MODEL ORDER REDUCTION
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OUTLINE

" Need for model order reduction (MOR)
= Methodology for MOR
®= Classical approaches
Supercapacitor
= Data driven approaches
Designh of experiment
Linear approach: Batteries

Nonlinear SISO / MISO approach: Power converter
Nonlinear MIMO approach: Fuel cell

= Summary of findings



MODEL ORDER REDUCTION OVERVIEW

® MOR is required to reduce computational complexity of model yet retain

sufficient accuracy for a specific purpose, i.e. control, diagnosis, prognosis

HIGH FIDELITY/HIGH ORDER NON-LINEAR MODEL

BANK OF LINEAR MODELS

REDUCED ORDER
NON-LINEAR MODEL

Model order reduction procedure to obtain banks
of linear models



METHODOLOGY

" Models for purpose:
Control
Diagnosis classical
Prognosis

= Approaches for MOR:

data-driven
Classical

= Based on mathematical
manipulation of system equations

Data-driven
= Models derived from data collected from complex models or hardware

" Include System ldentification and Machine Learning methods

All approaches retain dominant modes whilst discarding modes with
low contribution to system dynamics



METHODOLOGY

Batteries, supercapacitors, fuel cells, electric machines, power electronics

Physics based modelling (paortial
differential equations)

High fidelity/ high order
nonlinear model

Data acquisition

System lifetime data

Reduced order modelling

| ]
Classical approaches Data driven approaches

Krylov subspace 5% end extraction Neural networks
Singular perturbation ’ quares res Support vector
approximation ! ] machinges

Truncated balanced nan filter : Clustering

residualisation . Bayesian networks
Quadratic approximation o -
Trajectory piecewise lingar

Model Structures
* Linear
* Bilinear
*  Nonlinear

y

Models for purpose

Control Diagnosis Prognosis




CASE STUDY: SUPERCAPACITOR

= Single input single output (SISO) nonlinear model
® 60th order model used as baseline for model order reduction
® Truncation without model order reduction methods
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CASE STUDY: SUPERCAPACITOR

® Comparison of 3'Y order model variants
obtained via selected reduced order
modelling techniques
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Il Stable modes

SPA - Singular perturbation
approximation

TBR - Truncated balanced
residualisation

Arnoldi - Krylov subspace
method

RIV - refined instrumental
variable



DATA DRIVEN APPROACHES
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CASE STUDY: BATTERY

Data acquisition

Voltage and SOC (outputs) responses to current input

36 short (80 seconds) data sets starting at different SOC
(positive current input - charge mode)

Experiment repeated for negative current (discharging)

Obtained set of 144 LTI models using simplified refined
instrumental variable (SRIVC) method

Current to SOC models
Current to voltage models

Assumption: low order model can have linear structure,
where parameters depend on SOC and signh of current



CASE STUDY: BATTERY
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CASE STUDY: BUCK-BOOST CONVERTER

= Model structure: 10 single input - single output (SISO)
Hammerstein models with 4t" order polynomial
static nonlinearity

Inputs: Input voltage and duty cycle
Output: Output current
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CASE STUDY: BUCK-BOOST CONVERTER

= Model structure : Bilinear multiple inputs - single output (MISO)
Inputs: Input voltage and duty cycle
Output: Output current
Model order: 5 °

R;2=93.7 %
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Bilinear term - 1
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CASE STUDY

: FUEL CELL STACK

= True output
----- Identification data
----- Validation data
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® Model structure: MIMO NARX

Inputs: stack current, compressor
voltage

Outputs: stack voltage, oxygen
excess, net power

Logarithmic type nonlinearity on
the input

Model order: 15

Oxygen excess R;”= 96.8 %
Stack voltage R;> =94.2 %
Net power R;?2 =99.3 %

Net power

= True output |
----- ldentification data
----- Validation data
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J. Pukrushpan, A. Stefanopoulou, and H. Peng, “Control of fuel cell breathing,” IEEE
Contr. Syst. Mag., vol. 24, no. 2, pp. 30-46, Apr. 2004.



SUMMARY OF FINDINGS

MOR effectively retains fidelity of high order model whilst
reducing the model order

Data driven approaches are effective for reduced order
modelling

Purpose of model and a priori information determines the
modelling method

Outline of methodology for model order reduction
Control
Diagnosis
Prognosis

Guidelines for MOR

Methodology is robust for multiple case studies



