BATTERIES

DIFFERENTIAL THERMAL VOLTAMMETRY

- Novel in-situ battery diagnosis method for tracking degradation
- Uses the temperature profile under constant current discharge to infer the same data as SRCV/IC but in a much reduced time
- Plotted against cell voltage, it may be possible to give an indication of the entropy changes in carefully controlled conditions

DIFFERENTIAL THERMAL VOLTAMMETRY

Temperature possible (i.e. DTV) Where current is not (i.e. ICA (dQ/dV))

PHYSICS BASED MODELS

- Physics based electrochemical battery model
 - Variable double layer capacitance
 - Surface concentrations affect current overpotential equations
 - SEI layer growth degradation included
 - Implemented in Simulink for system & control engineers

M-T von Srbik, Paper Under Review, Journal Power Sources

MODELS MATCH DIAGNOSTIC TECHNIQUES

- Model works for highly transient loads and up to 20C
- Model capable of matching diagnostic techniques for degradation

M-T von Srbik, Paper Under Review, Journal Power Sources

EMERGENT BEHAVIOUR CAUSES FEEDBACK LOOPS

Temperature affects impedance exponentially

- Effect is due to non-linear temperature dependence on charge transfer resistance
- Under a thermal gradient a cell behaves like one with a higher average temperature
 - Some layers do more work than others
 - Analogous to cells in parallel

Troxler et al., Journal of Power Sources, Vol:247, 2014, Pages:1018-1025

THERMAL CHAMBERS ARE OFTEN UNSUITABLE

We can simulate any battery pack thermal management system at a single cell

HOW BIG CAN THERMAL GRADIENTS GET?

- Even at high temperatures
 - when impedance is low
- Under discharge, internal temperature can be substantially different from surface

2C discharge of 5Ah Kokam NCM cell

M. I. Ardani, Paper Submitted

THERE ARE GOOD AND BAD THERMAL GRADIENTS

Holders Critical for good pack design Peltier element Cell Coolant 5 6C Coolant out Tab Cooled in Coolant Coolant in out Capacity (Ah) 5⁷ * * * Copper plates; \diamond Heat sinks Heat sinks Cell C1 4 Cell S1 Cell T1 0 Cell C2 Coolant Coolant Coolant Cell tabs Coolant Cell S2 **Surface Cooled** out in in out Λ Cell T2 3.5 Holders 0 100 200 300 400 500 600 700 800 900 1000 No of Cycles

Peltier element

I. Hunt, Paper Under Review, Journal Electrochemical Society

THERE ARE GOOD AND BAD THERMAL GRADIENTS

Surface cooling

- Layers different impedance
- Layers behave differently
- Positive feedback

Tab cooling

- Within layers different impedance
- Each layer behaves same
- Minimal feedback

I. Hunt, Paper Under Review, Journal Electrochemical Society

ROOT CAUSE TRIGGERS POSITIVE FEEDBACK

- Initial formation of thermal gradients (inhomogeneity)
 - is a significant root cause of accelerated degradation
- Other root causes of inhomogeneity could similarly start this cycle of detrimental positive feedback by affecting the R term

