
MODEL ORDER REDUCTION 



 Need for model order reduction (MOR)  

 Methodology for MOR 

 Classical approaches 

 Supercapacitor 

 Data driven approaches 

 Design of experiment 

 Linear approach: Batteries 

 Nonlinear SISO / MISO approach: Power converter 

 Nonlinear MIMO approach: Fuel cell  

 Summary of findings 

 

OUTLINE 



• MOR is required to reduce computational complexity of model yet retain 

sufficient accuracy for a specific purpose, i.e. control, diagnosis, prognosis 

Model order reduction procedure to obtain banks 
of linear models 

 

MODEL ORDER REDUCTION OVERVIEW 



 Models for purpose:  

 Control  

 Diagnosis 

 Prognosis 

 Approaches for MOR: 

 Classical 

 Based on mathematical  

manipulation of system equations 

 Data-driven 

 Models derived from data collected from complex models or hardware  

 Include System Identification and Machine Learning methods  

 All approaches retain dominant modes whilst discarding modes with 

low contribution to system dynamics 

METHODOLOGY 

classical 

data-driven 



METHODOLOGY 



 Single input single output (SISO) nonlinear model  

 60th order model used as baseline for model order reduction  

 Truncation without model order reduction methods  
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CASE STUDY: SUPERCAPACITOR 



 Comparison of 3 rd order model variants 

obtained via selected reduced order 

modelling techniques   
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CASE STUDY: SUPERCAPACITOR 
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Stable modes

SPA – Singular perturbation 

approximation 

 

TBR – Truncated balanced 

residualisation 

 

Arnoldi – Krylov subspace 

method 

 

RIV – refined instrumental 

variable 



DATA DRIVEN APPROACHES 

 An experimental process, whereby 

making use of available input -output 

data and a priori knowledge, one aims 

to mathematically describe causalities 

that govern behaviour of system 

 

 Different approaches to modelling 

based on a priori  knowledge 

 White box 

 Black box 

 Grey box 

 



1. Data acquisition 

 Voltage and SOC (outputs) responses to current input 

 36 short (80 seconds) data sets starting at different SOC 

(positive current input – charge mode)  

 Experiment repeated for negative current (discharging)  

2. Obtained set of 144 LTI models using simplified refined 

instrumental variable (SRIVC) method 

 Current to SOC models 

 Current to voltage models  

3. Assumption: low order model can have linear structure, 

where parameters depend on SOC and sign of current  

CASE STUDY: BATTERY 



CASE STUDY: BATTERY 
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 Model  structure :   10 single input -  s ingle output (SISO)   

           Hammerstein models with 4 th order polynomial   

           static nonlinearity  

 Inputs: Input voltage and duty cycle 

 Output: Output current 

 Model order: 1 

 RT
2= 99.83 % 

 

 

CASE STUDY: BUCK-BOOST CONVERTER 

0.5 1 1.5 2 2.5 3 3.5 4

-2

-1.5

-1

-0.5

o
u
tp

u
t

 

 

Actual

Identified

0.5 1 1.5 2 2.5 3 3.5 4

-2

-1.5

-1

-0.5

o
u
tp

u
t

 

 

Actual

Identified

0.5 1 1.5 2 2.5 3 3.5 4

8

10

12

14

time

in
p
u
ts

 

 

duty ratio

Vin



CASE STUDY: BUCK-BOOST CONVERTER 

 Model  structure :   Bil inear multiple inputs –  s ingle output (MISO)  

 Inputs: Input voltage and duty cycle 

 Output: Output current 

 Model order: 5 

 RT
2= 93.7 % 

 a – 5 

 b – 2 

 Bilinear term – 1 
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CASE STUDY: FUEL CELL STACK 

J. Pukrushpan, A. Stefanopoulou, and H. Peng, “Control of fuel cell breathing,” IEEE 

Contr. Syst. Mag., vol. 24, no. 2, pp. 30–46, Apr. 2004. 

 Model  s tructure :   MIMO NARX  

 Inputs: stack current,  compressor 

voltage  

 Outputs: stack voltage, oxygen 

excess, net power 

 Logarithmic type nonlinearity on 

the input 

 Model order: 15 

 Oxygen excess RT
2= 96.8 % 

 Stack voltage RT
2 =94.2 % 

 Net power RT
2 =99.3 % 
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 MOR effectively retains fidelity of high order model whilst 

reducing the model order  

 Data driven approaches are effective for reduced order 

modelling 

 Purpose of model and a priori information determines the 

modelling method 

 

 

 Outline of methodology for model order reduction  

 Control 

 Diagnosis 

 Prognosis 

 Guidelines for MOR 

 Methodology is robust for multiple case studies  

 

SUMMARY OF FINDINGS 


