dots T_{const}$$

 $h(T_{\infty} - T_{wall}) \dots \dots h_{const}$

Outer fins with convective HT Outrer casing Stator – no slots Two path model windings + slots Heat Air gap with Flow windage model Outer rotor slices Overlapping fin model of rotor and shaft Hollow shaft cooled with oil in the bore

Motor Cooling Design - Results

MINDING. I GLIVS

- Assumptions:
- 1. Average coolant T = 72.5° C.
- Motor Nominal Power 20 kW.
- 3. Combined loss in motor of 5%: 4% shared amongst stator components; 1% in rotor.
- 4. Windage loss and heat transfer from: ESDU 07704 and Howey *et al 2012.*
- 5. $h_{cooling}$ fin based on flat plate convection model.
- 6. h_{oil} based on thin film conduction model.

50 kW for five teraidly test at 20 kW

Overall Package Design

Key Features of Final Design

- Nominal rating: 20 kW at 10,000 rpm.
- Max speed 20,000 rpm.
- Fully subcritical machine design.
- Water cooled aluminium body with integrated cooling of semiconductors.
 - a) Fins on motor barrel arranged in a multi-start helical format
 - b) Semiconductor cooled by fined heat exchanger aligned with main fins.
- Oil cooled rotor and bearings.
 - a) Oil lubricated/cooled bearings fed with oil through hollow shaft arrangement.
 - b) Two spring preloaded, deep groove bearings used to support main shaft.
 - c) No cooling fan required.

Future works

- Prototype manufacture and assembly (by End of March)
- Rotor integrity test at high speed in City University London
- Improve high fidelity machine model based on 3-D FEA results, and temperature effects
- Full performance profile evaluation of the machine
- Demagnetization analysis to derive current vector limit for each rotor position, embedded in the final controller design to prevent demagnetization
- Develop more sophisticated control algorithm based on high fidelity model to improve overall performance
- DSP programming and machine on load testing

