VESI - Demonstrator one High Performance Ferrite PM Traction Drive

Final presentation by Prof Patrick Luk, Cranfield University

London, 18 March 2016

The Team: Prof Patrick Luk, Dr Weizhong Fei, Cranfield University Prof. Pickert Volker, Dr. Chris Morton, Newcastle University Prof. Keith Pullen, Dr. Niall McGlashan, City University London

Benchmarking our project

- "standing on the shoulders of giants"

Prius HEV rare-earth motor

https://www.youtube.com/watch?v=WcpE0ITSIJM

Technology Demonstrator

Aim: Showcasing a *viable and sustainable alternative EV traction technology* that is critical for the uptake and penetration of the EVs in future automotive market.

Objective: Developing a high performance ferrite motor with full functional integration with its converter.

 \$12/kW; 1.2 kW/kg; 3.5 kW/L; Efficiency 93%; Cooling 70°C inlet temperature at 8 l/min water/glycol 50/50 mix

Design Rationale

- Flux focusing to maximize PM torque --> high rotor pole number (>6)
- Saliency to boost reluctance torque--> multilayer interior magnets
- High power density --> high rotational speed
- Limited switching frequency --> low rotor pole number, low rotational speed
- Rotor integrity limitation --> low rotational speed, simple rotor structure

Estimated real power	20kW	
Rotational speed	10,000rpm (rated); 20,000rpm (max) 5,000rpm (rated) (lower speed version)	
Efficiency	>93%	
Nominal Bar Bus Voltage	300V	
Ambient temperature	60 degrees	
Pole Pairs	4	-
Cooling	Water cooled	7

Magnet Layer Optimisation

Final Rotor Stress Analysis

Stator Design

Principal design problem: Maximize electromagnetic performance and minimize demagnetization risk.

APPROACH USED:

•Stator slot shape and size are optimized to minimize the copper resistive loss.

Torque performance prediction

Comparison

	High	Low	Low	Low Speed
Machine Type	Speed	Speed_1	Speed_2	3
Power	20kW	13kW	15kW	20kW
Coil Turns	3	5	5	4
Current (RMS)	114.5A	68.7A	80.6A	143A
Resistance	15.2mOhm	42.3mOhm	42.3mOhm	27.1mOhm
Copper Loss	600W	600W	824W	1600W
Core loss	361.5W	223.5W	262W	317W
Electromagnetic Efficiency	95.40%	94.10%	93.30%	91.30%

Stator Design (contd)

Helical cooling fins on motor body maximise heat transfer.

Aluminium casing

Stator lamination with windings

Drive component Mounted on Aluminium Casing

Partially assembled stator

Rotor Assembly (high speed)

- High-strength, **pin-supports** used to **reduce stress** in the lamination steel. •
- Optimal rotor has eight poles and is 95.4mm diameter. •
- Employ Nippon Steel 0.35mm lamination 35H250 with 420MPa tensile strength • to minimize rotor core loss.

Rotor right cover Pin holders

Rotor Assembly Issues

- Communications issues with sub-contactor
- Incorrect tolerances leading to lamination jam and magnets broken
- Better communications with sub-contractor
- Tolerances less critical
- Successful rotor assembly

High speed

Low speed

Dynamic Demagnetization Analysis

- Irreversible demagnetisation will occurs if flux density in PM is below knee point threshold value.
- Simulation results allow virtually complete mitigation of de-magnetisation

vés

Demagnetization at low environmental temperature -60°C

- Completely safe at rated loading;
- Demagnetization of 2.3% at 1.5 times current;
- Demagnetization of 12% at 2 times current.

Conclusion

- Demo 1 has very good anti-demagnetization ability even under overloading conditions
- At extremely low environmental temperature, demagnetization can be completely avoided by monitoring current with control program (our integrated drive concept being developed)
- A compelling and viable alternative to existing EV drives

VESI – related Successes

• iGIVE EPSRC-funded Program

 Two Paper Awards (\$1600) at the IEEE Transport Electrification Community (TEC) 2015 conference

• 11 publications, including 3 IEEE Trans papers

